A comparison of light path equations in General Relativity using a Taylor series approach vs Jacobian elliptic functions

Gerald Malczewski¹

Abstract

Based on a method to calculate the deflection of light near the Sun based on General Relativity, a formula is derived which expresses the light path as a function of the radial distance r from a gravitating central body. This method, based on the General Relativity (GR) geodesic equation applied to the Schwarzschild metric, uses an infinite Taylor series expansion. This requires a 'finite cutoff' of the series be taken to compute the polar angle of a light path coordinate for a given radial distance. We take the light path to be a trajectory of a photon or light packet originating at radial infinity and then departing to radial infinity after reaching its point of closest approach to the central body. Constraints are found that limit the discussion to central bodies of mass M which obey M/R < 1/3 where R is the turning point, the point of closet approach.

A comparison is then made with a different approach previously published using Jacobian elliptic functions which yields a closed expression for the light path equation. It is shown that the two approaches are equivalent if a finite cutoff is not taken for the Taylor series. If the cutoff is taken, then computationally the two methods yield approximately the same result for small radial distances but diverge as r increases.

The elliptic function method has the advantage that the method can be applied to the case where $M/R \geq 1/3$, including calculating light paths inside a black hole horizon. This case is outside the scope of this paper.

A. Introduction

1

¹ Email: MalczewskiGld@gmail.com

The observational validation in 1919 of the value of light deflection by the sun as predicted by Einstein was the first of many validations [4], of the Theory of General Relativity (GR) [2],[3],[9]. In this paper we focus on the light path itself as a function of radial distance from the gravitating body, not the deflection measured by an observer, and compare two different methods derived from GR.

Section B and C derive a light path equation using results from [9] which leverages the GR geodesic equation for the Schwarzschild gravitational metric for a body of with mass M. The derivation of this light path equation uses a Taylor Series expansion, so a finite cut-off is then required when doing an actual computation. Some examples are then given.

Sections D describes the light path equation derived from Jacobian elliptic functions developed in [5]. Computational examples are also included.

Section E compares the models introduced in Sections B and D.

We end with a **Summary** section highlighting the main observations and findings.

The reader is assumed to have basic familiarity with General Relativity and how light reflection is measured (for example, see [8] and section 6.3 of [9]) and some familiarity with impact parameter analysis but detailed knowledge of the mathematical techniques of GR is not required. There is minimal use of tensors and only in the context of the Schwarzschild metric.

As a caution to the reader, the key equations in this paper are drawn from several sources, each with their own notation and conventions. This will necessitate performing multiple sets of notational replacements and transformations which, although adding to the mathematical exposition, will be necessary to demonstrate our assertions. Attempting to show all the derivations for the key equations of each source would result in an excessively long paper and therefore the reader is referred to these sources for the details.

B. Derivation of light path using Taylor series.

Throughout this paper we always assume the gravitating body mass is a perfectly symmetric and static spherical mass with uniform density where rotation and charge are not present or negligible, i.e., the metric is Schwarzschild (see endnote [1] for a description).

We will designate the sought-after light path equation by the function $\theta=\theta(\rho)$ where θ is the polar angle of the light path location. The argument ρ equals R/r where r is the radial distance to the center of the body and R the distance of closet approach.

Conveniently, the preliminary groundwork to find $\theta(\rho)$ has been done. In Wald [9], planetary orbital precession and light deflection calculations are developed based on the Schwarzschild metric, its space-time geodesics, and impact parameter analysis. As part of the derivations the following equation, in Wald's original notation, is developed for the trajectory of light (see (6.3.41) in his text):

$$\Delta \phi = 2 \int_0^{1/R_0} \frac{du}{\sqrt{R_0^{-2} - 2MR_0^{-3} - u^2 + 2Mu^3}}$$
 (1)

where $\Delta\phi$ is the total change in the spherical coordinates polar angle as the light ray propagates in a plane along a path originating at a far distance and passing through radial distance $r=R_0$. See Fig.1. Also u=1/r and R_0 is the 'turning point' of the light path which is the point of closest approach to the central body. The constant M is mass expressed in meters (see endnote [2]). The integration limits represent the end points of the light path; u=0 $(r=\infty)$ is interpreted as the light path originating at a far distance in the direction of some asymptotic line drawn from the origin as shown in Fig. 1. The light paths discussed in this paper all possess asymptotic lines as can be determined by letting $r\to\infty$ in the characteristic equation of the light path. The factor of 2 is present since the upper and lower paths are symmetric.

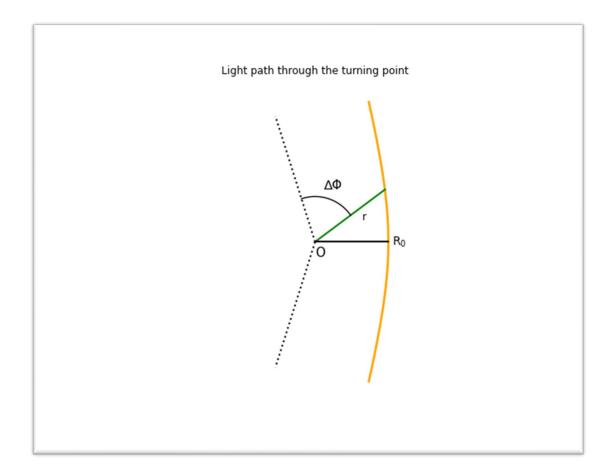


Figure 1. Arbitrary curved light path due to the influence of gravity for a mass at the origin 0, using the notation of Wald [9]. The swept angle $\Delta\emptyset$ and corresponding radial distance r are shown as the light path moves inbound from a far distance along the asymptote (upper dotted line) through the turning point R_0 and continues outbound asymptotically toward the lower dotted line.

Writing (1) in the differential form, ignoring the factor of 2, and doing the replacement $\phi \to \theta$ and $R_0 \to R$ to be consistent with the notation we will be using:

$$d\theta = \frac{du}{\sqrt{R^{-2} - 2MR^{-3} - u^2 + 2Mu^3}},\tag{2}$$

where $d\theta$ is the infinitesimal polar angle element. Finding the antiderivative by evaluating the integral $\int d\theta$ with an appropriate change in variables will give us the trajectory function $\theta(\rho)$ we seek. This is where the mathematical complexity of General Relativity becomes manifest. $\int d\theta$ is in fact intractable if seeking to express it with elementary functions. We need to express the integrand as a product of two factors where one factor can be expanded as an infinite Taylor series resulting in an infinite sum of tractable integrals. A 'finite cutoff' is then taken to some desired approximation. Going from an intractable form to a series of tractable forms comes at the cost of approximating our desired function $\theta(\rho)$ for any numerical calculation.

To aid in finding the right factorization we specify some conditions that the antiderivative should have:

- #1. When M=0 (flat space), the light path should be a straight-line trajectory. The equation of a straight line in polar coordinates can be expressed with the sine of θ so the antiderivative should equal the $\sin^{-1}x$ for some x that should be a function of r and R. Then the integral will reduce to the form $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x$.
- #2. When M=0 all other terms in the Taylor series should be suppressed, so M should be a factor in each series term except the first term $\sin^{-1} x$ corresponding to the massless case.
- #3. The antiderivative should yield $\theta=\pi/2$ when r=R, the position of the light path at the turning point.

Now set $\rho=\frac{R}{r}$. Then $0\leq\rho\leq1$ and $\rho=Ru$. So $d\rho=Rdu$ or $du=\frac{1}{R}d\rho$. Transforming (2):

$$d\theta = \frac{d\rho}{R\sqrt{R^{-2} - 2MR^{-3} - \left(\frac{\rho}{R}\right)^{2} + 2M\left(\frac{\rho}{R}\right)^{3}}} = \frac{d\rho}{\sqrt{R^{2} \left[R^{-2} - 2MR^{-3} - \left(\frac{\rho}{R}\right)^{2} + 2M\left(\frac{\rho}{R}\right)^{3}\right]}}} = \frac{d\rho}{\sqrt{\left[1 - 2MR^{-1} - \rho^{2} + 2M\rho^{3}R^{-1}\right]}} = \frac{d\rho}{\sqrt{\left[1 - \rho^{2} - \frac{2M}{R}(1 - \rho^{3})\right]}}.$$
(3)

We need to ensure that the radicand obeys $1-\rho^2-\frac{2M}{R}(1-\rho^3)>0$ or $\frac{1-\rho^2}{1-\rho^3}>\frac{2M}{R}$. But the LHS of this inequality is in the range $\frac{2}{3}\leq \frac{1-\rho^2}{1-\rho^3}\leq 1$. If we impose $\frac{M}{R}<\frac{1}{3}$ then $\frac{2M}{3}<\frac{1-\rho^2}{1-\rho^3}\leq 1$. Hence $\frac{1-\rho^2}{1-\rho^3}>\frac{2M}{R}$ and positivity is assured.

 $\int d\theta$ is still intractable but notice that when M=0 the expression reduces to $\frac{d\rho}{\sqrt{1-\rho^2}}$ which satisfies condition #1. But we need to express (3) as two factors and transform it into a series of terms, each integrable. The presence of the $\sqrt{1-\rho^2}$ term suggests the following:

$$\frac{d\rho}{\sqrt{\left[1-\rho^2 - \frac{2M}{R}(1-\rho^3)\right]}} \frac{1}{\sqrt{1-\rho^2}} = \frac{d\rho}{\sqrt{\left[1-\rho^2 - \frac{2M}{R}(1-\rho^3)\right]} \frac{1}{\sqrt{1-\rho^2}}} \frac{1}{\sqrt{1-\rho^2}} = \frac{d\rho}{\sqrt{\left[1 - \frac{2M}{R}\left(\frac{1-\rho^3}{1-\rho^2}\right)\right]}} \frac{1}{\sqrt{1-\rho^2}} \tag{4}$$

Then

$$d\theta = \frac{d\rho}{\sqrt{\left[1 - \frac{2M}{R}\left(\frac{1 - \rho^3}{1 - \rho^2}\right)\right]}} \frac{1}{\sqrt{1 - \rho^2}} = \frac{d\rho}{\sqrt{[1 - z]}} \frac{1}{\sqrt{1 - \rho^2}} \text{ where } z = \frac{2M}{R}\left(\frac{1 - \rho^3}{1 - \rho^2}\right)$$
(5)

which is now in our desired form.

As a check on dimensional consistency note that M, R, and r all have dimension of length. Therefore, ρ , M/R, and all factors and terms are dimensionless which is required for the polar angle differential $d\theta$ to be dimensionless.

The restriction on M/r < 1/3 can also be justified using the relationship (see Wald [9], Section 6.3)

$$R_0 = \frac{2b}{\sqrt{3}} \cos\left(\frac{1}{3} \cos^{-1}\left(\frac{-\sqrt{27}M}{b}\right)\right). \tag{6}$$

Here, b is the impact parameter and $R_0=R$. If b is larger than the critical value $\sqrt{27}M$ then the light ray is not captured by

the central body. Using (6) it can be shown that M/R < 1/3 must hold for $b > \sqrt{27}M$ to be satisfied.

Since $\frac{2M}{R} < \frac{2}{3}$ and therefore $\frac{2M}{R} \left(\frac{1-\rho^3}{1-\rho^2}\right) < 1$ we can expand $\frac{1}{\sqrt{1-Z}}$ as a Taylor series with each term except the first containing a power of m satisfying condition #2 above:

$$\frac{1}{\sqrt{1-z}} = 1 + \frac{1}{2}z + \frac{3}{8}z^2 + \frac{5}{32}z^3 + \dots + \frac{2n+1}{2^{2n+1}}z^{n+1} + \dots$$
 (7)

where n = 0,1,2,... generates the second and subsequent terms.

Each term of these terms is generated from the formula for a Taylor series, namely $\sum_0^\infty \frac{f^{[n]}(a)}{n!}(z-a)^n$, where $f^{[n]}(a)$ denotes the nth derivative of the function $f(z)=[1-z]^{-(1/2)}$, evaluated at a, where a=0 is chosen. The details of this calculation are not supplied here, but computing the first few terms of the series should satisfy the reader of its validity.

Then (5) is expressed as

$$d\theta = \left[\frac{1}{\sqrt{1-\rho^2}}\right] \left[1 + \frac{1}{2}z + \frac{3}{8}z^2 + \frac{5}{32}z^3 + \dots + \frac{2n+1}{2^{2n+1}}z^{n+1} + \dots\right] d\rho. \tag{8}$$

Integrating and ignoring for the moment the constant of integration:

$$\theta = \int \left[\frac{1}{\sqrt{1-\rho^2}} \right] \left[1 + \frac{1}{2}z + \frac{3}{8}z^2 + \frac{5}{32}z^3 + \dots + \frac{2n+1}{2^{2n+1}}z^{n+1} + \dots \right] \ d\rho = \int \left[\frac{1}{\sqrt{1-\rho^2}} + \frac{1}{2}\frac{1}{\sqrt{1-\rho^2}}z + \frac{1}{2}\frac{1}{\sqrt{1-\rho^2}}z + \frac{3}{8}\frac{1}{\sqrt{1-\rho^2}}z^3 + \dots \right] d\rho = 0$$

$$\int \left[\frac{1}{\sqrt{1-\rho^2}} + \frac{1}{2} \frac{1}{\sqrt{1-\rho^2}} \left(2 \left(\frac{1-\rho^3}{1-\rho^2} \right) \frac{M}{R} \right)^1 + \frac{3}{8} \frac{1}{\sqrt{1-\rho^2}} \left(2 \left(\frac{1-\rho^3}{1-\rho^2} \right) \frac{M}{R} \right)^2 + \frac{5}{32} \frac{1}{\sqrt{1-\rho^2}} \left(2 \left(\frac{1-\rho^3}{1-\rho^2} \right) \frac{M}{R} \right)^3 + \cdots \right] d\rho .$$
(9)

Then the polar angle function $\theta(\rho)$ is just the sum of the antiderivatives of the integrand in this equation and a constant of integration.

An alternative derivation of (9) can be carried out starting with equation (3) in Section C.1 of Malczewski and Selig [8],

$$\frac{d\theta}{dr} = \frac{\left[\frac{1}{r^2}\sqrt{\frac{R^3}{R-2M}}\right]}{\left[\left(\sqrt{1-\left(\frac{R}{r}\right)^3\frac{r-2M}{R-2M}}\right)\right]'}$$

where we have done the notation replacement consistent with our notation in this paper. This demonstration also utilizes the GR geodesic equation applied to the Schwarzschild metric.

Another alternative derivation of (9) can be conducted starting with equation (53) in section 13 of Magnan [7] after the necessary notational replacement and algebraic manipulation of differentials.

In all these various methods, the work done to determine the <u>deflection</u> angle of the light path as observed from the central body is instead leveraged to obtain the equation of the entire <u>trajectory</u> of the path.

Continuing with our main development and using the first two terms of the integrand in (9) we have

$$\int \left(\frac{1}{\sqrt{1-\rho^2}} + \frac{1}{\sqrt{1-\rho^2}} \frac{1-\rho^3}{1-\rho^2} \frac{M}{R} \right) d\rho . \tag{10}$$

Taking antiderivatives.

$$\theta_2(\rho) = \sin^{-1}\rho - \left(\frac{M}{R}\right)\frac{2+\rho}{\sqrt{1+\rho}}\sqrt{1-\rho} + C_2$$
 (11)

where the subscript 2 has been inserted and denotes that this result is based on the first two terms of the final equation in (9). When the light ray reaches the point P where r=R its polar angle is $\pi/2$ in our reference system. This gives us a boundary

condition to solve for C_2 which is our condition #3 above. Then $\theta=\frac{\pi}{2}$ when $\rho=R/r=1$, hence $\theta_2(1)=\frac{\pi}{2}$. Then (11) implies

$$C_2 = \frac{\pi}{2} - \sin^{-1} 1 - \left(\frac{M}{R}\right) \frac{2+1}{\sqrt{1+1}} \sqrt{1-1} = 0.$$
 (12)

Extending this argument to the next level of approximation to include the antiderivative of the third term of (9) we find

$$\theta_{3}(\rho) = \sin^{-1}\rho - \left(\frac{M}{R}\right) \frac{2+\rho}{\sqrt{1+\rho}} \sqrt{1-\rho} + \frac{3}{2} \left[\frac{5}{2} \sin^{-1}\rho - \frac{\left((\sqrt{1-\rho})(3\rho^{3}+6\rho^{2}-7\rho-8)\right)}{6(\rho+1)^{3/2}}\right] \left(\frac{M}{R}\right)^{2} + C_{3}.$$
 (13)

Using the same boundary condition as above to find \mathcal{C}_3 we have

$$C_{3} = \theta_{3}(1) - \left\{ \sin^{-1} 1 - \left(\frac{M}{R} \right) \frac{2+1}{\sqrt{1+1}} \sqrt{1-1} + \frac{3}{2} \left[\frac{5}{2} \sin^{-1} 1 - \frac{\left((\sqrt{1-1})(3 \cdot 1^{3} + 6 \cdot 1^{2} - 7 \cdot 1 - 8)\right)}{6(1+1)^{3/2}} \right] \left(\frac{M}{R} \right)^{2} \right\} = \frac{\pi}{2} - \left\{ \frac{\pi}{2} - 0 + \frac{3}{2} \left[\frac{5\pi}{2} - 0 \right] \left(\frac{M}{R} \right)^{2} \right\} = -\frac{15\pi}{8} \left(\frac{M}{R} \right)^{2}.$$

$$(14)$$

Equations (13) and (11) can both be viewed as equations for the GR based light path as a function of ρ , but to different levels of approximation. The light path constructed from the GR polar angle function $\theta_k = \theta_k(\rho)$ can also be described in the language of mathematical sets by the infinite set of ordered pairs $\{(\theta_k(\rho),\rho)\}_{\rho}$ where k is the level of approximation and the subscript ρ ranges over all values between 0 and 1, corresponding to r ranging over the values ∞ to r. This set represents the upper half of the entire path. The lower half of the path is symmetric to the upper half with respect to the y-axis in our spherical coordinate system (using the physics convention).

C. Predicted polar angle using additional anti-derivatives.

To obtain a better approximation of the predicted polar angle, we now extend the above results to $\theta_k(\rho)$ for k>3. This is done by including additional terms determined by the antiderivatives

of the first k integrand terms in (9). Let the kth antiderivative, excluding the constant of integration, be denoted by $F_k(\rho)$.

An integral calculator shows that the antiderivative for the kth term $\frac{2k-3}{2^{k-2}}\frac{1}{\sqrt{1-\rho^2}}\left(\left(\frac{1-\rho^3}{1-\rho^2}\right)\frac{M}{R}\right)^{k-1}$, k=2,...,5, can be put in the general form

$$F_k(\rho) = \frac{2k-3}{2^{k-2}} \left[\frac{a}{b} \sin^{-1} \rho + \frac{(\pm \sqrt{1-\rho})^p(\rho)}{d(1+\rho)^l} \right] \left(\frac{M}{R} \right)^{k-1}$$
 (15)

where a, $b \neq 0$, $d \neq 0$ are integers; $P = P(\rho)$ a 'complete' polynomial of degree 2k-3 in ρ for k>1, and l a non-negative rational number < k. By a 'complete' polynomial of degree 2k-3 we mean the polynomial contains terms of every degree up to and including 2k-3. All the variables and integer constants are dependent on k but we have left out this index in the above symbolism to not clutter the appearance of the general form. Equation (15) also satisfies our condition #2 in that it contains the mass M. Since the factor $\frac{a}{b}\sin^{-1}\rho$ term is not present when k=2 then a=0 for this index.

Appendix A lists the antiderivatives for k=1 to 5 which exhibit this general form. The expressions for the constants of integration \mathcal{C}_k are also listed. Although each $F_k(\rho)$ is derived using a series of trigonometric substitutions and identities during the integration process, there does not seem to be any nice recursive relationship among these antiderivatives or some simple dependency on k. This would allow us to determine $F_k(\rho)$ or \mathcal{C}_k for any k in some closed form. Computations involving higher values of k are best addressed using software tools due to the large number of terms involved since $P(\rho)$ is a complete polynomial [see endnote 3 for a paper by Rodriguez and Marin addressing light deflection that encounters a similar issue].

Notice that when $\rho=0$, corresponding to $r=\infty$, $F_k(\rho)$ reduces to $\frac{2k-3}{2^{k-2}}\left[\frac{\pm T}{d}\right]\left(\frac{M}{R}\right)^{k-1}$ where T is the constant term of $P(\rho)$. When $\rho=1$

 $F_k(\rho)$ reduces to $\frac{2k-3}{2^{k-2}}\left[\frac{a}{b}\cdot\frac{\pi}{2}\right]\binom{M}{R}^{k-1}$. These results are useful when analyzing asymptotic behavior and finding the constant of integration of the antiderivatives.

As examples let us compute $F_5(\rho)$ for $\rho=0$. Using the antiderivative from appendix A:

$$F_5(0) = \left(\frac{7}{8}\right) \left[\frac{99}{8} \sin^{-1} 0 - \frac{(\sqrt{1-0})P(0)}{56(1+0)^{7/2}}\right] \left(\frac{M}{R}\right)^4 = \left(\frac{7}{8}\right) \left[-\frac{-832}{56}\right] \left(\frac{M}{R}\right)^4 = 13 \left(\frac{M}{R}\right)^4 \tag{16}$$

where $P(\rho) = 14\rho^7 + 56\rho^6 + 217\rho^5 + 364\rho^4 - 820\rho^3 - 2860\rho^2 - 2691\rho - 832$.

For $\rho = 1$,

$$F_5(1) = \left(\frac{7}{8}\right) \left[\frac{99}{8} \sin^{-1} 1 - \frac{\left(\sqrt{1-1}\right)P(1)}{56(1+1)^{7/2}}\right] \left(\frac{M}{R}\right)^4 = \left(\frac{7}{8}\right) \left[\frac{99}{8} \cdot \frac{\pi}{2}\right] \left(\frac{M}{R}\right)^4 = \left(\frac{693\pi}{128}\right) \left(\frac{M}{R}\right)^4. \tag{17}$$

Now let

$$\theta_k(\rho) = \sum_{1}^{k} F_k(\rho) + C_k \tag{18}$$

where \mathcal{C}_k is the resulting constant of integration. As in section B, \mathcal{C}_k can be found by using the boundary condition that the polar angle is $\pi/2$ radians when r=R $(\rho=1)$. As k increases we can see that $\theta_k(\rho)$ will involve a very large number of terms since $P=P(\rho)$ is a complete polynomial.

Define

$$\theta_{\infty}(\rho) \equiv \lim_{k \to \infty} \theta_k(\rho) = \lim_{k \to \infty} \sum_{1}^{k} F_k(\rho) + C_{\infty}$$
 (19)

where $C_{\infty} = \lim_{k \to \infty} C_k$ is the resulting constant of integration in the limit. $\theta_{\infty}(\rho)$ is the 'true' theoretical path of the light ray (null geodesic) based on General Relativity. However, truncating $\theta_{\infty}(\rho)$ at a sufficiently high cutoff approximation index K' gives a polar angle to some specified approximation. In the literature, K' is traditionally set to a value of 2 when using the

antiderivatives to determine the deflection angle for a solar mass.

Using the same boundary conditions as we did with $\theta_2(\rho)$ and $\theta_3(\rho)$, the constant of integration for the light path described by the first five antiderivatives, k=5, is determined:

$$\theta_{5}(1) = \sum_{1}^{5} F_{k}(1) + C_{5} \quad \text{so} \quad C_{5} = \theta_{5}(1) - \sum_{1}^{5} F_{k}(1) = \frac{\pi}{2} - \left\{ F_{1}(1) + \sum_{2}^{5} \frac{2k-3}{2^{k-2}} \left[\frac{a}{b} \cdot \frac{\pi}{2} \right] \left(\frac{M}{R} \right)^{k-1} \right\}$$
(20)

where the a and b coefficients depend on k.

Then

$$C_{5} = \frac{\pi}{2} - \left\{ \frac{\pi}{2} + 1 \cdot 0 \frac{\pi}{2} \frac{m}{r_{0}} + \frac{35\pi}{222} \frac{\pi}{2} \left(\frac{M}{R} \right)^{2} + \frac{5}{4} \left[-3\frac{\pi}{2} \right] \left(\frac{M}{R} \right)^{3} + \frac{7}{8} \left[\frac{99\pi}{82} \right] \left(\frac{M}{R} \right)^{4} \right\}$$

$$= -\frac{15\pi}{8} \left(\frac{M}{R} \right)^{2} + \frac{15\pi}{8} \left(\frac{M}{R} \right)^{3} - \frac{693\pi}{128} \left(\frac{M}{R} \right)^{4}. \tag{21}$$

Then the resulting polar angle formula, $heta_5(
ho)$, is

$$\theta_5(\rho) = F_1(\rho) + F_2(\rho) + \dots + F_5(\rho) + C_5.$$
 (22)

Going forward we will call the ratio M/R the 'mass ratio'. We now let the mass ratio in $\theta_5(\rho)$ range over a selected set of values bounded by 1/3. As a reference point, the mass ratio for the sun is $M/R \approx 2.1 \times 10^{-6}$.

Before proceeding further, we now change the notation of the various function arguments to include the mass ratio. Thus change each argument (ρ) to $(M/R,\rho)$ and since C_k is not dependent on ρ express it as $C_k\left(\frac{M}{R}\right)$. Then, (22) is now expressed as

$$\theta_5\left(\frac{M}{R},\rho\right) = F_1\left(\frac{M}{R},\rho\right) + F_2\left(\frac{M}{R},\rho\right) + \dots + F_5\left(\frac{M}{R},\rho\right) + C_5\left(\frac{M}{R}\right). \tag{23}$$

And (19) becomes

$$\theta_{\infty}\left(\frac{M}{R},\rho\right) \equiv \lim_{k \to \infty} \theta_{k}\left(\frac{M}{R},\rho\right) = \lim_{k \to \infty} \sum_{k=1}^{K} F_{k}\left(\frac{M}{R},\rho\right) + C_{\infty}\left(\frac{M}{R}\right) \tag{24}$$

We note that in the limit $M \to 0$ (GR flat space), $\theta_k\left(\frac{M}{R},\rho\right) = \sum_1^k F_k\left(\frac{M}{R},\rho\right) + C_k\left(\frac{M}{R}\right)$ equals $\sin^{-1}\rho$ since $\frac{M}{R}$ approaches zero. In flat space the light ray path is a straight line going through r=R, as expected.

We have extended these results to include the next set of antiderivatives F_6 , , , F_{10} that exhibit the same form as (15). Due to the completeness of the polynomials $P=P(\rho)$, the resulting function contains a very large number of terms that we do not show here. Any such numerical investigation would certainly require extensive use of automation/software tools. The appendix lists the full expressions for F_k and C_k , $k=1,\ldots,5$.

We can also express $heta_\infty\left(rac{ extsf{M}}{ extsf{R}},
ho
ight)$ as

$$\theta_{\infty}\left(\frac{M}{R},\rho\right) = \sum_{1}^{k} F_{k}\left(\frac{M}{R},\rho\right) + \theta_{k+1}^{\infty}\left(\frac{M}{R},\rho\right) \tag{25}$$

where $\theta_{k+1}^{\infty}\left(\frac{M}{R},\rho\right)\equiv\sum_{k+1}^{\infty}F_k\left(\frac{M}{R},\rho\right)+C_{\infty}\left(\frac{M}{R}\right)$. We will call this the 'infinite tail'. Due to the difficulty in determining a general formula for $F_k\left(\frac{M}{R},\rho\right)$, any computation to determine a location along the trajectory $\{(\theta_k(\rho),\rho)\}_{\rho}$ must let $k<\infty$ and drop the infinite tail. But in doing so must remember to add in the constant $C_k\left(\frac{M}{R}\right)$ to the 'finite part' in (25) getting $\theta_k\left(\frac{M}{R},\rho\right)=\sum_{1}^k F_k\left(\frac{M}{R},\rho\right)+C_k\left(\frac{M}{R}\right)$. The constant term is determined using the example outlined for C_5 above. The computed location will necessarily be approximate.

Going forward we will have occasion to refer to these models of a light path as 'k=n' and ' $k=\infty'$ where (22) holds for the k=5 model and (25) holds for the $k=\infty$ model. The $k<\infty$ index value will also be referred to as the 'approximation level'.

Proceeding to a fully illustrated example, set $\rho=0.95$ and M/R=0.1. Then a programmed numerical calculation for θ_5 gives $\theta_5(M/R=0.1,\rho=0.95)=1.19401$ radians = 68.4117° . The radial

distance is found using $\rho=0.95$ since $\rho=R/r=0.95$ implies $r=(1/0.95)R=1.05623R\equiv r_{\theta}$. We can also express this as a multiple of the Schwarzschild radius α by noting that $\alpha=2M$ so $M/R=0.5\alpha/R=0.1$ implies $R=5\alpha$. Therefore $r_{\theta}=1.05623(5\alpha)=5.28115\alpha$.

Therefore, a member of the light path trajectory for the mass ratio 0.1 at a distance corresponding to $\rho=0.95$ is the ordered pair $(68.4117^\circ,\,r_\theta=0.05623R=5.28115\alpha)$ where all values are to the approximation level k=5.

Suppose we let M=1480 meters which is approximately of solar mass in gravitational units. Then R=M/0.1=14800 meters, the turning point of the light path, which is much smaller than the actual radius of our sun. For our chosen value of M, $\alpha=2M=2960$ meters. Then the light path member is $(68.4117^{\circ},\,r_{\theta}=1.05623R=5.28115\alpha=15632.2\,meters)$.

If we set $\rho=0$ (radial infinity) then $\theta_5(M/R=0.1,\rho=0)=-.243582$ radians $=-13.9532^\circ$. This is the angular slope of the asymptotic line for the path originating at a far distance from the central body that has a turning point at R=14800.

Computing θ_5 for all values of ρ with the above M and R generates the entire upper branch of the light path as shown in Fig.2. A symmetry argument yields the lower branch. Since $k=5<\infty$ we know that this only an approximation of the true path determined represented by $\theta_\infty(M/R=0.1,\rho)$.



Figure 2. Curved light path for the k=5 model with mass ratio 0.1, with dotted asymptotic lines. The location of the computed light path member $(\theta,\,r_{\theta})=(68.4117^{\circ},15632.2\,\text{meters})$ is marked. Each radial unit on this graph equals five Schwarzschild radii, the distance of the turning point R from the center of the mass at the origin O.

The reader is now referred to Fig.3 that displays an arbitrary light path diagram and the relevant angles and parameters that will be used going forward.

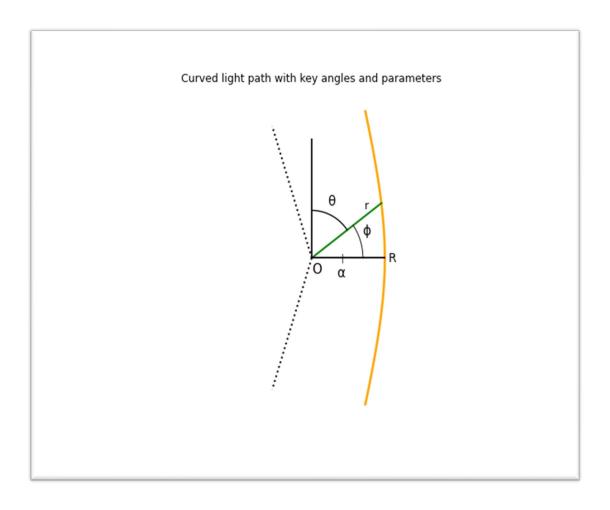


Figure 3. Arbitrary curved light path showing the key angles and parameters going forward. For a light path location in the first quadrant shown, θ is the polar angle in spherical coordinates and ϕ the complimentary angle in polar coordinates for the light path location with radial distance r. The center of the gravitating mass is located at the origin θ with Schwarzschild radius θ . The inbound light path from the radial infinity asymptotic line (upper dotted) passes through the turning point θ , and continues outbound to radial infinity approaching the lower dotted line.

D. Light path equation based on Jacobian elliptic functions.

We now turn to the derived light path equation as expressed in equation (80) of Section 7 in [5], where crucially the equation is in closed form. Going forward we will have occasion to refer to this light path model as the HK (Hioe-Kuebel) model. Using the author's original notation:

$$\frac{1}{q} = \frac{(e_1 - e_3)e_2 - (e_2 - e_3)e_1 sn^2(\gamma\phi, k)}{(e_1 - e_3) - (e_2 - e_3)sn^2(\gamma\phi, k)} , \qquad (26)$$

where the e_i are roots of a certain cubic in a differential equation expressing how the radial distance r changes as the angle ϕ varies. This angle is the polar angle in polar coordinates. The avoid confusion with our polar angle θ in spherical coordinates we will designate ϕ as the 'vertex' angle going forward. The e_i roots are in turn functions of α/R where α is the Schwarzschild radius of the central body and $1/q \equiv \alpha/r$ as defined in the HK model. This is all developed in a polar coordinate system with the central body at the origin.

It is not readily apparent, but this HK model and the $k=\infty$ model are equivalent. Heuristically this can be seen by noting that both models are derived from the same Schwarzschild metric and the GR geodesic equation. A more formal mathematical proof is supplied in appendix B.

The arguments of the Jacobian elliptic function sn equal $\gamma\phi$, the 'amplitude' and k the 'modulus', where γ and k are functions of the roots e_i . Jacobian elliptic functions are a generalization of trigonometric functions which refer to conic sections, the ellipse in particular. For an explanation of these non-elementary functions, including sn, see [1], as well as other online sources such as Wikipedia for an introduction.

The roots e_i take the following values where $U_1 \equiv \alpha/R$.

$$e_{1} = (1/2) \left[1 - U_{1} + \sqrt{(1 + 2U_{1} - 3U_{1}^{2})} \right]$$

$$e_{2} = U_{1}$$

$$e_{3} = (1/2) \left[1 - U_{1} - \sqrt{(1 + 2U_{1} - 3U_{1}^{2})} \right]$$
(27)

Also,

$$\gamma = \sqrt{e_1 - e_3}/2$$
 and $k = \sqrt{(e_2 - e_3)/(e_1 - e_3)}$. (28)

By the Schwarzschild metric $\alpha=2M$ and so $U_1=\alpha/R=2M/R$. Then our mass ratio limit $0\leq M/R<1/3$ implies $0\leq U_1<2/3$.

Let us now replace $\frac{1}{q} \equiv \frac{\alpha}{r}$ in (26) with the symbol Q. Since Q is dependent on U_1 and ϕ we will use the functional notation $Q = Q(U_1, \phi)$ mirroring the $\theta_k = \theta_k \left(\frac{M}{R}, \rho\right)$ notation introduced previously.

Then (26) is expressed as

$$Q(U_1, \phi) = \frac{(e_1 - e_3)e_2 - (e_2 - e_3)e_1 sn^2(\gamma \phi, k)}{(e_1 - e_3) - (e_2 - e_3)sn^2(\gamma \phi, k)}$$
(29)

The HK model (29) is a function of the vertex angle ϕ and U_1 yielding the radial distance. Conversely, the k=5 and $k=\infty$ models (22) and (19) are functions of radial distance and M/R, giving the polar angles θ_5 and θ_∞ . The necessary conversions and transformations to get a consistent framework to prove the equivalency of the two results is given in the proof in Appendix B.

Similar to the k=n model we can represent the light path constructed from $Q=Q(U_1,\phi)$, in the language of mathematical sets, by the set of ordered pairs $\{\phi\,,\,Q(U_1,\phi)\}_{\phi}$ where the subscript vertex angle ϕ ranges between 0 and a maximum angular value. The value is dependent on U_1 and is required to generate the entire path; it will be discussed in what follows. Using this viewpoint, we can state that $\{(\theta_k(M/R,\rho)\,,\,\rho)\}_{\rho}=\{\phi\,,\,Q(U_1,\phi)\}_{\phi}$ when $k=\infty$ but is only an approximate equality for small radial distances when $k<\infty$.

We will now compute an example of a light path location for the same mass ratio M/R=0.1 used to compute r_{θ} in the example in Section C. Use the angle $\theta_5=68.4117^{\circ}$ predicted by $\theta_5(M/R=0.1,\rho=0.95)$ as input to $Q(U_1,\phi)$ to determine if we can approximately recover the same radial value 5.28115α . But first we convert θ_5 to the corresponding complimentary vertex angle which is $\phi=90^{\circ}-68.4117^{\circ}=21.5883^{\circ}=0.376787$ radians. This value is now an acceptable input to (29).

Let the radial value we are going to compute be denoted by r_{ϕ} . Since $Q(U_1,\phi)=1/q=\alpha/r_{\phi}$ then $r_{\phi}=\alpha/Q(U_1,\phi)$. If the two models describe the same light path, given that θ_5 is an approximation, then we should expect $r_{\phi}\approx r_{\theta}$.

Computing the values in (27) and (28) to compute $\it Q$ we obtain

 $e_1 = 0.965685$

 $e_2 = 0.2$

 $e_3 = -0.165685$

 $\gamma = 0.531830$

k = 0.568527

where $U_1=\alpha/R=\alpha/5\alpha=0.2$ using $R=5\alpha$ which was determined when calculating θ_5 in the previous section. This U_1 value corresponds to M/R=0.1.

Using a Python language routine we get $sn\left(\gamma\phi,k\right)=sn\left(0.531820\cdot0.376787,0.568527\right)=0.198308$. Then using (29) we have $Q(U_1=0.2,\phi=0.376787)=0.190142$. So $r_\phi=\alpha/Q=\alpha/0.190142=5.25923\alpha$. In meters this is $5.25923\alpha=5.25923(2M)=5.25923(2960)=15567.3$.

Then $r_{\phi} \approx r_{\theta}$ as desired since $r_{\theta} - r_{\phi} = 5.28115\alpha - 5.25923\alpha = 0.02192\alpha = 64.8832$ meters which is within 0.4% of the r_{ϕ} value. This difference is a function of the approximation level k=5 chosen. Also, $r_{\phi} < r_{\theta}$ indicates the light path is predicted to be closer to the body by the HK model so the influence of gravity is slightly understated in the k=5 model for that light path location.

If we set $Q(U_1=0.2,\phi)=0$, corresponding to radial infinity, then by setting the numerator in (29) equal to zero we can find the vertex angle ϕ solution for the asymptotic line of the light path. Solving using the inverse elliptic function sn^{-1} (see [1]) we get $\phi=1.89198$ radians $=108.402^\circ$. Comparing θ_5 with ϕ , $|103.9532^\circ-108.402^\circ|\approx 4.5^\circ$. This difference is also a function of

the approximation level k=5 chosen. Percentage wise, this is a larger difference compared to our results for the above predicted radial length values, 0.4% vs 4%.

Computing $Q(U_1=0.2,\phi)$ over a range of ϕ values generate the entire upper branch of the light path for the mass ratio 0.1 as shown in Fig.4. A symmetry argument yields the lower branch. Unlike for the graph of θ_5 for the k=5 model in Fig. 2, this is the 'true' path since it is not based on any approximation other than the precision level of the computed constants and variables. Unlike the plotting of a light path for a k=n model, the plotting of a graph for the HK model using (29) can generate 'non-physical' light paths if the range of ϕ is made too large. In our example we need to restrict this range using the ϕ value found when solving $Q(U_1=0.2,\phi)=0$. The radial values obtained for $\phi>108.402^\circ$ do not correspond to an actual light path and should be discarded.

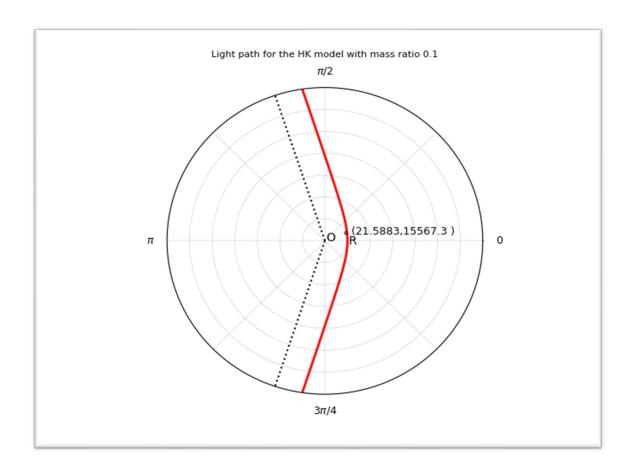


Figure 4. Curved light path in the HK model for mass ratio 0.1. with dotted asymptotic lines. The location of the computed light path member $(\varphi, r_{\varphi}) = (21.5883^{\circ}, 15567.3 \text{ meters})$ is marked. Each radial unit on this graph equals five Schwarzschild radii, the distance of the turning point R from the center of the mass at the origin O. Note that the angle labels are for a polar coordinate system as opposed to a spherical coordinate system in Fig. 2 for the k=5 model.

E. Comparison of the two models

We now graphically compare the light paths previously discussed, $\{(\theta_5(M/R=0.1\,,\,\rho),\rho)\}_{\rho}$ vs. $\{\phi\,,\,Q(U_1=0.2,\phi\,)\}_{\phi}$ where ϕ ranges from 0 to 1.89197 radians (108.402°) . Also recall that the mass ratio M/R=0.1 in the k=5 model corresponds to $U_1=0.2$ in the HK model.

The plots of both models are displayed on one graph in Fig. 5 for M/R=0.1. The separation is significant for larger radial values where the k=5 model is a poor approximation. The plot

for the HK light path exhibits greater curvature – it 'bends' more toward the origin than the k=5 path. Hence the k=5 model understates the influence of the central body due to the finite truncation required for computation. For much smaller mass ratios such as for the sun where $M/R \approx 2.1 \times 10^{-6}$, the paths and asymptotic lines would be nearly coincident near the central body due to a much smaller gravitational effect.

We do not present the light path based on the Newtonian gravity model but as expected the actual calculated path shows less curvature than either of these models. This is consistent with various experimental observations, starting in 1919 [3,4], of a very small predicted relativistic deflection of 1.75 arc-seconds which is approximately twice that of the Newtonian based prediction. This was first calculated by Johann Soldner early in the 19th century and was also derived independently by Henry Cavendish but in a less than complete manner. See [8] for a detailed analysis.

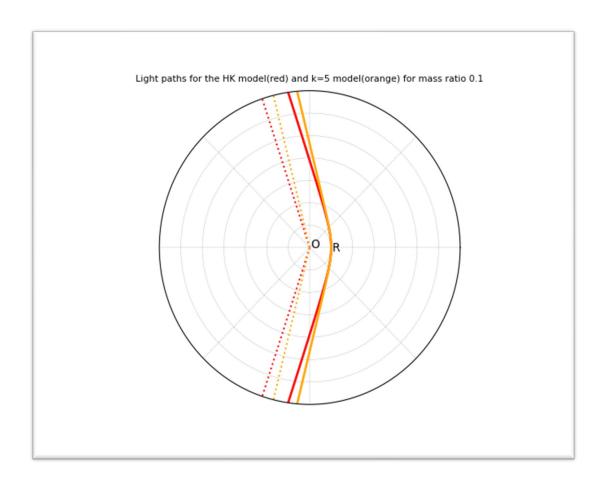


Figure 5. Comparison of light paths for the HK model(red) and k=5 model(orange), for mass ratio 0.1. Dotted asymptotic lines are shown. Each radial unit on this graph equals five Schwarzschild radii, the distance of the turning point R from the center of the mass at the origin 0.

Summary

We first derived the light path equation

$$\theta_{\infty}\left(\frac{M}{R},\rho\right) \equiv \lim_{k \to \infty} \theta_{k}\left(\frac{M}{R},\rho\right) = \lim_{k \to \infty} \sum_{1}^{k} F_{k}\left(\frac{M}{R},\rho\right) + C_{\infty}\left(\frac{M}{R}\right)$$

for the $k=\infty$ model and its finite companion k=5

$$\theta_5\left(\frac{M}{R},\rho\right) = F_1\left(\frac{M}{R},\rho\right) + F_2\left(\frac{M}{R},\rho\right) + \dots + F_5\left(\frac{M}{R},\rho\right) + C_5\left(\frac{M}{R}\right).$$

These equations were derived using a Taylor series expansion of functions derived from the Schwarzschild metric and GR geodesic equation.

Next, a light path equation in closed form which we call the HK model, as developed in [5], was introduced:

$$Q(U_1, \phi) = \frac{(e_1 - e_3)e_2 - (e_2 - e_3)e_1 sn^2(\gamma \phi, k)}{(e_1 - e_3) - (e_2 - e_3) sn^2(\gamma \phi, k)}.$$

This model uses the Jacobian elliptic function sn. We then proved this is equivalent to $\theta_{\infty}\left(\frac{M}{R},\rho\right)$ for the mass ratio M/R<1/3.

A comparison of the HK model with the k=5 was then made showing they yield similar results for small radial distances.

Endnotes:

- 1. The metric can be represented by the proper time line element $d\tau^2 = \left(1 \frac{2m}{r}\right)dt^2 \left(1 \frac{2m}{r}\right)^{-1}dr^2 r^2d\theta^2 r^2(sin\theta)^2d\varphi^2 \text{ which contains}$ the gravitational tensor components. This characterizes the curvature of space-time around a spherically symmetric body in a vacuum and is a solution of the Einstein Field Equation for that physical system.
- 2. In GR, mass is frequently converted to units of length in meters ('gravitational units') using the conversion factor G/c^2 .
- 3. A similar pattern of fractional values of pi is found in C. Rodriguez, and C. Marin, "Higher-order corrections for the deflection of light around a massive object". ArXiv:1704.04434. (2017). Refer to Table I. The origin of these patterns is the tensor components of the Schwarzschild metric.

Appendix A: List of antiderivatives F_k and constants of integration \mathcal{C}_k .

Antiderivatives:

$$\begin{split} F_1 &= \sin^{-1}\rho \\ F_2 &= -\frac{(\sqrt{1-\rho})(\rho+2)}{(1+\rho)^{1/2}} \binom{M}{R} \\ F_3 &= \left(\frac{3}{2}\right) \left[\frac{5}{2} \sin^{-1}\rho - \frac{(\sqrt{1-\rho})(3\rho^3+6\rho^2-7\rho-8)}{6(\rho+1)^{3/2}}\right] \binom{M}{R}^2 \\ F_4 &= \left(\frac{5}{4}\right) \left[-3 \sin^{-1}\rho - \frac{(\sqrt{1-\rho})(5\rho^5+15\rho^4+70\rho^3+247\rho^2+306\rho+122)}{15(1+\rho)^{5/2}}\right] \binom{M}{R}^3 \\ F_5 &= \left(\frac{7}{8}\right) \left[\frac{99}{8} \sin^{-1}\rho - \frac{(\sqrt{1-\rho})(14\rho^7+56\rho^6+217\rho^5+364\rho^4-820\rho^3-2860\rho^2-2691\rho-832)}{56(1+\rho)^{7/2}}\right] \binom{M}{R}^4 \end{split}$$

The above F_k ,and F_6 through F_{10} (not shown), are of the form $\frac{2k-3}{2^{k-2}} \left[\frac{a}{b} \sin^{-1} \rho + \frac{(\pm \sqrt{1-\rho})P(\rho)}{d(1+\rho)^l}\right] \left(\frac{M}{R}\right)^{k-1} \text{ as defined in section C.}$

Constants of Integration:

$$C_1 = 0$$

$$C_2 = 0$$

$$C_3 = C_2 - \frac{15\pi}{8} \left(\frac{M}{R}\right)^2$$

$$C_4 = C_3 + \frac{15\pi}{8} \left(\frac{M}{R}\right)^3$$

$$C_5 = C_4 - \frac{693\pi}{128} \left(\frac{M}{R}\right)^4$$

$$C_k = C_{k-1} - F_k(\rho = 1)$$
 where for $k = 2, \dots, 10$, $F_k(\rho = 1) = \frac{2k-3}{2^{k-2}} \left[\frac{a}{b} \cdot \frac{\pi}{2}\right] \left(\frac{M}{R}\right)^{k-1}$ for integers a, b that depend on k .

Appendix B: Proof of the equivalency of the two light path models $k=\infty$ and HK

We will not directly transform the $k=\infty$ equation (24) to the HK equation (26). Instead, we will show that (3)

$$d\theta = \frac{d\rho}{\sqrt{\left[1 - \rho^2 - \frac{2M}{R}(1 - \rho^3)\right]}},\tag{B.1}$$

which is derived from the GR geodesic equation applied to the Schwarzschild metric, can be transformed to the equation

$$\left(\frac{dU}{d\phi}\right)^2 = (e_1 - U)(e_1 - U)(U - e_3).$$
 (B.2)

The authors then show that (B.2) yields (26). Here, $U \equiv \alpha/r$, and the constants e_i have been previously defined in section D.

As cautioned in the Introduction, the key equations here are drawn from several sources, each with their own notation and conventions. This will necessitate performing multiple sets of transformations which, although being somewhat tedious, will be necessary to demonstrate our assertion of equivalence.

Proceeding with the proof and starting with (B.1) a series of algebraic steps are applied:

$$d\theta = \frac{d\rho}{\sqrt{\left[1 - \rho^2 - \frac{2M}{R}(1 - \rho^3)\right]}} = \frac{d\rho}{\sqrt{\left[\frac{2M}{R}\rho^3 - \rho^2 + 1 - \frac{2M}{R}\right]}} = \frac{d\rho}{\sqrt{\frac{2M}{R}\left[\rho^3 - \left(\frac{2M}{R}\right)^{-1}\rho^2 + \left(\frac{2M}{R}\right)^{-1}\left(1 - \frac{2M}{R}\right)\right]}}.$$
(B. 3)

We have previously shown in Section B that the radicand is greater than zero in all cases, avoiding any possibility of complex numbers.

Define $G \equiv \left(\frac{2M}{R}\right)^{-1}$. Then the radicand of the denominator in (B.3) becomes

 $G^{-1}[\,\rho^3-G\,\rho^2+G(1-G^{-1})].$ Note that $\rho=1$ is a root of the bracketed cubic equation. Then we have $G^{-1}(\rho-1)(some\ quadratic)$ and therefore

$$G^{-1}[\rho^3 - G\rho^2 + G(1 - G^{-1})] = G^{-1}(\rho - 1)(some\ quadratic). \tag{B.4}$$

Using synthetic division by dividing $(\rho-1)$ into $[\rho^3-G\,\rho^2+G(1-G^{-1})]$ we arrive at

 $G^{-1}[\rho^3 - G\rho^2 + G(1 - G^{-1})] = G^{-1}(\rho - 1)(\rho^2 + \rho(1 - G) + 1 - G)$. So now (B.3) is written as

$$d\theta = \frac{d\rho}{\sqrt{G^{-1}(\rho - 1)(\rho^2 + \rho(1 - G) + 1 - G)}}.$$
 (B.5)

Factoring the quadratic in ho we get

$$d\theta = \frac{d\rho}{\sqrt{G^{-1}(\rho - f_2)(\rho - f_1)(\rho - f_3)}}$$
(B.6)

where $f_2 = 1$,

$$\begin{split} f_1 &= \frac{1}{2} \Big[-(1-G) + \sqrt{(1-G)^2 - 4(1-G)} \Big] = \frac{1}{2} \Big[(G-1) + \sqrt{G^2 + 2G - 3} \Big], \text{ and} \\ f_3 &= \ \frac{1}{2} \Big[-(1-G) - \sqrt{(1-G)^2 - 4(1-G)} \Big] = \ \frac{1}{2} \Big[(G-1) - \sqrt{G^2 + 2G - 3} \Big]. \end{split}$$

Now rewrite (B.6) as

$$\frac{d\theta}{d\rho} = \frac{1}{\sqrt{G^{-1}(\rho - f_2)(\rho - f_1)(\rho - f_3)}}.$$
(B.7)

Transforming this equation to the variables and notation used in the HK model and defining some new variables and constants:

a)
$$G^{-1}=\frac{1}{G}=\frac{1}{\left(\frac{2M}{R}\right)^{-1}}=\frac{2M}{R}=\frac{\alpha}{R}\equiv U_1$$
, where $\alpha=2M$ is the Schwarzschild radius,

b)
$$U \equiv \frac{\alpha}{r}$$
,

c)
$$\rho = \frac{R}{r} = R \frac{1}{r} = R \frac{U}{\alpha} = \frac{R}{\alpha} U = U_1^{-1} U$$
.

Our goal now is to transform (B.7) into an equation in terms of U_1 . The authors employ this key parameter since it contains the point of closet approach R, analogous to our k=n model which employs ρ which also contains R.

Then rewrite f_1, f_3 as

$$f_1, f_3 = \frac{1}{2} \left[\left(U_1^{-1} - 1 \right) \pm \sqrt{\left(U_1^{-1} \right)^2 + 2U_1^{-1} - 3} \right] = \frac{1}{2} \left[\frac{1 - U_1 \pm \sqrt{1 + 2U_1 - 3U_1^2}}{U_1} \right], \tag{B.8}$$

and as before $f_2 = 1$.

Next, from the above

$$d\rho = d(U_1^{-1}U) = U_1^{-1}dU = U_1^{-1}d\frac{\alpha}{r} = U_1^{-1}\alpha\left(-\frac{1}{r^2}\right)dr = -U_1^{-1}\frac{\alpha}{r}\frac{1}{r}dr = -U_1^{-1}U\frac{1}{r}dr.$$

Then (B.7) can be expressed as

$$\frac{d\theta}{-U_1^{-1}U_r^{\frac{1}{2}}dr} = \frac{1}{\sqrt{U_1(U_1^{-1}U - 1)(U_1^{-1}U - f_1)(U_1^{-1}U - f_3)}}.$$
(B.9)

Simplifying further

$$\frac{d\theta}{dr} = \frac{-U_1^{-1}U}{r\sqrt{U_1(U_1^{-1}U - 1)(U_1^{-1}U - f_1)(U_1^{-1}U - f_3)}}.$$
 (B.10)

Then applying (B.8) and some algebra, the radicand is changed to

$$U_{1}\left(U_{1}^{-1}U-1\right)\left(U_{1}^{-1}U-\frac{1}{2}\left[\frac{1-U_{1}+\sqrt{1+2U_{1}-3U_{1}^{2}}}{U_{1}}\right]\right)\left(U_{1}^{-1}U-\frac{1}{2}\left[\frac{1-U_{1}-\sqrt{1+2U_{1}-3U_{1}^{2}}}{U_{1}}\right]\right). \tag{B.11}$$

More algebra gives

$${U_1}^{-2}(U-U_1)\left(U-\frac{1}{2}\left[1-U_1+\sqrt{1+2U_1-3{U_1}^2}\right]\right)\left(U-\frac{1}{2}\left[1-U_1-\sqrt{1+2U_1-3{U_1}^2}\right]\right). \ (\text{B.12})$$

Then (B.10) is written as

$$\frac{d\theta}{dr} = \frac{-U_{1}^{-1}U}{r\sqrt{U_{1}^{-2}(U-U_{1})\left(U-\frac{1}{2}\left[1-U_{1}+\sqrt{1+2U_{1}-3U_{1}^{2}}\right]\right)\left(U-\frac{1}{2}\left[1-U_{1}-\sqrt{1+2U_{1}-3U_{1}^{2}}\right]\right)}}{-U}} = \frac{-U}{r\sqrt{(U-U_{1})\left(U-\frac{1}{2}\left[1-U_{1}+\sqrt{1+2U_{1}-3U_{1}^{2}}\right]\right)\left(U-\frac{1}{2}\left[1-U_{1}-\sqrt{1+2U_{1}-3U_{1}^{2}}\right]\right)}}}.$$
(B.13)

The cubic in U of the radicand in the denominator has the roots

$$\begin{aligned} e_2 &\equiv U_1 \\ e_1 &\equiv \frac{1}{2} \left[1 - U_1 + \sqrt{1 + 2U_1 - 3U_1^2} \right] \\ e_3 &\equiv \frac{1}{2} \left[1 - U_1 - \sqrt{1 + 2U_1 - 3U_1^2} \right]. \end{aligned} \tag{B.14}$$

These now match the roots given in (78) of [5]. We only need to do additional manipulations and replace θ with ϕ .

Inverting $\frac{d\theta}{dr}$ and observing that $dr=d\left(\frac{\alpha}{U}\right)=-\frac{\alpha}{U^2}dU$ we carry out the following algebraic steps:

$$\frac{dr}{d\theta} = -\frac{\alpha}{v^2} \frac{dU}{d\theta} = \frac{r\sqrt{(U-e_2)(U-e_1)(U-e_3)}}{-U} \rightarrow$$

$$\frac{\alpha}{U}\frac{dU}{d\theta} = r\sqrt{(U-e_2)(U-e_1)(U-e_3)} \rightarrow$$

$$\frac{\alpha}{\alpha/r} \frac{dU}{d\theta} = r\sqrt{(U-e_2)(U-e_1)(U-e_3)} \rightarrow$$

$$\frac{dU}{d\theta} = \sqrt{(U - e_2)(U - e_1)(U - e_3)}.$$
 (B.15)

To bring ϕ into the equation note that as explained in Fig. 3, θ is the polar angle and ϕ is vertex angle. Then they are complimentary, meaning $\theta+\phi=\pi/2$, so $d\theta=-d\phi$. Then the last equation, (B.15), is now

$$\frac{dU}{d\phi} = -\sqrt{(U - e_2)(U - e_1)(U - e_3)}.$$
 (B.16)

Reversing the order of the terms in the first two factors preserves the sign and reordering the factors we arrive at

$$\left(\frac{dU}{d\phi}\right)^2 = (e_1 - U)(e_1 - U)(U - e_3). \tag{B.17}$$

This now matches the author's equation (79) in [5]. This is used to obtain their light path equation (80) which we have labeled equation (26) in this paper. Their derivation partly relies on

tables of Jacobian Elliptic Integrals. See page 74 of [1], integrand 234.00, for the relevant integral. The integrand requires the ordering $e_1 > e_2 > U > e_3$ which the author's claim. This can be verified using the formulas for e_i in (B.14) and $0 \le U_1 \le 2/3$ to compute a solution interval for each root and then comparing the upper and lower values of each interval.

Recall that we started this proof specifying that 0 < M/R < 1/3 which corresponds to $0 < U_1 < 2/3$ since $U_1 = \alpha/R = 2M/R$. This range for U_1 places it within 'region I' of the HK model as described in [5].

This completes the proof.

References:

- [1] Byrd, Paul F. and Friedman, Morris D., "Handbook of Elliptic Integrals for Engineers and Scientists", $2^{\rm nd}$ edition Revised. Springer-Verlag. (1971)
- [2] Carroll, Sean M., "Spacetime and Geometry: An Introduction to General Relativity" 1st Edition. Cambridge University Press. (2019)
- [3] Einstein, A., "The Meaning of Relativity". Methuen & Co. Ltd. London, Fourth edition, pp 88-89. (1950). This book is based on a series of lectures he gave in 1921 at Princeton University and contains his now famous correct deflection prediction based on General Relativity. The original paper containing the prediction was published in 1916 as "Die Grundlage der allgemeinen Relativitätstheorie", Annalen der Physik, 49.
- [4] Goldoni, Emanuelle and Stefanini, Ledo, "A Century of Light-Bending Measurements: Bringing Solar Eclipses into the Classroom", arXiv:2002.01179v1, (2020). In the context of a learning experience for students, describes several key measurements of light deflection from 1919 through 2017.
- [5] Hioe, F.T. and Kuebel, David, "Characterizing Planetary Orbits and the Trajectory of Light", arXiv:10001.0031v1.(2009)

- [6] Landau, L.D. and Lifschitz, E.M., "The Classical Theory of Fields", section 101, 4rth Revised English Edition, Elsevier. (1975)
- [7] Magnan, Christian, "Complete calculations of the perihelion precession of Mercury and the deflection of light by the Sun in General Relativity", arXiv:0712.3709.(2007). The author's demonstration uses only elementary algebra without resorting to tensor formalism.
- [8] Malczewski, G. and Selig, D., "A History of Light Deflection with Newtonian and General Relativity Perspectives", vixRa 2304-0099, version 4. (2024)
- [9] Wald, Robert M., "General Relativity". The University of Chicago Press. (1984)