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The main hurdle for terrain relative navigation systems is the incongruity of visual features between a patch of 

a satellite reference map and a view from an onboard UAV camera. Images are taken during different time of year, 

under different weather, vegetation and lighting conditions, with different angles of observation. This work proposes the 

usage of deep feature template matching, where features are extracted during unsupervised training using a triplet loss. 

It provides semantic understanding, agnostic to terrain transformations. In order to overcome struggling to navigate 

over featureless terrains, the work proposes additional usage of visual odometry with the procedure of sticking to the 

map after encountering enough features, with the procedure of hypothesizing over possible locations. Passing a frag-

ment of the reference map through the trained feature extractor, applying an entropy filter and then a pathfinding algo-

rithm allows planning a flying path over areas rich of features relevant for navigation. 
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Introduction 

Current proliferation and accessibility of 

open digital maps that include satellite images 

in confluence with a plethora of open source 

deep learning based solutions of performing fea-

ture extraction, visual odometry (VO) and sim-

ultaneous localization and mapping (SLAM) is 

the impetus of developing manifold terrain rela-

tive navigation systems (TRN). 

The image of a terrain fragment on a 

map usually has been taken during different 

time of year, under different weather, vegetation 

and lighting conditions, and with different an-

gles of observation in comparison with a current 

camera view. Some objects on maps like spots 

of light, reflected from iridescent objects, or 

cars on roads must be discarded from being 

used as landmarks and flying over a field, forest 

or some snowy surface may not present enough 

deep features to stick to a reference map. All 

this represent a palpable hurdle to existing 

TRNs. To address these issues this work pro-

poses the usage of deep feature template match-

ing, where the features are extracted during un-

supervised training using a triplet loss over dif-

ferent terrain patches. This allows performing 

matching of terrain patches based on their se-

mantic content with the imparted knowledge of 

a neural network about possible transformations 

of terrains over different time and conditions, 

including understanding of features that should 

be discarded. Combination of this solution with 

deep learning based VO allows performing nav-

igation when a terrain doesn’t have enough deep 

features to stick to the reference map. 

Additionally, having a model that is ca-

pable of extracting deep features relative for 

navigation over a satellite map allows applying 

an entropy filter to those extracted features and 

to consequently determine routes of a UAV with 

enough visual features to stick to. 

Related Work 

Among multifarious solutions of TRN 

systems, several works represent especial inter-



est in terms of using deep learning for extracting 

weather, time of year, lightning conditions ag-

nostic features. An approach based on autoen-

coder architecture is presented in [1]. During the 

first stage of training the network takes a tile of 

a satellite image (ortho tile) and reconstructs a 

corresponding tile of map’s abstract layer. The 

second stage of training implies the usage of 

given latent space to reconstruct the original tile 

acquired from custom video – Figure 1.  

Figure 1: Mechanism of getting latent space [1]

The process of locating involves rotat-

ing, scaling images and cropping 5 tiles for a 

single iteration of template matching – Figure 2. 

 

Figure 2: Navigation process [1] 

As the demonstrated experiments indi-

cate, the approach works well when flying over 

a terrain that has rich feature representation on a 

correspondent abstract map, like a city land-

scape, because the neural network learns how to 

produce an abstract map tile from a satellite one. 

It seems pretty difficult for this approach to 

move over some open area of fields which will 

be represented as just featureless white space. 

A seasonally invariant deep transform 

for visual terrain relative navigation is presented 

in [2]. As the name suggest it involves targeted 

use of deep learning within an image transform 

architecture, which converts seasonal imagery 

to a stable, invariant domain that can be used by 

conventional algorithms (like homography via 

feature matching from OpenCV) without modi-

fication. During training, a U-Net like image 

transform model is exposed to matching cross-

seasonal image pairs in twinned fashion – a sin-

gle transform is identically shared between two 

parallel streams, with registration performance 

between the outputs used as a loss function to 



optimize the transform weights – Figure 3. 

 

Figure 3: Season agnostic training process [2] 

During the inference stage the reference 

map image and a camera view image are sub-

jected to the learned transformation and the re-

sultant images allow using homography via fea-

ture matching in an ordinary way – Figure 4. 

 

Figure 4: Inference preprocessing and matching [2] 

According to the work [2] this approach 

demonstrates superior performance under ex-

treme seasonal changes while also being easy to 

train and highly generalizable. As the result of 

preprocessing, images of summer and spring 

mountain terrain will be transformed into pic-

tures of ridges – Figure 5. 

Figure 5: Season agnostic transformation [3]

However, the open example of the ap-

proach usage demonstrates that it requires rela-

tively high altitude to get enough landmarks like 

buildings or mountain terrain features and due 

to the incongruity in angles of observation on 

satellite maps some objects, especially high 

buildings, appear different to a degree that their 

outlines won’t match while using conventional 

feature matching, without taking into account 

semantic context – Figure 6. 

It’s also necessary to mention that the 

major providers of open maps such as Google, 

Bing or Yandex usually present a terrain over 

the Republic of Belarus during seasons without 

extensive snow coverage, which represent some 

hurdle for the aforementioned approach [2] and 



the approach that will be presented in the cur-

rent work.  

 

 

Figure 6: The same place in Minsk city from Bing 

(above) and Google (below) providers 

But it can be surmountable by using for 

training existing terrains from other places of 

the world or by different map providers, which 

contain examples of extensive pieces of land 

with snow coverage that can also be found on 

satellite maps without it. 

Modern TRN systems also extensively 

use existing open source keypoint matchers. The 

advantage of deep learning based matchers such 

as LoFTR (Local Feature Matching with Trans-

formers) [4] over ordinary keypoint detectors 

such as OpenCV ORB [5] was presented in [6] – 

Figure 7. Other algorithms from OpenCV such 

as SIFT, SURF or BRIEF don’t seem to work 

much better, whereas there is a plethora of 

opens source deep learning based matchers, dif-

fering in year of inception, accuracy and per-

formance, such as: KP2D (Neural Outlier Rejec-

tion for Self-Supervised Keypoint Learning) [7], 

SuperGlue (Graph Neural Network combined 

with an Optimal Matching layer) [8], Efficient-

LoFTR [9], LightGlue [10] and other. Some of 

solutions are just modified and refined versions 

of previous ones. During the research conducted 

within the framework of this work, the majority 

of solutions were tested in practice, relatively to 

the TRN task. 

 

Figure 7: Comparison in precision with flying over a real terrain [6]



Especially apt for that in terms of per-

formance and accuracy was GlueStick [11], 

which provides robust image matching by stick-

ing points and lines together. Lines are especial-

ly important while using manmade landmarks – 

Figure 8a. At the same time it also extracts 

point based features – Figure 8b. This allows 

feature matching (Figure 10c) and subsequent 

homography alignment (Figure 10d). 

a

b
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Figure 8: Matching using GlueStick [11] 

However, the usage of GlueStick per se 

for matching two patches of terrain from differ-

ent sources wasn’t so robust (Figure 9a), where-

as it has demonstrated relatively high precision 

for the purpose of VO, when it’s necessary to 

keep track of the same features viewed from 

different angles over time due to the process of 

flying (Figure 9b). 

 
a 

 
b 

Figure 9: Usage of GlueStick for TRN per se (a) and over 

the same terrain with different angles (b) 

Proposed approach 

The suggested approach of this work is 

based on deep feature template matching. There 

are existing solutions of that, like robust tem-

plate matching using scale-adaptive deep convo-

lutional features [12] or QATM (quality-aware 

template matching for deep learning) [13]. In 

[12] scale-adaptive deep convolutional feature 

vectors are extracted from the template and the 

input image via the pre-trained VGG-Net – Fig-

ure 10. Each layer represents a different level of 

deep features of the actual image contents. 

Normalized cross-correlation (NCC) is used to 

measure the distance between features of the 

template and the image to detect the target im-

age patch. Nonetheless, existing pretrained net-

works are not necessarily apt for extracting fea-

tures that are relevant for comparing two images 

of the same terrain under different conditions.



Figure 10: Scale-adaptive deep convolutional feature extraction based template matching [12] 

Usually neural networks that are used as 

backbones for computer vision tasks are pre-

trained on datasets like ImageNet [14]. It means 

that it can be used for finding a cat on a picture, 

using textures and high level features such as 

eyes, nose, ears and whiskers, but will struggle 

with finding a specific patch of terrain, because 

of the necessity to understand domain specific 

transformations caused by snow or vegetation 

coverage and discrepancy between seasons and 

lightning conditions. It’s similar to the face 

recognition task, when we need to build deep 

feature space in which the same face has the 

same features [15]. Additionally it may allow 

moving along that space to perform a smooth 

transition from one face to another. For extract-

ing such deep features this paper suggests using 

a triplet loss [15] – Figure 11. 

 

Figure 11: Triplet loss [15] 

The main idea behind the triplet loss is 

to minimize the distance between an anchor 

(patch of particular area from source A) and a 

positive (patch of the same area from source B), 

both of which have the same identity (but may 

differ in terms season, angles of observation and 

so on) and at the same time to maximize the dis-

tance between the anchor and a negative of a 

different identity (random patch of a different 

area either from source A or B) – Figure 12. 

 

Figure 12: Examples of triplets for rotation insensitive 

training 

Performing matching, the orientation of 

terrain fragments must be the same. Giving the 



possible inaccuracy of an onboard compass, the 

network is also train to be agnostic to discrep-

ancy in orientation within the range of 20 de-

grees. It’s achieved through augmentation in 

form of random rotation of positive image with-

in that range during training (Figure 12 posi-

tive). For making the network agnostic to height 

uncertainty, images can also be randomly 

scaled. In order to get a rich feature space, im-

ages cropped from Google maps zoom level 13 

to 20. The network’s architecture is a modified 

version of ResNet50 – Figure 13. 

Figure 13: Feature extractor architecture

Triplet loss for the training process is de-

scribed like this [15]: 
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where f(x) – function representing feature ex-

traction; x
a
, x

p
, x

n
 – anchor, positive and nega-

tive samples; N – batch size; α – bias. 

Usage of Weights & Biases developer 

platform [16] proved to be effective for search 

of optimal hyperparameters such as: learning 

rate, batch size, dropout values, configurations 

of add-ons to the backbone and even pretrained 

backbone itself. 

In case of not using an onboard compass 

for getting the rotation angle (may be connected 

with natural or artificially induced magnetic 

anomalies) the orientation must be determined 

only by comparing an image of observed terrain 

and the reference satellite map. For that a differ-

ent approach to composing images for a triplet 

loss has been proposed. An image of the same 

area from a different source but with the same 

orientation is used as a positive sample, whereas 

an image of the same area, from the same source 

but rotated within 15 to 45 degrees is used as a 

negative one – Figure 14. 

 

Figure 14: Examples of triplets for rotation sensitive 

training 

A single multi-head network may be 

used for both purposes: navigation and rotation 

correction – Figure 15. 



Figure 15: Two output head feature extractor

The training process in this case involves 

two stages: training of the rotation insensitive 

head together with the ResNet50 backbone and 

then freezing the backbone and training of the 

rotation sensitive head. Usage of a single net-

work is expedient due to computational limita-

tions of onboard hardware. Otherwise two sepa-

rate networks (Figure 13) each for rotation sen-

sitive and rotation insensitive feature extraction 

for navigation and angle evaluation respectively 

have proven to be better. 

The actual process of navigation implies 

finding the location of a smaller image form 

camera on a rotated bigger image of the refer-

ence terrain view and shifting that reference 

view according to the flight in order not to move 

outside an area of search – Figure 16. 

Figure 16: Task of locating camera image



The reference image is acquired using 

preliminarily loaded onboard base of tiles, with 

the scale of map provider and ancillary scaling 

that correspond to the current height of flying in 

order to ensure scale congruity between images. 

Extracted deep features allow perform-

ing quality aware matching based on image se-

mantics. Usage of a convolutional network al-

lows working with images of any existing 

standard resolutions and respective reference 

images. For two images on Figure 16 we’ll get 

two vectors of shape (2048, 32, 32) and (2048, 

16, 16), so the task is boiled down to locate a 

patch of 16x16 on a patch of 32x32 – Figure 17. 

 

Figure 17: Task of locating feature vector 

Matching is performed by sliding an im-

age view feature vector over a bigger reference 

image feature vector within the plane of view (a 

window of 16x16 over one of 32x32) and calcu-

lating Euclidean distance between an image fea-

ture vector and a corresponding crop from the 

reference feature vector. A position with mini-

mal distance will give the best matching. 

The drawback of this approach is that we 

are not determining exact coordinates of our lo-

cation. The coordinates of the reference image 

patch are known and we are locating relatively 

to it with the discretization of 32 pixels (image 

of 1024x1024 is convolved to 32x32). But that 

uncertainty is not accumulated over the flight. 

It’s important to just properly shift the reference 

image according to UAV’s movement. 

Auxiliary correction of the orientation 

angle by means of image comparing is per-

formed after the iteration of location determin-

ing. In this case a current camera view is com-

pared with the set of rotated crops from the ref-

erence source turned within the range of -10 to 

+10 degrees – Figure 18. 

 

Figure 18: Task of correcting orientation 

In a similar way, for that we extract deep 

features by a rotation sensitive head or a sepa-

rate network and get the angle which corre-

sponds to a crop image that provides a mini-

mum distance in terms of feature space. 

A complex of programs, connected via 

network, was created for experimental study of 

different facets of the suggested approach and 

proving their feasibility. A Unity 3d environ-

ment simulates flying over a terrain with differ-

ent weather and lightning – Figure 19. 



Figure 19: Simulation environment

Defining a desirable route to fly is per-

formed by setting a set of waypoints onto a 

map. During the flight time a model UAV de-

termines its location by video feed and analyzes 

its necessity to turn when it’s in the vicinity of 

the next waypoint according to the route. That 

procedure is performed with a discretization that 

depends on UAV speed, height, view angle of a 

camera and reference image size in order not to 

fly outside the search area – Figure 20. 

Figure 20: Process of flying

Waypoint form a user 

Iteration of locating 

 



However, usage of template matching is 

struggling with flying over the deep forest, lead-

ing the determined location astray from a UAVs 

real position, moving forward towards a con-

secutive waypoint – Figure 21. 

 

Figure 21: Flying over deep forest 

Initially, flying over roads, patch of for-

est crossed with roads, border of forest and 

shrubs, it could determine its location. Moving 

deeper in the forest it had failed. Like for a hu-

man, hovering on a balloon over featureless for-

est or desert, navigation relying only on a sight 

from above would be almost intractable. 

One way to overcome that is to pass a 

big fragment of the reference map through the 

network, extract deep features and apply an en-

tropy filter [17] to that. Then set start and end 

points on a map and use one of the path finding 

algorithms (like A* [18]) using only areas with 

high entropy level in terms of deep features, rel-

evant for navigation – Figure 22.  

Figure 22: Path finding with respect to richness of navigation relevant deep features

Another way to address the problem of 

flight over terrain with poor features or with low 

altitude is to use VO as ancillary mechanism. 

There are several cases that illustrate the con-

crescence of the approaches. In case of strug-

gling to perform template matching it doesn’t 

provide enough confidence, expressed in terms 

of Euclidean distance for one particular template 

location over an average value. It’s especially 

evident in cases of flying along the roads with 

low amount of distinctive features on the side-

lines, because all the crops taking along the road 

will look relatively the same – Figure 23. 

 

Figure 23: Flying over a featureless road 

 If such a situation with low maximum 

value over the average one exists, the reference 

map is shifted simply by a vector given by using 

VO between two consecutive images, like on 

Figure 9b. If we encounter an image that 

through template matching provides high 



enough confidence during N iterations – we 

align the reference map according to that. Num-

ber N is chosen in order not to move outside the 

search are due to possible VO errors. If we con-

tinue flying using VO (and shifting the refer-

ence map according to it) more than N iterations 

– we start analyzing Euclidean distance between 

consecutive terrain images. If distance exceeds a 

threshold – we perform a “looking around” pro-

cedure by soaring if necessary for getting a bet-

ter vantage point and increasing the amount of 

features for performing template search over 

bigger space of the reference map in comparison 

with the case of regular flight. And here we use 

a gimmick of hypothesizing about possible loca-

tion, taking K of most likely patches on a refer-

ence map (with respect to L past stored views 

from the camera), and comparing the next set of 

M consecutive images from camera with crops 

form the reference map – Figure 24. 

Figure 24: Hypothesizing over potential locations



If an image from the camera doesn’t cor-

respond to a hypothesized future image, the 

hypnosis is discarded. In this case navigation 

process relies on accumulation, unlike single 

shot template matching used in a normal mode. 

The number of tracked hypotheses depends on 

computational capacity of an onboard system. 

During hypothesis checking, if a new terrain 

image provides a better matching score than 

currently tracked locations, the least confident 

hypothesis is discarded and a new one is started 

to be tracked. 

In case when finding relevant features 

for navigation is impossible (the aforementioned 

process of hypothesizing didn’t provide results 

with enough confidence during J iterations), like 

when we moved from the forest, without ele-

ments of a distinctive border line, to the field, 

we have to address the entropy reference map 

(Figure 22). If the next waypoint is closer than 

the distance D, and it has enough features for 

navigation in its vicinity we continue moving. 

Else we must find on a reference map a closest 

big enough area with rich features and add an 

auxiliary waypoint in the center of it just for the 

sake of navigation. Being there, we determine 

the location and continue moving towards the 

desirable destination. In the real life it corre-

sponds to the case when moving from the forest 

to the field we know that there is a nearby set-

tlement to the west and we move there. 

The advantage of template matching ap-

proach is the ability to learn different type of 

terrain transformation, utilizing existing open 

datasets, like pre and post disaster imagery [19] 

which is especially relevant for military UAV’s 

– Figure 25. 

 

Figure 25: Pre and post disaster dataset [19] 

 The important point for onboard systems 

is computational requirements of any suggested 

approach. Template matching doesn’t require 

frequent iterations of locating. It’s only neces-

sary that a UAV won’t fly outside the area of 

search on a patch of the reference map. In a 

simulated environment, using NVIDIA GeForce 

RTX 2080 SUPER (compute capability 7.5), 

flying altitude 500 meters, onboard camera reso-

lution of 512x512 and a patch of the reference 

map for searching of 1024x1024, a single itera-

tion of navigation takes about 0.5 sec and pro-

vides speed of a UAV up to 75 meters per se-

cond, because otherwise a UAV leaves the 

search area of a reference map. It means that 

onboard CUDA-enabled products such as Jetson 

Nano (compute capability 5.3), Jetson TX2 

(compute capability 6.2), Jetson Orin Nano 

(compute capability 8.7) or even Raspberry Pi 6 

can perform such a task with sufficient for 

UAVs speed. In terms of RAM consumption 4 

GB is enough only for navigation, but for when 

a UAV also performs object detection during 

flight, using a costumed trained YOLOv5, it re-

quires 8 GB. 



The entire territory of the Republic of 

Belarus and its adjacent area with a scale suffi-

cient for navigation from high altitude (about 1 

km) requires approximately 500 GB of storage 

which is apt for a modern M.2 SSD situated 

onboard. More detailed map of Minsk city with 

its outskirts requires 20 GB. 

Conclusions, alternative solutions and future 

work 

 This work relies on the concrescence of 

strong points from two approaches. Deep fea-

ture template matching provides semantic un-

derstanding, agnostic to domain specific trans-

formation caused by discrepancy in angles of 

observation, time of year, weather, vegetation 

and lighting conditions. Visual odometry allows 

keeping track of observed features on land and 

performing shifting of the reference map in or-

der to stick to that again when the observed ter-

rain has enough features. 

 Within the framework of conducted re-

search it’s necessary to mention solutions that 

were tested but haven’t worked well. 

In simulation navigation can also be per-

formed by usage of the same point (line) based 

matcher (like GlueStick), that has been used for 

VO. Location and the shifting vector for the ref-

erence map are determined based on trigonome-

try using camera’s obliquity – Figure 26. 

Figure 26: Usage of GlueStick in simulation

Tilted view from a camera in simulation Reference map 



But, as that’s been mentioned, it 

demonstrated poor results with real camera 

feed due to inability to handle the situation 

with discrepancy in angles of observation. 

An approach with predicting a bound-

ing box that frames a camera view onto the 

reference map in a YOLO-like manner was 

also tried but was proved to be not efficient in 

terms of precision. 

Several solutions represent relevance 

to the current work in terms of possible future 

usage. Unsupervised learning of visual fea-

tures by contrasting cluster assignments [20] 

may be used for pre-training a backbone on a 

set of terrain images of different scales. 

On a low altitude, flying through a 

city, a point cloud can be built from a depth 

map that can be predicted even from a mo-

nocular camera by open solutions [21]. It then 

allows performing counter matching with 

segmented street view. An example of visual 

based SLAM in city is described in [22] – 

Figure 27. 

 

 

Figure 27: Visual-based SLAM in the city [22] 

A good solution in terms of not going 

astray during the navigation process is to use 

existing open source projects for lane (road) 

detection [23] to stick to a particular road and 

recognize road junctions during the flight, 

matching them with the reference map – Fig-

ure 28. 

 

Figure 28: Line detection process [23] 

In addition to it, the suggested in this 

paper approach can also be further modified. 

Calculation of a shifting vector based on VO, 

in case when we don’t have enough features 

to perform template matching, can be per-

formed with respect to some terrain features 

inferred by a neural network, in order to im-

prove precision. Points, tracked from tree tops 

over the forest due to their closeness to a 

UAV will give a different shifting magnitude 

in comparison with points from a filed when a 

UAV flies the same distance. In this case 

must we collect real data with known posi-

tioning and train a neural network based on 

the value of odometry distance and actual dis-

tance that will correct the magnitude of a 

shifting vector based on pictures of terrain it 

observes. For improving VO a UAV can also 

have some onboard inertial navigation system 



and a network will perform sensor fusion in 

order to determine a resultant shifting vector. 

For the “looking around” procedure the 

search for patches of the reference map that 

match a camera view (for hypothesizing over 

potential locations) is performed just by grid 

search over a potential area of the reference 

map. A more efficient way is to extract deep 

features in advance and organize a hash table 

for performing a quick lookup based on simi-

larity, using solutions like fuzzy hashing [24].  

A more intuitive way of navigating for a 

human being would be to look around with 

oblique view (like on Figure 26) and consider 

all the observable features, not only the view 

right from above perpendicular to the surface.  

It requires for a neural network to understand 

the transformation between a 2d satellite map 

and a 3d view of a terrain given under certain 

angle and form certain height. For such a task 

it can be trained using existing 3d terrains in 

solutions like Cesium [25] – Figure 29. 

 

Figure 29: Cesium platform for Unity 3d [25] 

Combination of looking around with 

different obliquity of a camera, looking per-

pendicular to the surface, accumulating fea-

tures and performing maneuvers in order to 

alleviate uncertainty in understanding the po-

sition is the area of further research. 
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РУЛЬКО Е.В. 

НАВИГАЦИЯ ПО СНИМКАМ МЕСТНОСТИ НА ОСНОВЕ СОПОСТАВЛЕНИЯ 

ГЛУБОКИХ ПРИЗНАКОВ И ВИЗУАЛЬНОЙ ОДОМЕТРИИ 

Военная академия Республики Беларусь 

Основной проблемой для систем навигации по снимкам местности является несоответствие визуаль-

ных признаков между фрагментом опорной картой и изображением с борта БПЛА. Снимки могут быть сде-

ланы в различное время года, в различную погоду, с различными растительным покровом, условиями освещения 

и под различными углами обзора относительно плоскости земной поверхности. Данная работа предлагает 

использование сопоставления глубоких признаков, извлеченных в рамках неконтролируемого обучения с исполь-

зованием триплет-ошибки. Это обеспечивает понимание семантики изображений, не зависящей от транс-

формаций местности. В рамах полёта над местностью с недостаточным количеством визуальных признаков 

для навигации (лес, поле), в работе предложено дополнительное использование визуальной одометрии с проце-

дурой привязывания к опорной карте после получения достаточного количества признаков, с построением ги-

потез относительно местоположения. Извлечение глубоких признаков натренированной сетью из опорной 

карты и применение к ним фильтра энтропии позволяет планировать маршруты полёта над местностью, 

обладающей достаточным разнообразием признаков, необходимых для навигации. 

Ключевые слова: навигация по снимкам местности, глубокие признаки, машинное обучение, визуальная 

одометрия, БПЛА. 
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