
УДК 629.7.05

E. RULKO

TERRAIN RELATIVE NAVIGATION BASED ON DEEP FEATURE TEMPLATE MATCH-

ING AND VISUAL ODOMETRY

Military Academy of the Republic of Belarus

The main hurdle for terrain relative navigation systems is the incongruity of visual features between a patch of

a satellite reference map and a view from an onboard UAV camera. Images are taken during different time of year,

under different weather, vegetation and lighting conditions, with different angles of observation. This work proposes the

usage of deep feature template matching, where features are extracted during unsupervised training using a triplet loss.

It provides semantic understanding, agnostic to terrain transformations. In order to overcome struggling to navigate

over featureless terrains, the work proposes additional usage of visual odometry with the procedure of sticking to the

map after encountering enough features, with the procedure of hypothesizing over possible locations. Passing a frag-

ment of the reference map through the trained feature extractor, applying an entropy filter and then a pathfinding algo-

rithm allows planning a flying path over areas rich of features relevant for navigation.

Keywords: terrain relative navigation, template matching, triplet loss, deep learning, visual odometry, UAV.

Introduction

Current proliferation and accessibility of

open digital maps that include satellite images

in confluence with a plethora of open source

deep learning based solutions of performing fea-

ture extraction, visual odometry (VO) and sim-

ultaneous localization and mapping (SLAM) is

the impetus of developing manifold terrain rela-

tive navigation systems (TRN).

The image of a terrain fragment on a

map usually has been taken during different

time of year, under different weather, vegetation

and lighting conditions, and with different an-

gles of observation in comparison with a current

camera view. Some objects on maps like spots

of light, reflected from iridescent objects, or

cars on roads must be discarded from being

used as landmarks and flying over a field, forest

or some snowy surface may not present enough

deep features to stick to a reference map. All

this represent a palpable hurdle to existing

TRNs. To address these issues this work pro-

poses the usage of deep feature template match-

ing, where the features are extracted during un-

supervised training using a triplet loss over dif-

ferent terrain patches. This allows performing

matching of terrain patches based on their se-

mantic content with the imparted knowledge of

a neural network about possible transformations

of terrains over different time and conditions,

including understanding of features that should

be discarded. Combination of this solution with

deep learning based VO allows performing nav-

igation when a terrain doesn’t have enough deep

features to stick to the reference map.

Additionally, having a model that is ca-

pable of extracting deep features relative for

navigation over a satellite map allows applying

an entropy filter to those extracted features and

to consequently determine routes of a UAV with

enough visual features to stick to.

Related Work

Among multifarious solutions of TRN

systems, several works represent especial inter-

est in terms of using deep learning for extracting

weather, time of year, lightning conditions ag-

nostic features. An approach based on autoen-

coder architecture is presented in [1]. During the

first stage of training the network takes a tile of

a satellite image (ortho tile) and reconstructs a

corresponding tile of map’s abstract layer. The

second stage of training implies the usage of

given latent space to reconstruct the original tile

acquired from custom video – Figure 1.

Figure 1: Mechanism of getting latent space [1]

The process of locating involves rotat-

ing, scaling images and cropping 5 tiles for a

single iteration of template matching – Figure 2.

Figure 2: Navigation process [1]

As the demonstrated experiments indi-

cate, the approach works well when flying over

a terrain that has rich feature representation on a

correspondent abstract map, like a city land-

scape, because the neural network learns how to

produce an abstract map tile from a satellite one.

It seems pretty difficult for this approach to

move over some open area of fields which will

be represented as just featureless white space.

A seasonally invariant deep transform

for visual terrain relative navigation is presented

in [2]. As the name suggest it involves targeted

use of deep learning within an image transform

architecture, which converts seasonal imagery

to a stable, invariant domain that can be used by

conventional algorithms (like homography via

feature matching from OpenCV) without modi-

fication. During training, a U-Net like image

transform model is exposed to matching cross-

seasonal image pairs in twinned fashion – a sin-

gle transform is identically shared between two

parallel streams, with registration performance

between the outputs used as a loss function to

optimize the transform weights – Figure 3.

Figure 3: Season agnostic training process [2]

During the inference stage the reference

map image and a camera view image are sub-

jected to the learned transformation and the re-

sultant images allow using homography via fea-

ture matching in an ordinary way – Figure 4.

Figure 4: Inference preprocessing and matching [2]

According to the work [2] this approach

demonstrates superior performance under ex-

treme seasonal changes while also being easy to

train and highly generalizable. As the result of

preprocessing, images of summer and spring

mountain terrain will be transformed into pic-

tures of ridges – Figure 5.

Figure 5: Season agnostic transformation [3]

However, the open example of the ap-

proach usage demonstrates that it requires rela-

tively high altitude to get enough landmarks like

buildings or mountain terrain features and due

to the incongruity in angles of observation on

satellite maps some objects, especially high

buildings, appear different to a degree that their

outlines won’t match while using conventional

feature matching, without taking into account

semantic context – Figure 6.

It’s also necessary to mention that the

major providers of open maps such as Google,

Bing or Yandex usually present a terrain over

the Republic of Belarus during seasons without

extensive snow coverage, which represent some

hurdle for the aforementioned approach [2] and

the approach that will be presented in the cur-

rent work.

Figure 6: The same place in Minsk city from Bing

(above) and Google (below) providers

But it can be surmountable by using for

training existing terrains from other places of

the world or by different map providers, which

contain examples of extensive pieces of land

with snow coverage that can also be found on

satellite maps without it.

Modern TRN systems also extensively

use existing open source keypoint matchers. The

advantage of deep learning based matchers such

as LoFTR (Local Feature Matching with Trans-

formers) [4] over ordinary keypoint detectors

such as OpenCV ORB [5] was presented in [6] –

Figure 7. Other algorithms from OpenCV such

as SIFT, SURF or BRIEF don’t seem to work

much better, whereas there is a plethora of

opens source deep learning based matchers, dif-

fering in year of inception, accuracy and per-

formance, such as: KP2D (Neural Outlier Rejec-

tion for Self-Supervised Keypoint Learning) [7],

SuperGlue (Graph Neural Network combined

with an Optimal Matching layer) [8], Efficient-

LoFTR [9], LightGlue [10] and other. Some of

solutions are just modified and refined versions

of previous ones. During the research conducted

within the framework of this work, the majority

of solutions were tested in practice, relatively to

the TRN task.

Figure 7: Comparison in precision with flying over a real terrain [6]

Especially apt for that in terms of per-

formance and accuracy was GlueStick [11],

which provides robust image matching by stick-

ing points and lines together. Lines are especial-

ly important while using manmade landmarks –

Figure 8a. At the same time it also extracts

point based features – Figure 8b. This allows

feature matching (Figure 10c) and subsequent

homography alignment (Figure 10d).

a

b

c

d

Figure 8: Matching using GlueStick [11]

However, the usage of GlueStick per se

for matching two patches of terrain from differ-

ent sources wasn’t so robust (Figure 9a), where-

as it has demonstrated relatively high precision

for the purpose of VO, when it’s necessary to

keep track of the same features viewed from

different angles over time due to the process of

flying (Figure 9b).

a

b

Figure 9: Usage of GlueStick for TRN per se (a) and over

the same terrain with different angles (b)

Proposed approach

The suggested approach of this work is

based on deep feature template matching. There

are existing solutions of that, like robust tem-

plate matching using scale-adaptive deep convo-

lutional features [12] or QATM (quality-aware

template matching for deep learning) [13]. In

[12] scale-adaptive deep convolutional feature

vectors are extracted from the template and the

input image via the pre-trained VGG-Net – Fig-

ure 10. Each layer represents a different level of

deep features of the actual image contents.

Normalized cross-correlation (NCC) is used to

measure the distance between features of the

template and the image to detect the target im-

age patch. Nonetheless, existing pretrained net-

works are not necessarily apt for extracting fea-

tures that are relevant for comparing two images

of the same terrain under different conditions.

Figure 10: Scale-adaptive deep convolutional feature extraction based template matching [12]

Usually neural networks that are used as

backbones for computer vision tasks are pre-

trained on datasets like ImageNet [14]. It means

that it can be used for finding a cat on a picture,

using textures and high level features such as

eyes, nose, ears and whiskers, but will struggle

with finding a specific patch of terrain, because

of the necessity to understand domain specific

transformations caused by snow or vegetation

coverage and discrepancy between seasons and

lightning conditions. It’s similar to the face

recognition task, when we need to build deep

feature space in which the same face has the

same features [15]. Additionally it may allow

moving along that space to perform a smooth

transition from one face to another. For extract-

ing such deep features this paper suggests using

a triplet loss [15] – Figure 11.

Figure 11: Triplet loss [15]

The main idea behind the triplet loss is

to minimize the distance between an anchor

(patch of particular area from source A) and a

positive (patch of the same area from source B),

both of which have the same identity (but may

differ in terms season, angles of observation and

so on) and at the same time to maximize the dis-

tance between the anchor and a negative of a

different identity (random patch of a different

area either from source A or B) – Figure 12.

Figure 12: Examples of triplets for rotation insensitive

training

Performing matching, the orientation of

terrain fragments must be the same. Giving the

possible inaccuracy of an onboard compass, the

network is also train to be agnostic to discrep-

ancy in orientation within the range of 20 de-

grees. It’s achieved through augmentation in

form of random rotation of positive image with-

in that range during training (Figure 12 posi-

tive). For making the network agnostic to height

uncertainty, images can also be randomly

scaled. In order to get a rich feature space, im-

ages cropped from Google maps zoom level 13

to 20. The network’s architecture is a modified

version of ResNet50 – Figure 13.

Figure 13: Feature extractor architecture

Triplet loss for the training process is de-

scribed like this [15]:

 ∑ [‖ (
) (

)‖

 ‖ (

)

 (
)‖

]

, (1)

where f(x) – function representing feature ex-

traction; x
a
, x

p
, x

n
 – anchor, positive and nega-

tive samples; N – batch size; α – bias.

Usage of Weights & Biases developer

platform [16] proved to be effective for search

of optimal hyperparameters such as: learning

rate, batch size, dropout values, configurations

of add-ons to the backbone and even pretrained

backbone itself.

In case of not using an onboard compass

for getting the rotation angle (may be connected

with natural or artificially induced magnetic

anomalies) the orientation must be determined

only by comparing an image of observed terrain

and the reference satellite map. For that a differ-

ent approach to composing images for a triplet

loss has been proposed. An image of the same

area from a different source but with the same

orientation is used as a positive sample, whereas

an image of the same area, from the same source

but rotated within 15 to 45 degrees is used as a

negative one – Figure 14.

Figure 14: Examples of triplets for rotation sensitive

training

A single multi-head network may be

used for both purposes: navigation and rotation

correction – Figure 15.

Figure 15: Two output head feature extractor

The training process in this case involves

two stages: training of the rotation insensitive

head together with the ResNet50 backbone and

then freezing the backbone and training of the

rotation sensitive head. Usage of a single net-

work is expedient due to computational limita-

tions of onboard hardware. Otherwise two sepa-

rate networks (Figure 13) each for rotation sen-

sitive and rotation insensitive feature extraction

for navigation and angle evaluation respectively

have proven to be better.

The actual process of navigation implies

finding the location of a smaller image form

camera on a rotated bigger image of the refer-

ence terrain view and shifting that reference

view according to the flight in order not to move

outside an area of search – Figure 16.

Figure 16: Task of locating camera image

The reference image is acquired using

preliminarily loaded onboard base of tiles, with

the scale of map provider and ancillary scaling

that correspond to the current height of flying in

order to ensure scale congruity between images.

Extracted deep features allow perform-

ing quality aware matching based on image se-

mantics. Usage of a convolutional network al-

lows working with images of any existing

standard resolutions and respective reference

images. For two images on Figure 16 we’ll get

two vectors of shape (2048, 32, 32) and (2048,

16, 16), so the task is boiled down to locate a

patch of 16x16 on a patch of 32x32 – Figure 17.

Figure 17: Task of locating feature vector

Matching is performed by sliding an im-

age view feature vector over a bigger reference

image feature vector within the plane of view (a

window of 16x16 over one of 32x32) and calcu-

lating Euclidean distance between an image fea-

ture vector and a corresponding crop from the

reference feature vector. A position with mini-

mal distance will give the best matching.

The drawback of this approach is that we

are not determining exact coordinates of our lo-

cation. The coordinates of the reference image

patch are known and we are locating relatively

to it with the discretization of 32 pixels (image

of 1024x1024 is convolved to 32x32). But that

uncertainty is not accumulated over the flight.

It’s important to just properly shift the reference

image according to UAV’s movement.

Auxiliary correction of the orientation

angle by means of image comparing is per-

formed after the iteration of location determin-

ing. In this case a current camera view is com-

pared with the set of rotated crops from the ref-

erence source turned within the range of -10 to

+10 degrees – Figure 18.

Figure 18: Task of correcting orientation

In a similar way, for that we extract deep

features by a rotation sensitive head or a sepa-

rate network and get the angle which corre-

sponds to a crop image that provides a mini-

mum distance in terms of feature space.

A complex of programs, connected via

network, was created for experimental study of

different facets of the suggested approach and

proving their feasibility. A Unity 3d environ-

ment simulates flying over a terrain with differ-

ent weather and lightning – Figure 19.

Figure 19: Simulation environment

Defining a desirable route to fly is per-

formed by setting a set of waypoints onto a

map. During the flight time a model UAV de-

termines its location by video feed and analyzes

its necessity to turn when it’s in the vicinity of

the next waypoint according to the route. That

procedure is performed with a discretization that

depends on UAV speed, height, view angle of a

camera and reference image size in order not to

fly outside the search area – Figure 20.

Figure 20: Process of flying

Waypoint form a user

Iteration of locating

However, usage of template matching is

struggling with flying over the deep forest, lead-

ing the determined location astray from a UAVs

real position, moving forward towards a con-

secutive waypoint – Figure 21.

Figure 21: Flying over deep forest

Initially, flying over roads, patch of for-

est crossed with roads, border of forest and

shrubs, it could determine its location. Moving

deeper in the forest it had failed. Like for a hu-

man, hovering on a balloon over featureless for-

est or desert, navigation relying only on a sight

from above would be almost intractable.

One way to overcome that is to pass a

big fragment of the reference map through the

network, extract deep features and apply an en-

tropy filter [17] to that. Then set start and end

points on a map and use one of the path finding

algorithms (like A* [18]) using only areas with

high entropy level in terms of deep features, rel-

evant for navigation – Figure 22.

Figure 22: Path finding with respect to richness of navigation relevant deep features

Another way to address the problem of

flight over terrain with poor features or with low

altitude is to use VO as ancillary mechanism.

There are several cases that illustrate the con-

crescence of the approaches. In case of strug-

gling to perform template matching it doesn’t

provide enough confidence, expressed in terms

of Euclidean distance for one particular template

location over an average value. It’s especially

evident in cases of flying along the roads with

low amount of distinctive features on the side-

lines, because all the crops taking along the road

will look relatively the same – Figure 23.

Figure 23: Flying over a featureless road

 If such a situation with low maximum

value over the average one exists, the reference

map is shifted simply by a vector given by using

VO between two consecutive images, like on

Figure 9b. If we encounter an image that

through template matching provides high

enough confidence during N iterations – we

align the reference map according to that. Num-

ber N is chosen in order not to move outside the

search are due to possible VO errors. If we con-

tinue flying using VO (and shifting the refer-

ence map according to it) more than N iterations

– we start analyzing Euclidean distance between

consecutive terrain images. If distance exceeds a

threshold – we perform a “looking around” pro-

cedure by soaring if necessary for getting a bet-

ter vantage point and increasing the amount of

features for performing template search over

bigger space of the reference map in comparison

with the case of regular flight. And here we use

a gimmick of hypothesizing about possible loca-

tion, taking K of most likely patches on a refer-

ence map (with respect to L past stored views

from the camera), and comparing the next set of

M consecutive images from camera with crops

form the reference map – Figure 24.

Figure 24: Hypothesizing over potential locations

If an image from the camera doesn’t cor-

respond to a hypothesized future image, the

hypnosis is discarded. In this case navigation

process relies on accumulation, unlike single

shot template matching used in a normal mode.

The number of tracked hypotheses depends on

computational capacity of an onboard system.

During hypothesis checking, if a new terrain

image provides a better matching score than

currently tracked locations, the least confident

hypothesis is discarded and a new one is started

to be tracked.

In case when finding relevant features

for navigation is impossible (the aforementioned

process of hypothesizing didn’t provide results

with enough confidence during J iterations), like

when we moved from the forest, without ele-

ments of a distinctive border line, to the field,

we have to address the entropy reference map

(Figure 22). If the next waypoint is closer than

the distance D, and it has enough features for

navigation in its vicinity we continue moving.

Else we must find on a reference map a closest

big enough area with rich features and add an

auxiliary waypoint in the center of it just for the

sake of navigation. Being there, we determine

the location and continue moving towards the

desirable destination. In the real life it corre-

sponds to the case when moving from the forest

to the field we know that there is a nearby set-

tlement to the west and we move there.

The advantage of template matching ap-

proach is the ability to learn different type of

terrain transformation, utilizing existing open

datasets, like pre and post disaster imagery [19]

which is especially relevant for military UAV’s

– Figure 25.

Figure 25: Pre and post disaster dataset [19]

 The important point for onboard systems

is computational requirements of any suggested

approach. Template matching doesn’t require

frequent iterations of locating. It’s only neces-

sary that a UAV won’t fly outside the area of

search on a patch of the reference map. In a

simulated environment, using NVIDIA GeForce

RTX 2080 SUPER (compute capability 7.5),

flying altitude 500 meters, onboard camera reso-

lution of 512x512 and a patch of the reference

map for searching of 1024x1024, a single itera-

tion of navigation takes about 0.5 sec and pro-

vides speed of a UAV up to 75 meters per se-

cond, because otherwise a UAV leaves the

search area of a reference map. It means that

onboard CUDA-enabled products such as Jetson

Nano (compute capability 5.3), Jetson TX2

(compute capability 6.2), Jetson Orin Nano

(compute capability 8.7) or even Raspberry Pi 6

can perform such a task with sufficient for

UAVs speed. In terms of RAM consumption 4

GB is enough only for navigation, but for when

a UAV also performs object detection during

flight, using a costumed trained YOLOv5, it re-

quires 8 GB.

The entire territory of the Republic of

Belarus and its adjacent area with a scale suffi-

cient for navigation from high altitude (about 1

km) requires approximately 500 GB of storage

which is apt for a modern M.2 SSD situated

onboard. More detailed map of Minsk city with

its outskirts requires 20 GB.

Conclusions, alternative solutions and future

work

 This work relies on the concrescence of

strong points from two approaches. Deep fea-

ture template matching provides semantic un-

derstanding, agnostic to domain specific trans-

formation caused by discrepancy in angles of

observation, time of year, weather, vegetation

and lighting conditions. Visual odometry allows

keeping track of observed features on land and

performing shifting of the reference map in or-

der to stick to that again when the observed ter-

rain has enough features.

 Within the framework of conducted re-

search it’s necessary to mention solutions that

were tested but haven’t worked well.

In simulation navigation can also be per-

formed by usage of the same point (line) based

matcher (like GlueStick), that has been used for

VO. Location and the shifting vector for the ref-

erence map are determined based on trigonome-

try using camera’s obliquity – Figure 26.

Figure 26: Usage of GlueStick in simulation

Tilted view from a camera in simulation Reference map

But, as that’s been mentioned, it

demonstrated poor results with real camera

feed due to inability to handle the situation

with discrepancy in angles of observation.

An approach with predicting a bound-

ing box that frames a camera view onto the

reference map in a YOLO-like manner was

also tried but was proved to be not efficient in

terms of precision.

Several solutions represent relevance

to the current work in terms of possible future

usage. Unsupervised learning of visual fea-

tures by contrasting cluster assignments [20]

may be used for pre-training a backbone on a

set of terrain images of different scales.

On a low altitude, flying through a

city, a point cloud can be built from a depth

map that can be predicted even from a mo-

nocular camera by open solutions [21]. It then

allows performing counter matching with

segmented street view. An example of visual

based SLAM in city is described in [22] –

Figure 27.

Figure 27: Visual-based SLAM in the city [22]

A good solution in terms of not going

astray during the navigation process is to use

existing open source projects for lane (road)

detection [23] to stick to a particular road and

recognize road junctions during the flight,

matching them with the reference map – Fig-

ure 28.

Figure 28: Line detection process [23]

In addition to it, the suggested in this

paper approach can also be further modified.

Calculation of a shifting vector based on VO,

in case when we don’t have enough features

to perform template matching, can be per-

formed with respect to some terrain features

inferred by a neural network, in order to im-

prove precision. Points, tracked from tree tops

over the forest due to their closeness to a

UAV will give a different shifting magnitude

in comparison with points from a filed when a

UAV flies the same distance. In this case

must we collect real data with known posi-

tioning and train a neural network based on

the value of odometry distance and actual dis-

tance that will correct the magnitude of a

shifting vector based on pictures of terrain it

observes. For improving VO a UAV can also

have some onboard inertial navigation system

and a network will perform sensor fusion in

order to determine a resultant shifting vector.

For the “looking around” procedure the

search for patches of the reference map that

match a camera view (for hypothesizing over

potential locations) is performed just by grid

search over a potential area of the reference

map. A more efficient way is to extract deep

features in advance and organize a hash table

for performing a quick lookup based on simi-

larity, using solutions like fuzzy hashing [24].

A more intuitive way of navigating for a

human being would be to look around with

oblique view (like on Figure 26) and consider

all the observable features, not only the view

right from above perpendicular to the surface.

It requires for a neural network to understand

the transformation between a 2d satellite map

and a 3d view of a terrain given under certain

angle and form certain height. For such a task

it can be trained using existing 3d terrains in

solutions like Cesium [25] – Figure 29.

Figure 29: Cesium platform for Unity 3d [25]

Combination of looking around with

different obliquity of a camera, looking per-

pendicular to the surface, accumulating fea-

tures and performing maneuvers in order to

alleviate uncertainty in understanding the po-

sition is the area of further research.

REFERENCES

1. Image Transformation Learning for Drone Navigation without GPS: [Electronic re-

source] // HuCE – cpvrLab. URL: https://www.youtube.com/watch?v=5JEFe2_L4So. (Date of ac-

cess: 23/10/2024).

2. Anthony T. Fragoso et all. A seasonally invariant deep transform for visual terrain-

relative navigation. Science robotics. 2021. Vol. 6, № 55.

3. Autonomous Navigation with Improved Visual Terrain Recognition: [Electronic re-

source] // Caltech. URL: https://www.youtube.com/watch?v=U5Kr0YI3sec. (Date of access:

23/10/2024).

4. Jiaming Sun et al. LoFTR: Detector-Free Local Feature Matching with Transformers.

2021. arXiv: 2104.00680.

5. ORB (Oriented FAST and Rotated BRIEF): [Electronic resource] // OpenCV. URL:

https://docs.opencv.org/4.x/d1/d89/tutorial_py_orb.html. (Date of access: 23/10/2024).

6. ORB vs ML-aided Visual TRN: [Electronic resource] // KEF Robotics. URL:

https://www.youtube.com/@kefrobotics6924. (Date of access: 12/01/2024).

7. Jiexiong Tang et al. Neural Outlier Rejection for Self-Supervised Keypoint Learning.

2019. arXiv: 1912.10615.

8. Paul-Edouard Sarlin et al. SuperGlue: Learning Feature Matching with Graph Neural

Networks. 2020. arXiv: 1911.11763.

9. Yifan Wang et al. Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-

Like Speed. 2024. arXiv: 2403.04765.

10. Philipp Lindenberger et al. LightGlue: Local Feature Matching at Light Speed. 2023.

arXiv: 2306.13643.

11. Rémi Pautrat et al. GlueStick: Robust Image Matching by Sticking Points and Lines

Together. 2023. arXiv: 2304.02008.

12. Jonghee Kim et all. Robust template matching using scale-adaptive deep convolutional

features. APSIPA Annual Summit and Conference. 2017.

13. Jiaxin Cheng et al. QATM: Quality-Aware Template Matching For Deep Learning.

2019. arXiv: 1903.07254.

14. ImageNet: [Electronic resource] // URL: https://www.image-net.org. (Date of access:

23/10/2024).

15. Schroff et al. FaceNet: A unified embedding for face recognition and clustering. 2015.

arXiv: 1503.03832.

16. Weights & Biases: [Electronic resource] // URL: https://wandb.ai/site. (Date of access:

23/10/2024).

17. Examples. Filtering and restoration. Entropy: [Electronic resource] // Scikit-image.

https://scikit-image.org/docs/stable/auto_examples/filters/plot_entropy.html. (Date of access:

23/10/2024).

18. A* Search Algorithm: [Electronic resource] // https://www.geeksforgeeks.org/a-search-

algorithm. (Date of access: 23/10/2024).

19. Annotated high-resolution satellite imagery for building damage assessment: [Elec-

tronic resource] // xBD Dataset. URL: https://xview2.org/dataset. (Date of access: 23/10/2024).

20. Mathilde Caron et al. Unsupervised Learning of Visual Features by Contrasting Cluster

Assignments. 2021. arXiv: 2006.09882.

21. Lihe Yang et al. Depth Anything V2. 2024. arXiv: 2406.09414.

22. Dioram Visual Navigation(based on Dioram SLAM One) point-cloud mapping in a

city scale: [Electronic resource] // Dioram: Computer Vision, Machine Learning, SLAM. URL:

https://www.youtube.com/watch?v=DwAT46MdyXk. (Date of access: 23/10/2024).

23. Awesome-lane-detection: [Electronic resource] // Github.com. URL:

https://github.com/amusi/awesome-lane-detection?tab=readme-ov-file#2023. (Date of access:

23/10/2024).

24. J. Oliver, J. Hagen. Designing the Elements of a Fuzzy Hashing Scheme. Science ro-

botics. 2021 IEEE 19th International Conference on Embedded and Ubiquitous Computing (EUC),

Shenyang, China, 2021, pp. 1-6.

25. Real-World 3D Geospatial Capability for Unity: [Electronic resource] // Cesium.com.

URL: https://cesium.com/platform/cesium-for-unity. (Date of access: 23/10/2024).

РУЛЬКО Е.В.

НАВИГАЦИЯ ПО СНИМКАМ МЕСТНОСТИ НА ОСНОВЕ СОПОСТАВЛЕНИЯ

ГЛУБОКИХ ПРИЗНАКОВ И ВИЗУАЛЬНОЙ ОДОМЕТРИИ

Военная академия Республики Беларусь

Основной проблемой для систем навигации по снимкам местности является несоответствие визуаль-

ных признаков между фрагментом опорной картой и изображением с борта БПЛА. Снимки могут быть сде-

ланы в различное время года, в различную погоду, с различными растительным покровом, условиями освещения

и под различными углами обзора относительно плоскости земной поверхности. Данная работа предлагает

использование сопоставления глубоких признаков, извлеченных в рамках неконтролируемого обучения с исполь-

зованием триплет-ошибки. Это обеспечивает понимание семантики изображений, не зависящей от транс-

формаций местности. В рамах полёта над местностью с недостаточным количеством визуальных признаков

для навигации (лес, поле), в работе предложено дополнительное использование визуальной одометрии с проце-

дурой привязывания к опорной карте после получения достаточного количества признаков, с построением ги-

потез относительно местоположения. Извлечение глубоких признаков натренированной сетью из опорной

карты и применение к ним фильтра энтропии позволяет планировать маршруты полёта над местностью,

обладающей достаточным разнообразием признаков, необходимых для навигации.

Ключевые слова: навигация по снимкам местности, глубокие признаки, машинное обучение, визуальная

одометрия, БПЛА.

Рулько Евгений Викторович, кандидат технических наук, доцент.

Начальник научно-исследовательской лаборатории моделирования

военных действий учреждения образования «Военная академия Рес-

публики Беларусь». Сфера научных интересов: глубокое обучение,

машинное зрение, обучение с подкреплением, нейронауки, актив-

ный вывод, принцип свободной энергии, рефлексивное управление.

Eugene Rulko, РhD, associate professor in computer science. The head

of the research laboratory of military operation simulation of the educa-

tional institution «Military academy of the Republic of Belarus». Re-

search interests: deep learning, computer vision, reinforcement learning,

neuroscience, active inference, free energy principle, reflexive control.

E-mail: eugeni1533@gmail.com

