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Abstract

Purpose - This paper aims to derive a new method to prove the irrationality of particular
cases of infinite series that are less complicated than approaches taken in the past. This could
potentially lead to a much more easily teachable method of proving irrationality as well as
addressing many open problems.

Design/Methodology/Approach - Using a very simple approach–the limit of the se-
ries’ partial sums and the behavior of the series as an unsimplified fraction–the proof can be
completed using nothing more than the rules of divisibility and modular arithmetic. This
can be used to show that the series converges to a value that is impossible to represent with
a rational expression. From this theorem, there are also a couple other things that can be
derived, like whether or not the partial sums of an infinite series can ever be an integer.

Findings - The results reveal that using this method, a whole class of series can be proven
irrational. On top of this, it also results in novel, simpler proofs for older results like the
irrationality of e and π, as well as addressing some relevant open problems.

Originality/Value - This method offers a much easier approach to a topic relevant in
many domains of math–particularly number theory and analysis–that is simple enough to be
taught to high school math students.
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1 Introduction 1

In this paper, a proof for this method will be unveiled. In more detail, it will start off with a 2

fairly well known infinite series that is known to be irrational and from there a step-by-step proof 3

of that series’ will be underway. When that is done, a generalized case of this will be explored, 4

completing the proof, as well as some other minor (consequential) theorems that result from this 5

theorem. That being theorems that could be considered less ”relevant” but still pertinent to some 6

problems in math. After this, some open problems will be addressed, and discoveries made from 7

this theorem that are not necessarily open questions will be addressed as well. 8

2 Irrationality of π 9

It is well known that π is irrational. This is a result that has been proven in many different ways, 10

though the simplest of these proofs, a proof written by Ivan Niven [6], still has to utilize calculus 11

in order to make its point. While Niven’s proof is elegant, it still is fairly complicated. Now, a 12

proposition of a new proof: 13

Consider the Madhava-Leibniz [3] series for π: 14

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

Which of course, in summation notation can be represented like so: 15

∞∑
n=0

(−1)n

2n+ 1
=

π

4

This proof will be proving the irrationality of π
4 which will consequently prove the irrationality 16

of π. Consider the following: 17
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a∑
n=0

(−1)n

2n+ 1
= 1−1

3
+
1

5
−1

7
+..+

1

2a+ 1
=

(1 · 3 · 5 · .. · 2a+ 1)− (1 · 5 · 7 · .. · 2a+ 1) + (1 · 3 · 5 · 9 · .. · 2a+ 1)..

(1 · 3 · 5 · 7 · ... · 2a+ 1)

(1)
Now, the proof essentially hinges on the nature of how many of the terms in the fraction ”cancel 18

out” or how low the denominator and numerator get upon simplification. Observe the cases when 19

a = 3, and then 5. 20

When a = 3, you get 76
105 . When a = 5 you get 263

315 . You can confirm it for yourself by testing 21

out higher and higher partial sums, but essentially the denominator and numerator both increase 22

as you go higher and higher. Of course heuristic evidence isn’t enough to make the case for the 23

proof, so here is the actual logic behind it. 24

By basic rules of divisibility, if you have ka + b where b is not a multiple of a, then ka + b is 25

not divisible by a. Extending this logic, if you have k(ab) + k(ac) + k(cb) such that they are all 26

relatively prime, then (a, b, c) ∤ k(ab) + k(ac) + k(cb). This is essentially the same as the simpler 27

ka+ b situation from above, but with more terms. 28

The sizes of the simplified integers in the numerator and denominator of the fraction are 29

dependent on how many factors the numerator and denominator share. The ones that they don’t 30

share don’t cancel out, and result in a bigger denominator or numerator than if they weren’t there. 31

Now back to the partial sums. 32

Take this expression from above for the ath partial sum: 33

(1 · 3 · 5 · .. · 2a+ 1)− (1 · 5 · 7 · .. · 2a+ 1) + (1 · 3 · 5 · 9 · .. · 2a+ 1)..

(1 · 3 · 5 · 7 · ... · 2a+ 1)
(2)

Just by looking at it without doing the arithmetic, and using the ka+ b logic, you can deduce 34

that whatever factors appear in every term in the numerator but once are not shared with the 35

denominator. This is because the denominator has factors 1, 3, 5, 7..., 2a+ 1, and if the numerator 36

has any one of those terms everywhere but once, then the numerator must not be a multiple of 37

that term. Still, you can’t be certain that the numerator and demoninator always increase until 38

looking deeper. 39

Consider any ath partial sum where 2a + 1 is a prime. Since it is a prime, there are no 40

numbers below it that are factors of it, and up until the (2a + 1)th partial sum, 2a + 1 will 41

appear everywhere but once in the numerator, guaranteeing that it is a factor unshared between 42

the numerator and denominator. So for any ath partial sum, every prime p ≤ 2a + 1 such that 43

2a+1 < 2p is guaranteed to be an unshared factor. The new question then becomes if whether or 44

not these primes compound fast enough between p and 2p such that these unshared factors reach 45

infinity. This is a question that is quite easy to answer with the Prime Number Theorem [4], and 46

one that has been addressed in Bertrand’s Postulate [1]. 47

lim
p→∞

π(2p)− π(p) = ∞ (3)

Computing this limit is fairly straightforward. 48

lim
p→∞

π(2p)− π(p) = ∞ (4)

49

π(2p) ≈ 2p

ln 2 + ln p
and π(p) ≈ p

ln p
(5)

Because this is a limit, 50

lim
p→∞

π(2p)− π(p) = lim
p→∞

2p

ln 2 + ln p
− p

ln p
(6)

After some elementary limit techniques, 51

lim
p→∞

2p− p

ln p
= ∞ (7)

Therefore the unshared factors approach infinity, and the numerator and denominator approach 52

infinity. 53

This logic is justifiable based on the fact that there is no constant modulus that decreases as 54

the series gets bigger. As an example of how important the statement of the compounding prime 55

factors is, take a geometric series: 56
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∞∑
n=0

1

2n
= 1 +

1

2
+

1

4
· · · (8)

You cannot use the same logic here because the result simplifies in a very convenient way. When 57

expanding the denominator, you are left with this: 58

k∑
n=0

1

2n
=

1 + 2 + 4 + 8 · · ·
2k

=
1

2k
+

2 + 4 · · ·
2k

(9)

Evidently the denominator and numerator will not go to infinity because they are perfectly 59

divisible by each other apart from the one residual 1
2k

which will quickly go to 0 and leave you with 60

the remaining fraction, leaving you with the fact that the series simplifies to 2, a rational number. 61

If the numerator is N and the denominator D, 62

N ≡ 1 (mod D). (10)

Since for every partial sum, the denominator gets higher, whatever the modulus is, be it 1 or 63

1,000,000, it will eventually go to 0 if it is constant. 64

In the case of a series with infinitely many prime denominators, if you look at any term in the 65

denominator of the kth partial sum, the numerator will not constantly have the same modulus 66

relative to the denominator. This can be demonstrated: 67

a∑
n=0

(−1)n

2n+ 1
= 1−1

3
+
1

5
−1

7
+..+

1

2a+ 1
=

(1 · 3 · 5 · .. · 2a+ 1)− (1 · 5 · 7 · .. · 2a+ 1) + (1 · 3 · 5 · 7 · .. · 2a− 1)..

(1 · 3 · 5 · 7 · ... · 2a+ 1)

(11)

Let the denominator be denoted as D and the numerator as N . To prove that the modulus 68

changes for at least one term, let’s focus on the ath partial sum, and contrast it with the a+ 1th. 69

N ≡ (1 · 3 · 5 · 7 · ... · 2a− 1) (mod D) ≡ k (mod 2a+ 1), k < 2a+ 1 (12)

If you were to then take the a+ 1th partial sum: 70

a∑
n=0

(−1)n

2n+ 1
=

N

D
,N ≡ (k2a+ 3k) (mod 2a+ 1), D ≡ 0 (mod 2a+ 1) (13)

71

(k2a+ 3k) = k(2a+ 1) + 2k ≡ (2k) (mod 2a+ 1) ̸≡ k (mod 2a+ 1) (14)

And by induction, this is true for every term and any partial sum you take. It is also true that 72

this likely applies for any series that is non geometric but can be only be explicitly mathematically 73

demonstrated with series consisting of many prime denominator terms. Mathematically, if you 74

were to ”churn” this out, you would find that there is no point in which any one of the terms 75

in the numerator or any of their products is divisible by the denominator, when you are just left 76

with the primes. Now, to go back and reference the main argument of this section, that being the 77

irrationality of π: 78

For a number to be a positive rational number, it needs to equal a
b where a, b ∈ N. 79

If it is approaching infinity in the numerator and denominator, that would it imply that it is 80

approaching a ratio of infinities. 81

∞ /∈ N ∴
∞∑

n=0

(−1)n

2n+ 1
=

π

4
/∈ Q (15)

3 Main Theorems 82

Using the reasoning from above, the following can be stated: 83

if there are infinitely many primes of the form f(n), n ∈ Z, and g(n) ∈ Z for all n, then

∞∑
n=a

(
g(n)

f(n)

)k

/∈ Q.

84

b∑
n=a

(
g(n)

f(n)

)k

/∈ Z.
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4 Open Problems 85

One of the biggest burning questions is whether or not ζ(5) is rational. Well consider the definition 86

of the zeta function [4]: 87

ζ(s) =

∞∑
n=1

1

ns

Now let’s apply the theorem to this situation. Of course, there are infinitely many primes of 88

the form f(n) = n, and in this case s = 5, meaning that s is a natural number. By the criteria of 89

the above theorem, ζ(5) /∈ Q. 90

To take another leap, the above theorem just requires s to be a natural number. This means 91

that not only is ζ(5) /∈ Q but for any s ∈ N ζ(s) /∈ Q. 92

Another open irrationality problem is the rationality of the Euler-Mascheroni Constant γ. 93

γ = lim
n→∞

(
n∑

k=1

1

k
− ln(n)

)

This takes a bit more effort to convert into the
∑∞

n=a

(
g(n)
f(n)

)k
format. 94

First, consider the infinite series representation for ln(1 + n): 95

ln(1 + x) =

∞∑
n=1

(−1)n−1xn

n

lim
n→∞

ln(n+ 1) = ln(n)

So in the context of a limit to infinity, 96

ln(n) ∼
∞∑
k=1

(−1)k+1

k
(n+ 1)k

Therefore you can rewrite γ like so: 97

γ = lim
n→∞

(
n∑

k=1

1

k
−

∞∑
k=1

(−1)k−1nk

k

)

Which then becomes 98

γ = lim
n→∞

(
n∑

k=1

1

k
− (−1)k−1nk

k

)

Fortunately the denominator is straightforward. Just k. Of course, there are infinitely many 99

primes of the form f(k) = k. 100

Now to try to apply this theorem to it, let’s look at a slightly altered series: 101( ∞∑
k=1

1

k
− (−1)k−1nk

k

)

Criteria 1: there are infinitely many primes of the form k. This condition is satisfied. 102

Criteria 2: 1− (−1)k−1nk ∈ Z for all n. This is also satisfied.

∴ γ /∈ Q
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5 Other Observations 103

This theorem has a lot of other implications that are not necessarily open problems. Below is a 104

list of some of the more interesting ones: 105

a∑
n=1

1

n
/∈ Z

106
a∑

n=1

1

T k
n

̸∈ Z, k ∈ Z (16)

107
∞∑

n=1

1

T k
n

̸∈ Q, k ∈ Z (17)

(The irrationality of the twin prime sum only applies if the Twin Prime Conjecture [5] is true.) 108

a∑
n=1

1

(cn+ b)k
/∈ Z where c, b, k ∈ Z (18)

109
∞∑

n=1

1

(cn+ b)k
/∈ Q where c, b, k ∈ Z (19)

The above statements are true because of Dirichlet’s work on prime arithmetic progressions [2]. 110∑
p∈P

1

ps
/∈ Q, s ∈ N (20)

The above prime series is the prime zeta function, the zeta function excluding the composites. It 111

is sometimes notated as P(s). 112

6 Conclusion 113

This theorem is a much simpler method to accomplish a task that has been historically daunting 114

in the world of mathematics. Not only is it generalized but it is also simple enough to teach in 115

schools and places where people may not have a college level math education, as well as the fact 116

that it can be used on open problems that cannot be practically solved with previously available 117

methods. 118

References 119
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