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Abstract

Cytolethal Distending Toxin (CDT), a tripartite exotoxin from Campylobacter jejuni, is known for

inducing DNA damage and apoptosis. In this study, we engineered the A subunit (CDTA) to

selectively target cancer cells by replacing its native binding region with anti-PD-L1 antibody

sequences. Using sequence data from UniProt (CDTA: A1VXG4, PD-L1: Q9NZQ7), we

identified and modified CDTA’s residues 129-140. Structural validation using AlphaFold 2

confirmed that these modifications retained CDTA’s structural stability and affinity for PD-L1,

supporting its potential as a targeted cancer therapeutic. Future experimental steps include

protein expression, purification, and cytotoxicity testing to confirm the toxin’s selective binding

and apoptotic effects on PD-L1 positive cancer cells.

Introduction

Cytolethal Distending Toxin (CDT) is a unique tripartite exotoxin produced by Campylobacter

jejuni and other Gram-negative bacteria, recognized for its ability to induce apoptosis in

eukaryotic cells [1]. CDT comprises three subunits: CDTA, CDTB, and CDTC. The A subunit

(CDTA) binds to the host cell membrane, initiating toxin entry, while CDTC assists in the

transport of CDTB into the nucleus by binding to the nuclear membrane [1]. Once inside, CDTB,

a DNase, cleaves host DNA, causing cell cycle arrest at the G2/M checkpoint and ultimately

triggering apoptosis—a regulated form of cell death that is less inflammatory than necrosis [2].

This makes CDT a promising candidate for selective cancer therapies, where targeted

apoptosis could reduce damage to surrounding tissues.
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Programmed Death-Ligand 1 (PD-L1) is commonly overexpressed on cancer cells, where it

enables immune evasion by binding to the PD-1 receptor on T-cells and suppressing immune

responses [3]. Targeting PD-L1 in cancer immunotherapy has shown promising results, making

it a valuable target for cancer treatments [4]. In this study, we hypothesized that by modifying

the binding region of CDTA with anti-PD-L1 antibody sequences, CDT could be engineered to

selectively bind and kill PD-L1-expressing cancer cells.

Based on UniProt sequence data (CDTA: A1VXG4), we identified residues 129-140 within the

Ricin B-type lectin domain of CDTA as the optimal site for modification. This region was

replaced with complementarity-determining region (CDR) sequences from the heavy and light

chains of an anti-PD-L1 antibody derived from human PD-L1 (UniProt: Q9NZQ7) [4, 5].

Structural modeling via AlphaFold 2 was then used to assess whether these modifications

maintained the protein’s stability and supported PD-L1 binding. Following these validations, we

plan further experimental steps to express and purify the modified toxin for testing on

PD-L1-positive cancer cell lines.

Materials and Methods

1. CDTA Sequence Selection and Modification

CDTA’s amino acid sequence was obtained from UniProt (A1VXG4) [1]. Residues

129-140, identified as part of the Ricin B-type lectin binding region, were selected due to

their role in membrane attachment. Anti-PD-L1 antibody CDR sequences from UniProt

(Q9NZQ7) were incorporated to create two modified CDTA variants [4, 5]:

Original CDTA sequence (Yellow residues 129-140):

MQKIIVFILCCFMTFFLYACSSKFENVNPLGRSFGEFEDTDPLKLGLEPTFPTNQEIPSLIS

GADLVPITPITPPLTRTSNSANNNAANGINPRFKDEAFNDVLIFENRPAVSDFLTILGPSGA

ALTVWALAQGNWIWGYTLIDSKGFGDARVWQLLLYPNDFAMIKNAKTNTCLNAYGNGIV

HYPCDASNHAQMWKLIPMSNTAVQIKNLGNGKCIQAPITNLYGDFHKVFKIFTVECAKKD

NFDQQWFLTTPPFTAKPLYRQGEVR

Modified sequences:



CDTA_HC (heavy chain CDR): ALAQGNWIWGY > GYTFTRYYDMH

MQKIIVFILCCFMTFFLYACSSKFENVNPLGRSFGEFEDTDPLKLGLEPTFPTNQEIPSLIS

GADLVPITPITPPLTRTSNSANNNAANGINPRFKDEAFNDVLIFENRPAVSDFLTILGPSGA

ALTVWGYTFTRYYDMHTLIDSKGFGDARVWQLLLYPNDFAMIKNAKTNTCLNAYGNGIV

HYPCDASNHAQMWKLIPMSNTAVQIKNLGNGKCIQAPITNLYGDFHKVFKIFTVECAKKD

NFDQQWFLTTPPFTAKPLYRQGEVR

CDTA_LC (light chain CDR): ALAQGNWIWGY > RQYYSTPRTF

MQKIIVFILCCFMTFFLYACSSKFENVNPLGRSFGEFEDTDPLKLGLEPTFPTNQEIPSLIS

GADLVPITPITPPLTRTSNSANNNAANGINPRFKDEAFNDVLIFENRPAVSDFLTILGPSGA

ALTVWRQYYSTPRTFTLIDSKGFGDARVWQLLLYPNDFAMIKNAKTNTCLNAYGNGIVH

YPCDASNHAQMWKLIPMSNTAVQIKNLGNGKCIQAPITNLYGDFHKVFKIFTVECAKKDN

FDQQWFLTTPPFTAKPLYRQGEVR

2. Structural Validation and Binding Simulation Using AlphaFold 2

AlphaFold 2 was utilized to predict structural interactions of the modified CDTA variants

(CDTA_HC and CDTA_LC) with PD-L1. The simulation showed that:

■ The modified CDTA maintained structural integrity with stable protein

folding.

■ Binding simulations indicated favorable orientations of the CDR-modified

regions toward PD-L1’s binding domain.

These results supported the potential of both modified CDTA variants for specific PD-L1

binding.

3. Future Experiments: Protein Expression and Purification



Planned experiments will include expressing the modified CDTA variants in E. coli,

followed by purification through affinity chromatography. The goal is to achieve

high-purity proteins for reassembly with CDTB and CDTC to form complete CDT

complexes. These complexes will then be tested for functionality in subsequent assays.

4. Future Experiments: Cytotoxicity and Selectivity Assays

Cytotoxicity assays will be conducted using PD-L1-expressing cancer cell lines and

PD-L1-negative controls. Flow cytometry with apoptotic markers, such as Annexin V, and

MTT assays for cell viability will be used to assess the toxin’s selective apoptotic effects

on PD-L1-positive cells.

Results

1. AlphaFold 2 Structural Simulation Results

AlphaFold 2 simulations confirmed that the modified CDTA variants, CDTA_HC and

CDTA_LC, retained structural integrity when modified with PD-L1 targeting sequences.

The simulations indicated that the CDR regions were correctly positioned to engage

PD-L1, suggesting that the engineered binding specificity could be effective in practice.



Figure 1. Interaction between CDTA with grafted anti-PD-L1 Heavy Chain CDR (right) and

PD-L1 (left) confirmed via AlphaFold 2.



Figure 2. Interaction between CDTA with grafted anti-PD-L1 Light Chain CDR (right/top) and

PD-L1 (left/bottom) confirmed via AlphaFold 2.

2. Future Experiments: Protein Expression and Cytotoxicity Assays

Protein expression and purification of the modified CDTA variants, as well as cytotoxicity

testing on PD-L1-expressing and PD-L1-negative cell lines, will be conducted in future



experiments to validate the selective binding and apoptosis-inducing capabilities of the

engineered toxin.

Discussion

The AlphaFold 2 simulation results provide a strong foundation for the feasibility of modifying

CDTA to target PD-L1-expressing cells. By incorporating anti-PD-L1 antibody CDR sequences

into the binding domain, the modified CDTA variants demonstrated the structural compatibility

needed for PD-L1 specificity [5]. These computational findings justify the next steps in

experimental validation.

Future in vitro testing will evaluate whether the modified CDT can selectively induce apoptosis

in PD-L1 positive cells, providing a more targeted approach to cancer therapy with minimal

off-target effects. If successful, this strategy could be extended to other cancer markers,

highlighting the potential of CDT modifications as a flexible platform for targeted cancer

therapeutics. Additionally, this study underscores the value of structural modeling in designing

modified toxins, allowing for preliminary validation before intensive experimental work.
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