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Abstract

I point out that Pauli exclusion principle makes no sense, because it
assumes that the wave functions of multi-electron quantum systems would
separate into products of wave functions of individual electrons, while in
reality the Coulomb repulsion between the electrons prevents this separa-
tion. I propose a conjecture that Pauli exclusion principle maybe somewhat
works in some situations, because it approximates the Coulomb repulsion
between the electrons. I also put under question whether it makes sense
to demand that physical quantum systems should always have their eigen-
energies bounded from below.

According to mainstream physics there exists a principle known as Pauli
exclusion principle [1]. Pauli exclusion principle states that in multi-electron
quantum systems two or more electrons cannot simultaneously occupy the
same state. At the time of writing this article the mainstream physicists
have spent almost 100 years believing that Pauli exclusion principle would
be true. This is noteworthily strange, because clearly the principle is severe
pseudoscientific nonsense. In order to be able to recognize the nonsensical
nature of Pauli exclusion principle, it is sufficient to know some basics of
Quantum Mechanics and partial differential equations (PDEs).

Suppose we are interested in a system that consists of two nonrelativistic
electrons that for some reason feel some background potential

U : R3 → R, x 7→ U(x).

Let’s call the electrons with the names “electron A” and “electron B”. Sup-
pose that at least first we want to keep the problem as simple as possible by
ignoring the electron spins. If we are interested to understand the behavior
of this system, one of the most relevant objectives would be to try to learn
something about the solutions to the Schrödinger eigenvalue equation(

− ℏ2

2me
∇2

A + U(xA) −
ℏ2

2me
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B + U(xB)

+
q2e

4πϵ0

1

∥xA − xB∥

)
ψ(xA,xB) = Eψ(xA,xB).

(1)
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The parameters me and qe are the mass and the charge of the electron. Here
the wave function is of the form

ψ : R6 → C.

The standard mathematical notation for the input vector of this kind of
mapping would be (x1, x2, x3, x4, x5, x6), but here we are using the notations
(x1, x2, x3) = xA and (x4, x5, x6) = xB to clarify the physical interpretation
of the PDE. We can also consider denoting xA = ((xA)1, (xA)2, (xA)3) and
xB = ((xB)1, (xB)2, (xB)3), and emphasizing that the wave function is of
the form ψ : R3 × R3 → C. By the two Laplace operators we mean the
operators

∇2
A = ∂2(xA)1

+ ∂2(xA)2
+ ∂2(xA)3

= ∂21 + ∂22 + ∂23

and
∇2

B = ∂2(xB)1
+ ∂2(xB)2

+ ∂2(xB)3
= ∂24 + ∂25 + ∂26 .

If we had wanted to model the electron spins too, then the wave function
should essentially be of the form ψ : R3×{0, 1}×R3×{0, 1} → C. This mo-
dification wouldn’t affect the arguments below, so we can keep the notation
simpler by ignoring the spins now. Any information about the solutions
to the eigenvalue equation (1) would be potentially relevant information
about the two electron system in question. We encounter the immediate
problem that this eigenvalue equation is a very difficult equation to study,
and not much is known about its solutions. It is the presence of the repulsive
Coulomb potential term that brings the significant portion of the trouble.
We can make an attempt to make some progress by dividing the situation
into two cases: One case is q2e = 0, and the other case is q2e > 0. If we
assume that q2e = 0, then the PDE we are supposed to solve becomes(
− ℏ2

2me
∇2

A + U(xA) −
ℏ2

2me
∇2

B + U(xB)
)
ψ(xA,xB) = Eψ(xA,xB). (2)

Now it is a simple thing to put forward a logical claim that if the equations(
− ℏ2

2me
∇2

A + U(xA)
)
ψA(xA) = EAψA(xA),

(
− ℏ2

2me
∇2

B + U(xB)
)
ψB(xB) = EBψB(xB),

ψ(xA,xB) = ψA(xA)ψB(xB) and E = EA + EB

are true, then also the PDE in Equation (2) is true. This means that the
separation ansatz reduces the original 6-dimensional PDE into a simpler
3-dimensional PDE. Suppose we have found a large set of solutions

(ψ0(x), E0), (ψ1(x), E1), (ψ2(x), E2), . . .
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that satisfy the 3-dimensional eigenvalue equation(
− ℏ2

2me
∇2 + U(x)

)
ψn(x) = Enψn(x) ∀ n ∈ {0, 1, 2, . . .}.

Then we can use these as building blocks to construct a new set of wave
functions and energies

ψnA,nB(xA,xB) = ψnA(xA)ψnB(xB) and EnA,nB = EnA + EnB

where the index is (nA, nB) ∈ {0, 1, 2, . . .}×{0, 1, 2, . . .}. These are solutions
to the PDE in Equation (2), and now it is possible to speak about the
relations nA = nB and nA ̸= nB. We can say that if nA = nB, then according
to the wave function ψnA,nB the electrons A and B occupy the same state,
and that if nA ̸= nB, then the electrons A and B occupy different states.
If somebody speaks about Pauli exclusion principle that states that the
solutions, where nA = nB, are forbidden, and the solutions, where nA ̸= nB,
are allowed, it sounds like the speech somewhat makes sense. The principle
sounds like something that can be true or false.

If we assume that q2e > 0, then the separation ansatz does not work.
This means that in this case the factors ψA(xA) and ψB(xB) do not exist.
Because the factors do not even exist, it doesn’t make sense to speak about
the factors being the same or different. Consequently, in this case it doesn’t
make sense to speak about the electrons occupying the same or different
states. If somebody in this case too speaks about Pauli exclusion principle,
now the principle sounds like kind of nonsense that almost maybe can be
neither true or false.

Carefully pay attention to these logical steps and facts. One step goes
like this: The electrons occupying the same state means that the factors
ψA(xA) and ψB(xB) are the same. The electrons occupying different states
means that the factors ψA(xA) and ψB(xB) are different. Second step goes
like this: If the factors exist, it makes sense to speak about the factors being
the same or different. If the factors do not exist, then it does not make sense
to speak about the factors being the same or different. Third step goes like
this: If q2e = 0, then the factors exist. If q2e > 0, then the factors do not exist.
An important fact looks like this: When qe is the charge of the electron, the
relation q2e = 0 is false, and the relation q2e > 0 is true. When we put these
facts and logical steps together, we see that in reality it does not make sense
to speak about the electrons occupying the same or different states. The
Coulomb repulsion between the electrons prevents the separation ansatz
from working, and consequently the Coulomb repulsion prevents us from
speaking about the electrons occupying the same or different states.

One idea that may surface is that maybe we can use a relation q2e ≈ 0 as
an approximation. Then it would make sense to speak about Pauli exclusion
principle under this approximation, and maybe we could consider using some
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perturbation series with respect to q2e later. The answer to this idea is that
if the Coulomb repulsion between the electrons was relatively weak, then
we could consider ignoring it as an approximation. However, in the case of
atoms and small molecules, the Coulomb repulsion between the electrons is
actually quite strong, so in these relevant cases it doesn’t make sense to try
to use the approximation q2e ≈ 0. In other words the factors ψA(xA) and
ψB(xB) are nowhere near being in existence even approximatively.

We could now consider the issue to have been dealt with. We explained
what’s wrong with Pauli exclusion principle, and the principle has now been
debunked. Nevertheless, considering the length of time the mainstream
physicists have already spent in believing in Pauli exclusion principle, and
anticipating the resistance that will eventually come at this debunking, we
could still consider elaborating the debunking in a more pedagogical way.
There is a psychological phenomenon that humans usually understand what
they see better than what gets explained to them in words. So a question
arises that could it be possible to somehow show the incorrectness of Pauli
exclusion principle. There is an obvious challenge that it is difficult to plot
any graphs of wave functions ψ : R6 → C visible for humans to see. One idea
that might work is that we replace the Schrödinger equation with a simpler
equation that is still sufficiently similar to the Schrödinger equation, so that
we can study the used arguments, while simultaneously also being able to
look at the solutions. Let’s try to achieve this by switching to studying the
PDE (

− ∂2x − ∂2y +
q2e
|x− y|

)
u(x, y) = Eu(x, y) (3)

where we want to solve a function of the form

u : [0, 1]× [0, 1]→ R,

while also imposing the boundary conditions

u(0, y) = 0 and u(1, y) = 0 ∀ y ∈ [0, 1]

and
u(x, 0) = 0 and u(x, 1) = 0 ∀ x ∈ [0, 1].

So we replaced the 3-dimensional spatial space R3 with a bounded 1-dimen-
sional interval [0, 1]. By demanding that the wave functions’ values must
be real, we get wave functions u(x, y) that can be plotted in 3D-figures
and inspected by human eyes. The differential operators −∂2x and −∂2y are

like the kinetic energy operators − ℏ2
2me
∇2

A and − ℏ2
2me
∇2

B from the ordinary

Schrödinger equation. The repulsive Coulomb potential term q2e
4πϵ0

1
∥xA−xB∥

has been replaced with a similar term q2e
|x−y| . No background potential is

visible in the PDE itself, but the boundary conditions are equivalent to the
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background potential being ∞ in the regions x < 0, x > 1, y < 0 or y > 1,
and 0 in the interior ]0, 1[ × ]0, 1[. The situation with the separation ansatz
strategy with the PDE in Equation (3) is the same as it was with the PDE
in Equation (1): If we assume that q2e = 0, the separation ansatz works, and
if we assume that q2e > 0, the separation ansatz does not work.

The separation ansatz in the case q2e = 0 leads us easily to the solutions

unA,nB(x, y) = sin(nAπx) sin(nBπy) and EnA,nB = (n2A + n2B)π
2

where the index is (nA, nB) ∈ {1, 2, 3, . . .} × {1, 2, 3, . . .}. Again it makes
sense to speak about the relations nA = nB and nA ̸= nB, so in this q2e = 0
case we can speak about the two electrons occupying the same or different
states.

If we assume that q2e > 0, then Equation (3) is too difficult, and there
are no known simple solution formulas. However, handling functions of the
form u : [0, 1]× [0, 1]→ R with float arrays on an ordinary computer is not
tremendously challenging, at least if not much precision is demanded, and
it is possible to write computer programs that estimate the solutions to this
PDE numerically even in the q2e > 0 case. I wrote a such program, and
generated some graphs of the solutions for this article, so now it is possible
for us to see these solutions too.

Figure 1 contains some graphs of some example solutions to Equation (3).
The left most column and the center column contain solutions in the q2e = 0
case. These solutions are based on the solution formula unA,nB(x, y) =
sin(nAπx) sin(nBπy). The right most column in Figure 1 contains solutions
in the q2e > 0 case. These solutions have been produced by numerical ite-
rations that handle arbitrary float arrays, and there is no known simple
formula for these. So we got some bumps to behold. Next we have to pay
attention to what these bumps are doing. It is possible to see that the
bumps on the left most column and the center column form some kind of
grid structures that have some simple relation to the directions of the x-axis
and y-axis. This is what it looks like when the wave function separates into
a product u(x, y) = uA(x)uB(y). Although bumps are present on the right
most column too, there the bumps do not form the grid structures that would
have the simple relation to the directions of the x-axis and y-axis. This is
what it looks like when the wave function does not separate into a product
of two factors. So staring at Figure 1 is an opportunity for humans to see
what an separation ansatz looks like. This also an opportunity to learn that
a wave function that does not separate into a product of nontrivial factors
is distinctly different kind of wave function than a wave function that does
separate.

Let’s pay attention to the numbers of the bumps. On the left most col-
umn and the center column it is possible to perform a counting procedure,
where we fix y, and count how many bumps get encountered as x traverses
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Figure 1: The left most column and the center column contain example solutions
to the PDE (3) in the case q2e = 0. The left most column contains example
solutions where nA = nB, and the center column contains example solutions where
nA ̸= nB. The right most column contains example solutions to the PDE (3) in
the case q2e > 0, and in this case there are no indices nA and nB.

through the interval [0, 1]. Here we should count both the local maxima and
the local minima as bumps. Then it is also possible to fix x, and count how
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many bumps get encountered as y traverses through the interval [0, 1]. Then
the total number of bumps on the set [0, 1] × [0, 1] is the product of those
two numbers. This a consequence of the fact that the wave function has
separated into a product u(x, y) = uA(x)uB(y). The number of bumps on
the right most column cannot be interpreted as a product of two numbers
similarly, so here again we see that a wave function that does not sepa-
rate into a product of nontrivial factors is distinctly different kind of wave
function than a wave function that does separate.

On the left most column the number of bumps in the x-direction is
always the same as the number of bumps in the y-direction. This is because
these wave functions have been defined with indices that satisfy the relation
nA = nB. This is what it looks like when electrons A and B occupy the
same state. On the center column the number of bumps in the x-direction
is always different from the number of bumps in the y-direction. This is
because these wave functions have been defined with indices that satisfy the
relation nA ̸= nB. This is what it looks like when electrons A and B occupy
different states. The wave functions on the right most column do not look
the same as the wave functions on the left most column. This means that
the wave functions on the right most column do not represent system states
where the two electrons would occupy the same state. The wave functions
on the right most column do not look the same as the wave functions on the
center column either. This means that the wave functions on the right most
column do not represent system states where the two electrons would occupy
different states. Pay attention to this conclusion: On the right most column
the electrons are neither occupying the same state or different states.

Although humans do not have an ability to convincingly imagine things
in a 6-dimensional vector space, it is possible to attempt to combine feats
of imagination and logic to gain some insight. Suppose ψ : R3 × R3 → C,
(xA,xB) 7→ ψ(xA,xB) is a solution to Equation (2), and suppose it has
separated into a product ψ(xA,xB) = ψA(xA)ψB(xB). It is possible to
imagine that if we fix xB, and let xA wander around in the space R3, a certain
number of bumps in ψ(xA,xB) can be encountered. A certain number of
bumps can be encountered also if we fix xA and let xB wander around in the
space R3. Then it is possible to understand that the total number of bumps
that can be found in the space R6 is the product of those two numbers. So
we can understand and believe that something similar can happen in R6

as happens in [0, 1] × [0, 1] in Figure 1. Then it is possible to understand
that if ψ(xA,xB) describes a system state where the electrons occupy the
same state, the bumps that can be found by letting xA wander around are
somehow the same as the bumps that can be found by letting xB wander
around. If ψ(xA,xB) describes a system state where the electrons occupy
different states, the bumps that can be found by letting xA wander around
are somehow different from the bumps that can be found by letting xB
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wander around.
One of the features that we can see in the graphs on the right most co-

lumn in Figure 1, is that u(x, y) tends to be close to zero near the diagonal
defined by the equation x = y. This is a consequence of the Coulomb repul-
sion term, and the presence of this feature is related to the fact that these
wave functions u(x, y) aren’t separating into nontrivial products. Suppose
ψ : R3 ×R3 → C, (xA,xB) 7→ ψ(xA,xB) is a solution to Equation (1) when
q2e > 0. It is possible to imagine that ψ(xA,xB) is close to zero near the
3-dimensional subspace of R6 defined by the equation xA = xB. This again
is a consequence of the Coulomb repulsion term. It is also possible to imag-
ine that some bumps are present in the space R6, but the number of them
cannot naturally be interpreted as a product of two numbers. These things
that we can imagine using the power of imagination and logic hopefully
help us understand what it means that in the q2e > 0 case the wave function
ψ(xA,xB) isn’t separating into nontrivial factors, and that consequently it
will not make sense to speak about the electrons occupying the same or
different states.

If somebody puts forward a claim:

“Electrons A and B must occupy different states, because a law of nature
forbids them from occupying the same state.”

It is the same thing as putting forward a claim:

“The graphs on the right most column must look like the graphs on the
center column, because a law of nature forbids them from looking like the

graphs on the left most column.”

Then we must respond to this by noting that:

“No, that is wrong. The graphs on the right most column do not look like
the graphs on the center column.”

Some people might say that this debunking of Pauli exclusion principle
has been invalid, because the essence of Pauli exclusion principle is not only
that the electrons would have to occupy different states, but instead that
the wave function must have the antisymmetricity property ψ(xB,xA) =
−ψ(xA,xB). A response to this is that this thing with antisymmetricity is a
minor complication that doesn’t essentially affect the arguments used in the
debunking. It could be a good idea to clarify the meaning of some language
used in this topic. Suppose ψn1 and ψn2 are different wave functions, and
suppose that a wave function ψ has been defined by the formula

ψ(xA,xB) = ψn1(xA)ψn2(xB) − ψn2(xA)ψn1(xB).
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One issue we should clarify is that is it correct to say that according to ψ
one electron is now occupying the state n1, and another electron is oc-
cupying the state n2? It is a justified answer that no, one electron is
not occupying the state n1. If electron A was occupying the state n1,
and electron B was occupying the state n2, the wave function should be
ψ(xA,xB) = ψn1(xA)ψn2(xB) without the antisymmetricity property. If the
wave function has been made antisymmetric, then the both electrons are
occupying the both states; but not in an arbitrary way, but instead in the
certain engtangled way. Then we may ask that if the english statement that
one electron is occupying the state n1, and another electron is occupying the
state n2, is wrong, what english statement would be a correct one? There
does not exist a good answer, because the human languages have not evolved
to be used to describe these type of things. If we are smart, at this point
we could consider getting more understanding and tolerant towards the at-
tempts to use our limited human languages to describe these things. We
could agree that the statement that one electron is occupying the state n1,
and another electron is occupying the state n2, is valid after all. The idea be-
hind this agreement would be that if everybody knows that the electrons are
supposed to have the indistinguishability property, then everybody will un-
derstand that the statement that one electron is occupying the state n1, and
another electron is occupying the state n2, is just code language that means
that the wave function is ψ(xA,xB) = ψn1(xA)ψn2(xB) − ψn2(xA)ψn1(xB).
The reason for why we should agree to this is that after this agreement we
can avoid distracting pedantry in the subsequent debate.

If somebody puts forward a claim that a wave function ψ(xA,xB) must si-
multaneously satisfy the conditions that it satisfies the PDE in Equation (1)
and also satisfies the antisymmetricity property ψ(xB,xA) = −ψ(xA,xB),
we should agree that this claim makes sense. It is a kind of claim that can
be true or false. The claim is not that kind of nonsense that it could be
neither true of false. However, carefully pay attention to these logical facts:
If the separation ansatz works, then the antisymmetricity property implies
that the wave function must be of the form ψ(xA,xB) = ψn1(xA)ψn2(xB)−
ψn2(xA)ψn1(xB), and then we can speak about the electrons occupying dif-
ferent states (because above we agreed that the meaning of the english words
can be interpreted like this), but if the separation ansatz does not work, then
the antisymmetricity property does not imply that the wave function would
be of the form ψ(xA,xB) = ψn1(xA)ψn2(xB)− ψn2(xA)ψn1(xB), and it will
genuinely not make sense to speak about the electrons occupying different
states. Since the relation q2e > 0 is the true relation, and since the separation
ansatz isn’t working in this case, it will still not make sense to speak about
the electrons occupying different states, because the factors ψn1 and ψn2

don’t even exist. You can impose a demand that the wave function must
have the antisymmetricity property, but the factors ψn1 and ψn2 still won’t
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exist.
One extremely interesting question is that does there exist a law of na-

ture that states that a wave function describing two electrons must have
the antisymmetricity property ψ(xB,xA) = −ψ(xA,xB)? A smart way
to approach this thing is to ask that does there exist empirical evidence
that would support this hypothesis? If one tries to find information about
this thing, the explanations always start the same way: The start is that
firstly we have to understand that the antisymmetricity implies the equa-
tion ψ(xA,xB) = ψn1(xA)ψn2(xB)−ψn2(xA)ψn1(xB) and that the electrons
must occupy different states, and then the explanations continue somewhere
from there. This nonsensical start exposes the fact that there is no empi-
rical evidence supporting the antisymmetricity hypothesis. Consequently, it
doesn’t make sense to believe in the antisymmetricity.

Another relevant question is that does there exist reasons to believe that
the wave functions of multi-electron systems have any special symmetry
properties at all? If we interpret the elementary particles as excitations of
quantum fields, this approach does naturally lead to the indistinguishabil-
ity property of the particles, and subsequently the symmetricity property
ψ(xB,xA) = +ψ(xA,xB) too. This means that we should consider the hy-
pothesis that all elementary particles are bosons, and that there are no
fermions at all. Particles with half-integer spins most apparently do exist of
course though, so the new hypothesis is that also particles with half-integer
spins are bosons.

Some people might say that this debunking of Pauli exclusion princi-
ple has been invalid, because here we have forgotten that the electron spin
functions as a degree of freedom that must be taken into account in the
application of Pauli exclusion principle. A response to this is that yes this
mistake has been present in the debunking, but fixing this mistake doesn’t
essentially change how the debunking still works. We can take a closer
look at the relevance of the electron spin for the antisymmetricity thing.
Suppose we are interested in a system that consists of three nonrelativistic
electrons that for some reason feel some background potential. This means
that we are interested in a 9-dimensional PDE. Let’s assume that q2e = 0,
and that the separation ansatz can be used to reduce the 9-dimensional
PDE into a 3-dimensional PDE. Let’s assume that we have obtained a
large set of solutions to the 3-dimensional PDE, and denote these solu-
tions as (|ψ0⟩, E0), (|ψ1⟩, E1), (|ψ2⟩, E2), . . .. These abstract vectors mean
that if ψn(x) is a solution to the PDE in an ordinary way, then a relation
ψn(x) = ⟨x|ψn⟩ is true. Suppose we don’t want to simplify the model by
ignoring the electron spins. However, let’s keep things simple by assuming
that the Hamiltonian operator doesn’t really do anything with the spins.
So whether or not the Schrödinger equation is satisfied will depend only on
whether or not the spatial PDE is satisfied, and the spin degrees of freedom
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just hang around. These means that we could use notations |ψn⟩ ⊗ | ↑⟩ and
|ψn⟩ ⊗ | ↓⟩ to denote some possible states of individual electrons. Then a
question arises that how do we denote the spin state of the whole three elec-
tron system? There are several equivalent ways of accomplishing this, and
one way is to use the abstract vectors | ↑↑↑⟩, | ↓↑↑⟩, | ↑↓↑⟩, | ↓↓↑⟩, | ↑↑↓⟩,
| ↓↑↓⟩, | ↑↓↓⟩ and | ↓↓↓⟩. The idea is that the first arrow denotes electron
A’s state, the second arrow denotes electron B’s state, and the third arrow
denotes electron C’s state. Suppose that an abstract vector |ψ⟩ is supposed
to denote the whole system’s state. What kind of values can this abstract
vector assume? An example of a possible value could be

|ψ⟩ = |ψnA⟩ ⊗ |ψnB⟩ ⊗ |ψnC⟩ ⊗ |s⟩

where nA, nB, nC ∈ {0, 1, 2, . . .} and the possible values of |s⟩ are | ↑↑↑⟩,
| ↓↑↑⟩, . . . , | ↓↓↓⟩. However, these are not all the possible values of |ψ⟩,
because more can be found by constructing linear combinations of these
basis solutions. We’ll see what is essential about Pauli exclusion principle
by studying the example vector

|ψ⟩ = |ψ0⟩ ⊗ |ψ0⟩ ⊗ |ψ1⟩ ⊗ | ↑↓↑⟩
+ |ψ0⟩ ⊗ |ψ1⟩ ⊗ |ψ0⟩ ⊗ | ↓↑↑⟩
+ |ψ1⟩ ⊗ |ψ0⟩ ⊗ |ψ0⟩ ⊗ | ↑↑↓⟩
− |ψ1⟩ ⊗ |ψ0⟩ ⊗ |ψ0⟩ ⊗ | ↑↓↑⟩
− |ψ0⟩ ⊗ |ψ0⟩ ⊗ |ψ1⟩ ⊗ | ↓↑↑⟩
− |ψ0⟩ ⊗ |ψ1⟩ ⊗ |ψ0⟩ ⊗ | ↑↑↓⟩.

This vector has three interesting properties. One is that it is nonzero, so it
hasn’t vanished due to possible cancellations. Second interesting property
is that if we swap the places of electrons A and B, the vector changes its
sign. Similarly, if we swap the places of electrons A and C, or electrons B
and C, then too the vector changes its sign. So the vector changes its sign
in all possible swaps of electrons. Third interesting property is that under a
reasonable interpretation of english language we can say that now there are
two electrons occupying the state |ψ0⟩, and one electron occupying the state
|ψ1⟩. According to Pauli exclusion principle having two electrons occupying
the same state wouldn’t have been possible without the spin, so we see that
when focusing on the spatial part of the representations, the presence of spin
does change the effect of this principle. If one tries to construct a state |ψ⟩,
where the all three electrons would simultaneously occupy the same state
|ψ0⟩, then the state will vanish due to the cancellations, so a such state
cannot exist. This is how Pauli exclusion principle is supposed to work
according to the mainstream physics.

Next, carefully pay attention to these logical steps and facts: If q2e = 0,
the separation ansatz works, the solutions |ψ0⟩, |ψ1⟩, |ψ2⟩,. . . exist, it is
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possible to construct solutions to the three electron system as products
|ψnA⟩ ⊗ |ψnB⟩ ⊗ |ψnC⟩, it makes sense to speak about the electrons occupy-
ing the same or different states, and by using the vectors | ↑↑↑⟩, | ↓↑↑⟩, . . . ,
| ↓↓↓⟩ it is possible to derive the result that when focusing on the spatial
part of the representations, two electrons can occupy the same state, but
three cannot. If instead q2e > 0, the separation ansatz does not work, the
solutions |ψ0⟩, |ψ1⟩, |ψ2⟩,. . . do not exist, it is not possible to construct so-
lutions to the three electron system as products |ψnA⟩ ⊗ |ψnB⟩ ⊗ |ψnC⟩, it
does not make sense to speak about the electrons occupying the same or
different states, and it is not possible by using the vectors | ↑↑↑⟩, | ↓↑↑⟩,
. . . , | ↓↓↓⟩ to derive the result that when focusing on the spatial part of the
representations, two electrons could occupy the same state, and three could
not. So Pauli exclusion principle is still nonsense for the reason explained
earlier in this article, and the vectors | ↑⟩ and | ↓⟩ are only a minor complica-
tion that do not turn the nonsensical nature of Pauli exclusion principle into
sensical. The truth is that the presence of the repulsive Coulomb potential
term prevents us from speaking about the electrons occupying the same or
different states, and this truth is not about to go away easily.

One psychological phenomenon that may be relevant here is that hu-
mans often end up committing the fallacy that if a human being has put
effort into something, then the human deserves something in return. Here
with antisymmetric wave functions humans have to put some effort into
studying the applications of permutations and their signs. It may feel an
unpleasant possibility, that the effort that was put into studying the per-
mutations and their signs was in vain. We should remind people that the
fact that the permutations and their signs themselves are a legitimate topic
doesn’t mean that every attempt to apply the permutations and their signs
would be legitimate. It is possible that you end up wasting your time with
permutations and their signs.

A big mystery related to Pauli exclusion principle is that how is it pos-
sible that the mainstream physicists have spent almost 100 years believ-
ing that there would be empirical evidence supporting this principle, while
the truth is that the principle is so nonsensical that it doesn’t really mean
anything, and consequently it is not possible for the supporting evidence
to exist? One possible speculation and conjecture is that if we construct
a multi-electron model in a such way that first we ignore the repulsive
Coulomb potential term, and then add Pauli exclusion principle into the
model, maybe the model can tend to give qualitatively right kind of results,
because Pauli exclusion principle somehow approximates the effects from
the repulsive Coulomb potential term? Let’s recall what we saw in Figure
1. One of the features of the graphs on the right most column was that there
u(x, y) tended to be close to zero near the diagonal x = y. If we start with
some u(x, y) from the center column, and project the u(x, y) into an anti-
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symmetric form with the operation u(x, y)← u(x, y)−u(y, x), this also will
produce u(x, y) that is close to zero near the diagonal x = y. So we found a
function u(x, y) that is close to an actual solution near the diagonal x = y,
because there it is close to zero as it is supposed to be, and that is close to
an actual solution far away from the diagonal x = y too, because there the
Coulomb repulsion is weak. So we found a function u(x, y) that maybe is
close to an actual solution for all (x, y). We are not getting the legitimate
solutions to the full PDE this way, but maybe the antisymmetrized wave
functions do resemble the solutions in some ways?

It can be foreseen that many people will not like the explanation that
Pauli exclusion principle would be merely approximating the effects from
the repulsive Coulomb potential term, because this explanation doesn’t have
the same feel of an elegant mathematical principle as Spin-statistics theorem
has. I would like that ask these people that what do they think is going on
with the repulsive Coulomb potential term then? The Coulomb repulsion
between electrons exists whether humans want it or not, and it doesn’t make
sense to try to ignore it. The effects from the Coulomb repulsion do not
care whether humans perceive them as elegant or inelegant.

We could optimistically try to hope that maybe an elegant way of hand-
ling the effects from the Coulomb repulsion could eventually be discovered?
Maybe humans just haven’t succeeded in this yet, because not much effort
has been put into trying? Maybe we should show Figure 1 to young talented
students of our time, and request them to try to come up with new theories
for explaining what’s happening on the right most column?

According to mainstream physics Pauli exclusion principle is a conse-
quence of Spin-statistics theorem [2]. On the surface this might seem to
enhance and validate the status of Pauli exclusion principle. However, one
of the silly and noteworthy issues physics students of our time have to face
is that while everybody knows that Spin-statistics theorem exists, nobody
knows its proof. All pedagogical materials always omit the proof as too
difficult. The reason for this is probably that the proof is so nonsensical
that nobody understands it, and consequently nobody wants to embarrass
themselves by attempting to recite it. We should recognize that this hidden
nature of the proof certainly is not positive for the status of Pauli exclusion
principle. Nevertheless, some information about the proof is in circulation.
According rumours the proof has something to do with the demand that
eigenenergies of physical quantum systems must be bounded from below.
If one tries to quantize a half-integer spin field as a boson field, one gets
eigenenergies that can reach arbitrarily low values (approach −∞), and
then we can proceed to the conclusion that half-integer spin particles must
be fermions. Apparently the proof uses an axiom that all particles must be
either bosons or fermions, and that no other type of particle could exist.

Let’s think more carefully about the demand that eigenenergies must be
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bounded from below. Is it true that they must be bounded from below? Why
is it so? It is possible to come up with some answers to this question. For ex-
ample, suppose there was a special kind of atom whose discrete energy levels
were not bounded from below. How would that atom behave? The atom
could then emit an infinite amount of photons by successively jumping to
lower energy levels indefinitely, which would be nonsensical. In other words
the state of the atom would diverge in an unphysical way. So if somebody
puts forward a claim that the eigenenergies of a physical quantum system
must be bounded from below, apparently the claim makes sense? Let’s think
more carefully about what forbidding unphysical divergence means. There
exist example systems, where the eigenenergies are bounded from below,
and where the state does not diverge in an unphysical way. There exist
example systems, where the eigenenergies are not bounded from below, and
where the state does diverge in an unphysical way. Strictly speaking, the
eigenenergies being not bounded from below as such is not a problem for
us. What is a problem for us is the unphysical divergence of the state of
the system. If there is a correlation phenomenon that eigenenergies being
not bounded from below always leads to unphysical divergence, this would
be a legitimate reason to demand that the eigenenergies must always be
bounded from below then. It is true that some example systems somewhat
support the presence of this correlation phenomenon, but strictly speaking,
there is no reason to assume that this correlation would always hold. The
time evolution of a state of a system is not solely dictated by the available
eigenenergies, because there are other mechanisms that affect the time evo-
lution too. Therefore, it is possible that there exist systems that do not
have their eigenenergies bounded from below, while simultaneously having
the property that their states never diverge in an unphysical way, because it
is possible that some mechanism prevents the unphysical divergence. There
is no reason to immediately forbid these type of systems as unphysical.

Next, I’m going to debunk the proof of Spin-statistics theorem. One of
the ideas in modern physics is that in the same way as photons are excita-
tions of quantized electromagnetic field, electrons are excitations of quan-
tized Dirac field. One of the issues with Dirac field is that the energy density
of Dirac field Re(ψ(−iγ · ∇+m)ψ) is not bounded from below. This has a
consequence that when Dirac field is quantized according to the principles of
ordinary Quantum Mechanics, the eigenenergies of the quantized field will
not be bounded from below either. According to mainstream physics this is
an issue that has to be solved somehow. The mainstream solution is that
we must not quantize Dirac field in the ordinary way, but instead the field
must be quantized with the ad hoc canonical quantization that is completely
pulled out of a hat in a such way that the eigenenergies reaching arbitrarily
low values (approaching −∞) vanish. This is supposed to be how Spin-
statistics theorem manifests in this situation. At this point I’m going to tell
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people something that almost everybody (in this field) already knows, but
that almost nobody yet has recognized. Both of these two claims are simul-
taneously true: One claim is that the energy density of Dirac field can reach
arbitrarily low values. Another claim is that Dirac field ψ never diverges in
an unphysical way. It is likely that some people will disagree with this, and
insist that if the energy density of Dirac field can reach arbitrarily low va-
lues, surely that will imply that Dirac field ψ could diverge in an unphysical
way. My response is that no that is not true. The truth is that the energy
density of Dirac field can reach arbitrarily low values, and still Dirac field ψ
never diverges in an unphysical way. The justification of this claim is that
Dirac field has a conserved current ψγµψ known as Dirac current. There is
a technical result that if Dirac equation (iγµ∂µ −m)ψ = 0 is satisfied, then
also the continuity equation Dµ(ψγ

µψ) = 0 is satisfied. This means that
Dirac current is conserved. If Dirac field diverged in an unphysical way, also
Dirac current would diverge in an unphysical way. We know that Dirac cur-
rent doesn’t diverge in an unphysical way, because it is conserved. Therefore
we know that Dirac field doesn’t diverge in an unphysical way. Dirac field
doesn’t need a lower bound for its energy density, because the conservation
of Dirac current is sufficient to prevent an unphysical divergence. When
Dirac field is quantized in the ordinary way, we get eigenenergies that reach
arbitrarily low values, and we also get a quantized Dirac current that is still
conserved. The new knowledge, that there is no need to impose an ad hoc
procedure to the eigenenergies, because the conserved quantized Dirac cur-
rent will prevent the quantized system from diverging in an unphysical way
even in the presence of the eigenenergies that reach arbitrarily low values,
nullifies the proof of Spin-statistics theorem.
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