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Abstract
We present a model of gravity in which the gravitational interac-

tion is interpreted as a consequence of changes in information regard-
ing the mutual positions of Planckian masses on a holographic screen.
This approach builds on the entropic interpretation of gravity and the
holographic principle. We show that Newtons law of gravitation can
be derived by considering entropy changes resulting from a small dis-
placement of a mass. Furthermore, the minimal quantum of entropy,
known from the quantization of black hole horizons, leads to the con-
cept of a quantum of gravitational force. In addition, we introduce
an uncertainty principle for mass. A prospective experimental test
of these hypotheses, using highly sensitive torsion balances, is also
proposed.
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1 Introduction
Recent research has increasingly suggested a profound connection between
gravity, entropy, and information. A series of works has shown that the
equations of gravity can be derived from thermodynamic principles associated
with the entropy of horizons [1]. The concept of entropic gravity, proposed by
Erik Verlinde [2], interprets gravity as an entropic force arising from changes
in the relative positions of masses with respect to a holographic screen.

In this work, we take the next step: we consider a black hole as a
system composed of a large number of Planckian masses interacting in an
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informational-entropic sense. The black holes entropy is related to the num-
ber of pairwise interactions among these masses, which can be interpreted as
information encoded on the holographic screen about their mutual distances.
However, the distribution of these distances is highly non-uniform, with most
pairwise separations clustering around a characteristic scale. By introduc-
ing a logarithmic dependence of information on distance, we derive Newtons
law of gravitation directly from changes in entropy. Additionally, by taking
into account the quantization of horizon entropy, we obtain a quantum of
gravitational force. Extending this reasoning to the interpretation of inertia
via gravity leads us to a quantization of inertial force and an uncertainty
principle for mass.

2 Entropic Interpretation of Gravity
For a black hole of mass M , the Bekenstein entropy [3] is given by:

S =
4πkGM2

~c
. (1)

Defining the Planck mass mp =
√

~c
G

, we have M = Nmp, and substitut-
ing into (1) yields:

S = 4πkN2. (2)

The entropy scales as N2, where N is the number of Planckian masses.
Since entropy corresponds to the informational content of the system, we
can think of it as 8π nats of information per pair, given that there are N2/2
such pairs. This suggests that most pairwise distances concentrate around a
certain characteristic scale R0.

We assume the information about the distance R between two Planckian
masses takes a logarithmic form:

I = 8π ln

(
R

R0

)
. (3)

The holographic screens entropy thus reflects the cumulative information
about all pairwise distances. Changing the position of one mass alters these
distances, thereby changing the information and entropy. This forms the
basis for deriving the law of gravitation.
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3 Derivation of Newtons Law
Consider a spherical holographic screen of radius R associated with a large
mass M = Nmp, and a small mass m = nmp at distance R. The number of
pairwise interactions is proportional to (Nn)/2.

A small radial displacement ∆x of the small mass changes the informa-
tion. Differentiating (3) with respect to R:

∆I =
∂I

∂R
∆x =

8π

R
∆x. (4)

The entropy change is then:

∆S = k
Nn

2
∆I = kNn

4π∆x

R
. (5)

A holographic screen of radius R is associated with a Hawking tempera-
ture [4]:

T =
~c

4πkR
. (6)

Using Landauers principle, the force associated with the entropy change
is:

F =
∆S

∆x
T =

(
4πkNn

R

)(
~c

4πkR

)
=

Nn~c
R2

. (7)

Substituting Nmp = M and nmp = m, and using mp =
√
~c/G:

F =
GMm

R2
. (8)

Equation (8) recovers Newtons law of gravity from purely entropic and
informational considerations.

4 Gravity Quantization through Minimal En-
tropy

Bekenstein and Mukhanov [5] showed that horizon entropy is quantized in
units of:

∆Smin = k ln(2). (9)

3



From the entropic relations (in particular, comparing 5 and 9), we have:

k ln(2) = 4πk
Nn∆x

R
. (10)

Combining (10) with the temperature relation (6) and the definition of
F similar to (7), the minimal force quantum is:

Fmin =
~c ln(2)
4π∆xR

. (11)

Hence, gravity acquires a fundamental discrete scalea quantum of gravi-
tational force.

5 Quantization of Inertia
Consider now a body near a black hole horizon experiencing acceleration a.
The Unruh temperature for an accelerated observer is given by:

TU =
~a
2πkc

. (12)

Since the Unruh temperature corresponds to the Hawking temperature
for an observer with acceleration a [1], we can draw an analogy to (11). By
replacing T in the argument with TU , we find that:

Fmin =
ln(2)~a
2πc∆x

. (13)

Equating this minimal force to ma:

mmin =
ln(2)~
2πc∆x

. (14)

This can be expressed as an uncertainty relation for mass and position:

∆m∆x ≥ ln(2)~
2πc

. (15)

Interpreting (15) as a mass uncertainty principle, if we take ∆x as the
Compton wavelength of the particle, we have:

∆m

m
≥ ln(2)

2π
. (16)

Thus, achieving maximum positional precision implies an irreducible un-
certainty in mass.
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6 Experimental Perspectives
For potentially achievable laboratory conditions, let ∆x = 10−11m and R =
10−4m. From (11), we find:

Fmin ≈ 1.7× 10−12N.

Modern torsion balances can measure forces on the order of 10−12N [6, 7].
Although extremely challenging, such a test is not fundamentally impossible.
It would require ultra-precise control, thermal stabilization, and picometer-
scale positioning. A successful experiment would provide unique evidence for
the quantum nature of gravity.

7 Conclusions
This approach provides a new interpretation of gravity as a phenomenon
arising from changes in the information about the mutual arrangement of
Planckian masses. Taking into account the quantization of holographic screen
entropy leads to the concept of a quantum of gravitational force and implies
a mass uncertainty principle, thereby opening a path toward rethinking the
fundamental nature of inertia, gravity, and their potential experimental ver-
ification.

Beyond the proposed experiment to measure the minimal gravitational
force, another promising direction would be to devise an experiment that
simultaneously determines both the gravitational (or inertial) mass of a par-
ticle and its spatial localization. Such investigations could deepen our un-
derstanding of the relationship between mass and positional definiteness.

Future theoretical studies may focus on elucidating the physical signifi-
cance of the characteristic scale R0 inside black holes and deriving an analyt-
ical form for the distribution of pairwise distances among Planckian masses.
This analysis could illuminate the informational patterns underlying the for-
mation of cosmological structures in an expanding universe. Moreover, com-
bining this new mass uncertainty principle with the well-known Heisenberg
uncertainty principle might reveal deeper connections between space, time,
and energy.

Finally, incorporating the quantization of gravitational force into cos-
mological models may prompt a reassessment of the role of dark matter in
shaping the large-scale structure of the universe.
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