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Abstract

Let X be a complex projective manifold. First, we prove that for a
real, singular cycle C of real codimension 2p, if its current of integration is
of bidegree (p, p) and positive, there exists an algebraic set A of complex
codimension p that contains C. Secondly, we prove that for the singular
cohomology Hi(X;Q) of degree i with rational coefficients, a Hodge class
u ∈ Hp,p(X;Q) can be represented by the difference of two rational,
singular cycles whose currents of integration are of bidegree (p, p) and
positive. The combined result implies a cohomological assertion on the
support:

u ∈ ker

(
H2p(X;Q) → H2p(X −A;Q)

)
(0.1)

where “ ker” denotes the kernel of the restriction map. Furthermore, the
supportive assertion (0.1) implies that u is represented by an algebraic
cycle.

1 Statements

Let X be a complex projective manifold. For any closed subset V , the subgroup

ker

(
Hi(X;Q) → Hi(X − V ;Q)

)
(1.1)

Key words: support of currents, algebraic cycles, Millennium Hodge conjecture
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will be denoted by Hi
(V )(X;Q) where ker stands for the kernel of the restriction

map. A Hodge class is a class in H2p(X;Q) whose bidegree is of (p, p) type in
the Hodge decomposition over C.

Main theorem 1.1. For a Hodge class u of degree 2p, there exists an algebraic
set A of complex codimension p such that

u ∈ H2p
(A)(X;Q). (1.2)

Remark: We’ll say that the u or its representative is class-supported on
the algebraic set A if (1.2) is satisfied. The sub-cohomology Hi

(V )(X;Q) was

first introduced by Grothendieck in [4]. Indeed, the main theorem immediately
implies the following (see [1], [9]),

Corollary 1.2. Hodge classes are represented by algebraic cycles with rational
coefficients.

Proof of Corollary 1.2: Let u be a Hodge class of degree 2p. The main the-
orem asserts u is class-supported on an algebraic set A of complex codimension
p. Let

Ã
J−→ A

I
↪→ X

be the composite such that J is a smooth resolution and I is the inclusion. Since
the codimension condition

deg(u)− 2cod(A) = 0 ≥ 0

is satisfied, we apply Deligne’s corollary 8.2.8, [2] which addresses the class-
support. Precisely it states that the Gysin map

(I ◦ J)! : H0(Ã;Q) → H2p
(A)(X;Q) (1.3)

is surjective. Then a pre-image u′ of u is a cohomological class of Ã of degree
0. So, u′ must be represented by a rational linear combinations of irreducible
components of Ã. Therefore u = (I ◦ J)!(u′) is represented by a rational, linear
combination of irreducible components of A. The proof is completed.

□

We’ll organize the proof of the main theorem as follows. In section 2, we
give a lemma on the support of currents which is the basis of our approach.
In section 3, we address the orientation of vector bundles and the infinitesimal
positivity. In section 4, we show that the infinitesimal positivity defined in
Section 3 implies the effective decomposition of Hodge classes. In section 5, we
conclude the proof.
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2 Current-support

The philosophy is that Hodge’s problem is about topological cycles lying on
algebraic varieties. Lying on algebraic sets is much weaker than itself being
algebraic. So, our intention is to see if this weaker set-theoretical containment
has any structural impact on cohomology. Looking back in this view, we see
that the support used by Hodge in his original article [9] is the set of singular
cycles. However, this type of the support may not be sufficient. Thus we extend
our interest to general currents. In this paper, we focus on a particular type
of currents, namely the positive currents. The support of positive currents has
been studied consistently and cumulatively in the past starting from the origin
in Lelong’s work ([11]). We’ll only list those directly relevant in the proof: [3],
[5], [6], [7], [8], [12].

We should recall some of the definitions in the references. On any com-
plex manifold Ω, a form ϕ of bidimension (k, k) is said to be decomposable (or
strongly positive) if at each point, it lies in the positive cone generated by the
forms √

−1α1 ∧ α1 · · · ∧ · · ·
√
−1αk ∧ αk

where α1, · · · , αk are differential forms of bidegree (1, 0) on Ω. A positive (k, k)
current is a current T ∈ D ′

k,k(Ω) of bidimension (k, k) such that

T [(•)ϕ]

for any decomposable form ϕ defines a measure on Ω. If Ω is Kähler, let ω be
the Kähler form and T a bidimension (k, k), closed positive current. The Lelong
number of T at a point a, denoted by ν(T, a), is defined as the limit

lim
r→0

T [χrω
k]

(πr2)k

where χr is the characteristic function of a ball centered around a with radius
r. The upper level set for those positive closed T as above, denoted by Ec(T )
for c ≥ 0 is the set

{x ∈ Ω : ν(T, x) ≥ c}

which is proved to be complex analytic ([12]). A holomorphic chain is a partic-
ular type of positive currents which are modeled on complex analytic sets. The
following is the precise definition.

Definition 2.1. Let Ω be a complex manifold. A current T is called a G-
holomorphic chain of complex codimension p on Ω if there are irreducible subva-
rieties Vi, i ∈ Z+ of complex codimension p in Y and corresponding coefficients
ai ∈ G for G = R,Q,Z such that

(1) ∪i∈Z+Vi is a subvariety in Ω,
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(2) the current T is equal to the current of the integration over∑
i∈Z+

aiVi

(the integral is well-defined since the family {Vi} is locally finite due to
(1))

If ai > 0 for all i, we say T is positive.

Notation: for a singular chain σ, the current of integration over σ will be
denoted by Tσ.

Lemma 2.2. Let X be a compact Kähler manifold, and p an integer ∈ [0, dimCX].
If the current of the integration over a real, oriented singular cycle C is of bide-
gree (p, p) type and positive, then there is a complex analytic set S of complex
codimension p such that

supp(C) ⊂ S. (2.1)

We call the support in (2.1) the current-support (versus the class-support in
Main theorem 1.1).

Remark: A current-support is a class-support. But the converse is not true.

Proof. All singular cycles in this paper are regarded as those whose singular
maps are C∞ embeddings including the frontier points. If C = 0, the lemma is
trivial. So we assume C ̸= 0. For the bidegree (p, p) positive closed TC on X,
there is an unique decomposition (for instance, see Theorem 2.4, [6] or formula
(2.3), [7]):

TC = TZ +R (2.2)

where Z is either 0 or a positive holomorphic chain with real coefficients, R is
a positive current of bidegree (p, p) such that the complex codimension of the
upper level set

Ec(R)

for each positive number c is at least p + 1. Since the family is locally finite,
the local sum is finite. Since X is compact, Z only consists of finitely many
irreducible subvarieties as components. Hence supp(Z) is a subvariety which in
particular is topologically closed in the usual topology. Notice that

supp(C) ⊂ supp(Z) ∪ supp(R). (2.3)

So, it suffices to prove
supp(R) ⊂ supp(Z).

Let
supp(R) = E0[R] ∪ E+(R)

where
E0[R] = supp(R) ∩ E0(R)
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and
E+ = ∪c>0Ec(R)

where all Ec(R) with c > 0 are complex analytic subvarieties of complex codi-
mension ≥ p+ 1.

Case 1: Let a ∈ E0[R] but a ̸∈ supp(Z). Then the left hand side of (2.2)
shows that ν(TC , a) = 0. Since C ̸= 0, there is a non-empty cell cq in the chain
C with the real coefficient λq ̸= 0. Assume a is an interior point of cq. We
observe the formula of Lelong number ν(TC , a) is

lim
r→0

∫
Br∩cq

λqω
k

(πr2)k
(2.4)

where Br is the ball of radius r in a complex analytic chart, and k = n− p for
n = dimC(X). In local coordinates, we express

ωk =
∑
I

(1 +OI(2))dµzI

where z is the complex chart
(z1, · · · , zn)

I is the multi-index,

dµzI
= (

√
−1

2
)kdzi1 ∧ dz̄i1 ∧ · · · ∧ dzik ∧ dz̄ik ,

with i1 ≤ · · · ≤ ik

is the volume form of length 2k, and OI(2) is the higher order terms around
a. Since cq is a polyhedron, there exists an index I ′ such that projection cq →
VI′ has a non degenerate Jacobian Jq

I′(a), where VI′ is the coordinate’s plane
with coordinates zI′ . Since the current λqTcq is positive, the Jacobian satisfies
λqJ

q
I′(a) > 0. To the rest of other coordinate’s planes, the multiples of Jacobians

λqJ
q
I (a) of the projection are all non-negative around a (since Tλqcq is positive).

Then we can convert the integral (2.4) to the sum of the Lebesgue integrals

ν(TC , a) =
∑
all I

lim
r→0

∫
Bq

r
λqJ

q
I (z)

(
1 + ŌI)

)
dµzI

(πr2)k
(2.5)

where Bq
r is projection of Br ∩ cq to the coordinate’s plane, and for all I,

1 + ŌI ≥ 0

is an integrable function. Hence we have the integral estimate of (2.5),

ν(TC , a) =
∑
all I

λqJ
q
I (a) ≥ λqJ

q
I′(a) > 0. (2.6)
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If a is a frontier point, there will be multiple cells

cq

containing a as a general point on a 2k − 1 face. Then the same formula

ν(TC , a) =
∑
I,q

lim
r→0

∫
Bq

r
λqJ

q
I (z)

(
1 + ŌI

)
dµzI

(πr2)k
(2.7)

still holds. Similarly, ν(TC , a) is equal to

ν(TC , a) =
∑
I,q

λqJ
q
I (a)rq ≥

∑
q

λqJ
q
I′(a)rq > 0 (2.8)

where rq (which did exist before) is the quotient

lim
r→0

vol(Bq)

(πr2)k
.

Hence it is also positive. The contradiction for both cases (interior points and
frontier points) implies that E0[R] ⊂ supp(Z).

Case 2: If a ∈ E+(R) but a ̸∈ supp(Z), the left hand side of (2.2) shows
that the Lelong number of TC at a is not zero. Then a ∈ supp(C). Since
supp(Z) is topologically closed, there is small closed neighborhood U of a such
that Ū ∩ supp(Z) = ∅. Hence

U ∩ supp(C)

lies in E+(R). Since U is closed, U lies in Ec(R) for some positive c. It implies
that the set U ∩ supp(C) is contained in a complex analytic set of complex
codimension ≥ p + 1. But as a singular cycle C, U ∩ supp(C) contains a disk
of real codimension 2p. This implies that a real disk of real codimension 2p
is contained in a complex analytic set of complex codimension ≥ p + 1. This
situation is impossible. The contradiction shows E+(R) ⊂ supp(Z). Hence if

we let S = supp(Z), (2.3) says

supp(C) ⊂ S.

The proof is completed.

Remark: Notice that the complex analytic subvariety Z always exists if
C exists. Hence Zucker’s counter-example in [14] provides a situation where
positive singular cycles do not exist.
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3 Complex-orientation and infinitesimal positiv-
ity

Let Y be a connected, orientable differential manifold of dimension m, W ⊂ Y
a closed, connected, orientable submanifold of dimension ℓ. Let NW ≃ NWY
be the orientable normal bundle. Denote the bundle TY |W → W by F . There
is the bundle isomorphism

F ≃ TW ⊕NW . (3.1)

Then there is an expansion of the wedge product in line bundles

∧mF ∗ ≃
(
∧ℓT ∗W

)
⊗

(
∧m−ℓN∗

W

)
(3.2)

where ∗ denotes the dual of the bundle. Thus we have line bundles(
∧mF ∗

)
⊗

(
∧m−ℓNW

)
≃ ∧ℓT ∗W. (3.3)

Hence if s1, s2 are nowhere vanishing continuous sections of the line bundles
∧mF ∗ and ∧m−ℓNW , then

s1 ⊗ s2 (3.4)

is a nowhere vanishing continuous section of T ∗W . Recall that a class of nowhere
vanishing continuous sections is an orientation. Thus we have the definition:

Definition 3.1. An orientation of the bundle T ∗W is said to be the quotient
orientation of the representation of s1, s2 if it is represented by the section (3.4).

We continue the setting above to assume Y is a complex manifold, but W
is still real submanifold satisfying the conditions as above. Assume the normal

bundle is a complex bundle, i.e the fibres are C
m−l

2 .

Definition 3.2. Let s1 represent the canonical orientation of the complex struc-
ture of Y , and s2 represent the canonical orientation of the complex normal
bundle. We call the quotient orientation of s1, s2 the complex orientation of W .

Remark: If W is a complex submanifold, the complex orientation of W
agrees with the canonical orientation of the complex structure.

Let E = CN be a complex vector space of complex dimension N with the
canonical orientation. Denote its underlined real vector space by ER, its com-
plexification ER ⊗ C by EC. The operator ·̄ is the usual complex conjugate on
EC. Let’s work in the complex exterior algebra of EC.

The following is the definition of the positivity (see [5] for a different version
of the definition in terms of covectors).
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Definition 3.3. A 2k-simple vector ζ ∈ ∧2kEC is said to be weakly positive if
for any set of linearly independent (1, 0) vectors α1, · · · , αN−k,

(
√
−1)N−kζ ∧ ᾱ1 ∧ α1 ∧ · · · ∧ ᾱN−k ∧ αN−k

is a positive volume form of ER, where a positive volume form of ER is a vector
δ(
√
−1)Nb1 ∧ b1 ∧ · · · ∧ bN ∧ bN for a non-negative real number δ and a basis

{b1,b1, · · · ,bN ,bN} of EC.

Lemma 3.4. Let k be a natural number ≤ N , Let F1 ∈ ∧2kEC be simple and
weakly positive. Let e1, · · · , ek be any linearly independent (1, 0) vectors in the
dual space E∗

C. Let

G1 = (
√
−1)ke1 ∧ ē1 ∧ · · · ∧ ek ∧ ēk.

Then the pairing ⟨F1, G1⟩ between vectors and covectors is a real non-negative
number.

Proof. We denote the dual automorphism over C via the standard basis by ∗.
If ⟨F1, G1⟩ = 0, the lemma is proved. So, we may assume ⟨F1, G1⟩ ≠ 0. Then
let ek+1, ēk+1, · · · , eN , ēN extend the vectors e1, ē1, · · · , ek, ēk to a basis of E∗

C.
Recall F1 being simple and weakly positive means that there are τ1, · · · , τ2k in
EC such that

F1 = τ1 ∧ · · · ∧ τ2k (3.5)

and

F1 ∧
(
(
√
−1)N−ke∗k+1 ∧ e∗k+1 ∧ · · · ∧ e∗N ∧ e∗N

)
(3.6)

is a positive volume form of ∧2NEC. Since ⟨F1, G1⟩ ̸= 0, (3.6) is a strictly
positive volume form. Let’s work with the ordered orthogonal basis

√
−1ē∗1, e

∗
1, · · · ,

√
−1ē∗k, e

∗
k,
√
−1ē∗k+1, e

∗
k+1, · · · ,

√
−1ē∗N , e

∗
N (3.7)

of EC whose positive volume form is
√
−1ē∗1 ∧ e∗1 ∧ · · · ∧

√
−1ē∗N ∧ e∗N .

We further denote vectors as follows

F1 = τ1 ∧ · · · ∧ τ2k ∈ ∧2kER

F2 = (
√
−1)N−kē∗k+1 ∧ e∗k+1 ∧ · · · ∧ ē∗N ∧ e∗N ∈ ∧2(N−k)ER

G1 = (
√
−1)ke1 ∧ ē1 ∧ · · · ∧ ek ∧ ēk ∈ ∧2kE∗

R

G2 = (
√
−1)N−kek+1 ∧ ēk+1 ∧ · · · ∧ eN ∧ ēN ∈ ∧2(N−k)E∗

R

Then we write down linear combinations of vectors τ1, · · · , τ2k in the basis (3.7),
and find that 2N -wedge product

τ1 ∧ · · · ∧ τ2k ∧
√
−1ē∗k+1 ∧ e∗k+1 ∧ · · · ∧

√
−1ē∗N ∧ e∗N
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is equal to
γ
√
−1ē∗1 ∧ e∗1 ∧ · · · ∧

√
−1ē∗N ∧ e∗N

where γ is the determinant∣∣∣∣ ⟨F1, G1⟩ ⟨F1, G2⟩
⟨F2, G1⟩ ⟨F2, G2⟩

∣∣∣∣ = ∣∣∣∣ ⟨F1, G1⟩ #
0 ⟨F2, G2⟩

∣∣∣∣ = ⟨F1, G1⟩⟨F2, G2⟩ (3.8)

where the pairings are between the vectors and covectors. Since F1 is weakly
positive, γ is positive. Therefore ⟨F1, G1⟩ is positive. We complete the proof.

4 Effective decomposition

Our proof of the main theorem is based on a geometric description of Hodge
classes. Demailly in [3] proved that on a compact Kähler manifold any Hodge
class with real coefficients is represented by the difference of two positive cur-
rents. His currents are known to be smooth forms. We would like to show that
if the manifold is projective, these positive currents can also be singular cycles.

We’ll use the angle bracket ⟨•⟩ to denote the cohomological class represented
by •.

Lemma 4.1. (Effective decomposition) Let X be a complex projective manifold.
Then a Hodge class u ∈ H2p(X;Q) has a positive representation in the following
way.

(1)
u = ⟨σ+⟩ − ⟨σ−⟩ (4.1)

where σ+, σ− are singular cycles,
(2) both currents Tσ+ and Tσ− are of bidegree (p, p) and positive.

Remark: Deligne once called conjectured formula (4.1) the effective decom-
position. At the mean time, he also pointed out there is another positive current
decomposition over R that holds on a compact Kähler manifold but in smooth
forms (i.e. Demailly’s decomposition). Indeed, Lawson in [10] proved that there
is an Abelian variety with a cycle class that is represented by a positive current
but not by an effective algebraic cycle.

Proof. Cohomology ofX is generated by pseudomanifolds. So, we let u be repre-
sented by a rational, linear combination of connected, oriented pseudomanifolds
whose currents of integration is of bidegree (p, p). Let σ be one of these psue-
domanifolds with the positive coefficient λ (with an appropriate orientation of
σ).

Step 1 (complex normal bundle): Let σo be the set of smooth points of
σ, and S := σ − σo whose real codimension is ≥ 2. We consider two manifolds:
X and Xo := X − S. We denote the usual current of integration over the
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pseudomanifold σ by T . Next we work in its open subset X◦. Notice that σo is
an open and closed submanifold of X◦. Then there is a tubular neighborhood
of σo in X◦, denoted by

P : U → σo

that has an oriented R2p-bundle structure. In the manifold U , the integral over
a compact set of the chain λσo defines a closed current, denoted by T o in U . In
current’s homology, T o as a closed current is homologous to a closed form ωo

in U , which is compactly supported in the vertical direction of the bundle (but
not in the horizontal direction). By the Thom isomorphism for the R2p-bundle,
the fibre integral P∗(·) yields an isomorphism

H•
cv(U ;Q) ≃ H•−2p(σo;Q) (4.2)

where “cv” denotes the cohomology with the vertically compact support. Ap-
plying to the cohomology ⟨ωo⟩, we obtain that P∗(ω

o) is a constant λ ̸= 0, the
rational coefficient associated to σ. We observe that the restricted current T
to U is exactly T o. Hence the representative form ωo (which is in U) is the
restriction of a differential form representing the Hodge class u in X. Since u is
Hodge, ωo can be chosen to be a real (p, p) form. Let a ∈ σo be a point. Let Ua

be a sufficiently small neighborhood of a. Let σa = Ua∩σo. The real (p, p) form
ωo when restricted to Ua can be point-wisely expressed as a real linear combi-
nation of decomposable forms in ∧(p,p)T ∗

CX (Proposition 1.9, [5]). Also notice
that each decomposable form has a compact support along the fibre direction.
Then to have a non-zero fibre integral P∗(ω

o), the complexified tangent space
TC,u(P

−1(a)) must be a complex p-codimensional subspace where u ∈ P−1(a)
in the neighborhood Ua. Thus there is a choice of a tubular neighborhood U
such that P : U → σo is a complex vector bundle.

Step 2 (Global extension ): The normal bundle above has a canonical
orientation on the complex fibres, i.e. a continuous, non-vanishing global section
of the bundle. So, we assume σo has the complex orientation(see Definition 3.2
above). Let X ⊂ PN be the projective embedding over C. Let CN be a generic
affine open set of PN . We’ll denote the intersection CN∩σo by σ̂o. Let z1, · · · , zN
be the affine coordinates of CN . Then R2N = CN is equipped with the Eulidean
metric. Next we’ll apply geometric measure theory in the Euclidean space CN .
Let a ∈ σ̂o. Let Ua ⊂ CN be a neighborhood of a and σa = σ̂o ∩ Ua. Since
σo is a C∞ manifold, Tσa

is a locally rectifiable current in CN . Notice that
the evaluation Tλσa [ψ] is the same as λTλa [ψ] if ψ is a test form compactly
supported in the neighborhood. Let

ϕ =
√
−1dz1 ∧ d̄z1 ∧ · · · ∧

√
−1dzk ∧ d̄zk (4.3)

be the generic decomposable form (recall k = n − p). Let f be a positive C∞

function compactly supported in Ua. So, we have the evaluation formula for the
locally rectifiable current Tλσa

,

Tλσa
[fϕ] = λ

∫
σa

〈
fϕ, ξ

〉
θ dH2k (4.4)
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(Definition 3.1, Chapter 6, [13] or p. 558, [8]) where ξ is the orientation, θ is
the multiplicity and H2k is the 2k-Hausdorff measure of CN . The orientation ξ
is a H2k-measurable function

σa 99K ∧2kCN

where the dash arrow denotes a well-defined map on the H2k-almost all points
x ∈ σ̂o. Let ξ send H2k-almost all points x ∈ σa to

τ1 ∧ · · · ∧ τ2k

where τj are ordered, orthornormal vectors spanning the approximated, tan-
gent space which coincides with the usual oriented tangent space Tx(σa) of the
manifold.

Due to the parallel transform of a Euclidean space, we can identify tangent
spaces Tx(CN ) at all points x with the complex vector space E = CN as in the
lemma 3.4. Assume that x is one of H2k-almost all points in (4.4). As usual,
we regard τj ∈ EC. We should notice that

σ̂o ⊂ Xo ∩ CN ⊂ CN .

The step 1 implies that the normal bundle N
X̂oCN is also a complex bundle.

Due to this structure of the complex bundle, the orientation

τ1 ∧ · · · ∧ τ2k

for the integral (4.4) is weakly positive in ∧2kEC. Notice that fϕ is decompos-
able. Hence we can directly apply Lemma 3.4 which asserts the pairing

〈
fϕ, ξ

〉
at H2k-almost all points x is non-negative. This implies that the measure-
theoretical integral (4.4) is non-negative. So, the evaluation of Tσa

at all de-
composable forms is non-negative. Therefore, the current Tσa is positive. This
positivity holds around H2k-almost all points a on σ̂o. * This implies that Tσ̂o

is positive. By the convergence of the current of integration at the boundary
σ − σ̂o of σ, the current Tλσ is also positive.

If σ has the inverse complex orientation, we reverse the orientation of the
same pseudomanifold to have the complex orientation. Then above positivity
works the same way. Thus overall we express u in the following way. For
each pseudomanifold σ in the cycle u, if its orientation from the singular cycle
structure agrees with the complex orientation, we keep the original coefficient
λ and the original orientation. If its singular cycle orientation is the inverse of
the complex orientation, we change its original coefficient λ to −λ, and original
orientation to the complex orientation. So after the re-orienting, u can be
represented by singular cycles,

l∑
i=1

λiσi −
m∑

i=l+1

λiσi (4.5)

*If CN did not exist, the positivity would’ve only held locally.
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where all rational λi are positive and all pseudomanifolds σi, with the complex
orientation, represent the positive currents of bidegree (p, p). So, we let

T+ =

l∑
i=1

λiTσi

T− =

m∑
i=l+1

λiTσi
.

Lemma 4.1 is proved.

5 Proof

Proof of Main theorem 1.1: Recall X is a complex projective manifold and
dimC(X) = n. Let deg(u) = 2p where 0 ≤ p ≤ n. By Lemma 4.1 the class u
has a current representative:

u = ⟨T+⟩ − ⟨T−⟩. (5.1)

where T+ =

l∑
i=1

λiTσi , T− =

m∑
i=l+1

λiTσi . Let’s consider T+ which is the current

of integration over the singular cycle

l∑
i=1

λiσi.

By Lemma 2.2, supp(T+) is contained in an algebraic set A+ of complex codi-
mension p. Similarly, supp(T−) is contained in an algebraic set A− of complex
codimension p. Overall, a representative current of the class u is supported on
the algebraic set A = A+ ∪ A− of complex codimension p. It is clear that a
current-support implies a class-support. Then the class-support in (1.2) should
also hold. The proof is completed.

□
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[2] P. Deligne, Théorie de Hodge: III, Publ. Math IHES 44 (1974), p. 5-77



REFERENCES 13

[3] J.-P. Demailly, Courants positifs extrêmaux et conjecture de Hodge, Inven-
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