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Abstract

Previous work showed that vehicle attitude propagation accuracy for a slewing angular rate vector can be
greatly improved by including the slew rate of the angular rate vector in the propagation algorithm. The improved
algorithm employs two sequential rotational increments for each time step. This work presents a method to
combine the two rotational increments into a single rotational increment driven by a Universal Angular Rate vector.
The Universal Angular Rate vector can be used in the direction cosine and quaternion attitude propagation
algorithms to obtain attitude propagation accuracy equivalent to the two rotational increment method. An
approximate Universal Angular Rate vector was also derived that avoids the use of trigonometric functions while
retaining very high attitude propagation accuracy. Pure coning motion was used to stress test the Universal
Angular Rate vector and the approximate Universal Angular Rate vector using direction cosine, linear direction
cosine, quaternion, and Bortz propagation algorithms. Results confirmed that by replacing the standard angular
rate vector with the Universal Angular Rate vector, attitude propagation accuracy is greatly improved.

Keywords: Attitude propagation, Angular rate vector, Slew rate vector, Coning error, Euler Rotation Vector,
Direction cosine matrix

Nomenclature

unit vector rotation axis

A
B unit vector rotation axis
b omega plus alpha unit vector
C -l UAR coefficients

dt time step

DCM direction cosine matrix

ei axis components

K z-axis unit vector

q vector part of quaternion

SRA slew rate algorithm

u attitude transformation matrix

UAR Universal angular rate vector

Xs body coordinate frame

Xi inertial coordinate frame

a slew rate of angular rate vector

A integral of angular rate plus alpha
6 rotation angle increment for SRA
€ axis tilt angle for coning motion
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angular increment for UAR
Universal Angular Rate vector
integral of slew rate magnitude, a
angular rate vector

rotation angle increment for SRA
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1. Introduction

Vehicle attitude can be propagated using continuous time dependent angular rate vector or a discrete
set of angular rotation increments. Each rotation increment is the integral of the angular rate vector
over each respective propagation time step. Most attitude propagation algorithms assume that the
angular rate vector remains in a fixed orientation during each propagation time step. In typical cases,
this assumption is nearly valid, if small enough integration time steps are used. As a result, propagation
accuracy is satisfactory. However, the slewing motion of the angular rate vector throughout each time
step introduces error, referred to as coning error. If the slewing motion of the angular rate vector is
large, coning error can become unacceptable. Coning error can be reduced by increasing the attitude
update frequency with associated shorter time steps. The increased update frequency requires
increased numerical processing and associated truncation errors that limit the improvement in
propagation accuracy. In addition, the increased computer computational load can limit the update
frequency and overwork the vehicle’s flight computer.

Bortz derived an attitude propagation equation [Bortz, 1971] that was first developed by Laning
[Laning, 1949], which involves the Euler Rotation Vector and its time rate of change. Since the rate of
change of the Euler Vector can be easily integrated yielding the updated Euler Rotation Vector, attitude
propagation can be achieved with a higher update frequency without severe computational load. Bortz’s
equation is the basis of many numerical algorithms that improve propagation accuracy, which are
termed “coning correction algorithms” [Miller, 1983], [Ignagni, 1990], [Ignagni, 1996], [Savage, 1998].
Coning correction algorithms have been implemented in flight computers software to reduce the error in
angular rate caused by the vibrational environment experienced by launch vehicles during ascent to
orbit. Coning correction algorithms and associated propagation error remains an area of active research.
[Xiong, et. al., 2019], [Savage, 2020].

Rather than increasing the attitude update frequency to improve propagation accuracy, an algorithm
was developed in previous work [Patera, 2009], [Patera, 2010] that incorporates the slewing angular rate
of the angular rate vector into the propagation algorithm. For each propagation time step, two
sequential rotational increments about fixed axes are used to achieve attitude propagation. Since each
axis has a fixed orientation during each time step, propagation can be achieved without coning error.
This propagation algorithm employes larger propagation time steps, lower update frequency and
reduced computational load. If the direction of the slew rate of the angular rate vector remains fixed
and has a magnitude proportional to the magnitude of the angular rate vector, attitude propagation can
be achieved with zero error [Patera, 2011]. Unlike differential equation based propagation algorithms,
the propagation time step does not have to be infinitesimal to obtain high accuracy when using the two
increment method. Zero propagation error was achieved even with large time steps when stress with



pure coning motion [Patera, 2009], [Patera, 2010]. For the case of a general angular rate, use of the
algorithm greatly improves attitude propagation accuracy.

The purpose of this work is to derive a Universal Angular Rate vector, UAR, that incorporates the
slewing motion of the angular rate vector. The UAR has a fixed orientation throughout each time step
and produces a single rotational increment when multiplied by the associated time step. Therefore, by
replacing the unmodified angular rate vector with UAR in the direction cosine and quaternion
propagation algorithms, both coning and propagation errors are effectively eliminated and high accuracy
is achieved. Although UAR eliminates coning error in differential equation based propagation
algorithms, it does not eliminate propagation errors caused by finite propagation time steps.

The accuracy of several attitude propagation algorithms associated with different attitude
parameterizations were stress tested with pure coning motion. For each algorithm, the error was
guantified with a Euler rotation error vector. The attitude error of each algorithm was obtained using
the original angular rate vector and compared to the error obtained when UAR was used. The
improvement in attitude propagation accuracy was quantified and illustrated graphically.

A conclusion section summarizes the findings of the work.
2. Attitude propagation

Assuming the vehicle has an arbitrary orientation with respect to an inertial reference frame, Euler’s
Rotation Theorem states that a single rotation of, 0, referred to as the Euler Rotation Vector can bring
the body coordinate frame of the vehicle into alignment with the inertial reference frame. Therefore,
the orientation of the vehicle can be parameterized with 8. The Direction Cosine Matrix (DCM) given by
U(0), is a function of B and can be used to define the orientation of the vehicle frame with respect to the
inertial frame, as given in eq. (1), where the subscripts refer to the body and inertial reference frames.

X; = U(0) Xg (1)

If the vehicle has an angular velocity of w, one can compute the angular rotation increment for a time dt,
if we assume that the angular rate remains in a fixed orientation, as shown in eq. (2).

do = w dt (2)

The associated transformation increment is given by U(dB) and the total transformation is updated by
the matrix multiplication given in eq. (3).

X; = U(0) U(dO) Xg (3)

This process is repeated for each propagation time step, dt, until the final time is reached. Although the
angular rate is changing in both magnitude and direction, it is assumed that the direction of the angular
rate vector remains fixed throughout each individual increment. In this manner, attitude propagation is
achieved using the DCM parameterization of vehicle attitude.

3. Attitude propagation for a slewing angular rate vector

Previous work [Patera, 2009], [Patera, 2010] derived an algorithm for vehicle propagation using the
angular rate vector and the slew rate vector of the angular rate vector. Given an angular rate vector of
fixed magnitude, w, that is slewing with a fixed angular rate vector, , the attitude increment for time



step, dt, is given by eq. (4). It should be noted that each rotational increment in eq. (4) has fixed
orientation and therefore no associated coning error.

U[(w + a)dt] U(—a dt) (4)

The attitude transformation from the body frame to the inertial frame is found using eq. (4) with eq. (3),
as shown in eq. (5).

X; =U(0) U[(w + a)dt] U(—a dt) Xg (5)

This process is repeated for the next time step but with the updated w and atin eq. (4). Thus, each
attitude increment involves two rotational transformations. The Slew Rate Algorithm, SRA, summarized
in eq. (4) and eq. (5) was demonstrated to be highly accurate in previous work [Patera, 2009], [Patera,
2010]. Several methods to obtain the slew rate vector were already published [Patera, 2009], [Patera,
2010] so they will not be repeated in this work.

Additional work [Patera, 2022] extended eq. (4) to a finite propagation time, t, by replacing it with eq.
(6), where A and Q are given by eq. (7) and eq. (8). Eq. (6) is valid for a remaining in a fixed direction and
the magnitude of w being proportional to that of a.

U(b, AUk, —Q) (6)
A=f0t|w+a| dt (7)
Q= [laldt (8)

The angular increment given by U(b, A) is a rotation of A about unit vector b. The unit vector b is aligned
with the direction of w + a at the beginning of the time increment when t=0. The angular increment
given by U(k, -Q) is a rotation of -Q about the unit vector k, which is aligned with a. Since both b and k
remain in fixed directions throughout the propagation time, coining error is zero. Thus, eq. (6)
propagates attitude for a finite propagation time, t, using two rotational transformations, while
eliminating coning error. For finite rotations, eq. (6) is used to modify eq. (5), which results in eq. (9).

X;=U(0) U(b,4) U(k,—Q) Xg (9)
4. Universal Angular Rate Vector

The goal of this work is to replace the two rotational increments in eq. (4) with a single rotational
increment, as shown in eq. (10), where A is the Universal Angular Rate vector replacing w.

U(Adt) = U[(w + a)dt] U(—a dt) (10)

Consider a rotation of 6 about the axis A followed by a rotation of ¢ about axis B, where both A and B
are unit vectors. The combination of these two sequential rotations, yields eq. (11), as derived in an
earlier work [Patera, 2017] using Pivot Vectors. Eq. (11) can also be derived using the quaternion
composition rule, where q is the vector portion of the associated quaternion. The combined rotation
has magnitude I and is directed in the direction of unit vector T.

q = sin (g) I' = sin (g) cos (%) A + sin (%) cos (g) B + sin (g) sin (%) (AXB) (12)



The magnitude of q can be computed as the square root of the dot product, as shown in eq. (12) and
can be found from q, as given in eq. (13).

q =sqrt(q-q) (12)
I['=2sin"1q (13)

The rotation vector, I, of the combined rotation is given by a rotation of ' about a unit vector in the
direction of g, as shown in eq. (14).

r
r=—1 (14)
q
Eqg. (11) can be applied to eq. (10) by associating the rotations 6 and ¢ with the arguments of U in eq.
(10), as shown in eq. (15) and eq. (16).

6A=(w+a)dt (15)
®B=—adt (16)

Using egs. (15) and (16) in egs. (11 - 13) yields the desired rotation vector in eq. (14). The Universal
Angular Rate, A, is found by dividing I by dt, as given by eq. (17).

A=T/dt (17)

A, which is a function of w, a, and dt, remains in a fixed orientation throughout each integration time
step. Since A doesn’t have a slew rate, it has no associated coning error. Therefore, Ais ideally suited to
replace w in propagation algorithms that accept angular rate as input. When A is used in place of w in
DCM and quaternion propagation algorithms, the resulting propagation accuracy will be improved
greatly and for the case of pure coning motion, attitude error will be eliminated.

5. Approximate Universal Angular Rate Vector

Instead of using egs. (11 - 17), one can derive an approximate solution based on the fact that the
rotational increments in eq. (15) and eq. (16) are very small. Therefore, the sine and cosine functions in
eg. (11) can be expanded in Taylor Series approximations. After some algebraic manipulation, one finds
the approximate Universal Angular Rate, given in eq. (18), where the parameters, C — |, are defined in
eqgs. (19 - 25). If desired, higher order coefficients of dt can be obtained in eq. (18) by using more terms
in the associated Taylor Series expansions.

A=w+ (1+Ddt? +Edt4)(°‘xT“’)dt+ (Fdt? + Gdt?) o + (Hdt? + 1 dt?) « (18)
CC=w?+cd*+2w-a (19)
D = —(C? + a?)/24 (20)
_ (¢t | O
E= 1920 576 (21)
F=_2_¢ (22)



c* at C2a?
1920 + 384 + 192 (23)
CZ_aZ
H = " (24)
4-_C4—
=2 (25)
480

Eq. (18) quantifies coning error for each propagation time step, which is A - w. It is interesting to note
that as dt approaches zero, A approaches w and coning error approaches zero. In principle, if the time
step is sufficiently small, an acceptable solution can be obtained when using w. However, the numerical
truncation errors would limit the obtainable accuracy. The computational load and truncation errors are
much less with the use of A in eq. (18) because dt can be larger while retaining the desired accuracy.

6. Bortz’s equation

Bortz obtained the derivative of the Euler Rotation Vector, 0, as a function of the angular rate vector,
as shown in eq. (26) [Bortz, 1971].
d_e (6 x w)

=w+—+{1—

0sin(0) 2
= : ]} 8 x (8% w)/0 (26)

2[1—cos(0)
Eq. (26) can be used to obtain B¢, by integration over the appropriate time, as shown in eq. (27), where 6,
and O are the initial and final values, respectively.

0p = 0; + [ (5) dt (27)

Coning correction algorithms use the first two terms on the right hand side of eq. (26), which permit
shorter time steps with less computing effort and reduced coning error. This is permissible when 0 is
very small and the last term on the right hand side of eq. (26) is negligible [Bortz, 1971]. Once
integration increases the magnitude of 8 to a predetermined threshold, it is used to update attitude in a
cumulative quaternion, B¢, and then 0 is set to zero. This process is repeated to achieve attitude
propagation while keeping the integration parameter sufficiently small to overcome coning errors.
However, using eq. (26) with larger time steps results in propagation error due to the larger time steps,
as well as, coning error due to the slewing of the angular rate vector.

7. Numerical Results

A computer simulation was developed to demonstrate the performance gained by using A in place of
the standard angular rate vector, w. Several cases involving pure coning motion were used to stress test
standard propagation algorithms using both w and A. The slew rate of the angular rate vector was
provided, since computing slew rate is not the focus of this work. The error of all the algorithms were
computed, since the true final attitude was known in each case. The error was parameterized as an error
Euler Vector and was plotted as a function of propagation time. The standard attitude propagation
algorithm using A was found to be as accurate as the SRA. Cases using the approximate A, given by eq.
(18) had much less propagation error than those using w.

The standard propagation algorithm is given by eq. (28) and eq.(29), where C = cos(dB) -1 and S =
sin(dB). The direction of the rotational increment aligns with the unit vector, e, in eq. (29).



1+ (e2 +e)C —(e;e;C+e3S)  e,S— ejesC
UB)=| e3S—e;e;C 1+ (e?+e2)C —(e;S— eze, 0) (28)
—(e;S—e3e;C)  eS—eye3C 1+ (e2+e2)C

do=wdt=d0e (29)

Instead of using eq. (28), a linearized version of eq. (28) can be used, if the integration step size is
sufficiently small. In the linearized version, cos(d0) is replaced by 1 and sin(d8) is replaced by do. A
penalty for using the linearized version is that higher propagation frequency and smaller step size
increases truncation error and computational load. In addition, the linearized version of eq. (28) is not
accurate enough for use in the SRA. If only linear terms are retained in the SRA, the approximate UAR
given by eq. (18) reduces to eq. (30), which does not have the required accuracy. Nevertheless, both A
and approximate A, with all the nonlinear terms in eq. (18) included, can be used in linear propagation
algorithms to yield results of greater accuracy than those obtained by using w .

l=w+(°‘x"’)dt (30)
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Pure coning motion was used to test the standard propagation algorithm or DCM, given in eq. (28),
the linearized version of eq. (28), the standard quaternion propagation algorithm and Bortz’s
propagation algorithm. These propagation algorithms were tested with the w, A and the approximate A
as driving functions. For pure coning motion, the angular rate vector and its slew rate vector as
functions of time are given in eq. (31) and eq. (32) respectively. A slew rate of 50 Hz (alpha = 18,000
deg/sec) and a tilt angle of 2 degrees (epsilon = 2 deg.) were chosen to be the same as those used in
previous publications [Patera, 2017], [Patera, 2020] for comparison purposes. The associated exact
attitude transformation is given by the Euler Rotation Vector, 8, as shown in eq. (33).

asin(e) cos (at)
w(t) = |—asin(e) sin (at) (31)
a[1 — cos (e)]

0
a(t) = < 0 ) (32)
-

€ sin (at)
0(t) = [e cos (at)]
0

(33)

In the first test, the angular rate for pure coning motion, given in eq. (31), was used in DCM,
quaternion, linear DCM and the Bortz algorithms. The DCM and quaternion algorithms yielded equal
accuracies, while the linear DCM and Bortz algorithms yielded somewhat reduced accuracy. Fig. 1 shows
a plot of Euler Vector magnitudes as a function of time for the DCM and Bortz algorithms. According to
eq. (33), as well as the SRA, the Euler Vector magnitude should be constant at angle €, which is 2 degrees
in the case considered. The increase exhibited by the Bortz and DCM algorithms in Fig. 1 is indicative of
attitude error cause by the slewing of the angular rate vector throughout each propagation time step.
Since the Bortz algorithm is based on a linear differential equation, it has a bit more error than the DCM
algorithm. Fig. 2 contains the Bortz result compared to the linear DCM algorithm result. Similar to the
Bortz algorithm, the linear DCM algorithm results in more error than the DCM algorithm. Fig. 3 shows a



plot of Euler Error Vector magnitudes as a function of time for the DCM and Bortz algorithms. Ideally, for
perfect propagation, the error should be zero. Fig. 4 shows the agreement between the Bortz and the
linear DCM error growth results. Since attitude error growth is primarily along the z-axis based on eq.
(31), z-axis drift rate errors for the DCM and Bortz algorithms were computed and results were plotted in
Fig. 5. The drift rate for DCM after 40 seconds of propagation was found to be 325 deg/hr., which is in
agreement with earlier work [Patera, 2017], [Patera, 2020], while the drift rate for the Bortz algorithm
was significantly higher at 400 deg/hr.
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Fig. 2. Euler Vector magnitude versus time using angular rate.
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Fig. 5. Z-axis drift error versus time using angular rate.

The second test used Universal Angular Rate, A, in place of the angular rate, w, in the respective
algorithms. All of the propagation errors were reduced to nearly zero. The Bortz algorithm and the
linear DCM had very small residual error. These results confirmed that the Universal Angular Rate
produced negligible error in attitude propagation algorithms that accept angular rate. Fig. 6 contains the
Euler Vector magnitude for the Bortz algorithm using w and A. The Bortz algorithm was chosen because
it has more error than DCM or quaternion algorithms. Since error was greatly reduced by using A in the
Bortz algorithm, the use of A would be even more effective in other propagation algorithms. Fig. 7
contains the error magnitude for the Bortz algorithm using w and A. Fig. 8 shows the associated z-axis
drift rate error versus time extended to 200 seconds.

The approximate A, given in eq. (18), was also highly accurate, as observed in Fig. 9, which contains
the z-axis drift rate error for the Bortz algorithm using w and the approximate A algorithm.
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Z-Axis drift rate error, deg/hr.
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Fig. 8. Z-axis drift rate error using angular rate and UAR in the Bortz algorithm.

Z-Axis drift rate error, deg/hr.

1000

100

10

0.1

1

1

1

1

1

1

1

1

1

1

1

1

________ 1
------------------------------------------ |
|

0 25 50 75 100 125 150 175 200 225
Time, sec
— — BORTZANG.RATE ==--- BORTZ APPROXIMATE UAR
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Table 1 contains the drift rate error in degrees per hour for all the propagation algorithms when they
are using w, A obtained from eq. (17) and approximate A obtained from eq. (18). Table 1 results are
calculated using z-axis error averaged over 4 seconds. Table 2 and Table 3 contain similar results but
averaged over 40 and 200 seconds, respectively. The DCM and quaternion algorithms produce identical
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results. The DCM and quaternion results are independent of the propagation time, as indicated by the
values in Tables 1-3. The Bortz and linear DCM algorithms each produce more error than the DCM
algorithm in all cases. This is because their error is a combination of coning error and algorithm
propagation error, whereas, the DCM error is just coning error. When using w, DCM and quaternion
algorithms result in a z-axis drift rate of 325 deg/hr., which is in agreement with published results
[Patera, 2017], [Patera, 2020]. Results in Tables 1-3 show error is reduced by roughly three orders of
magnitude for the Bortz algorithm when w is replaced by A or approximate A. The DCM and quaternion
algorithms experience only numerical roundoff error when w is replaced by A, since coning error is
nonexistent when using A.

Table 4 contains results similar to Table 2 with propagation time of 40 seconds but with the
propagation frequency reduced from 1 kHz to 500 Hz. Since the propagation time steps double, the z-
axis drift rate increases when w is used. All the results confirm that the use of UAR reduces attitude
propagation to essentially zero for DCM and quaternion algorithms and nearly zero for Bortz and linear
DCM algorithms.

Table 1

Z-axis drift rate for various attitude propagators with 1 kHz propagation frequency averaged over 4 seconds.

Driving Parameter
Propagator w Approximate A A
deg/hr deg/hr deg/hr
Bortz 331.76 0.39 0.197
Linear DCM 332.98 1.17 0.984
DCM 325.06 0.19 -1.48e-9
Quaternion 325.06 0.19 -1.48e-9
Table 2

Z-axis drift rate for various attitude propagators with 1 kHz propagation frequency averaged over 40 seconds.

Driving Parameter
Propagator w Approximate A A
deg/hr deg/hr deg/hr
Bortz 399.97 0.46 0.24
Linear DCM 401.66 1.41 1.18
DCM 325.06 0.19 -1.48e-9
Quaternion 325.06 0.19 -1.48e-9
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Table 3

Z-axis drift rate for various attitude propagators with 1 kHz propagation frequency averaged over 200 seconds.

Driving Parameter
Propagator w Approximate A A
deg/hr deg/hr deg/hr
Bortz 1055.95 1.12 0.61
Linear DCM 1122.82 3.65 3.06
DCM 325.06 0.19 -1.46e-9
Quaternion 325.06 0.19 -1.46e-9
Table 4

Z-axis drift rate for various attitude propagators with 500 Hz propagation frequency averaged over 40 seconds.

Driving Parameter
Propagator w Approximate A A
deg/hr deg/hr deg/hr
Bortz 2006.19 1.54 1.08
Linear DCM 2016.42 5.87 5.41
DCM 1306.69 0.31 -3.65e-9
Quaternion 1306.69 0.31 -3.65e-9

8. Conclusion

Earlier research showed that the SRA, which employs two rotational increments was found to be
extremely accurate and achieves zero propagation error when stressed with pure coning motion. The
DCM and quaternion propagation algorithms were successful in using SRA, however, linear propagation
algorithms, such as the linear DCM and the Bortz algorithms were not. This is because the linear
algorithms ignore higher order terms that are essential for SRA. This work derives a single rotational
increment driven by the UAR that achieves attitude propagation equivalent to the SRA. As a result,
replacing the angular rate with UAR in DCM and quaternion algorithms result in accuracies comparable
to SRA. An approximate UAR that avoids trigonometric functions was also derived and found to be
highly accurate. In addition, the approximate UAR equation provides insight into attitude propagation,
since it contains the specific terms that are responsible for coning error. The dependence of each coning
error term on the propagation time step appears in the approximate UAR equation.

The Bortz, linear DCM, DCM, and quaternion algorithms were stress tested with pure coning motion.
The reduction in attitude error growth rate achieved with UAR and approximate UAR was presented in
both graphical and tabular form. Propagation errors, save for numerical roundoff, are totally eliminated
by using UAR in the DCM and quaternion propagation algorithms. The use of UAR in the Bortz and linear
DCM algorithms eliminates coning error but residual propagation error remains because both algorithms
neglect nonlinear terms. Another advantage of using UAR is that it eliminates the need to develop new
algorithms to incorporate the slewing motion of the angular rate vector. A preprocessing algorithm that
computes UAR or approximate UAR at each time step can be used with existing attitude propagation
algorithms to eliminate coning error and achieve high accuracy.
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