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Abstract
For the first time, this article introduces the notion of natural equidistant prime numbers (NEP) 
which are the only ones to verify the strong Goldbach conjecture naturally in the set of natural 
integers. From the NEP, we calculate the deducible equidistant prime numbers (DEP) and it is 
only from NEP + DEP that we obtain all the possible sums of two prime numbers of a given even 
number. No current algorithm for converting even numbers to the sum of two prime numbers 
distinguishes NEP from DEP. The natural presence of NEP has been exploited here to set up for 
the first time a system of coding and deciphering even numbers which allows a calculator to 
deduce all their possible sums of two prime numbers. This article then has two originalities not 
published before which will certainly be subject to debate 

Keyword.  Goldbach's  strong  conjecture.  Equidistant  primes.  Encoding.  Dicephering.
Cryptology. Prime numbers. Prime number countig function. Algorithm.

Abbreviations.  GSC :  Goldbach's  strong  conjecture.  PN :  prime  number.  NEP :  natural
equidistant primes. DEP : deducible equidistant primes. 

Note. Figures and tables at pages 5 – 9.
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A. Introduction
There are two types of equidistant primes: those that occur naturally and those that are 
deducible. Recall that for the GSC to be true for any even number denoted E ≥ 4, there must be 
two primes p and q such that E/2 - p = q - E/2, so that p and q are said to be equidistant. In fact, 
only natural equidistant primes (NEP) can be used to prove the GSC. We can't know whether 
there is an even E that doesn't have EPN, which makes it impossible to know whether EPN are 
strictly necessary to deduce all the others. All other equidistant primes are said to be deducible 
(DEP for deducible equidistant primes at E/2).

B. Results 
B1. The natural equidistant primes (NEP) and the deducible equidistant primes (DEP)

First construct tables 1A-F according to Figure 1. Determine π(E) (E is any even 4) by the PN
cou ting function, then separate the prime numbers (PN) < E/2 and those > E/2. Then draw the
table except that the PN < E/2 are in ascending order and those > E/2 are in descending order
because this is how the natural numbers add up to give a value closest to E. The smallest PN
which is 3 must be opposite the largest prime number > E/2.
The NEP are colored gray (Tables 1A-F).  The two NEP p and q appear naturally, so that p + q =
E. The line corresponding to the smallest odd PN which is 3 is coloured yellow. As is well
known, every even number has a number of possible sums p + q, but we don't see all of them
naturally because the density of PN between 0 and E/2 is > that between E/2 and E, which
always results in a mismatch between all  possible equidistant primes when using the prime
counting function. That's why Goldbach's verification must occur naturally with NEP, since
they're the only ones we can see in the set of integers. However, by calculation, they will give
all the other PED (by deduction). We can see that the number of possible sums p + q is not all
natural, but mostly a result of calculation that we deduce. But how are we going to deduce the
DEP? I  explained this  method in a pmore recent article  [https://vixra.org/abs/2501.0066 and

https://vixra.org/abs/2501.0117].  Interested  readers  can  consult  it  for  more  details,  but  very
briefly, there are two categories of PN: 6x - 1 or 6x + 5 and those that are 6x + 1. Between two
PN 6x - 1 and between two PN 6x + 1 there is a difference of 6n (n ≥ 1). But between PN 6x - 1
and 6x + 1 there are variable gaps of 2n (n ≥ 1). 
There are also three categories of even numbers 6x; 6x + 2 and 6x + 4. The 6x are obtained by 
adding an PN 6x + 1 and another 6x - 1, or vice versa. The 6x + 2 require two 6x + 1 PN. 
Whereas 6x + 4 are also 6x - 2 and require two 6x - 1 PN. In all cases, the GSC always follows 
the 6x ± 1 equations, and the sum of the PN is based on the category of the pair. 
Example of deduction of DEP from NEP.  Let's take the example of the even number E = 44 and 
so E/2 = 22 *(Table 1B) has practically three possible sums 3 + 41; 7 + 37 and 13 + 31. However,  
there is ony one pair of NEP visible in Table 1B and it's 7 + 37 from which we deduce the other 
two. So (7 - 4) + (37 + 4) = 3 + 41. And (7 + 6) + (37 - 6) = 13 + 31. The deduction always follows 
the same calculation: if an even number E = p + q , the deduction is made according to                
E = (p - 6n) + (q + 6n) or E = (p + 6n) + (q - 6n). Golablement, the deduction is made according 
to E = (p - 2n) + (q + 2n) or E = (p + 2n) + (q - 2n). 
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Another example E = 74 et E/2 = 37 (Table 1D)  which has practically 4 possibles p + q sums :   3 
+ 71 ; 7 + 67 ; 13 + 61 ; 31 + 43 ; 37 + 37 (in this paper we only focus on two NEP p and q such 
that q > p so the latter sum is excluded). The single NEP is 13 + 61 = 74 visible in Table 1D. The 
DEP can all be deduced from the NEP like for exampe 13 + 61 = (13 – 10) + (61 + 10) =  3 + 71 or
13 + 61 = (13 + 18) + (61 - 18) =  31 + 43. This is true for all evens E ≥4.

 
B2. New Cryptological Coding of GSC
The NEP can also be used to encode even numbers, allowing us to deduce DEP and therefore all
possible p + q sums.  It seems that every even number E ≥4  in the set N has a unique configuration
of NEP (Figures 2A-F), and even if we find two even numbers E with the same configuration, the
NEP and DEP will not be the same. This is a good material for cryptology and all those interested in
it, as each number is associated with a specific configuration of its PN and NEP. Mathematically,
this coding will enable you to deduce all possible sums p + q by calculation or by using a program
that performs E = (p - 6n) + (q + 6n) or E = (p + 6n) + (q - 6n) or E = (p - 2n) + (q + 2n) or
E = (p + 2n) + (q - 2n). How does this coding work? Let's take two examples from Figure 2. First,
the figure is read from the top ; and the NEP line is marked grey with 0, above which the total
number of preceding lines is marked, and so on. For example, E = 24 (Figure 2A) is associated
with the number 1000 because there are three NEP lines preceded by one PN line devoid of NEP .

The NEP and PN of the even numbers E can be used to encode the even number E by associating it 
with a line and number configuration. Afterwards, a number is associated with it, which, when 
deciphered, makes it possible to deduce all possible sums p + q = E.  Exemple E = 44 et E/2 = 22 
(Figure 2B) is coded 203Ø which means that it has a pair of NEPs marked with 0 preceded by two 
lines of PN and followed by 3 lines of PN devoid of NEP. The Ø sign means that there is a PN < E/2
which has no PN > E/2 in front of it. Let's not forget that first of all we must put the number as 
explained in Figure 1. The examples given in the figure will help one to understand this encoding 
and decryption system. The Ø sign always corresponds to single PN close to E/2 on both sides.
For example let's decipher the code 12080706øø (Figure 2F) which means that this number has 
12 pairs of PNs (which are not NEPs) followed by a pair of NEPs; then 8 pairs of PN, a NEP line 
marked by zero; then 7 pairs of PN; a third NEP line; ad finally 6 lines of pairs of PNs, two of 
which do not have a PN > E/2 opposite marked with the Ø sign. The reader could practice 
encoding and deciphering numbers. This encoding and decryption system described for the first
time in this paper shows its potential usefulness in a cryptological application. Mathematically, 
it allows you to encode an even number in such a way as to be able to deduce all possible sums 
p +q.
The reader could practice encoding and deciphering numbers. This encoding and decryption game 
shows the potential usefulness of this result in a cryptological application. Mathematically, it allows
you to encode an even number in such a way as to be able to deduce all possible sums p +q.
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C. Discussion
The central question that now arises is the following: do all even numbers E ≥4 have NEP? Is the
presence of NEP essential to obtain DEP? Probably an even E that doesn't have a NEP doesn't check
GSC, but does it really exist? Current algorithms that provide us with all possible p + q sums in one
click confuse NEP and DEP, and this article raises this point for the first time. 
 If it can be shown that every even number ≥4 has at least one pair of NEP, this means the proof of
the GSC. It could even be the case that an even number E does not have a NEP but has DEP, which
the current GSC algorithms do not allow us to know. In fact, all the NEP of large numbers could be
deduced  from those  which  precede  them but  this  subject  has  not  been addressed  here  for  the
moment. But in fact if an even number does not have a NEP, this means that it does not naturally
verify the GSC. Does GSC need to be demonstrated with NEP or NEP+DEP or with one of the two?
In fact, if no NEP, no natural GSC, and in this case, the GSC would be deduced by the calculation
by looking for the DEPs. But deduction by the calculation will never be proof of its veracity.
In addition, this article presents for the first time a coding of even numbers having NEP which
makes it possible to deduce all possible sums either by a calculation or by a computer program. This
debate deserves close attention in the future.
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Figure 1 : Primes numbers (PN) < E/2 are in ascending order while those > E/2 are in a descending
order from the closest PN to E to E/2. The results obtained with this system are shown in tables 1A-

F.
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Tables 1A-F : Positions of natural equidistant primes (grey) which form the basis of the 
calculation to find the other equidistant primes deducible by the equations 6x ± 1 by gaps of 6 or by 
variable gaps of 2n (n ≥ 1).

                                                                      Table 1A

                                                          Table 1B

                                                          Table 1C

                                                          Table 1D
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p E/2 q

3 12 23
5 12 19
7 12 17
11 12 13

p E/2 q
3 37 79
5 37 73
7 37 71
11 37 67
13 37 61
17 37 59
19 37 53
23 37 47
29 37 43
31 37 41
37 37 37

p E/2 q

3 24 47
5 24 43
7 24 41
11 24 37
13 24 31
17 24 29
19 24 ø
23 24 ø

p E/2 q

3 22 43

5 22 41

7 22 37

11 22 31

13 22 29

17 22 23

19 22



                                                          Table 1E

7

p E/2 q
3 80 179
5 80 173
7 80 167
11 80 163
13 80 157
17 80 151
19 80 149
23 80 139
29 80 137
31 80 131
37 80 127
41 80 113
43 80 109
47 80 107
53 80 103
59 80 101
61 80 97
67 80 89
71  
73
79



                                                          Table 1F
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p E/2 q
3 180 397
5 180 389
7 180 383
11 180 379
13 180 373
17 180 367
19 180 359
23 180 353
29 180 349
31 180 347
37 180 337
41 180 331
43 180 317
47 180 313
53 180 311
59 180 307
61 180 293
67 180 283
71 180 281
73 180 277
79 180 271
89 180 269
97 180 263
101 180 257
103 180 251
107 180 241
109 180 239
113 180 233
127 180 229
131 180 227
137 180 223
139 180 211
149 180 199
151 180 197
157 180 193
163 180 191
167 180 181
173 180
179 180



Figure 2 : Coding and deciphering of even numbers based on GSC.
The figures correspond in order to Tables 1A-F. It is read from top to bottom.
Each line marked with 0 corresponds to a NEP pair. The number at the bottom or top of the line
gives the number of PN pairs that precede or follow the NEP pair. The x sign means that there is no
PN on the right, i.e. > E/2. The coded number at the bottom brings together all the information
about  the  even  number.  We  speak  of  coding  because  with  the  coded  number  an  independent
calculator can deduce all the possible sums p + q satisfying the GSC. The encoding number is
obtained by reading the figure from top to bottom.
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