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Abstract

Many years ago Pierre Ramond suggested using the electromagnetic impedance model to calculate neutrino PMNS

and quark CKM mixing matrices [1–4]. Given the long-dreaded desert at the LHC (one Higgs and no SUSY),

motivated in no small part by Carlo Rubbia’s call for courage [5], and with neutrino oscillation in the foreground

for both experimentalists and theorists, neutrinos took precedence over quarks in following Pierre’s guidance. That

focus led to conjecture on the role of neutrinos in low energy muon lifetime enhancement [6, 7], complementary to

high energy relativistic time dilation of the Muon Collider proposal [8]. Serendipity recently offered a hand up, when

it was realized that precise amplitudes emerging from the quantum impedance network neutrino mixing calculations

appear to be not of neutrinos, but rather the closely related quark mixing. What follows presents details of the quark

mixing matrix calculation, and outlines an earlier similar QED calculation of π0, η, and η′ branching ratios.

“To understand the electron would be enough”

Einstein

Hans Dehmelt, 1989 Nobel Prize Lecture
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1. Introduction

The CKM matrix describes mixing between quarks in the Standard Model framework. It quantifies how quark

‘flavors’ change during electroweak interactions mediated by W bosons. The matrix is unitary, ensuring conservation

of probability. It encodes CP violation (asymmetry between matter and antimatter) through a complex phase in its

elements. The Standard Model CKM matrix result is derived using:

Experimental Data: Measurements of decay rates, mixing, oscillations, and CP violation.

Theoretical Inputs: Lattice QCD, effective field theories, and higher-order corrections.

Global Fits: Statistical analyses combining all inputs under the unitarity constraint.

This synergy of experiment and theory yields high precision:

FIG. 1. CKM matrix amplitudes as presented by the 2024 Particle Data Group [4]

Matrix elements are amplitudes for transitions between up-type (u,c,t) and down-type (d,s,b) quarks. Amplitude

squared (energy is square of field strength) gives the probability of up-type transforming into down (or down to up),

with larger values for transitions within the same generation and smaller for inter-generational transitions. The CKM

matrix is essential for understanding phenomena like decay rates, quark sector CP violation, and meson mixing.

FIG. 2. Data (black) and model (blue)

The 2024 Review of Particle Physics CKM analysis [4] gives a profound

sense of the monumental effort behind data presented in figure 1. In stark

contrast, the impedance model result in blue italics of figure 2 was generated

by nothing more than the electromagnetic coupling constant α = e2/4πϵ0ℏc

and far-field photon scale-invariant topological impedance Z0 =
√

µ0/ϵ0. If

not serendipitous coincidence, then this seems most remarkable.

What follows presents figure 2 calculations and results for unitarity, Cabbibo

angle, and Wolfenstein parameterization. Largest variances between data and

model, the pivotal Vus Cabibbo angle and Vcb of Wolfenstein A, are discussed.

Similarities and differences of a previous topological calculation of π0, η, and η′ branching ratios are outlined [9, 10].

2. CKM matrix impedance calculation

FIG. 3. CKM and PMNS impedances

The four quantum impedances used to calculate model amplitudes of

figure 2 are shown in figure 3. Z0 is the 377 ohm far-field impedance

the photon excites from the vacuum, square root of the ratio of magnetic

permeability and electric permittivity. Square root of their product is speed

of light. Photon is apparently the only particle that has both scale-invariant

topological far-field and scale-dependent geometric near-field impedances.

The remaining three impedances used to calculate the mixing matrix are

generated as shown, by powers of twice the dimensionless coupling constant

α. They are relevant to both quark and neutrino mixing.

2



Locations of these four impedances in the .511 MeV QED mass gap impedance network [11–14] are shown in figure

4. In the model the three circled nodes are those of both the quarks’ magnetic Coulomb mode (red squares) and

neutrinos’ magnetic scalar Lorentz mode (red triangles) [15]. This explains how seeking the neutrino mixing matrix

serendipitously gives us quark mixing amplitudes. The Coulomb and scalar Lorentz impedances are capacitive. They

couple with the inductive dipole modes at the three circled nodes.

FIG. 4. The ‘One Slide’

The calculation takes phases of topological impedances Z0 and Z3 at the .511 MeV mass gap of QED to be absolute

rather than relative, an absolute phase reference, a gauge fixing to the mass gap.

As shown in figure 5, both Z0 and Z3 appear in arguments of all six trig functions, Z0 in the numerator and Z3 in

denominator. This calculates phase shifts between Z0 and Z1, Z0 and Z2, and Z0 and Z3 relative to the mass gap at

Z3. These are non-linear. Shift from Z0 to Z1 is about 1 degree, 7 degrees to Z2, and 89 degrees to Z3.

In figure 5 results, sum of sine and cosine angles is π/2, as required by quadrature of Maxwell’s equations in QED.

Numerical values of sine and cosine are the same, of consequence in calculating not phase relative to the mass gap at

Z3, but rather phase shifts between the three nodes Z1, Z2, and Z3.
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FIG. 5. Phases relative to the mass gap of figure 4.

What we care about are not node phases relative to the mass gap, but rather phase differences between nodes.

FIG. 6. Phases between the nodes of figure 4

Phase shifts are of same magnitude and opposite sign for sine and cosine, as required for resonance at the nodes.

Given these phase shifts, we can calculate the CKM matrix amplitudes shown in figures 2 and 10:

FIG. 7. Quark CKM matrix amplitudes in the model

Four of the phases are negative, five positive. How the signs play in the model and how they have been treated

(mostly ignored) is not yet clear. Energy is square of field strength. Probabilities are squares of amplitudes.
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3. Wolfenstein Parameters

The Wolfenstein parameters (λ,A, ρ, η) were derived as a compact and intuitive way to parametrize the CKMmatrix

by emphasizing hierarchical structure of quark flavor mixing, which decreases as the mass (mode energy) difference

between quarks increases. The derivation relies on expanding matrix elements in powers of a small parameter λ =

|Vus|/
√

|Vud|2 + |Vus|2, magnitude of the mixing between the first and second generations and A = (1/λ)|Vcb|/|Vus|

between second and third.

FIG. 8. Wolfenstein matrix

Hierarchical structure of the CKM matrix:

mixing between 1st and 2nd generations is small ≈ 0.22

mixing between 2nd and 3rd generations is even smaller ≈ 0.04

mixing between 1st and 3rd generations is tiny ≈ 0.004

Expansion around small parameter λ:

Nicola Cabibbo first introduced the parameter λ to describe mixing between the first and second generations.

Building on this, Wolfenstein expanded the CKM matrix in powers of λ and Aλ2, with ρ and η to describe relative

strength of CP violation. The hierarchical structure permitted the parametrization of figure 8.

Experimental inputs:

Wolfenstein parameters are determined from experimental measurements of quark mixing processes: λ from

kaon decays, A from B-meson decays, and ρ and η from rare processes involving |Vub|, meson mixing B0
d and B0

s ,

and CP-violating observables.

Standard Model λ and A parameters are shown in blue in figure 9. They differ substantially from parameters used

to calculate the impedance model Wolfenstein amplitudes. This suggests Wolfenstein analysis is not a friend of the

model, that high variance λ and A values shown in figure 9 would not do well in generating the rest of the matrix.

However, the actual fit seems remarkably good.

FIG. 9. Wolfenstein matrix amplitudes

Figure 10 shows SM and model results of figure 2 with the Wolfenstein results appended. Bold is Standard Model,

bold italic the impedance model, and plain black italic the Wolfenstein result. Impedance model result takes ρ and η

to be zero. Wolfenstein result of figures 9 and 10 uses PDG 2024 values.
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FIG. 10. Model and Wolfenstein amplitudes

Significant differences between PDG 2024 and the model in the two

inter-generational coupling constants make essentially no difference be-

tween model and remaining amplitudes of figure 10. Origin of differing

amplitudes relative to the Standard Model merits further investigation.

Largest relative change is in the CP violating terms, which now are in

better agreement with PDG 2024. This offers the possibility of distin-

guishing between CP violating and QED contributions to third genera-

tion amplitudes.

4. Unitarity, Cabibbo angle, and RMS variation

Given that unitarity is a constraint in the Particle Data Group analysis, the result in figure 11 shows it has been

applied faithfully to both rows (upper three) and columns (lower) in the PDG 2024 analysis. The slight variation

is in the third generation. This is unlike the impedance model, which has equal and opposite variations in first and

second generations. Their sum is unity at one part in one hundred thousand. Wolfenstein violates unitarity on the

high side, has more coming out than going in.

FIG. 11. Unitarity for the results of figure 10

FIG. 12. RMS variance for impedance model and Wolfenstein analysis

RMS variance with PDG 2024 is

slightly more than one percent for

both; for the model 0.0105 and for

Wolfenstein parameterization 0.0103,

a small but possibly significant im-

provement.

FIG. 13. Cabibbo angle

In both model and Wolfenstein analysis, the largest contrib-

utors to variance are Vus of Cabibbo mixing between first and

second generations, and Vcb between second and third. The

model gives a Cabibbo angle that differs by about one degree

from the data.
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5. CP violation: spin, dimensionality, and topology

FIG. 14. Pauli algebra of 3D space

.

Components of the largest normed division algebra (topology requires

inversion), the Pauli algebra of 3D space, are those of the impedance

model vacuum wavefunction - one scalar, three vector lines (orienta-

tional degrees of freedom), three bivector areas, and one trivector vol-

ume (1,3,3,1) [16]. This is Geometric Algebra, the Clifford algebra of

geometric objects [17–20]. Unlike matrix representations of Pauli and

Dirac, in geometric representation the wavefunction is easily visualized.

Wavefunction interactions are modeled by dimension-changing Clifford

products of figure 14, sum of dot and wedge. Product of two vectors is scalar plus bivector, WZ = Higgs+ top. Like

the 60s S-matrix bootstrap, there is no Lagrangian. Equations of motion calculate the impedance networks [13, 21].

Physical manifestation of the vacuum wavefunction arises from introducing the coupling constant α = e2/4πϵ0ℏc.

Various combinations of the four fundamental constants that define α permit assigning geometrically and topologically

appropriate electric and magnetic flux quanta to the eight wavefunction components [15, 22].

The point is that these are the objects whose interactions we seek to visualize to understand CPT symmetries.

However, in the presence of topology and spin inherent in dimension-changing Clifford product interactions, there

remain things not properly understood. While the ability to visualize wavefunction interactions in real 3D space is a

huge advantage over the more abstract Standard Model perspective, how spin, dimensionality, and topology play in

the model remains is unclear [23]. Details of CP violation in the impedance model are ignored in the present work,

hopefully to be addressed in the near future, along with the neutrino mixing matrix.

6. Topological calculation of π0, η, and η′ branching ratios

The π0 branching ratio calculation [9] was motivated by Michael Creutz [24–26], who upon first seeing π0 in the

‘One Slide’ of figure 4, said “The chiral anomaly” [25].

The anomaly arises from the need to regularize the quantum field theory, which breaks classical symmetries.

FIG. 15. Quantum Impedance Networks are Feynman’s Regulators
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Bjorken discovered the electromagnetic circuit analog of Feynman’s regulators, anticipated it offering a powerful

intuitive perspective. [27–29]. He was thwarted by topological inversion in our systems of units, understood more

[kg/s] to mean more flow, conductance. However in SI units [kg/s] is mechanical impedance. More [kg/s] means more

impedance, less flow. The resulting confusion confounded intuition, continues to do so to this day.

FIG. 16. Data and Model

.

The model contains topological inversion (the division algebra

requirement satisfied by Clifford) that obstructed Bjorken and

the many of us who followed. Inversion arises from magnetic

charge, topological dual of scalar electric charge [30, 31]), trivec-

tor pseudoscalar in the (1,3,3,1) mass gap wavefunction. Energy

of Dirac’s magnetic charge quantum when confined to the elec-

tron Compton wavelength is .511 MeV. Energy of electric charge

is .511 MeV at the classical radius of figure 4, 137 times smaller.

With electric charge, fundamental lengths at top right of figure

4 correspond to specific mechanisms of photon emission or ab-

sorption, matched in both quantized impedance and energy. In-

version results in mismatches in both. Magnetic charge is ‘dark’,

cannot couple to the photon, not despite its great strength, but

rather because of it. The α-spaced lengths of figures 3 and 4

correspond to physical mechanisms. Bohr radius cannot be in-

side Compton wavelength in the basic photon-charge coupling of QED, Rydberg cannot be inside Bohr,... Specific

physical mechanisms of photon emission and absorption no longer work. Magnetic charge is topological, dark.

Impedance networks are finite without renomalization. Inductance of the singularity is infinite, capacitance nil. In

the boundary at infinity, capacitance infinite and inductance nil. We are decoupled by the infinite mismatch. All

energy/information is reflected back. It is this naturally [22] finite property of the model that permits the simple

branching ratio calculation of figure 15, made possible the η and η′ result, and removed the anomaly.

Coming back to the branching ratio calculation of η:

FIG. 17. Equation 9 calculates muon impedance. Difference between η and η′ in figure 16 is 3π0 decay of equations 7 and 15.
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FIG. 18. The η branching ratio calculation in powers of the electromagnetic coupling constant α.

The η calculation does a remarkably good job of matching both η and η′ branching ratios of figure 16, has an RMS

variance from experiment of about one part in one hundred for both. This despite the network structure of figure 4

being significantly different between mass gap Compton wavelength of η′ and Bohr radius of η. Why this is so is not

yet clear in the impedance model. One possibly useful consideration takes into account the flow of energy from left

to right during figure 4 decays. Hopefully the Standard Model can offer some insight.

7. Summary

Each of the previous six sections is briefly summarized:

Introduction - Presented a brief outline of the quark mixing matrix and a first look at the impedance model result.

CKM matrix impedance calculation - Introduced the four quantum impedances generated by Z0, the 377 ohm

impedance the photon excites in free space, raised to powers of twice the coupling constant α, their place in the ‘One

Slide’ quantum impedance network, and details of a calculation that ignored CP violation.
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Wolfenstein parameters - Outlined the hierarchical structure of quark flavor mixing as a tool for gaining intuitive

understanding of the CKM matrix, presented Wolfenstein analysis of the impedance model, and used PGD 2024

parameter values for ρ and η to offer the possibility of distinguishing between QED and CP violation contributions

to third generation amplitudes.

Unitarity, Cabibbo angle, and RMS variation - Sum of the model unitarities is unity at one part in one hundred

thousand. Cabibbo angle is about one degree larger than Standard Model. RMS variance of model amplitudes relative

to the Standard Model is about one part in one hundred.

CP violation: spin, dimensionality, and topology - Introduced the vacuum wavefunction (same at all scales)

and physical manifestation via various combination of the four fundamental constants that define the electromagnetic

coupling constant α = e2/4πϵ0ℏc. Different physics at different scales arises from scale at which invariant flux quanta

are confined, at a given Compton wavelength node, by coherent impedance mismatch reflections as fields seek to

propagate away. Outlined how spin, dimensionality, and topology play with CPT symmetries in the model.

Topological QED calculation of π0, η, and η′ branching ratios - RMS variation of the model results relative

to the Standard Model is about two parts per thousand for π0, and one part in one hundred for η and η′

8. Conclusion

“The hard part will be getting physicists to think in terms of impedances”

Richard Talman, walking to lunch at Brookhaven (2012)

While the quark mixing matrix calculation appears compelling, when buttressed by the π0, η, and η′ branching

ratios it gains ever more serious credibility. Both are founded and fortified by the figure 4 One Slide calculation

[11–13, 21, 32–34], by correlation between mass gap network nodes and unstable particle causal coherence lengths

that explain lifetimes and confinement. These three calculations, like almost all impedance model results [35, 36], are

of a phenomenology alien to the theorist, cognitively dissonant, too different to resonate. Like the 1960s S-matrix

bootstrap (progenitor of string theory), the model has no Lagrangian. Equations of motion directly calculate the

impedance networks. These govern amplitude and phase of energy flow, of information transmission.

The hope is that, in this one short note, these three calculations inspire a few curious minds to foresake some

portion of canonical comfort in exchange for an outlier [37], to dive down the rabbit hole and find safe space, and

there to organize systematic examination and extrapolation of not only the model, but also the lifetime enhancement

conjecture. Of immediate interest is gauge fixing of the neutrino mixing matrix, where an amplitudes calculation

of simplicity and precision seen in the quark mixing result could give guidance to theorists and experimentalists,

promoting “neutrino science, dark matter experiments, muons and the muon collider, and new physics ideas’ [38].
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Supplementary Material

Bottom line of this work with CKM and PMNS is to understand muon and neutrino wavefunctions of figures 20 and

21, and how (if possible) to introduce appropriate impedances to muon collider lattices for the purpose of prolonging

muon lifetime, particularly at low energy [6, 7].

The three components that comprise the 1D vector, 2D bivector, and 3D trivector (1,2,3) neutrino wavefunction

and the resulting nine S-matrix modes generated by geometric Clifford products are indicated by ellipses in figure 19.

Modes indicated by symbols (triangle, square,...) are plotted in the One Slide of figure 4, including the off-diagonal

scalar Lorentz neutrino eigenmode (red triangles in both figures), a scale-dependent geometric impedance it shares

with on-diagonal (red squares) magnetic Coulomb mode in the quark mixing matrix.

FIG. 19. S-matrix at the QED mass gap, eigenmodes in blue, transition in yellow, fermions and bosons, flavor and color.

In the model the neutrino is a photon comprised of 1D magnetic and 2D electric flux quanta, which sit on the

skew diagonal with the color SU(3) gluons of figure 19, adjacent the main diagonal. They are coupled by Maxwell’s

equations, mixing with and topologically protected by 3D magnetic charge (1,2,3). Additionally, all nine modes in

the three-by-three neutrino S-matrix of figure 20 are degenerate, respecting the definition of topological protection.

In SI units the spin 0 1D vector magnetic flux quantum of the photon and spin 1 3D trivector Dirac magnetic

charge are the same, ΦB = h/2e = g. This despite the fact that they are geometrically and topologically distinct.

They excite the vacuum differently, experience differential phase shifts of massless neutrino oscillation.
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FIG. 20. Muon and neutrino wavefunctions and S-matrices, and their transfer matrix during muon decay.

FIG. 21. Muon decay

.

The 1D vectorW of figure 21 doesn’t appear in figure 20 S-

matrices. It barely exists, decays in ≈ 10−25 seconds, at light

speed propagates a mere ≈ 10−4 electron Compton wave-

length, cannot be causal other than to facilitate the change

in real space dimensionality of the decay. What does appear

in µ, νµ, and νe wavefunctions is the 1D vector magnetic flux

quantum ΦB . Vector magnetic flux quantum and trivector

magnetic charge are defined identically, ΦB = h/2e = g, de-

spite the fact that they are geometrically and topologically

distinct. Absence of the muon vector ΦB magnetic dipole

flux quantum dipole component, with its poles at infinity

(and distinct from the axial bivector Bohr magneton), in the decay products can be thought of as the topological

balance to loss of dimensionality [23]. One might imagine ϕB in superposition with magnetic charge g, and coupled

with electric charge of the dyon [39] during decay of the W.
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