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Abstract

The scattering process in the framework of the source theory is considered
as the synergism of the elastic and the inelastic process. In this approach the
infrared divergences never occur. The resulting differential cross section appears
as a factor multiplying the lowest-order (Born) differential cross section plus a
contribution referring to the magnetic form factor.

1 Introduction

The scattering process in the framework of the source theory is considered as the
synergism of the elastic and the inelastic process. In this approach the infrared divergences
never occur. The resulting differential cross section appears as a factor multiplying the
lowest-order (Born) differential cross section plus a contribution referring to the magnetic
form factor.

The problem of radiative corrections for particle scattering is presented in many articles
and textbooks (Schwinger, 1949; Schwinger, 1973; Akchiezer et al., 1965) In this article
we will solve this problem in the framework of the source theory and we will follow the
articles of Lester de Raad et al. (1972) and Schwinger (1973).

At the previous papers there was an effort to separate the elastic process from the
inelastic one. However, the realistic approach is to consider the scattering in its physical
complexity i.e. to consider the elastic and inelastic scattering in a unified manner.

We will see that in this method of approach the infrared sensitivity never occurs.
However, we will show, that there are also the infrared sensitive nonelastic processes that
occur separately and have no associated elastic counterparts. The corresponding terms
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require to insert a photon mass, but the dependence on this mass vanishes after summing
all such purely inelastic contributions.

Let us first remember the basic formalism. Consider a situation when an electron
is moving in the time-independent electromagnetic field of the four-potential Aµ. The
vacuum amplitude describing the propagation of electron from the source η2 to source η1
is as follows:

〈0+|0−〉 = i
∫

(dx)(dx′)η1(x)γ0G+(x− x′)η2(x′) +

i
∫

(dx)(dx′)ψ1(x)γ0Z(A, x, x′)ψ2(x
′) (1)

where G+ is the Green function of the free electron, ψ are fields associated with sources
and Z(A, x, x′) is a functional of A. The first term describes the propagation of electron
without interaction and the second term involves all interactions with the external field.
The field ψ2 is before any interaction and ψ1 is after any interaction. The radiative
corrections are obviously involved in Z(A, x, x′).

2 Radiative corrections to electron scattering

Our goal here is to determine the forward scattering amplitude 〈pσq|pσq〉, where the
symbols refer to the momentum, spin and charge eigenvalues of the electron. It means
that we must extract this amplitude from the vacuum amplitude 〈0+|0−〉. The general
treatment was described by textbooks of source theory (Schwinger, 1969; Schwinger; 1970;
1973; 1989 ) . In this article we briefly remark that the contribution of the first term in
eq.(1) provides unity and we insert the following formulas into the second term of eq. (1):

ψ1(x)→ (2mdωp)
1/2 u∗pσqe

−ipx (2a)

ψ2(x)→ (2mdωp)
1/2 upσqe

ipx (2b)

where upσq is the spinor with eigenvalues σ, q being the eigenvalues of the charge matrix
q (Lester de Raad et al., 1972)

q =

(
0 −i
i 0

)
(3)

and

(m+ γp)upσq = 0 (4)

u∗pσqγ
0upσ′q′ = δσσ′δqq′ . (5)

The resulting formula after insertion is the forward-scattering probability amplitude
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〈pσq|pσq〉 = 1 + i2mdωp

∫
(dx)(dx′)e−ipxu∗pσqγ

0Z(A, x, x′)upσqe
ipx′ . (6)

which in turn yields

1 = |〈pσq|pσq〉|2 + 4mdωpIm
{∫

(dx)(dx′)e−ipxu∗pσqγ
0Z(A, x, x′)upσqe

ipx′
}

(7)

The last formula is the sum of the probability that the initial electron goes to the state
〈pσq| and the probability that the initial electron goes to the state other than 〈pσq|. From
the later probability we can determine the total cross section which can be obtained by
division by T and 2|p|dωp, where T is the time during which the external field acts upon
the electron and 2|p|dωp is the incident particle flux. The total cross section is then

σ =
1

T

2m

|p|
Im

{∫
(dx)(dx′)e−ipxu∗pσqγ

0Z(A, x, x′)upσqe
ipx′
}
. (8)

Let us first consider the simple example of an electron scattering without radiative
corrections in the electromagnetic field, expanded to the second order in this field. The
basic task is to determine Z(A, x, x′). We determine is as follows.

The single electron exchange between source η2 and η1 represents in the analogy with
the non-interacting case the vacuum amplitude

〈0+|0−〉 = i
∫

(dx)(dx′)η1(x)γ0GA(x, x′)η2(x
′), (9)

where

GA(x, x′) = G+(x− x′) +
∫

(dy)G+(x− y)eqγA(y)G+(y − x′) +

∫
(dy)(dy′)G+(x− y)eqγA(y)G+(y − y′)eqγA(y′)G+(y′ − x′) + .... (10)

The field is defined by the equation

ψ(x) =
∫

(dx′)G+(x− x′)η(x′). (11)

After insertion of eq. (10) into eq. (11) we get the contribution

Z(A, x, x′) = eqγA(x)δ(x− x′) + eqγA(x)G+(x− x′)eqγA(x′) (12)

and for σ we have

σ =
2m

|p|
Im

(
u∗pσqγ

0eqγA(0)upσq +

∫ (dp′)

(2π)3
u∗pσqγ

0eqγA(p− p′) m− γp′

p′2 +m2 − iε
eqγA(p′ − p)upσq

)
=
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m

|p|

∫ (dp′)

(2π)2
δ(p′2 +m2)u∗pσqγ

0eqγA(p− p′)(m− γp′)eqγA(p′ − p)upσq, (13)

where p0 = p′0 since the potential is time-independent and the three-dimensional Fourier
transforms have been employed.

Using the identity

∫ (dp′)

(2π)2
δ(p′2 +m2) =

∫
dΩ
|p′|
8π2

, (14)

we get

dσ

dΩ
=

m

8π2
u∗pσqeqγA(p− p′)(m− γp′)eqγA(p′ − p)upσq, (15)

which is the Born formula for the differential cross section in the potential scattering, p′

being the momentum of the scattered electron.

3 Calculation of the radiative corrections

There are two general types of radiative corrections to the lowest order. 1) The causal
exchange of an electron between sources η2 and η1, 2) the exchange of an electron-photon
pair.

The first process with a local external potential gives rise to a Born approximation
as we have seen yet with with the absence of radiative processes. The second process
involves radiative corrections.

The action involving the interaction of an electron with the electromagnetic field is

Wint =
1

2

∫
(dx)ψ(x)γ0eqγµAµ(x)ψ(x) (16)

and the three-field analogy is called the primitive interaction.
The vacuum amplitude corresponding to Wint is

〈0+|0−〉 = i
∫

(dx)A1µ(x)ψ1(x)γ0eqγµψ2(x) (17)

as a reslut of insertion of ψ = ψ1 + ψ2 into Wint and expansion of exp iWint. In analogy
with the principle of superposition for ψ-decomposition we write for sources

η = η1 + η2, (18)

where we take η2 for the emission source of the time-like virtual particle excitation and η1
is real particle detection source. The virtual particle decays into an electron and photon
and the pair propagates without further interaction. the photon is detected by the photon
source J2. The situation can be graphically pictured. The source η2 can be identified with
so called effective electron-photon source ηJ because it emits through the virtual particle
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the electron and photon. The η − J structure of this source can be determined after
expansion of

〈0+|0−〉ηJ = 〈0+|0−〉η〈0+|0−〉J (19)

and by the extraction from it the term

〈0+|0−〉 = i
∫

(dx)(dξ)A1µ(ξ)ψ1(x)γ0iη2(x)Jµ2 (ξ) (20)

and after comparison of eq. (20) with eq. (16). The result is

iη2(x)Jµ2 (ξ)|eff = δ(x− ξ)eqγµψ2(x). (21)

In a similar manner, considering the situation with source η1 as a detection source of
the virtual particle, we get the effective electron-photon detection source of the form:

iη1(x)γ0Jµ1 (ξ)|eff = ψ1(x)δ(x− ξ)γ0eqγµ. (22)

The process involving the both partial processes i.e. emission and absorption is
synthetized.

The corresponding vacuum amplitude describing the exchange of a noninteractig
electron-positron pair is extracted from

〈0+|0−〉ηJ = 〈0+|0−〉η〈0+|0−〉J (23)

or, from

〈0+|0−〉ηJ =
∫

(dx)(dx′)η1(x)γ0G+(x−x′)η2(x′)i
∫

(dξ)(dξ′)Jµ1 (ξ)D+(ξ− ξ′)J2µ(ξ′). (24)

Then, we insert eqs.(21) and (22) into (24) in order to get

〈0+|0−〉ηJ = e2
∫

(dx)(dx′)ψ1(x)γ0γµG+(x− x′)D+(x− x′)γµψ2(x
′) (25)

Since we are interested in the electron-photon process in the presence of the external
electromagnetic field, we replace the electron fields ψ and the propagation function G+ by
ψA and GA

+ corresponding to situation with the presence of electromagnetic field. Then,
we have:

〈0+|0−〉ηJ |A 6=0 = e2
∫

(dx)(dx′)ψA1 (x)γ0γµGA(x, x′)D+(x− x′)γµψA2 (x′). (26)

The validity of eq. (26) is restricted to x0 > x′0 as a consequence of the causal situation
i.e. the detection source is later than the emission source. The extension to the general
situation is postulated by the space-time extrapolation.

When GA in eq. (26) is replaced by expansion
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GA ≈ G+ +G+eqγAG+ +G+eqγAG+eqγAG+, (27)

which is a sufficient approximation for the propagation function of electron in the
external field, we get three types of processes. 1) GA → G+ implies the electron
propagator modification, 2) GA → G+eqγAG+ is the linear term contribution , 3)
GA → G+eqγAG+eqγAG+ is the double scattering contribution.

Only the vacuum amplitude terms quadratic in A are retained and they are sufficient for
an approximation. The diagram corresponding to the linear interaction can be graphically
pictured.

Now, we approach to the discussion of of the contribution of vacuum polarization and
double scattering.

4 Vacuum polarization calculation

After performing the Fourier transformation, the total external potential is written as

Aµ(q) = D+(q2)Jµ(q) (28)

where Jµ is the associate source. We know that the vacuum polarization leads to the
following modification of the photon Green function

D̃+(q2) =
1

q2
+
∫ ∞
4m2

dM2 a(M2)

q2 +M2
(29)

where

a(M2) =
α

3π

1

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

(30)

Using. eq. (28) it means that the Born cross section is multiplied by factor
(D̃+/D+)2 ≈ D2

+(1 + 2ε/D+), and it determines the parameter δ1 in the corrected cross
section

dσ

dΩ
= (1− δ1)

(
dσ

dΩ

)
Born

(31)

is of the form

δ1 = −2q2
∫ ∞
4m2

dM2 a(M2)

q2 +M2
, (32)

which can be expressed by change of variables

M2 =
4m2

1− v2
(33)

as
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δ1 = − α

6π

q2

m2

∫ 1

0
dv

v2(3− v2)
1− q2

4m2 (1− v2)
. (34)

5 Propagator modifications

The vacuum amplitude corresponding to the transformation GA → G+ in eq. (26) is

〈0+|0−〉 = e2
∫

(dx)(dx′)ψA1 (x)γ0γµG+(x, x′)D+(x− x′)γµψA2 (x′) (35)

where we use for G+ and D+ the causal representation

G+(x− x′) =
(
m− 1

i
γµ∂µ

)
∆+(x− x′) (36)

with

∆+(x− x′) = i
∫
dωpe

ip(x−x′); x0 > x′0 (37)

D+(x− x′) = ∆+(x− x′;m2 = 0). (38)

Using the Fourier transformation and the identity

1 =
1

2π

∫
dωPdM

2(2π)4δ(P − p− k) (39)

with −P 2 = M2, we get with eq. (36), (37) and (38):

〈0+|0−〉 =
ie2

2π

∫
idωPdM

2ψA1 (−P )γ0
∫
dωpdωk(2π)4δ(P−p−k)γµ(m−γp)γµψA2 (P ), (40)

where we supposed the mas of photon is µ� m.
The p − k phase-space integral it is suitable to calculate in the P rest frame. Then

after application of the space-time extrapolation, we have

〈0+|0−〉 = i
α

4π

∫ (dP )

(2π)4

∫ ∞
(m+µ)2

dM2

M2

[
(M2 −m2)− 4M2µ2

]1/2
×

ψA1 (−P )

{(
−4m2 − M2 +m2

M2
γP

)
1

P 2 +M2 − iε
+ C.T.

}
ψA2 (P ), (41)

where the space-time extrapolation was realized as

dωP →
dP

(2π)4
1

P 2 +M2 − iε
. (42)

The contact term C.T. is introduced here as a necessity, because the causal process
does not inform us about behavior of vacuum amplitude for x0 ≈ x′0. This term is
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consequently proportional to δ(x − x′) or derivatives thereof. When ψA → ψ, the factor
{...} in eq. (41) and its first derivative with respect to γP must vanish for γP = −m.
This requirement has consequence to determine C.T. in such a way that

{./.} =
(γP +m)2ω

P 2 +M2 − iε
, (43)

where

ω =
1

2M2

[(
1− 2Mm

(M −m)2

)
(M − γP ) +

(
1 +

2Mm

(M +m)2

)
(−M − γP )

]
. (44)

If we further retain only the infrared singular part of ω and appropriate ψA by

(γP +m)ψA(P ) =
∫

(dx)e−iPxeqγA(x) ≡ (eqγAψ)(P ), (45)

we get instead of (41)

〈0+|0−〉 = i
α

4π

∫ (dP )

(2π)4

∫ dM2

M2

[
(M2 −m2)− 4M2µ2

]1/2
(ψ1γ

0eqγA)(−P ) ×

(
−m
M

)
1

(M −m)2
m− γP

P 2 +M2 − iε
(eqγAψ2)(P ), (46)

from which we extract the factor δ2 of the correction to the Born cross section

δ2 = − α

4π

∫ (m+δM)2

(m+µ)2

dM2

M2

[
(M2 −m2)− 4M2µ2

]1/2 (
−m
M

)
1

(M −m)2
≈

α

π

∫ δM

µ
d(M −m)

[
(M −m)2 − µ2

]1/2
(M −m)−2 =

α

π

[
ln

2δM

µ
− 1

]
. (47)

where m2 ≤ −p′2 ≤ (m+ δM)2, δM � m.

6 Double scattering

The vacuum amplitude for double scattering is obtained by transformation

GA → G+AG+AG+ (48)

in the vacuum amplitude
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〈0+|0−〉ηJA 6=0 = e2
∫

(dx)(dx′)ψA1 (x)γ0γµGA(x, x′)D+(x− x′)γµψA2 (x′). (49)

The resulting amplitude for double scattering can be expressed after necessary calcu-
lations as

〈0+|0−〉 = ie2
∫ (dP1)

(2π)4

∫ (dP2)

(2π)4
×

ψ1(−P1)γ
0γµ

m− γP1 + γk

(P1 − k)2 +m2
eqγA(P1 − P )dM2dωPdωk ×

δ((P − k)2 +m2)(m− γP + γk)eqγA(P − P2)
m− γP2 + γk

(P2 − k)2 +m2
γµψ2(P2). (50)

where the momentum of the exchanged electron has been substituted according to
p = P − k

dωP =
(dP )

(2π)3
δ((P − k)2 +m2) = dM2dωP δ((P − k)2 +m2) (51)

Equation (50) leads to purely inelastic contribution and it means that only its infrared
singular part need be retained, which means the γk factor in the numerator may be
dropped. Upon rearrangement and operation of the projection on the fields, the vacuum
amplitude reduces to

〈0+|0−〉 = ie2
∫ (dP1)

(2π)4

∫ (dP2)

(2π)4
idωP

∫ ∞
(m+µ)2

dM2ψ1(−P )γ0eqγA(P1 − P ) ×

(∫
dωkδ((P − k)2 +m2)

P 2
2

(P2k)2
(m− γP )

)
eqγA(P − P2)ψ2(P2). (52)

After space-time extrapolation we get (the contact terms are not inserted since they
are not physically required) for the correction δ3:

δ3 = −e2
∫ (m+δM)2

(m+µ)2
dM2dωkδ((P − k)2 +m2)

P 2
2

(P2k)2
≈

α

π

∫ δM

µ
d(M −m)

[
(M −m)2 − µ2

]1/2 [
(M −m)2 + µ2 q

2

m2

(
1 +

q2

4m2

)]−1
=

α

π

ln
2δM

µ
− 1− q2

4m2

∫ 1

0
dv

1 + v2

1 + q2

4m2 (1− v2)

 . (53)

where q − P − P2 is the momentum transfer. The k-integral was evaluated in the P rest
frame and using relations:
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P 0
2 = −PP2

M
=

1

2M
(M2 +m2 + q2) (54)

and

|P2|2 =
1

4M2
(M2 +m2 + q2)2 −m2 ≈ q2

(
1 +

q2

4m2

)
. (55)

7 The linear term. The electric part

The diagram corresponding to the linear term GA → G+AG+ follows from the formula

〈0+|0−〉 = e2
∫

(dx)(dx′)ψA1 (x)γ0γµGA
+(x, x′)D+(x− x′)γµψA2 (x′) (56)

Upon transformation of the linearized amplitude (56) into momentum space we get

〈0+|0−〉 = −
∫ (dP1)

(2π)4

∫ (dP2)

(2π)4
ψ1(−P1)γ

0eqIµAµ(q)ψ2(P2) (57)

with

q = P1 − P2 (58)

and

Iµ = ie2
∫
dωkdωpdωp′(2π)4δ(p+k−P2)(2π)4δ(p′+k−P1)γ

ν(m−γp′)γµ(m−γp)γν (59)

which can be expressed in the general form as

Iµ = iαπγµf(M2
1 ,M

2
2 , q

2) +
απ

2m
σµνqνg(M2

1 ,M
2
2 , q

2), (60)

where −P 2
1 = M2

1 and functions f and g are to be determined. The eq.( 57) contains no
qµ because we work in the Lorentz gauge. Upon contraction of Iµ with appropriate vector
the functions f and g are isolated and expressed in terms of the known kinematic factors
as follows (de Raad et al., 1972):

f = −2q2∆−5/2
{
q8 + q6

[
3(M2

1 +M2
2 ) + 4m2

]
+

q4
[
3M4

1 + 3M2
1M

2
2 + 3M2

2 + 9m2(M2
1 +M2

2 ) + 5m4
]

+

q2
[
M6

1 − 2M4
1M

2
2 − 2M2

1M
2
4 +M2

6 + 6m2M4
1 + 2m2M2

1M
2
2

]
+

q2
[
6m2M4

2 + 13m4(M2
1 +M2

2 )− 6m6
]
−

10



(M2
1 −M2

2 )2
[
2M2

1M
2
2 −m2(M2

1 +M2
2 )− 8m4

]}
(61)

and

g = −4m2q2∆−3/2×

{
6
[
q2(M2

1 −m2)(M2
2 −m2)−m2(M2

1 −M2
2 )2
]

∆−1 − (M2
1 +M2

2 − 2m2)
}

(62)

with

∆ = (q2 +M2
1 +M2

2 )2 − 4M2
1M

2
2 . (63)

Quantities M2
1 and M2

2 satisfy the relation:

q2(M2
1 −m2)(M2

2 −m2) ≥ m2(M2
1 −M2

2 )2. (64)

After space-time extrapolation, the vacuum amplitude of vertex is as

〈0+|0−〉 =
iα

4π

∫ (dP1)

(2π)4

∫ (dP2)

(2π)4
×

ψ1(−P1)γ
0
(
eqγµAµ(q)F (P1, P2) +

eq

2m

1

2
σµνFµν(q)G(P1, P2)

)
ψ2(P2) (65)

with

F (P1, P2) =
∫
dM2

1dM
2
2

f(M2
1 ,M

2
2 , q

2)

(P 2
1 +M2

1 − iε)(P 2
2 +M2

2 − iε)
(66)

and

G(P1, P2) =
∫
dM2

1dM
2
2

g(M2
1 ,M

2
2 , q

2)

(P 2
1 +M2

1 − iε)(P 2
2 +M2

2 − iε)
. (67)

where the region of integration is determined by eq. (64).
Using variables x and v, defined by

1

2
(M2

1 +M2
2 ) = m2 + (m2 +

1

4
q2)2x (68)

(M2
1 −M2

2 ) =
[
q2(m2 +

1

4
q2)
]1/2

2xv (69)

where x ∈ (0,∞) and v ∈ (−1, 1), we have:

dM2
1dM

2
2

∆1/2
=
dv

2

xdx

β1/2
(q2 + 4m2) (70)
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∆1/2f = − 1

2β2

[
q2(4 + 12x+ 9x2 + 3x2v2 − x3 + 5x3v2 − 2x4v2 + 2x4v4) +

4m2(2 + 6x+ 2x2 + 2x2v2 − x3 − x3v2 − 2x4v2)
]

(71)

and

∆1/2g = −1

2
(q2 + 4m2)m2x

[
3x(1− v2)β−2 − 2β−1

]
, (72)

where

β = 1 + 2x+ x2v2. (73)

Now, the vacuum amplitude is of the form:

〈0+|0−〉 =
iα

4π

∫ (dP1)

(2π)4

∫ (dP2)

(2π)4

∫ 1

−1

1

2
dv ×

∫ ∞
x0

xdx

β1/2
ψA1 (−P1)γ

0eqMµAµ(q)ψA2 (P2), (74)

where

x0 = µ(m2 +
1

4
q2)−1/2(1− v2)−1/2 (75)

with

Mµ = γµ

 q2(q2 + 4m2)

(P 2
1 +M2

1 − iε)(P 2
2 +M2

2 − iε)
f1 +

q2/4m2

1 + q2

4m2 (1− v2)
+

4f3
x2

(
(M2

1 −m2)(M2
2 −m2)

(P 2
1 +M2

1 − iε)(P 2
2 +M2

2 − iε)
− 1

)]
+

{2mf4 [(m+ γP1)γ
µ + γµ(m+ γP2)] + f5(m+ γP1)γ

µ(m+ γP2)} ×

1

(P 2
1 +M2

1 − iε)(P 2
2 +M2

2 − iε)
. (76)

where f1 nd f3 are extracted form eq. (71). To find the extraction, we substitute the
equality

4m2 =
[
4m2 + q2(1− v2)

]
− q2(1− v2) =

4

x2
(M2

1 −m2)(M2
2 −m2)(q2 − 4m2)−1 − q2(1− v2) (77)
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into eq. (71). Then f1 is identified as the coefficient of q2 in eq. (71) and f3 as the
coefficient of

4

x2
(M2

1 −m2)(M2
2 −m2)(q2 − 4m2)−1. (78)

Then,

f1 = −(1 + x)(1 + v2)β−1 − 3

2
x2(1− v2)(1 + xv2)β−2 (79)

f3 = −(1 + x− x2)β−1 − 3

2
x3(1− v2)β−2. (80)

Till this moment we do not discuss the contact terms. They are determined as it
is known by the special physical conditions. Here the contact terms are −4f3/x

2 and
f2, f3 in the expression for Mµ. The former was determined by the physical situation
of non external electromagnetic influence, i.e. J = 0 and zero vacuum amplitude (74).
The contact term f2 is determined by te requirement that for real external electrons
γP1 = γP2 = −m2, eq. (74) with ψA → ψ reproduces the ordinary electric form factor
(f3, f4, f5 terms vanish). The contact term f3 was derived from identification of eq. (41)
with eq. (43) with P → P − eqA, by the identification of their linear parts in A. The
explicit form of f2 is found to be

f2 =
−6(1 + x)v2

xβ
. (81)

The basic structure, which appears in the imaginary part calculation of the cross section
is Mµ multiplied by the propagator (m−γp)(p2 +m2− iε)−1, where p is P2 in one vacuum
term and P1 in the other term. Then,

1

π
Im (G+M

µ) =

m− γP1

(M2
1 −m2)(M2

2 −m2)
γµq2(q2 + 4m2)f1

[
δ(P1 +m2)− δ(P 2

1 +M2)
]

+

(m− γP1)γ
µ q2

4m2
f2

(
1 +

q2

4m2
(1− v2)

)−1
δ(P 2

1 +m2) −

(m− γP1)γ
µ4f3x

−2δ(P 2
1 +M2

1 ) +

2mf4γ
µ(M2 −m2)−1δ(P 2

1 +M2
1 ) + (P1 ↔ P2,M1 ↔M2) (82)

The f5 term in Mµ did not enter in (82) because of the projection factors associated
with it. The f4 term is not infrared singular, so, as a purely inelastic contribution, it may
be dropped. The major contribution comes from f1 which is unification of elastic-inelastic
structure and it is not infrared sensitive.
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The x-integration limits for the inelastic contribution are given by (x0 ≤ x ≤ x1)

x0 =
µ

m

[
(1− v2)

(
1 +

q2

4m2

)]−1/2
(83)

x1 =
δM

m

1 +
q2

4m2
− v

[
q2

4m2

(
1 +

q2

4m2

)]1/2
−1

. (84)

So, finally , if we express the contribution to the cross section by δ4 in analogy with
the previous text, we have:

δ4 = − α

2π

∫ 1

−1

dv

2

(∫ ∞
x1

4q2f1
x2[4m2 + q2(1− v2)]

+

∫ ∞
0

(q2/4m2)f2

1 + q2

4m2 (1− v2)
−
∫ x1

x0

4f3
x2

 xdx

β1/2
=

−2α

π

ln
2δM

µ
− 1 +

q2

4m2

∫ 1

0
dv

1

1 + q2

4m2 (1− v2)
×

[
(1 + v2) ln

(
δM

4m

(1− v2)3/2

v2

)
+

1

2
+ v2

]}
(85)

where we have used the identity

∫ 1

−1

dv

2

1 + v2

1 + q2

4m2 (1− v2)
×

ln

1 +
q2

4m2
− v

[
q2

4m2

(
1 +

q2

4m2

)]1/2 =

∫ 1

0
dv

1

1 + q2

4m2 (1− v2)

(
(1 + v2) ln

2v2(1 + v)

(1− v)3/2
− v − v2

)
(86)

in the derivation of δ4 and this identity obtained from (4-5.104) and (4-12.42) in text by
Schwinger (1973).

8 The linear term. The magnetic part

The corresponding vertex correction in this case is the magnetic part of vacuum amplitude
(65). The magnetic vertex is not infrared singular and therefore to one order of
approximation in δM , the inelastic contributions may be neglected. The correction
reduces to the ordinary magnetic form factor and the vacuum amplitude is of the form:

〈0+|0−〉 =
iα

2π

∫
(dx)(dx′)(dx′′)

14



{
ψ1(x)γ0eqγA(x)G+(x− x′) eq

2m

1

2
σµνψ2(x

′)F2(x
′ − x′′)Fµν(x′′) +

Fµν(x
′′)F2(x

′′ − x)ψ1(x)γ0
eq

2m

1

2
σµνG+(x− x′)eqγA(x′)ψ2(x

′)
}
, (87)

where the magnetic form factor is given by de Raad et al.(1972)

F2(q) =
∫ 1

0
dv

1

1 + q2

4m2 (1− v2)
. (88)

From the amplitude (87) then can be deduced the cross section of the form(
dσ

dΩ

)
mag

=
αm

32π3
F2(q)

{
u∗pσqγ

0 e

2m
σµνFµν(−q)(m− γp′)eqγA(q)upσq +

u∗pσqγ
0eqγA(−q)(m− γp′) e

2m
σµνFµν(q)upσq

}
(89)

9 Discussion

We have presented here some new methods for calculating the radiative corrections for
the scattering of an electron by an external electromagnetic field. This work differs from
previous efforts’ on the subject because it is formulated within Schwinger’s source theory.
But an additional important difference is that the conventional separation of elastic and
inelastic (electron plus soft photon) processes is avoided. In such a way we obtained a
reduction of calculation, relative to the conventional approach, and some standard infrared
divergences are absent.

Our method combines a given elastic contribution with a corresponding inelastic
contribution, and in such sums infrared sensitivity never occurs.

But there are also infrared-sensitive inelastic contributions that occur separately. In
these terms we must insert a photon mass, then vanishing when all such purely inelastic
contributions are explicitly summed.

Let us summarize the final results. We have yet mentioned that the complete formula
of the cross section is of the form

dσ

dΩ
= (1− δ)

(
dσ

dΩ

)
Born

+

(
dσ

dΩ

)
mag

, (90)

where (dσ/dΩ)mag is given by eq. (84) and δ is the sum of δ1, δ2, δ3 and δ4, and it is
explicitly equal to

δ =
α

2π

q2

m2

∫ 1

0
dv

1

1 + q2

4m2 (1− v2)
×
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[
(1 + v2) ln

(
4m

δM

v2

(1− v2)3/2

)
− 1− 5

2
v2 +

1

3
v4
]
. (91)

After evaluation of the v-integral we get (Schwinger, 1973).

δ = −2α

π

{
−19

18
+

4

3

m2

q2
+ ln

m

2δM
−

2m2

q2
ζ

[
−4

3

m2

q2
+

11

6
+

19

6

q2

4m2
−
(

1 +
q2

2m2

)
ln

m

2δM

]
ln

1− ζ
1 + ζ

+

3

2

(
2m2

q2 + 1

)
ζ

[
−f

(
2ζ

1− ζ

)
+ f

(
− 2ζ

1− ζ

)
+

4

3
f(ζ)− 4

3
f(−ζ)

]}
, (92)

where

ζ2 =
q2

4m2 + q2
(93)

and f(x) is the Spence function (Berestetskii et al, 1982) defined as

f(x) = −
∫ x

0

dt

t
ln |1− t| (94)

The non relativistic and ultra-relativistic asymptotic forms are

δnonrel. = − α

2π

q2

m2

(
4

3
ln

2δM

m
− 31

90

)
;

q2

m2
� 1 (95)

and

δultra−rel. =
2α

π

[(
ln

q2

m2
− 1

)(
ln

4m

δM
− 19

12

)
− 19

36
+

3

4

(
ln

q2

4m2

)2

+ 3(ln 2)(1− ln 2)

 ;
q2

m2
� 1. (96)

In the non-relativistic limit the magnetic cross section reduces to the Born cross section
multiplied by a factor

δ + δmag = −2α

3π

q2

m2

(
ln

2δM

m
− 19

30

)
, (97)

where

δmag =
α

4π

q2

m2
. (98)

In this limit δM = δE. Let us remark that during calculation we have not considered
such effect as recoil which requires together other effect more further work.

16



References

Akhiezer, A. I. and Berestetskii, V. B., Quantum Electrodynamics (Wiley, New York,
1965)

Berestetskii, V. B., Lifschitz, E. M., and Pitaevskii, L. P. Quantum Electrodynamics,( 2nd
ed. Oxford, England: Pergamon Press, p. 596, 1982).

DeRaad, L L. Jr, Ivanetich, R. J., Milton, K. A. and Tsai, W. Y. (1972).
Radiative Corrections for Electron Scattering in an External Field -
A New Method of Calculation, Phys. Rev., D 5, No. 2, 358-76.

Schwinger, J. (1949). On the Classical Radiation of Accelerated Electrons,
Phys. Rev. 75, No. 12, 1912.

Schwinger, J. Particles and Sources,
(Gordon and Breach, Science Publishers, New york, London, Paris, 1969 ).

Schwinger, J. it Particles, Sources and Fields I.,
(Addison-Wesley Publishing Company, Reading, Mass. 1970 ).

Schwinger, J. Particles, Sources and Fields II., (Addison-Wesley Publishing Company,
Reading, Mass. 1973).

Schwinger, J. Particles, Sources, and Fields, III., (AddisonWesley, Heading, Mass. 1989).

17


