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Abstract. In this brief note, we give three operational formulas that
involve Bessel numbers. To the best of our knowledge, these formulas
are new. We also derive another probably unknown formula from them.
Finally, we present an example of application of one of these formulas.
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1 Introduction

1.1 Main results

It is well known that [5]:

(1) (xp)n =

n∑
k=0

S(n, k)xkpk

where S(n, k) are the Stirling numbers of the second kind and p = d
dx is

the derivative operator.
In an attempt to obtain integral analogs of (1), we discovered the formulas:

(2) I(xI)n−1[f(x)] =

n−1∑
k=0

(−1)ka(n− 1, k)xn−k−1Fn+k[f(x)] +

n−1∑
k=0

ck
x2k

(2k)!!

(3) p−1(xp−1)n−1[f(x)] = ∆qn[f(x)]

(4)

qn[f(x)] =

n−1∑
k=0

(−1)ka(n− 1, k)xn−1−kFn+k[f(x)]−
n−1∑
k=1

qn−k[f(x)](x0)
x2k

(2k)!!

(5) (x−1p)n =
n−1∑
k=0

(−1)ka(n− 1, k)x−n−kpn−k

where I =
∫
. dx, p−1 =

∫ x
x0

. dx, ∆[f(x)] = f(x) − f(x0), the ck’s are

constants of integration, and Fn[f(x)] called the primitive of order n of
1
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f(x) is the expression of the n-th indefinite integral of the function f(x)
excluding the constants of integration, that is, the case where the constants
of integration are zero, it is given by the following formula (see [3]) :

(6) Fn[f(x)](x) =
xn−1

(n− 1)!

n−1∑
k=0

(
n− 1

k

)
F1[x

kf(x)](x)

(−x)k

Another formula which is the result of combining formula (2) with formula
(5) is:

(7) I =
n−1∑
k=0

n∑
j=0

(−1)k+ja(n− 1, k)a(n, j)x−n−kpn−kxn−jFn+j

where I stands for the identity operator.

We note that the numerical coefficients in formulas (2), (4), (5), and (7)
are the Bessel coefficients [1], we also note that we can transform these
coefficients into the Bessel numbers using relations (11) and (13).

We shall present the proofs in detail in Section 2. In Section 3, we see an
interesting example of application of formula (3).

1.2 Bessel numbers

The Bessel numbers are reparametrized coefficients of Bessel polynomi-
als. Choi and Smith [1] were the first to investigate these numbers from a
combinatorial point of view; later, Han and Seo [4] showed that the Bessel
numbers satisfy two properties of Stirling numbers: The two kinds of Bessel
numbers are related by inverse formulas, and both Bessel numbers of the
first kind and those of the second kind form log-concave sequences. Yang
and Qiao [8] investigated Bessel numbers and Bessel matrices using expo-
nential Riordan arrays and showed that Bessel numbers are a special case of
the degenerate Stirling numbers. In 2022, Stenlund [7] gave new proofs for
two identities that connect a sum containing both kinds of Stirling numbers
with either the first or the second kind of Bessel numbers. In this note, we
further contribute to establishing some operational formulas involving the
Bessel numbers.

Recall that the Bessel polynomials yn(x) are the unique polynomial solu-
tions to the second-order differential equation

(8) x2y′′n + 2(x+ 1)y′n = n(n+ 1)yn

with the normalization yn(0) = 1.
From the differential equation (8) one can easily derive the formula:

(9) yn(x) =
n∑

k=0

(n+ k)!

2kk!(n− k)!
xk
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Let a(n, k) denote the coefficient of xk in the polynomial yn(x) [1, 6]. Set:

(10) b(n, k) :=

{
(−1)n−k(2n−k−1)!
2n−k(n−k)!(k−1)!

, if 1 ≤ k ≤ n

0, if 0 ≤ n < k

that is :

(11) b(n, k) = (−1)n−k a(n− 1, n− k)

We call the number b(n, k) a Bessel number of the first kind. By conven-
tion, we put b(0, k) = δ0,k, where δ is the Kronecker delta.

The Bessel numbers of the second kind B(n, k) are given by :

(12) B(n, k) :=

{
n!

2n−k(2k−n)!(n−k)!
, if ⌈n2 ⌉ ≤ k ≤ n

0, otherwise

It is easily checked that:

(13) B(n, k) = a(k, n− k)

2 Proofs

Lemma 2.1. Let n ∈ N∗. For all 1 ≤ k ≤ n we have:

(14) a(n, k) =

min(k,n−1)∑
i=0

(n− i)(k−i) a(n− 1, i)

where x(n) represent the falling factorial x(x− 1) . . . (x− n+ 1).

Proof. We have to show first the case where k ≤ n−1, meaning the formula:

(15) ∀ 1 ≤ k ≤ n− 1, a(n, k) =

k∑
i=0

(n− i)(k−i) a(n− 1, i)

By induction.
1. Base case: verify true for k = 1.

a(n, 1) =
1∑

i=0

(n− i)(1−i) a(n− 1, i) =
n(n+ 1)

2

2. Induction hypothesis: assume the statement is true until k.

a(n, k) =
k∑

i=0

(n− i)(k−i) a(n− 1, i)

3. Induction step : we will show that this statement is true for (k + 1).
We have to show the following statement to be true:
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a(n, k + 1) =

k+1∑
i=0

(n− i)(k+1−i) a(n− 1, i)

From [2], p. 23, we have:

(16) ∀ 1 ≤ k ≤ n− 1, a(n, k) = a(n− 1, k) + (n− k + 1) a(n, k − 1)

Hence

a(n, k + 1) = a(n− 1, k + 1) + (n− k) a(n, k)

= a(n− 1, k + 1) + (n− k)

k∑
i=0

(n− i)(k−i) a(n− 1, i)

= a(n− 1, k + 1) +
k∑

i=0

(n− i)(k+1−i) a(n− 1, i)

=

k+1∑
i=0

(n− i)(k+1−i) a(n− 1, i)

which completes the induction.
The case k = n may be proven by observing that a(n, n) = a(n, n − 1)

[2]. □

Lemma 2.2. Let (α, β) ∈ N2, we have:

(17) IxαFβ =
α∑

k=0

(−1)kα(k)xα−kFβ+k+1 + C

where C is a constant of integration.

Proof. 1. Base case: verify true for α = 0.

Ix0Fβ = Fβ+1 + c =

0∑
k=0

(−1)k0(k)x0−kFβ+k+1 + c

2. Induction hypothesis : assume the statement is true until α.

IxαFβ =

α∑
k=0

(−1)kα(k)xα−kFβ+k+1 + C

3. Induction step : we will show that this statement is true for (α+ 1).
We have to show the following statement to be true:

Ixα+1Fβ =
α+1∑
k=0

(−1)k(α+ 1)(k)xα−k+1Fβ+k+1 +D

where D is a constant of integration.
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Applying integration by parts, we have:

Ixα+1Fβ = xα+1Fβ+1 − (α+ 1)IxαFβ+1 +K

= xα+1Fβ+1 − (α+ 1)

(
α∑

k=0

(−1)kα(k)xα−kFβ+k+2 + C

)
+K

= xα+1Fβ+1 +

α∑
k=0

(−1)k+1(α+ 1)(k+1)xα−kFβ+k+2 +D

= xα+1Fβ+1 +

α+1∑
k=1

(−1)k(α+ 1)(k)xα−k+1Fβ+k+1 +D

=
α+1∑
k=0

(−1)k(α+ 1)(k)xα−k+1Fβ+k+1 +D

Hence, the lemma is proven by induction. □

Theorem 2.3. Let f(x) be a function of x, for any n ∈ N∗ we have that:

(18) I(xI)n−1[f(x)] =

n−1∑
k=0

(−1)ka(n−1, k)xn−k−1Fn+k[f(x)]+

n−1∑
k=0

ck
x2k

(2k)!!

Proof. 1. Base case: verify true for n = 1.

I = F1 + c0 =

0∑
k=0

(−1)ka(0, k)x0−kF1+k +

0∑
i=0

ci
x2i

(2i)!!

2. Induction hypothesis : assume the statement is true until n.

I(xI)n−1 =
n−1∑
k=0

(−1)ka(n− 1, k)xn−k−1Fn+k +
n−1∑
k=0

ck
x2k

(2k)!!

3. Induction step : we will show that this statement is true for (n+ 1).
We have to show the following statement to be true:

I(xI)n =
n∑

k=0

(−1)ka(n, k)xn−kFn+k+1 +
n∑

k=0

bk
x2k

(2k)!!

By applying the induction hypothesis,

I(xI)n = (Ix)I(xI)n−1

=

n−1∑
k=0

(−1)ka(n− 1, k)Ixn−kFn+k +

n−1∑
i=0

ci
Ix2i+1

(2i)!!
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Using Lemma 2.2, we have :

Ixn−kFn+k =

n−k∑
i=0

(−1)i(n− k)(i)xn−k−iFn+k+i+1 + C

Substituting back and simplifying, we get:

I(xI)n =
n−1∑
k=0

n−k∑
i=0

(−1)k+i(n− k)(i)a(n− 1, k)xn−k−iFn+1+k+i +D +
n∑

k=1

ck−1
x2k

(2k)!!

Setting j = k + i in the double sum, we get:

I(xI)n =

n−1∑
k=0

n∑
j=k

(−1)j(n− k)(j−k)a(n− 1, k)xn−jFn+1+j +D +

n∑
k=1

ck−1
x2k

(2k)!!

Now we need to invert the order of summation. We have:

(19)
n−1∑
i=0

n∑
j=i

ai,j =
n∑

j=0

min(j,n−1)∑
i=0

ai,j

Hence, applying this formula to interchange the order of summation, we
get,

I(xI)n =
n∑

j=0

(−1)j

min(j,n−1)∑
k=0

(n− k)(j−k) a(n− 1, k)

xn−jFn+1+j +D +
n∑

k=1

ck−1
x2k

(2k)!!

Using Lemma 2.1, we get,

I(xI)n =

n∑
j=0

(−1)ja(n, j)xn−jFn+1+j +D +

n∑
k=1

ck−1
x2k+1

(2k)!!

Also, let us consider the set of constants bi such that b0 = D and, for
i ≥ 1, bi = ci−1. Hence,

I(xI)n =
n∑

j=0

(−1)ja(n, j)xn−jFn+1+j +
n∑

k=0

bk
x2k

(2k)!!

Therefore, the theorem is proven by induction. □
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It can also be proven that:

(20) (Ix)n[f(x)] =
n∑

k=0

(−1)ka(n, k)xn−kFn+k[f(x)] +
n−1∑
k=0

ck
x2k

(2k)!!

Lemma 2.4. Let (α, β) ∈ N2. We have:

(21) p−1xαFβ = ∆
α∑

k=0

(−1)kα(k)xα−kFβ+k+1

Proof. 1. Base case: verify true for α = 0.

p−1x0Fβ = ∆
0∑

k=0

(−1)k0(k)x0−kFβ+k+1

2. Induction hypothesis : assume the statement is true until α.

p−1xαFβ = ∆
α∑

k=0

(−1)kα(k)xα−kFβ+k+1

3. Induction step : we will show that this statement is true for (α+ 1).
We have to show the following statement to be true:

p−1xα+1Fβ = ∆
α+1∑
k=0

(−1)k(α+ 1)(k)xα+1−kFβ+k+1

Applying integration by parts, we have:

p−1xα+1Fβ = ∆xα+1Fβ+1 − (α+ 1)p−1xαFβ+1

= ∆xα+1Fβ+1 − (α+ 1)∆

α∑
k=0

(−1)kα(k)xα−kFβ+k+2

= ∆xα+1Fβ+1 +∆

α∑
k=0

(−1)k+1(α+ 1)(k+1)xα−kFβ+k+2

= ∆xα+1Fβ+1 +∆

α+1∑
k=1

(−1)k(α+ 1)(k)xα−k+1Fβ+k+1

= ∆

α+1∑
k=0

(−1)k(α+ 1)(k)xα+1−kFβ+k+1

Hence, the lemma is proven by induction. □
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Theorem 2.5. Let f(x) be a function of x, for any n ∈ N∗ we have that:

(22) p−1(xp−1)n−1[f(x)] = ∆qn[f(x)]

where:

(23) qn[f(x)] =
n−1∑
k=0

(−1)ka(n−1, k)xn−1−kFn+k−
n−1∑
k=1

qn−k[f(x)](x0)
x2k

(2k)!!

Proof. 1. Base case: verify true for n = 1.

p−1[f(x)] = ∆q1[f(x)]

2. Induction hypothesis : assume the statement is true until n.
3. Induction step : we will show that this statement is true for (n+ 1).
We have to show the following statement to be true:

p−1(xp−1)n[f(x)] = ∆qn+1[f(x)]

where

qn+1[f(x)] =
n∑

j=0

(−1)ja(n, j)xn−jFn+1−j [f(x)]−
n∑

k=1

qn+1−k[f(x)](x0)
x2k

(2k)!!

By applying the induction hypothesis,

p−1(xp−1)n = p−1x∆qn

= p−1xqn − p−1xqn(x0)

=
n−1∑
k=0

(−1)ka(n− 1, k)p−1xn−kFn+k −
n−1∑
k=0

qn−k(x0)
p−1x2k+1

(2k)!!
− p−1xqn(x0)

Using Lemma 2.4, we have:

p−1xn−kFn+k = ∆
n−k∑
i=0

(−1)i(n− k)(i)xn−k−iFn+k+i+1

Substituting back and simplifying, we obtain :

p−1(xp−1)n = ∆
n−1∑
k=0

n∑
j=k

(−1)j(n− k)(j−k)a(n− 1, k)xn−jFn+1−j −∆
n∑

k=1

qn+1−k(x0)
x2k

(2k)!!

Applying formula (19) and Lemma 2.1 we get :
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p−1(xp−1)n = ∆

n∑
j=0

(−1)ja(n, j)xn−jFn+1−j −∆

n∑
k=1

qn+1−k(x0)
x2k

(2k)!!

The case for (n+1) is proven. Hence, the theorem is proven by induction.
□

Theorem 2.6. Let n ∈ N∗ we have that:

(24) (x−1p)n =
n−1∑
k=0

(−1)k a(n− 1, k)x−n−kpn−k

Proof. A proof can be done by simple induction using the following rule
taken from [2], p. 23:

(25) ∀ 1 ≤ k ≤ n− 1, a(n, k) = a(n− 1, k) + (n+ k − 1) a(n− 1, k − 1)

□

Corollary 2.6.1. For all n ∈ N∗ we have that:

(26) I =
n−1∑
k=0

n∑
j=0

(−1)k+ja(n− 1, k)a(n, j)x−n−kpn−kxn−jFn+j

where I is the identity operator.

Proof. Applying formula (24) to the formula (20), we obtain the above for-
mula. □

3 An example of application

In this section, we prove the following result:

Result 1. For all n ∈ N∗, we have :

(27)
∞∑
k=0

(−1)k

2n(2k + 1)(k + 1)(k + 2) · · · (k + n)
=

π

4

n−1∑
k=0

(−1)ka(n−1, k)xn−1−kαn+k(1)

−ln (2)
n−1∑
k=0

(−1)ka(n−1, k)xn−1−kβn+k(1)+
n−1∑
k=0

(−1)ka(n−1, k)xn−1−kγn+k(1)

where αn, βn and γn are the polynomials associated with the n-th primitive
of arctanx.
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Proof. We begin by using the formula :

(28) p−1(xp−1)n−1[arctanx] =

n−1∑
k=0

(−1)ka(n− 1, k)xn−1−kFn+k[arctanx]

−
n−2∑
k=0

a(k, k)F2k+1[arctanx](0)
x2(n−k−1)

(2(n− k − 1))!!

which results from formula (22) by setting x0 = 0 and f(x) = arctanx.
Since the formula contains Fn[arctanx], we first have to calculate it, we
have:

F0[arctanx](x) = arctanx

F1[arctanx](x) = x arctanx− 1

2
ln(1 + x2)

F2[arctanx](x) =

(
x2

2
− 1

2

)
arctanx− x

2
ln(1 + x2) +

x

2

F3[arctanx](x) =

(
x3

6
− x

2

)
arctanx−

(
x2

4
− 7

12

)
ln(1 + x2) +

5x2

12

F4[arctanx](x) =

(
x4

24
− x2

4
+

25

24

)
arctanx−

(
x3

12
− 7x

12

)
ln(1 + x2) +

(
x3

24
− x

24

)
This data suggests that:

Fn[arctanx](x) = αn(x) arctanx− βn(x) ln (1 + x2) + γn(x)

where αn, βn and γn are found using formulas (6), (31) and (32), so the
right-hand side of (28) will be equal to :

arctanx

n−1∑
k=0

(−1)ka(n−1, k)xn−1−kαn+k(x)−ln (1 + x2)

n−1∑
k=0

(−1)ka(n−1, k)xn−1−kβn+k(x)

+

n−1∑
k=0

(−1)ka(n− 1, k)xn−1−kγn+k(x)

and the left-hand side equals :

p−1(xp−1)n−1[arctanx] =

∞∑
k=0

(−1)k

2k + 1
p−1(xp−1)n−1(x2k+1) =

∞∑
k=0

(−1)kx2k+2n

2n(2k + 1)(k + 1)(k + 2) · · · (k + n)

for all |x| ≤ 1.
Finally, it remains to replace x by 1 in both sides to get the desired

formula. □
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4 Appendix

We prove the following two propositions:

Proposition 1. For all n ∈ N∗, we have :

(29) F1

(
x2n+1

1 + x2

)
=

1

2

(
(−1)n ln(1 + x2) +

n∑
k=1

(−1)n−k x
2k

k

)

(30) F1

(
x2n

1 + x2

)
= (−1)n arctanx+

n∑
k=1

(−1)n−k x2k−1

2k − 1

Proof. It can easily be checked that the two formulas are correct for n = 1.
Suppose that they are correct for n, and let us prove them correct for n+1.
We have:

F1

(
x2n+3

1 + x2

)
= F1 x2n+1 − F1

(
x2n+1

1 + x2

)
=

x2n+2

2n+ 2
− 1

2

(
(−1)n ln(1 + x2) +

n∑
k=1

(−1)n−k x
2k

k

)

=
1

2

(
(−1)n+1 ln(1 + x2) +

n+1∑
k=1

(−1)n+1−k x
2k

k

)

F1

(
x2n+2

1 + x2

)
= F1 x2n − F1

(
x2n

1 + x2

)
=

x2n+1

2n+ 1
− (−1)n arctanx−

n∑
k=1

(−1)n−k x2k−1

2k − 1

= (−1)n+1 arctanx−
n+1∑
k=1

(−1)n+1−k x2k−1

2k − 1

The proposition is proven by induction. □

Proposition 2. For all n ∈ N∗, we have :

(31)

F1(x
2n arctanx) =

1

2n+ 1

(
x2n+1 arctanx− (−1)n

2
ln(1 + x2)−

n∑
k=1

(−1)n−k x
2k

2k

)
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(32)

F1(x
2n−1 arctanx) =

1

2n

((
x2n − (−1)n

)
arctanx−

n∑
k=1

(−1)n−k x2k−1

2k − 1

)
Proof. The above formulas are obtained using integration by parts and for-
mulas (29) and (30). □
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Université Ibn Zohr, Faculté des Sciences, Agadir, Maroc; abdelhayben-
moussa93035@gmail.com

https://oeis.org/A001498
https://oeis.org/A001498
mailto:abdelhaybenmoussa93035@gmail.com
mailto:abdelhaybenmoussa93035@gmail.com

	Introduction
	Main results
	Bessel numbers

	Proofs
	An example of application
	Appendix

