
Proof of the Hardy-Littlewood K-tuple
Conjecture in the Distribution of Numbers

Coprime with the Primorial

Tim Samshuijzen

TimSamshuijzen@gmail.com

Wageningen, Netherlands

January 2025

Abstract

In the symmetries in the numbers that are coprime with the primorial we find
proof of the existence of infinitely many twin primes and prime k-tuples. By
using sieving methods we derive three main results, that together prove the
Hardy-Littlewood K-tuple Conjecture and the Twin Prime Conjecture. The
first result is that we construct a primorial-based sieve and derive exact
formulae for the number of candidate k-tuples (candidate k-tuples are
constellations of numbers coprime with the primorial) per iteration of the
sieve, from which we derive the same formulation for the Twin Prime
Constant as Hardy and Littlewood using their circle method. The purpose of
the first result is to demonstrate that derivations from our sieve agree with
well-known results. The second result is that the average density of candidate
k-tuples in a region that spans (p2n+1 − p2n) increases with increasing n, where
pn is the n-th prime, implying that the K-tuple Conjecture is true if the
distribution of candidate prime k-tuples is uniform on average over n. The
third result is that we prove that the distribution of candidate k-tuples is
cryptographically guaranteed to be uniform on average over n, and show how
it is impossible for the sieve to sustain any bias toward localized elimination of
candidate primes ahead of p2n, even if we were to purposely tamper with the
candidate elimination process. We conclude that no matter how many times
you sieve, there will forever be new opportunities for candidate k-tuples to
survive the elimination process until p2n passes over. We conclude that Hardy
and Littlewood’s formulations of statistical predictions concerning prime
k-tuples and twin primes are correct.

1 Introduction

The Hardy-Littlewood K-tuple Conjecture stands as one of the most
long-standing problems in analytic number theory. Proposed by G. H. Hardy
and J. E. Littlewood in their 1923 paper Some problems of ‘Partitio
numerorum’; III: On the expression of a number as a sum of primes [1], as
part of their broader investigations into the distribution of primes, the

1

conjecture is a cornerstone of their circle method approach. It asserts that
given a set of k linear forms, where each form is n+ ai with distinct constants
a1, a2, . . . , ak, there are infinitely many integers n such that all k values
produced by these forms are simultaneously prime, provided there are no
inherent modular restrictions preventing this. In other words, it predicts the
asymptotic frequency with which certain patterns of primes appear.

In this paper, we present a proof of the Hardy-Littlewood K-tuple Conjecture.
The starting point of our proof is the definition of a sieve that generates all
the primes. Our approach is to represent the definition of the primes as a
system of information and computation. All information about the primes is
in some form present in the state space of a sieve, such that all provable truths
about primes must be derivable from its state space. We can transform or
dissect a sieve into other designs or representations, provided that information
is conserved and the system still generates the primes. The sieve we use as our
starting point, the bitstring sieve, is an abstract model of the most simple
digital computing machine that generates the primes, running the smallest
program of binary instructions, and given access to unlimited memory for
storing its internal state. We derived this minimal program from the
periodicities and symmetries observed in the sequence of least prime factors
(OEIS A020639). An Internet search reveals that the bitstring sieve is
equivalent to the sieve that was first and independently conceived by Pete
Quinn [2], who shared his design and idea in a thread on primegrid.com in
2011. No further reference to this particular design was found.

The bitstrings generated by the bitstring sieve is a description of the creation
and elimination of candidate primes, telling the story of how primes become
primes. Candidate primes are the numbers coprime with the primorial,
represented as bit value 1. The visual pattern of 1s in a bitstring show clearly
the periodicities and symmetries in the numbers coprime with the primorial.
These patterns, often called primorial patterns, are well known. Primorial
patterns are the symmetric and periodic patterns observed at the primorial
scale when generating the primes by means of a sieving process, such as with
the sieve of Eratosthenes. A practical application that utilizes primorial
patterns is, for example, the Sieve of Pritchard, or wheel sieve. Examples of
theoretical work on primorial patterns are: Dennis R. Martin’s Proofs
Regarding Primorial Patterns 2006 [3] and On the Infinite Series
Characterizing the Elimination of Twin Prime Candidates 2006 [4], Mario
Ziller’s On differences between consecutive numbers coprime to primorials 2020
[5], and Fred B. Holt’s Patterns among the Primes 2022 [6]. There exist many
more online resources about primorial patterns than cited here.

2 The Bitstring Sieve

Let us construct a sieve that generates all the primes. Let this sieve, which we
call the bitstring sieve, serve as our definition of the primes. The sieve is

2

https://oeis.org/A020639
https://www.primegrid.com/forum_thread.php?id=2991

defined as a recurrence relation such that its output is its input for the next
iteration.

Let S be the set of outputs generated by the bitstring sieve. In other words, S
represents the state space of the bitstring sieve. For each pn, where pn is the
n-th prime, there is a sequence Spn

∈ S:

S = {S2, S3, S5, S7, S11, . . . }

Each sequence Spn
is a bitstring, a finite-length sequence of binary digits

Spn
∈ {0, 1}∗.

Let a bitstring be noted as (b1, b2, · · · , bn), where each bi ∈ {0, 1} and n is the
length of the bitstring. For example, bitstring (1, 0, 0, 0, 1, 0) has length 6.

Notation:

• (b1, b2, · · · , bn): Represents individual bits in the bitstring.

• |s|: The length of the bitstring s.

• s[i]: The i-th bit in the bitstring s, where indexing starts from 1.

The bitstrings of S are generated by the following recurrence relation.

Initial condition:
Let S1 be the bitstring (1). S1 is not a member of S, but it serves to get the
recurrence relation started. We can regard 1 as the 0-th prime.

S1 = (1)

Recurrence relation:
Given bitstring Spn , where pn is the n-th prime, the next bitstring Spn+1 is
obtained by:

pn+1 = NEXT1(Spn
)

Spn+1
= AND(CONCAT (Spn

, pn+1), NOT (STRETCH(Spn
, pn+1)))

(1)

The set of functions NEXT1, AND, CONCAT , NOT and STRETCH is the
instruction set of the bitstring sieve. The instruction set is defined as follows:

NEXT
Let NEXT1(s) : {0, 1}k → Z be a function that takes as input bitstring s, and
returns the (1-based) index of the first occurrence of 1 in s after the first 1 at
index 1 (or the length of the bitstring s plus 1 if such an occurrence does not
exist), as defined in:

3

NEXT1(s) =

{
index of first 1 in s after index 1, if such 1 exists

|s|+ 1, otherwise

AND
Let AND(s1, s2) : {0, 1}k × {0, 1}k → {0, 1}k be a function that takes as input
bitstrings s1 and s2, where |s1| = |s2|, and returns a new bitstring with the
same length, where each bit is the result of the logical AND operator applied
to the corresponding bits in s1 and s2, as defined in:

OR(s1, s2) = (s1[1] ∧ s2[1], s1[2] ∧ s2[2], · · · , s1[|s1|] ∧ s2[|s2|])

Where ∧ represents the logical AND operator.

CONCAT
Let CONCAT (s, n) : {0, 1}k × Z → {0, 1}k×n be a function that takes as
input bitstring s and positive integer n > 0, and returns a new bitstring with
length n× |s|, filled with bits of s in modular fashion, as defined in:

CONCAT (s, n) = s ◦ s ◦ · · · ◦ s (n times)

Where ◦ denotes concatenation, such that the bitstring s is repeated n times,
and the result is a bitstring of length |s| × n.

NOT
Let NOT (s) : {0, 1}k → {0, 1}k be a function that takes as input bitstring s,
and returns a new bitstring with the same length, where each bit is the logical
inverse of corresponding bit in s, as defined in:

NOT (s) = (¬s[1],¬s[2], · · · ,¬s[|s|])

Where ¬ represents the logical NOT operator.

STRETCH
Let STRETCH(s, n) : {0, 1}k × Z → {0, 1}k×n be a function that takes as
input bitstring s and positive integer n > 0, and returns a new bitstring with
length n× |s|, where bits from s are mapped to a position n times farther than
their original position, and the positions in between are padded with 0s, as
defined in:

STRETCH(s, n) = (r[1], r[2], · · · , r[|s| × n])

Where:

4

r[i] =

{
s[in], if i is a multiple of n

0, otherwise

In words, the way the recurrence relation (1) works is as follows. Given a
bitstring Spn

, representing the n-th prime pn, the next bitstring Spn+1
of

prime pn+1 is obtained by executing a two-step process. The first step is to
determine the next prime pn+1, which is equivalent to locating the index of the
second occurrence of 1 in Spn , skipping the first 1 at index 1. (If such a 1 is
not found, which only happens when iterating from S1 to S2, and from S2 to
S3, then continue searching back from the start of the bitstring, where the first
bit is always 1.) The second step is to create the next bitstring Spn+1

, by
concatenating pn+1 copies of Spn

, and then for each 1 in the original Spn
, say

at index i, invert the 1 in Spn+1 that is at index pn+1 · i.

The first bitstrings generated by the recurrence relation are:

S2 = (1, 0)

S3 = (1, 0, 0, 0, 1, 0)

S5 = (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0)

S7 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, . . .)

Figure 1 shows a visualization of the operations performed when advancing
from bitstring S3 to bitstring S5. The 0s are represented as white squares, and
the 1s are represented as black squares (a convention used throughout this
paper). The numbers in the squares indicate the index of the bit in the
bitstring. A, B and C are intermediate registers to show what happens at each
step.

5

key

i white=0
i black=1
i index

S3

1 2 3 4 5 6

NEXT1(S3) = 5

A = CONCAT (S3, 5)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

B = STRETCH(S3, 5)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C = NOT (B)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S5 = AND(A,C)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 1: Recurrence relation applied to S3 to obtain S5

The 0s (the white squares) in a bitstring Spn
have indices that are not coprime

with pn#, which are either the numbers between 1 and pn, or the numbers we
call definite composites. The indices of the 1s (the black squares) in a bitstring
Spn are the numbers that are coprime with pn#. The 1s after index 1 represent
the candidate primes after prime pn. A candidate prime is either a composite,
in which case it will at some iteration be marked as a definite composite, or it
is a prime, in which case it will survive all the rounds of elimination until it is
found by the NEXT1 operation. The 1s in Spn

, in addition to being
candidate primes, serve as sources for generating and eliminating larger
candidate primes in subsequent bitstrings. Even if a candidate prime is a
composite, say at index c, it still serves its purpose as a generator of candidate
primes until Slpf(c), where lpf(c) is the least prime factor of c.

Equivalent to the recurrence relation in (1), bitstring Spn can be defined more
directly as follows:

Spn = (b1, b2, ..., bpn#)

Where pn# is the n-th primorial, and:

b[i] =

{
1, if i is coprime with pn#

0, otherwise

6

3 Macroscopic properties of the bitstrings in S

The length of bitstring Spn , where pn is the n-th prime, is equal to the
primorial function pn#, i.e. the product of all primes up to and including the
n-th prime.

|Spn
| = pn# =

n∏
i=1

pi (2)

The sequence of primorial numbers is listed in OEIS A002110.

In any bitstring Spn
for pn > 2, the index of the bit halfway the bitstring at

|Spn |
2 is Spn

’s index of symmetry. The index of symmetry always has 3 as its
least prime factor, and the pattern of 1s and 0s are always (modular-)
symmetrical on either side of this index. In other words, each bitstring in S is
palindromic. This is because each function (CONCAT , NOT , STRETCH
and AND) in the recurrence relation (1) maintains symmetry given symmetric
input.

A method for visualizing the overall structure and symmetry of the bitstrings
in S is to draw the bitstrings as rows of black and white squares, with each
bitstring scaled to equal width, and drawn beneath each other. The symmetry
in this fractal-like structure becomes apparent when aligning the indices of
symmetry in each bitstring, by simply shifting each bitstring by half a square
width to the right, in modular fashion (as if the structure is cylindrical). The
result is shown in Figure 2. Each horizontal row corresponds with a bitstring
in S. The first row is S2, the next row is S3, etc.

7

https://oeis.org/A002110

2 1 2

6 1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Figure 2: Fractal structure of the bitstrings in S

If the width of this fractal structure is set to a length of 1, then the height of
this structure is the sum of the reciprocals of the primorials, which converges
very rapidly to 0.70523....

∞∑
n=1

1

pn#
≈ 0.70523 · · ·

See the decimal expansion of this number in OEIS A064648. The heights of
the bitstrings after S7 are too small for print, so we represent this convergent
area at the bottom as a gray horizontal line. That gray line, slightly enlarged
to make it visible, contains all the bitsrings of S from S11 to infinity. The
surface of the bottom of this structure is undefined, as there is no such thing
as the largest prime.

4 Candidate prime k-tuples

Let us investigate the recurrence relation (1) and derive formulations for the
distribution of 1s in the bitstrings of S.

When iterating from Spn
to Spn+1

, the CONCAT function produces pn+1

times as many 1s as there are in Spn
, and the NOT -STRETCH operation

8

https://oeis.org/A064648

eliminates as many 1s as there are in Spn−1 . Therefore, the number of 1s in
Spn , which we write as pn#1, is equal to:

pn#1 =

n∏
i=1

(pi − 1) (3)

The sequence of pn#1 per n is listed in OEIS A005867.

pn#1 is related to Euler’s totient function ϕ as follows:

pn#1 =

n∏
i=1

(pi − 1)

=

n∏
i=1

pi

n∏
i=1

(
1− 1

pi

)

= pn#

n∏
i=1

(
1− 1

pi

)
= ϕ(pn#)

Let a candidate twin prime be a subsequence in a bitstring that matches
(1, 0, 1). The bitstrings of S are periodic over the entire number line, so we
include the candidate twin prime that would be formed when joining the ends
of a bitstring, forming the candidate twin prime at index 1 and index
(pn#− 1). When iterating from Spn to Spn+1 , the CONCAT function creates
pn+1 copies of the candidate twin primes in Spn

, and the NOT -STRETCH
operation eliminates 2 candidate twin primes for each candidate twin prime in
Spn

. The number of candidate twin primes in Spn
, denoted as pn#2, where

pn > 2, is as follows:

pn#2 =

n∏
i=2

(pi − 2)

If pn = 2 then pn#2 = 1, because in S2 we encounter (3, 5) when wrapping
around in modular fashion. The sequence of pn#2 per n is listed in OEIS
A059861.

In addition to counting the number of candidate twin primes, pn#2 also
counts the number of candidate cousin primes, i.e. occurrences of bit pattern
(1, 0, 0, 0, 1).

pn#2 can be written as:

9

https://oeis.org/A005867
https://oeis.org/A059861
https://oeis.org/A059861

pn#2 =

n∏
i=2

(pi − 2)

=

n∏
i=2

(pi −
2 · pi
pi

)

=

n∏
i=2

pi

n∏
i=2

(1− 2

pi
)

=
pn#

2

n∏
i=2

(1− 2

pi
)

The bit sequence (1,0,1,0,0,0,1,0,1) is a candidate prime quadruplet. For
example, this sequence can be found in S5 at index 11, corresponding with
prime quadruplet (11, 13, 17, 19), a constellation of the form
(p, p+ 2, p+ 6, p+ 8). This candidate prime sextuplet is copied 7 times into
S7, of which (7− (4 · 1)) = 3 survive, at indices 11, 101, 191. These 3 candidate
prime quadruplets are copied 11 times into S11, of which (33− (4 · 3)) = 21
survive. These 21 candidate prime sextuplets are copied 13 times into S13, of
which 189 survive. The number of candidate prime quadruplets in Spn

, where
pn > 4, denoted as pn#4, is as follows:

pn#4 =

n∏
i=3

(pi − 4)

If pn ≤ 4 then pn#4 = 1, because in S3 we encounter (5, 7, 11, 13), and in S2

we encounter (3, 5, 7, 9, 11). The sequence of pn#4 per n is listed in OEIS
A059863.

The bit sequence (1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1) is a candidate prime
sextuplet. For example, this sequence can be found in S5 at index 7,
corresponding with the prime sextuplet (7, 11, 13, 17, 19, 23), a constellation of
the form (p, p+ 4, p+ 6, p+ 10, p+ 12, p+ 16). This candidate prime sextuplet
is copied 7 times into S7, of which only 1 survives, at index 97. This candidate
prime sextuplet is copied 11 times into S11, of which 5 survive. These 5
candidate prime sextuplets are copied 13 times into S13, of which 35 survive.
The number of candidate prime sextuplets in Spn

, denoted as pn#6, where
pn > 6, is as follows:

pn#6 =

n∏
i=4

(pi − 6)

The sequence of pn#6 per n is listed in OEIS A059865.

10

https://oeis.org/A059863
https://oeis.org/A059863
https://oeis.org/A059865

The general pattern of candidate prime k-tuples is as follows:

Whatever sequence of 1s and 0s can be found in bitstring Spn
, all

occurrences of these sequences are copied pn+1 times into Spn+1 , and
subtracted as many times as the number of occurrences of these
sequences in the original Spn

multiplied by the number of 1s in the
common sequence.

The number of candidate prime k-tuples in bitstring Spn
, denoted as pn#k,

where k > 0, is as follows:

pn#k =

n∏
i=π(k+1)

(pi − k) (4)

For simplicity, from hereon in this paper we define a k-tuple as: a k-tuple is a
pattern that is counted by the function pn#k.

5 Density of candidate prime k-tuples and the
Twin Primes Constant

The average distance between the centers of two nearest candidate prime
k-tuples of type k > 0 in Spn

, denoted as Gpn,k, is as follows:

Gpn,k =
pn#

pn#k

=

∏n
i=1 pi∏n

i=π(k+1)(pi − k)

=
p(π(k+1)−1)# ·

∏n
i=π(k+1) pi∏n

i=π(k+1)(pi − k)

= p(π(k+1)−1)# ·
n∏

i=π(k+1)

pi
pi − k

= p(π(k+1)−1)# ·
n∏

i=π(k+1)

1

1− k
pi

(5)

Let Dpn,k be a measure for the average density of candidate prime k-tuples in
bitstring Spn

.

11

Dpn,k =
1

Gpn,k

=
pn#k

pn#

=
1

p(π(k+1)−1)#
·

n∏
i=π(k+1)

(1− k

pi
)

(6)

Although the number of candidate k-tuples in Spn
grows primorially with

increasing n for any k > 0, the density of candidate k-tuples tends to zero as n
goes to infinity. For any k > 0:

lim
n→∞

pn#k

pn#
= lim

n→∞

1

p(π(k+1)−1)#
·

n∏
i=π(k+1)

(1− k

pi
) = 0

On the topic of densities, let us consider the distribution of least prime factors
over the number line. Let Lpn

be the density of positive integers having pn as
its least prime factor. We can express Lpn

as follows:

Lpn =
pn−1#1

pn#
=

ϕ(pn−1#)

pn#

=

n∏
i=1

1

pi
·
n−1∏
i=1

(pi − 1)

=
1

pn − 1
·

n∏
i=1

pi − 1

pi

=
1

pn − 1
·

n∏
i=1

(1− 1

pi
)

Every positive integer has one least prime factor, therefore, the sum of
densities Lpn of all n > 0 is 1.

∞∑
n=1

pn−1#1

pn#
=

∞∑
n=1

(
1

pn − 1
·

n∏
i=1

(1− 1

pi
)

)
= 1 (7)

Where p0#1 = 1.

This expression further illustrates what happens during the elimination
process during sieving. At each iteration of the recurrence relation, a thin slice
of the candidate primes are eliminated from the concatenated bitstring. The
candidate primes eliminated are the composite numbers with the new prime as
its least prime factor. The pattern of eliminations is just a scaled up version of
the pattern of candidate primes in the previous bitstring, and just as
symmetric and uniform. The net result can be interpreted as follows:

12

During sieving, as the candidate primes are gradually and
macroscopic-uniformly being thinned out (become sparser), the net effect
is that the average distance between nearest candidate prime k-tuples
gradually increases, resulting in clusters of intact candidate prime
k-tuples, of which a deterministic number survive in the next iteration.

The rate of change in average distance between neighboring candidate k-tuples
depends on k because a candidate k-tuple has k chances of being eliminated
per iteration. To illustrate, a candidate single prime has one chance of being
eliminated per iteration, and a candidate twin prime has two chances of being
eliminated per iteration (and never a double hit in a single iteration). This
implies that, per iteration, the rate of change in distance between candidate
twin primes is proportional to the rate of change in distance between single
candidate primes squared. This is expressed as:

Gpn,2 ≈
G2

pn,1

2 · C2

Where C2 is Hardy-Littlewood’s Twin Primes Constant, and 2 is to align with
their formulation. Solving for C2 we obtain the original formulation of Hardy
and Littlewood.

C2 = lim
n→∞

1

2
·G2

pn,1 ·
1

Gpn,2

= lim
n→∞

1

2
·
(

pn#

pn#1

)2

· pn#2

pn#

= lim
n→∞

1

2
·
(n∏

i=1

pi
pi − 1

)2

· 2 ·
n∏

i=2

pi − 2

pi

≡
∞∏
i=2

pi
pi − 1

·
∞∏
i=2

pi
pi − 1

·
∞∏
i=2

pi − 2

pi

≡
∞∏
i=2

pi
pi − 1

·
∞∏
i=2

pi − 2

pi − 1

≡
∞∏
i=2

pi · (pi − 2)

(pi − 1)2

≡
∞∏
i=2

(
1− 1

(pi − 1)2

)
The decimal expansion (0.6601618 · · ·) of the Twin Primes Constant C2 is
listed in OEIS A005597. This result demonstrates that the distributions of
candidate k-tuples in the bitstrings of S are compatible with the results from
Hardy and Littlewood using their circle method.

13

https://oeis.org/A005597

region of
coprime ≡ prime

1 pn p2
n p2

n+1
pn+1 · pn+2

((((((((((((((

bitstring Spn

1 index of
symmetry pn#

Figure 3: p2n - the border between candidate primes and definite primes

6 At the border between candidate primes and
definite primes

The indices of the candidate primes (the 1s) in bitstring Spn
after index pn

and before p2n are the prime numbers between pn and p2n. These indices are
prime because in Spn the index of the first 1 that is composite is at p2n+1. The
next composite after that is at (pn+1 · pn+2), followed by either p2n+2 or
(pn+1 · pn+3). Figure 3 shows where this relatively microscopic region is
located in the overall bitstring.

When the sieve completes its iteration of generating bitstring Spn , then from
the sieve’s perspective, not yet knowing pn+1, the candidate primes between
pn and p2n are definite primes. For this reason, we say that p2n is the border
between the candidate primes and the definite primes, or the border of
candidate elimination. When observing bitstring Spn as n increases, the
border of candidate elimination travels with a velocity of p2n along the number
line, into a stationary and right-ward growing structure that is gradually and
symmetrically being thinned out. At each iteration, the border of candidate
elimination passes over a non-empty set of 1s, which in itself proves there are
infinitely many primes. As a demonstration of this method, the proof of the
infinitude of primes can be written as follows:

(Yet another) proof that there are infinitely many primes
The distance between p2n and p2n+1, or the sequence OEIS A069482, is
relatively smallest when pn and pn+1 are twin primes, at which point
the distance between p2n and p2n+1 is 4pn +4, or 4pn+1 − 4. A jump from
p2n to p2n+1 therefore always covers a distance of at least 4pn + 4. The
largest distance between candidate primes in Spn

is 2pn−1, and therefore
the lower bound of the number of candidate primes between p2n and
p2n+1 is at least 4pn+4

2pn−1
, which is at least 2. □

14

https://oeis.org/A069482

Alas, there is no equivalent and easy proof of the infinitude of twin primes.
For reference, the largest distance (from middle to middle) between candidate
twin primes in Spn

per n is listed in OEIS A144311 (plus 1). The largest
distance between candidate twin primes is not always smaller than 4p+ 4. For
example, in S17 the largest distance between candidate twin primes from
middle to middle is 108, which is greater than 192 − 172 = 72. However, the
average number of candidate twin primes per distance (p2n+1 − p2n) does
increase with increasing n.

If we assume the candidate twin primes are uniformly distributed throughout
Spn

, which on the macroscopic scale is so, we can estimate how many
candidate twin primes exist on average in a relatively microscopic region
between p2n and p2n+1. We express this as follows:

π2(p
2
n+1)− π2(p

2
n) ≈

(p2n+1 − p2n)

2
·

n∏
i=2

pi − 2

pi

Where π2(x) is the number of twin primes less than x.

If the distribution of candidate twin primes in the bitstrings is uniform on
average then we can expect:

lim
n→∞

π2(p
2
n+1)− π2(p

2
n)

(p2
n+1−p2

n)

2 ·
∏n

i=2
pi−2
pi

= 1 (8)

In general, if the candidate primes and candidate k-tuples are on average
uniformly distributed throughout Spn

, the average number of candidate prime
k-tuples of type k between p2n and p2n+1, denoted as Ak,pn

, is as follows:

πk(p
2
n+1)− πk(p

2
n) ≈ Ak,pn

Ak,pn =
p2n+1 − p2n
Gpn,k

=
p2n+1 − p2n

pn#
pn#k

= (p2n+1 − p2n) ·
pn#k

pn#

=
p2n+1 − p2n

p(π(k+1)−1)#
·

n∏
i=π(k+1)

pi − k

pi

(9)

Where πk(x) is the number of prime k-tuples of type k less than x (more
precise: k-tuples having a center index less than x).

15

https://oeis.org/A144311

Ak,pn increases with increasing n, albeit slowly for large k. On average,
according to Ak,pn , a region swept by p2n at each iteration captures ever more
candidate prime k-tuples with increasing n. This means that, on average, if we
assume uniform distribution of candidate k-tuples in Spn

, that at each
iteration of the recurrence relation ever more candidate prime k-tuples become
definite prime k-tuples. This is expressed as follows. For any k-tuple k > 0:

lim
n→∞

Ak,pn = lim
n→∞

(
p2n+1 − p2n

p(π(k+1)−1)#
·

n∏
i=π(k+1)

pi − k

pi

)
= ∞ (10)

This result in itself is not yet a strong proof of the K-tuple Conjecture because
it makes assumptions about the uniformity of the distribution of candidate
prime k-tuples in a relatively microscopic region of a bitstring. For each k we
know exactly how many candidate prime k-tuples exist in Spn , but these
numbers do not tell us their exact locations. We know the constellations are
distributed uniformly at the macroscopic level, by definition, and we know the
constellations are stationary structures relative to the number line, but we
have not explicitly disproved the possibility that after some large prime there
somehow emerges some rogue wave of bias toward eliminating candidate prime
k-tuples of type k ahead of p2n. To investigate whether such phenomena are
even possible in the sieve’s mechanism, let us extend the bitstring model, as to
study more deeply the symmetries in the process of eliminating candidate
primes, as to better understand what is happening during the
NOT -STRETCH operation. Our goal from here is to isolate the ”candidate
eliminator” as a mathematical object, dissected away from the candidate
primes. Our goal is to discover which parameters play a defining role, and
investigate whether there theoretically exists the possibility for the emergence
of a sustained rogue wave of bias toward eliminating all k-tuples of type k
ahead of p2n. Note that we are free to change the design or representation of a
prime-generating sieve or recurrence relation, provided that the information in
its instructions and state is conserved.

7 The Bitmatrix Sieve

A bitstring Spn can be shaped into a pn × pn−1# matrix. Such a matrix we
call a bitmatrix. The benefit of this extra dimension is that it reveals more
clearly the symmetries in the process of eliminating candidate primes, and how
this relates to the residue systems encoded in the bitstrings.

Let M be the set of bitmatrices formed from the bitstrings in S. As an
example, the bitmatrices M5 and M7 are shown in Figure 4. Zooming out, we
can just about get bitmatrix M11 in view, as shown in Figure 5.

16

key

i 0
i 1
i index

M5

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

M7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100101102103104105106107108109110111112113114115116117118119120

121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150

151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180

181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210

Figure 4: Bitmatrices M5 and M7

M2

M3

M5

M7

M11

Figure 5: Bitmatrices M2 - M11

In this matrix format, the candidate primes (black squares) are arranged in
columns. Each black column has exactly one white square, because exactly
one (more about that later) of these numbers will be divisible by prime pn.
These single white squares per black column is the process of eliminating
candidate primes in action. The multiples of pn are distributed as a saw-tooth
pattern across the table because the width of the table is not divisible by its
height. When sieving bitmatrices, we observe the black columns remain in
place until its top square turns white, either because it is a composite (having
the new prime as its least prime factor), or when it is processed as being the
next prime. In this matrix-view we observe more clearly (than was already

17

visible in the bitstrings of S) that the overall structure of the candidate primes
remains stationary relative to the number line, further justifying the
interpretation of p2n as being something that travels with that speed over a
stationary structure. Furthermore, we observe, by interpreting n as time, that
the top row of the bit matrix represents the near-future, and the bottom row
represents the far-future, with the index of symmetry being the mid-future.
An elimination in the bottom row of the matrix will take the sieve eons before
it reaches it, and notice it as an extra gap in the search for the next candidate
prime to become prime.

From the bitmatrices in M we derive a new sieve, the bitmatrix sieve.

Let M be the set of outputs generated by the bitmatrix sieve. For each prime
pn there is a matrix Mpn

in M :

M = {M2,M3,M5,M7,M11, . . . }

Each matrix Mpn is a bitmatrix, a matrix of binary digits. The referencing of
entries in the bitmatrix is by a single 1-based index, where
index = column+ ((row − 1)× width). For example, in bitmatrix M3 with 6
columns, bit b7 at M [7] refers to the first bit (column 1) in the second row.
The format of a bitmatrix is:

 b1 ... bcolumns

...
b((rows−1)×columns)+1 ... brows×columns


Where each bi ∈ {0, 1}.

The recurrence relation that generates the set M is as follows.

Initial condition:
Let M2 be the first member of M , a 2× 1 bitmatrix.

M2 =

[
1
0

]
Recurrence relation:
Given bitmatrix Mpn , where pn is the n-th prime, the next bitmatrix Mpn+1 is
obtained by:

• In bitmatrix Mpn
, starting after index 1, locate the next occurrence of

bit value 1. Let pn+1 be this index.

• Let Mpn+1
be a pn+1 × pn# bitmatrix. The contents of Mpn+1

is filled as
follows.

18

– Fill each row in Mpn+1 with a flattened copy of Mpn . To flatten is
to reshape the matrix such that all rows are concatenated to form a
matrix with a single row (essentially forming bitstring Spn

).

– In each column in Mpn+1
that is filled with 1s, zero the entry that

has an index that is divisible by pn+1.

Equivalently, bitmatrix Mpn
can be defined more directly as follows:

Mpn =

 b1 ... bpn−1#

...
b((pn−1)×pn−1#)+1 ... bpn×pn−1#


Where:

bi =

{
1, if i is coprime with pn#

0, otherwise

A bitmatrix’s index of symmetry is the bit halfway its index. For example, the
index of symmetry of M7 is at index 7#

2 = 105. A bitmatrix is
centrosymmetric, meaning that pairs of entries that are on opposite sides of
the index of symmetry, i.e. having indices that add up to p#, always have the
same bit value. A bitmatrix has an even number of columns therefore its index
of symmetry lies half a column to the left of its geometric center. Notice that
this ”half-an-integer shift to align with symmetry” is a recurring theme in all
representations of the sieve.

8 Residue Systems and Elimination Masks

As is visible in Figure 4 and Figure 5, the candidate primes (black squares) are
grouped in black columns. In bitmatrix Mpn there are pn−1#1 such black
columns. Each black column has exactly one white square because the indices
in each column of Mpn

form a complete residue system (mod pn), such that
each column has exactly one entry that is divisible by pn. Furthermore, any
horizontal sequence of pn entries also form a complete residue system
(mod pn). Therefore, any pn × pn section of Mpn contains a set of all rotations
of the complete residue system (mod pn). We can therefore interpret the
elimination process as a pn × pn elimination mask being applied repeatedly
along the matrix. Let us proceed with this approach and isolate a description
of the eliminator as an elimination mask.

In bitmatrix Mpn
, the elimination mask is applied pn−1#

pn
many times, which is

never a whole number, leaving a relatively small fractional part of
pn mod pn−1#

pn
. The elimination masks are center-aligned around the index of

symmetry, and the last column is always aligned such that it intersects the

19

M7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100101102103104105106107108109110111112113114115116117118119120

121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150

151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180

181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210

Figure 6: M7 with E7 elimination masks (i.e. multiples of 7) highlighted in
green

bottom row that is a multiple of pn. The elimination masks are therefore
entrosymmetrically placed, just like the 1s in the bitmatrix. Figure 6 shows
the E7 elimination masks highlighted in green in bitmatrix M7. Red borders
are drawn around each elimination mask.

The elimination mask Epn for Mpn is a pn × pn bitmatrix, defined as:

Epn =

 b1 ... bpn

...
b((pn−1)×pn)+1 ... bpn×pn


Where:

bi =

{
0, if Tpn

(i) is divisible by pn

1, otherwise
(11)

Where:

Tpn
(i) =

pn−1#

2
− pn − 1

2
+ ((i− 1) mod pn) +

⌊
i− 1

pn

⌋
· pn−1#

Note that the elimination mask is almost equivalent to the NOT -STRETCH
operation in the bitstring sieve, except that the elimination mask contains less
information, as it will indiscriminately double-eliminate the numbers that are
already marked as composite, and have no knowledge upfront about which
candidate primes it eliminates. We have now isolated the eliminator as a
mathematical object, but this elimination mask approach does not quite
produce the description we seek. We seek a more direct formulation of which
row in a given column is eliminated.

20

Figure 7: The two cylinders in the torus of M7. Left cylinder contains the
candidate primes, right cylinder contains the candidate eliminator.

9 Isolating the candidate prime eliminator

As an alternative to the elimination-mask approach, a more minimal
description of the candidate eliminator is that of a single diagonal line, or
rather, a coil around a cylinder. A bitmatrix is modular, such that its ends
can be joined together to form a cylinder, either by joining the horizontal
ends, or by joining the vertical ends. In other words, a bitmatrix can be
interpreted as a torus. There are two ways of wrapping the coil of elimination
around the bitmatrix, either by (mod pn−1#) or by (mod pn). We can
either wrap around the bitmatrix in horizontal direction while stepping down,
or wrap around vertically while stepping right. The first option rotates around
the cylinder with a period of (mod pn−1#) steps, while the second option
rotates around the cylinder with a period of (mod pn) steps. The first option
corresponds more directly to the definition of the initial recurrence relation,
but it is the second option for which we seek a formulation because we are
interested in knowing which row of a black column is eliminated in the next
iteration.

Shown in the right side of Figure 7 is an illustration of what we seek, a
minimal description of the candidate eliminator, a mathematical object that
resides in a cylinder. The other side of the cylinder (within the same torus),
shown on the left, hosts the candidate primes. The coordinate systems of the
two cylinders are inverses of each other, and transforming one into the other is
akin to turning a punctured torus inside-out, whilst ensuring the symmetries
are maintained.

We seek a formula for Jpn , the increment in row index modulo pn per
increment in column index. Jpn

is an integer greater than 0 and less than pn.
Knowing Jpn

allows us to describe the candidate eliminator for Mpn
with just

two parameters, pn and Jpn
, since we know its center is 0 (mod pn). The

congruence relations are:

21

Tpn
(
p2n
2

+ 1) ≡ 0 (mod pn)

Tpn(
p2n
2

+ 1) + 1 + Jpn · pn−1# ≡ 0 (mod pn)

Therefore:

1 + Jpn
· pn−1# ≡ 0 (mod pn)

With Jpn we have a formulation for the candidate eliminator in bitmatrix
Mpn

, which can can be thought of as a rotating object that passes from left to

right over the bitmatrix, rotating with a frequency of
2·π·Jpn

pn
radians per

column shift. Jpn
can be any integer value greater than 0 and less than pn,

any choice will ensure a periodic visit to each row per shift in pn columns, but
Jpn

is the only integer greater than 0 and less than pn such that the eliminator
passes through both pn and the index of symmetry.

Jpn
answers the question: how many times to add pn−1# to pn for it to be

divisible by pn. To isolate Jpn involves finding the modular inverse of pn−1#
modulo pn. Finding the modular inverse requires first knowing the specific
numbers of the congruence relations, implying there is no direct formula for
calculating Jpn

. It is a puzzle that you can only start to attempt solving after
knowing pn−1#. When pn−1# and pn are both known, Jpn

can be calculated
by an algorithm, such as by sieving, or by exhaustively searching by adding
and checking divisibility, or by the Extended Euclidean Algorithm.

With known Jpn we have a formula for determining Rpn(c) in Mpn , the ”row
index of elimination”, for any given column index c ≥ 1, c ≤ pn−1#.

Rpn
(c) = 1 + ((Jpn

· c) mod pn)

Values of Jp for the first 6 primes:

J2 = 1

J3 = 1

J5 = 4

J7 = 3

J11 = 10

J13 = 10

The sequence of Jpn
per n is listed in A081617.

22

https://oeis.org/A081617

The distribution of Jpn is the same as the distribution of throwing
(pn − 1)-sided dice. This result implies that on average each row in a
bitmatrix will have near-equal numbers of eliminations. The distribution of
Jpn

is stochastic, such that:

lim
n→∞

∑n
q=1

Jpq

pq

n
=

1

2
(12)

This result implies there cannot be any sustained bias for near-future
eliminations over far-future eliminations, and therefore impossible for some
everlasting rogue wave of bias to appear after some large prime that purposely
targets all candidate k-tuples of given k > 0 as to eliminate them all ahead of
p2. Furthermore, the result of Jpn , particularly when n is large, has very little
impact on the distribution of eliminations per row in the bitmatrix. With
increasing n, the number of eliminations in each row approaches the average
value of pn−1#1

pn
.

To remove all doubt, even if the values of Jpn
were not stochastic, its impact is

not enough to create any significant bias. If there were a daemon in the sieve
that manipulates the result of Jpn , purposely targeting all candidate k-tuples
of type k ahead of p2n, the number of eliminations per row remains nearly the
same. To illustrate this scenario, Table 1 shows the number of candidate
primes eliminated per row in bitmatrix M11, for all possible manipulations of
J . The column J11 = 10 represents the actual value for J11. Notice how the
manipulations of J have no impact on the first row. It means that the result of
J has no significant impact on the near future, let alone what happens ahead
of p2n. It means that, from the perspective of p2n, the distribution of 1s in
bitstring Spn

, and its k-tuples, is uniform on average per iteration.

manipulated J J11
1 2 3 4 5 6 7 8 9 10

row 1 4 4 4 4 4 4 4 4 4 4
2 4 5 6 3 5 5 4 4 3 4
3 5 4 4 5 4 6 3 3 4 5
4 3 4 4 5 3 5 5 4 6 4
5 6 5 3 4 3 4 4 5 5 4
6 3 4 5 6 4 4 4 5 3 5
7 5 3 5 4 4 4 6 5 4 3
8 4 5 5 4 4 3 4 3 5 6
9 4 6 4 5 5 3 5 4 4 3
10 5 4 3 3 6 4 5 4 4 5
11 4 3 4 4 5 5 3 6 5 4

Table 1: Candidate eliminations per row per manipulation of J in M11

23

In this table for M11 the differences between rows are relatively large, when
compared with the average value of 4 4

11 , but in the tables for larger primes the
differences in the eliminations per row get relatively smaller, all gradually
approaching the average value of pn−1#1

pn
. For example, in M19 the average

number of eliminations per row is 4850 10
19 , and the actual values range from

4846 to 4854. These differences are way too small to create any conceivable
form of local bias toward eliminating large volumes of candidate prime
k-tuples ahead of p2n, particularly when n is large.

These results imply that Ak,pn
, the average number of candidate prime

k-tuples of type k > 0 within a region of length (p2n+1 − p2n), increases on
average with increasing n. We conclude that the prime k-tuples are distributed
as statistically predicted by Hardy and Littlewood.

10 Proof of the K-tuple Conjecture

In the recurrence relation that defines the primes, such as in the bitstring sieve
or bitmatrix sieve, symmetry and modularity of the candidate primes
(coprimes with the primorial) is conserved at the primorial scale. When the
sieve is sieving, when the candidate primes are gradually and
macroscopic-uniformly being thinned out (become sparser), the net effect is
that the average distance between nearest candidate prime k-tuples gradually
increases, resulting in clusters of intact candidate prime k-tuples, of which a
deterministic number survive in the next iteration.

If we were to watch the state space of the sieve as an animation per iteration,
we would observe a giant growing symmetrical structure, slowly being eaten
away at the outer edges one by one, with a thin slice of candidate primes
eliminated at each iteration. The border of candidate elimination passes over
the left side (relative to the number line) of this structure with a ”speed” of
p2n, passing over gradually increasing numbers of candidate prime k-tuples of
all sizes at each iteration. Ak,pn , the average number of candidate k-tuples in
Spn between p2n and p2n+1, increases with increasing n. On average, at each
iteration, more and more candidate prime k-tuples become definite prime
k-tuples.

lim
n→∞

Ak,pn
= lim

n→∞

(
p2n+1 − p2n

p(π(k+1)−1)#
·

n∏
i=π(k+1)

pi − k

pi

)
= ∞

The candidate eliminator of the bitmatrix sieve, having a frequency
proportional to Jpn , is the modular diagonal line that eliminates the multiples
of pn. Calculating Jpn

requires knowledge of pn−1#, and involves solving a
congruence puzzle, which gets more and more difficult to solve as pn gets
larger. Therefore, it is cryptographically guaranteed that the distribution of

24

Jpn is stochastic, guaranteed by the fact that primes do not divide each other.
Therefore:

lim
n→∞

∑n
q=1

Jpq

pq

n
=

1

2

The distribution of Jpn
(OEIS A081617) is the same as the distribution of

throwing (pn − 1)-sided dice. It implies that, while n increases, there will on
average be more and more candidate prime k-tuples surviving the eliminations
until p2n passes over them. Furthermore, we can always find larger primes with
larger values of Ak,pn

, as to include more and more statistically expected
candidate k-tuples between p2n and p2n+1.

To remove all doubt, the symmetries maintained by the recurrence relation
that defines the primes prohibits any possibility of sustained local phenomena,
let alone a rogue ”bow wave” of elimination to somehow persistently emerge
ahead of p2n after some large prime. Such phenomena are guaranteed not to
happen, guaranteed by the fact that primes do not divide each other.
Furthermore, even if Jpn ’s value somehow goes rogue after some large prime,
such that Jpn

always returns the value that most favors the elimination of
candidate k-tuples of type k ahead of p2n, as to forever prevent any of them
from becoming definitely prime, it does not work, because the impact of the
result of Jpn is just noise in the overall distribution, particularly when pn is
large.

By the time a large composite candidate prime is eliminated before p2n, it has
spawned an enormous number of offspring candidate primes, which in turn
keep spawning countless new candidate primes, even after the original
composite is eliminated. The candidate eliminator has no chance of stopping
all k-tuples of type k before p2n. We conclude that no matter how many times
you sieve, there will forever be new opportunities for candidate prime k-tuples
to survive the eliminators and reach p2n as to become definite prime k-tuples.

11 Conclusion

From these results, we conclude that Hardy and Littlewood’s formulations of
statistical predictions concerning k-tuples and twin primes are correct. There
exist infinitely many twin primes and prime k-tuples, occurring in asymptotic
frequency as predicted by Hardy and Littlewood.

25

https://oeis.org/A081617

References

[1] G. H. Hardy and J. E. Littlewood. “Some problems of ‘Partitio
numerorum’; III: On the expression of a number as a sum of primes”. In:
Acta Mathematica 44 (1923), pp. 1–70. doi: 10.1007/BF02403921. url:
https://doi.org/10.1007/BF02403921.

[2] Pete Quinn. Newbie Question - Sieving based on primorial patterns and
symmetry. 2011. url:
https://www.primegrid.com/forum thread.php?id=2991.

[3] Dennis R. Martin. Proofs Regarding Primorial Patterns. 2006. url:
https://oeis.org/A005867/a005867.pdf.

[4] Dennis R. Martin. On the Infinite Series Characterizing the Elimination
of Twin Prime Candidates. 2006. url:
https://oeis.org/A121406/a121406.pdf.

[5] Mario Ziller. On differences between consecutive numbers coprime to
primorials. 2020. url: https://arxiv.org/abs/2007.01808.

[6] Fred B. Holt. Patterns among the Primes: A study of Eratosthenes sieve.
Kindle Direct Publishing, 2022. isbn: 9798831607314. url:
https://www.amazon.com/dp/B0B2TY72XJ/.

26

https://doi.org/10.1007/BF02403921
https://doi.org/10.1007/BF02403921
https://www.primegrid.com/forum_thread.php?id=2991
https://oeis.org/A005867/a005867.pdf
https://oeis.org/A121406/a121406.pdf
https://arxiv.org/abs/2007.01808
https://www.amazon.com/dp/B0B2TY72XJ/

	Introduction
	The Bitstring Sieve
	Macroscopic properties of the bitstrings in S
	Candidate prime k-tuples
	Density of candidate prime k-tuples and the Twin Primes Constant
	At the border between candidate primes and definite primes
	The Bitmatrix Sieve
	Residue Systems and Elimination Masks
	Isolating the candidate prime eliminator
	Proof of the K-tuple Conjecture
	Conclusion

