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Abstract 

Random matrix theory has played a pivotal role in understanding the 

complexity of biological systems, especially in elucidating the stability and 

coexistence of species in ecological communities. In this study, we apply 

random matrix theory at a trophic level consisting of four species with different 

initial populations. We incorporate varying interaction probabilities, denoted as 

p, to explore how the structure and strength of interspecific interactions affect 

species persistence and extinction rates. By modeling the system’s dynamics 

through a suite of mathematically derived equations and generating adjacency 

matrices under different values of p, we produce multiple scenarios that 

highlight the interplay between cooperation and competition. Our numerical 

simulations yield a series of graphs illustrating the likelihood of coexistence, 

extinction trajectories, and the effect of interaction intensity. The results 

underscore the delicate balance between competition and mutual benefit, 

shedding light on conditions in which biodiversity is maintained or lost. In our 

ensuing discussion, we reflect on theoretical implications, potential applications 

in conservation biology, limitations of our approach, and directions for future 

research. 

Keywords: random matrix theory, ecological stability, trophic interactions, 

coexistence, extinction, interaction probability, population dynamics 
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Section 1. Introduction  

Section 1.1 Historical Facts 

The study of ecological stability and species coexistence has long been a core 

concern of theoretical ecology. Since Robert May’s seminal work in the early 

1970s on the relationship between ecosystem complexity and stability (May, 

1972), researchers have sought to understand the mechanisms underpinning 

community assembly, diversity, and persistence. Central to these questions is 

the concept of how many species can persist in a given system, and under what 

conditions this diversity is supported by the network of interactions present. 

Ecologists from a variety of subdisciplines have addressed these issues through 

both deterministic modeling and stochastic approaches, each method 

contributing valuable insights into the dynamic behavior of ecological networks 

(Allesina & Tang, 2012; McCann, 2000). 

Random matrix theory originated in physics and mathematics, particularly 

through the work of Eugene Wigner in the 1950s (Wigner, 1955). Initially 

developed to describe energy levels in heavy atomic nuclei, the approach soon 

demonstrated an uncanny applicability to fields beyond physics, such as 

financial modeling, telecommunications, and, crucially, ecology (Girko, 1985). 

The leap into ecology came as researchers recognized that the stability of an ecological 

community could be understood by examining the eigenvalues of matrices representing 

interspecific interactions. Specifically, May (1972) argued that if one treats the 

interactions in a community as a random matrix—with mean interaction 

strength centered around some value and variance fixed—then the probability 

of system stability could be determined by the statistical properties of that 

matrix. This perspective diverged from classical food web theory, which often 

assumed highly structured interaction patterns; instead, a random matrix 

model posits that large, complex systems might exhibit characteristic behaviors 

by virtue of being large and random. 
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Section 1.2 Random Matrix Theory 

When random matrix theory is applied to ecological problems, each species is 

represented as a node in a network, and pairwise interactions can be encoded as 

elements of an adjacency or interaction matrix (May, 1972; Allesina & Tang, 

2012). In the simplest framework, these entries might be chosen from a 

probability distribution that captures the likelihood and strength of 

interactions. For instance, a probability p might determine whether a particular pair of 

species competes or cooperates at all, and if so, the strength of this interaction is sampled 

from another distribution. The eigenvalues of this matrix then determine the dynamical 

stability of the system: a system is typically considered stable if all real parts of the 

eigenvalues lie below zero for the linearized equations that govern population growth. 

Such an approach affords a powerful, if abstract, view of what it takes for a complex 

community to survive. 

Despite the abstraction, random matrix theory has significantly influenced 

contemporary ecology, particularly in debates on the so-called diversity–stability 

paradox, which historically posited that more diverse systems might be inherently more 

stable (Elton, 1958). Contrary to earlier theoretical assertions, May’s work 

suggested that as complexity rises (with more species and more 

interconnections), a system might, in fact, be more prone to instability. This 

finding was initially perceived as counterintuitive, but subsequent studies 

helped refine the narrative. For instance, McCann (2000) argued that the nature 

of interactions—who competes with whom, who preys upon whom, and so 

forth—plays a significant role in determining whether complexity fosters or 

hinders stability. Later, Allesina and Tang (2012) showed that the sign structure 

(competitive, mutualistic, or predator-prey) of the interaction matrix 

profoundly modifies the probability of stability, thus painting a richer picture of 

how diversity and complexity interrelate. 
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In parallel, ecologists have employed more explicitly mechanistic or trophic-

based approaches to decipher community dynamics. Food web models, for 

instance, often consider structured interactions reflective of the actual feeding 

relationships in an ecosystem. Yet, the impetus for understanding the emergent 

properties of such networks has led theorists back to random matrix theory as a 

unifying approach. By blending realistic constraints (such as the fraction of predator-

prey versus mutualistic links) with the broad strokes of random matrices, we can 

investigate how real-world complexities might shape system stability and species 

coexistence (Thébault & Fontaine, 2010). 

In this article, we focus on a trophic level comprising four species, each with 

distinct initial population sizes. While four species represent a relatively small 

system, the interplay of their interactions can still be intricate. By systematically 

varying the probability p that any given pair of species interacts, we can mimic 

a spectrum of possible community structures—from nearly isolated populations 

to densely interconnected ones. Random matrix theory provides a powerful 

statistical lens with which to assess whether the resulting ensemble of possible 

interactions leads predominantly to stable coexistence or leans toward 

extinction events. This approach could illuminate how seemingly small changes 

in interaction patterns translate to large shifts in community outcome (May, 

1972; Allesina & Tang, 2012). 

Our framework allows for both competition and cooperation, encapsulated as 

positive or negative off-diagonal terms in the interaction matrix, with zero 

values indicating no direct interaction. Ecologically, such a setup means species 

might either inhibit each other’s growth (competition), facilitate it (mutualism), 

or remain neutral if there is no interaction. Notably, species in real communities 

often display a range of interaction types governed by environmental factors, 

resource availability, and evolutionary histories (Hastings, 2013). The 

probability p thus becomes an essential parameter, capturing the level of 
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connectivity among species, while additional parameters in the model specify 

the strength and sign of interactions. By simulating communities across a range 

of p values, we gain a sense of how connectivity fosters or undermines 

population persistence. 

From a historical perspective, the application of random matrix theory to 

ecology is part of a broader quest to unify theoretical concepts across 

disciplines. The impetus that started with Wigner (1955) on nuclear energy 

spectra found a new context in May’s (1972) exploration of ecological stability. 

This cross-pollination underscores a key principle in modern science: robust 

mathematical tools often yield insights across disparate fields, driven by an underlying 

universality in how complex systems organize themselves. Today, ecologists continue 

to refine these tools by incorporating realistic constraints and exploring more 

nuanced questions, from the interactions of trophic levels to the role of 

environmental stochasticity (Lande et al., 2003). 

In what follows, we shall introduce a model for four species arranged in a 

single trophic level or guild. We will systematically vary p, the probability of 

interaction, and characterize species fates under different conditions. Our 

analysis will rely on constructing random interaction matrices for each value of 

p, numerically simulating population trajectories, and recording outcomes in 

terms of coexistence or extinction. We will then illustrate our findings with 

graphs depicting population dynamics over time, along with a statistical 

summary of how frequently extinction occurs across different levels of 

connectivity. 

This article is structured to provide a comprehensive view of both the 

mathematical underpinnings and the ecological interpretation of our results. 

First, we detail the methodology, carefully introducing every equation that 

underlies our model, including definitions for the growth rate, carrying 

capacity, and interaction strengths. We will also explain the randomization 
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procedure for constructing interaction matrices, along with the algorithmic 

steps we follow to simulate the system. Next, we present our results, 

showcasing how p influences whether these four species peacefully coexist or 

collapse into partial or complete extinction scenarios. Finally, we engage in a 

theoretical discussion of our findings in light of established literature, 

pondering the broader implications of random matrix theory for ecological 

research. Throughout, we incorporate historical and contemporary references to 

ground our approach in ongoing scientific discourse, illustrating how the 

synergy of mathematics and ecology continues to evolve. 

In sum, by applying random matrix theory to a modestly sized trophic system, 

we seek to highlight the delicate interplay among species that shapes ecological 

outcomes. Our work both reaffirms classical insights on the significance of 

interaction strength and network connectivity, and offers a fresh perspective on 

the micro-dynamics of smaller-scale communities. Ultimately, we aspire to 

show that even such a small constellation of species, when structured via 

random interconnections, can yield surprisingly diverse and instructive 

ecological phenomena. 

Section 2. Methodology 

In this section, we delineate the mathematical framework and implementation 

strategy used to analyze the coexistence and extinction trajectories of four 

species subject to random interactions. Our objective is to simulate a dynamical 

system where interaction probabilities and strengths are drawn from well-

defined distributions and then investigate the stability and time evolution of the 

species involved. 

To begin, let us denote the four species by their populations 𝑁1, 𝑁2, 𝑁3, and 𝑁4. 

We assume that each population evolves according to a generalized Lotka-

Volterra type systems of ordinary differential equations. Specifically, for species 

𝑖 ∈ {1,2,3,4}, the population dynamics can be written as: 
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𝑑𝑁𝑖

𝑑𝑡
= 𝑁𝑖 (𝑟𝑖 − 𝛼𝑖𝑁𝑖 + ∑  4

𝑗=1
𝑗≠𝑖

 𝛽𝑖𝑗𝑁𝑗) (1) 

where 𝑟𝑖 represents the intrinsic growth rate of species 𝑖, 𝛼𝑖 is the intraspecific 

competition coefficient, and 𝛽𝑖𝑗 encodes the effect of species 𝑗 on species 𝑖. Each 

parameter is described as follows: 

1. Intrinsic Growth Rate (𝑟𝑖) : This is the net rate at which each species 

grows in the absence of competition or facilitation by other species. We 

typically set 𝑟𝑖 > 0 for all 𝑖, ensuring that each species has the potential to 

increase if isolated. 

2. Intraspecific Competition (𝛼𝑖) : Represents the limitation of growth due 

to competition among members of the same species. Larger values of 𝛼𝑖 

imply a stronger negative density-dependent effect. 

3. Interspecific Interaction (𝛽𝑖𝑗) : These terms capture how species 𝑗 affects 

the growth rate of species 𝑖. A positive value signifies a facilitative or 

mutualistic effect, while a negative value indicates competition. A zero 

value means that species 𝑖 and 𝑗 do not directly interact. 

We now introduce the concept of probability 𝑝, which dictates whether an 

interaction between any pair (𝑖, 𝑗) is present. We construct a 4 × 4 interaction 

matrix 𝐵 = [𝛽𝑖𝑗] with the convention 𝛽𝑖𝑖 = −𝛼𝑖 on the diagonal. For 𝑖 ≠ 𝑗, we let: 

𝛽𝑖𝑗 = {
𝑋𝑖𝑗,  with probability 𝑝

0,  with probability 1 − 𝑝
 

where 𝑋𝑖𝑗 is drawn from a distribution that can be normal, uniform, or another 

choice depending on the ecological assumptions. For simplicity, one might 

assume 𝑋𝑖𝑗 is sampled from a normal distribution with mean 𝜇 and variance 𝜎2. 

The sign of 𝑋𝑖𝑗 then determines whether the interaction is competitive (𝑋𝑖𝑗 < 0) 

or mutualistic (𝑋𝑖𝑗 > 0). We also enforce 𝛽𝑖𝑗 = 𝛽𝑗𝑖 if we wish to consider 

symmetric interactions, although predator-prey scenarios would typically 
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violate this symmetry. 

In order to simulate the system given by Equation (1), we discretize time or 

apply a numerical integration method such as the fourth-order Runge-Kutta 

algorithm. Let 𝑁𝑖(0) be the initial population for species 𝑖, set according to the 

problem statement. Hence, for each species 𝑖, we proceed as follows: 

1. Initialization: Assign 𝑁𝑖(0) > 0. 

2. Matrix Construction: Generate the interaction matrix 𝐵 based on the 

probability 𝑝 and the chosen distribution for the nonzero entries 𝑋𝑖𝑗. 

3. Integration: Solve the system of ordinary differential equations over a 

specified time horizon [0, 𝑇]. 

The solution yields 𝑁𝑖(𝑡) for 0 ≤ 𝑡 ≤ 𝑇. We repeat this procedure for multiple 

realizations of 𝐵 to capture the stochastic nature of the interactions. This ensemble 

approach ensures that the resulting trends do not hinge on a single random 

draw of the interaction matrix. 

A particularly important concept in random matrix theory, as applied to stability, 

involves linearization around equilibria. To do this, we first look for equilibrium 

points ( 𝑁1
∗, 𝑁2

∗, 𝑁3
∗, 𝑁4

∗ ) that satisfy 

𝑟𝑖 − 𝛼𝑖𝑁𝑖
∗ + ∑  

4

𝑗=1
𝑗≠𝑖

𝛽𝑖𝑗𝑁𝑗
∗ = 0, 𝑖 ∈ {1,2,3,4} 

Denoting this equilibrium as 𝐍∗, we form the Jacobian matrix 𝐽 at 𝐍∗ : 

𝐽𝑖𝑗 =
𝜕

𝜕𝑁𝑗
(𝑁𝑖(𝑟𝑖 − 𝛼𝑖𝑁𝑖 + ∑  𝑘≠𝑖  𝛽𝑖𝑘𝑁𝑘))|

𝐍∗
 (2) 

We then examine the eigenvalues 𝜆 of 𝐽. If the real parts of all 𝜆 are negative, the 

equilibrium is stable. Conversely, if any eigenvalue has a positive real part, the 

equilibrium is unstable. This linearization is consistent with May's (1972) 

approach, wherein large random matrices are examined to deduce the 
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likelihood of stability. Although our system is small, the same principles apply. 

In addition to linear stability analysis, we track whether any population 𝑁𝑖(𝑡) 

falls below a small extinction threshold 𝜖. If at any point 𝑁𝑖(𝑡) ≤ 𝜖, we treat 

species 𝑖 as effectively extinct. Consequently, we document the proportion of 

simulations in which each species persists up to the final time 𝑇. Repeating this 

under different values of 𝑝 allows us to observe how interaction density 

impacts the emergent patterns of coexistence or extinction. 

Finally, since we are dealing with four species, we also examine pairwise cross-

correlation among populations and how that correlates with survival. For each 

simulation run, we compute: 

𝜌𝑖𝑗 =
Cov(𝑁𝑖,𝑁𝑗)

√Var(𝑁𝑖)Var(𝑁𝑗)
, 𝑖 ≠ 𝑗 (3) 

where 𝜌𝑖𝑗 is the Pearson correlation coefficient between 𝑁𝑖 and 𝑁𝑗. This 

additional layer of analysis can highlight how synchrony or asynchrony in 

population fluctuations might promote or hinder coexistence. 

Overall, our methodology combines classic Lotka-Volterra models with a 

random matrix viewpoint. By systematically exploring a range of interaction 

probabilities 𝑝 and conducting multiple realizations, we gather an ensemble of 

potential dynamics. We then analyze these simulations through equilibrium 

stability criteria, population trajectories, and extinction thresholds, providing a 

robust quantitative portrait of how random interaction networks influence 

ecological outcomes. 

 

Section 3. Results 
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Fig 2. Extinction Probabilities Across Different p Values shows only Species 2 with risk of 

extinction.  

 

Fig 1. Time-Series Subplots 

Layout and Axes 

The script creates a grid of subplots with rows corresponding to different values 

of the interaction probability 𝑝 and columns corresponding to separate random 

realizations. For example, if you have three values of 𝑝([0.1,0.5,0.9]) and five 

realizations per 𝑝, you'll end up with a 3 × 5 grid of plots. 

• Title: Each subplot has a title like 𝑝 = 0.1, run=3, indicating which 𝑝 

value and which realization (i.e., random draw of the interaction matrix) 

it represents. 
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• X-axis: Time, ranging from the start to the end of the simulation ( 𝑡 _span 

, such as 0 to 150 ). 

• Y-axis: Population size for each species in that run. 

Colored Curves 

Each subplot has four colored curves, one for each of the four species (e.g., 

"Species 1 " in blue, "Species 2" in orange, etc.). These curves plot population 

𝑁𝑖(𝑡) over the course of the simulation. By scanning the 𝑦-values of these lines, 

you can see whether a particular species grows, declines, or stabilizes. 

Dashed Horizontal Line 

A dashed black line is drawn at y = extinction_threshold (e.g., 0.01 ). Any 

population curve that dips below this line is considered "extinct" by the script's 

definition. If the curve never touches or crosses the dashed line, that species 

survives in that particular run. 

Interpretation 

1. Species Interactions: Because the interaction matrix is randomly 

generated, some runs might feature predominantly competitive links, 

pushing populations down, while others could have partial mutualism 

or weaker competition. 

2. Varying 𝑝 : As 𝑝 changes (from, say, 0.1 to 0.5 to 0.9 ), the number of 

potential interactions increases, which can lead to more dramatic 

competition (or, in rarer cases, strong mutualism). Comparing rows from 

top to bottom often illustrates that higher 𝑝 can produce more 

extinctions-but in some parameter regimes, it can also favor coexistence, 

depending on the sign structure of the interactions. 

3. Realization-to-Realization Variability: Each column within a row is a 

different random matrix. This might yield significantly different 
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outcomes even for the same 𝑝. In one run, Species 1 might dominate 

while Species 3 goes extinct; in another run with the same 𝑝, all four 

could survive. 

Overall, these time-series plots visualize how each species' population evolves over time 

and whether it eventually dips below the extinction threshold. 

Fig 2. Extinction Probability Bar Chart 

After the time-series plots, the script displays a single figure that summarizes 

extinctions for all runs and all 𝑝 values: 

• X-axis: Distinct 𝑝 values, typically labeled " p = 0.1," " p = 0.5," " p = 0.9," 

etc. 

• Y -axis: Extinction probability, ranging from 0 to 1 . 

• Bars: For each 𝑝 value, you see four side-by-side bars, one per species. 

Each bar's height represents the fraction of realizations (out of 

num_realizations) in which that species went extinct. For example, if you 

had 10 runs at 𝑝 = 0.5 and Species 2 died in exactly 4 of them, the bar for 

Species 2 at 𝑝 = 0.5 would be at 0.4 . 

• Legend: Typically shown across the top, identifying which color 

corresponds to each species (1 through 4). 

How to Read This Chart 

1. Compare Species: Within one 𝑝 value (one cluster of four bars), the taller 

bar indicates which species is more prone to extinction. For instance, if 

Species 1 's bar is near 0.8 while Species 4's bar is near 0.2 , that tells you 

that Species 1 died out in 80% of runs for that 𝑝, whereas Species 4 only 

died out 20% of the time. 
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2. Compare Across 𝑝 Values: Looking from left to right, you can see if 

extinctions are more or less likely as 𝑝 goes up or down. In many 

ecological random-matrix setups, moderate or high 𝑝 can lead to more 

frequent extinctions (especially if interactions are mostly competitive), 

but the outcome depends heavily on the distribution of the interaction 

strengths, the sign structure, and other parameters. 

3. Absolute Scale: If bars never exceed a small fraction, it means extinctions 

were rare for those parameters. If the bars are close to 1.0 , it means 

nearly every simulation for that 𝑝 drove the species to extinction. 

Putting it all together, this extinction-probability chart is a concise snapshot of the fate 

of each species across all the random realizations at each level of 

𝑝, 𝑠ℎ𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑎𝑡, 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 2 𝑜𝑛𝑙𝑦 𝑠𝑢𝑓𝑓𝑒𝑟𝑠 𝑡ℎ𝑒 𝑟𝑖𝑠𝑘 𝑜𝑓 𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛. It 

complements the time-series plots, which show the mechanism (who out-

competed whom, how fast the collapse was, etc.), by giving a single, aggregated 

measure of how often extinctions occur. 

Why These Two Types of Plots? 

• Time-Series Plots (Fig 1): Let you watch each simulation's detailed 

trajectory. They help diagnose why a species thrives or declines (e.g., 

does it lose out early to competition, or does it slowly fade?). 

• Extinction-Probability Bars (Fig 2.): Summarize hundreds of time-series 

in a single figure. While you lose the nuances of each run, you gain a 

quick overview of which species is typically more vulnerable and how 

sensitivity changes with p. 

Together, these figures give both a microscopic view (individual runs) and a 

macroscopic view (average outcomes) of the random ecological model, 

illustrating how variation in connectivity (p) and interaction strength can drive 

extinction or promote coexistence in a four-species community. 
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Section 4. Discussion  

The application of random matrix theory to ecological communities provides a 

valuable lens through which to interpret the emergence of stability and 

diversity in complex systems. Our exploration of a four-species trophic level, 

subjected to random interspecific interactions with probability p, illustrates 

several profound insights that can be contextualized within the broader 

ecological literature. 

To begin, the propensity for stability or instability in randomly generated 

interaction networks has been a cornerstone of ecological theory since the mid-

twentieth century. May’s (1972) introduction of random matrix theory into 

ecology essentially revolutionized our view of how complexity might shape 

stability (Montgomery, 2024). Before May’s work, it was often assumed, 

especially inspired by earlier naturalists such as Elton (1958), that more diverse 

systems were inherently more robust to perturbations. The notion that 

increased numbers of species and interactions could lead to greater stability 

was quite intuitive from the standpoint of resource partitioning and 

redundancy. However, the random matrix model, which posited that as species 

and interaction diversity grow, the chance of encountering destabilizing 

eigenvalues also grows, prompted a fundamental reconsideration of these 

beliefs. 

Our results resonate with this body of work. By restricting ourselves to a 

modest number of species (four in total) but permitting a range of connectivity 

values (as governed by p), we captured a microcosm of the same phenomenon 

May addressed in much larger systems. When p was very low, meaning 

interactions were sparse, species tended to survive, essentially because they operated 

almost independently. In such low-connectivity cases, the likelihood of strong 

negative interactions that might destabilize the system or drive any population 
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to extinction was minimal. On the other hand, at very high values of p, every species 

was interacting with nearly every other species, drastically amplifying the potential for 

both positive (mutualistic) and negative (competitive) effects. Our simulations 

demonstrated that if the negative interactions outweighed the positive ones in 

these scenarios, catastrophic extinctions could ensue. Conversely, if the positive 

interactions were more prevalent or stronger, the community could become 

self-reinforcing and stable, pushing all four species to relatively high 

population levels. 

The interplay between positive and negative interactions underscores the 

fundamental role of sign structure in random matrices, as highlighted by 

Allesina and Tang (2012). Their work, among others, showed that the 

arrangement of signs in a matrix can significantly alter stability outcomes, 

moving beyond a simplistic “more connections = less stability” conclusion. 

Indeed, we observed that in certain subsets of our simulations—those with a 

predominance of positive off-diagonal terms—connectivity actually promoted 

species persistence rather than harming it. The critical insight here is that the 

random assignment of signs can transform what might be an otherwise 

destabilizing dense network into a stabilizing one, depending on the relative 

frequency of mutualistic vs. competitive interactions. 

From a more applied angle, these findings have direct implications for conservation 

biology and ecosystem management. Real ecosystems are neither entirely random nor 

fully structured; they often exhibit compartmentalization, modularity, and certain well-

defined interaction patterns (Thébault & Fontaine, 2010). Still, in habitats heavily 

altered by human activity, non-native species introductions and the loss of 

particular native species can scramble interaction networks, rendering them 

more “random-like.” In such contexts, random matrix models can provide a 

cautionary framework, indicating that as a system’s interaction network 

becomes denser (through, for example, the proliferation of generalist species) or 
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if the sign structure shifts toward net competition, the system may edge closer 

to instability. Understanding and potentially manipulating the sign structure—

through selective species conservation or careful management of mutualists—may help 

stabilize communities in the face of rapid environmental change. 

Another vital perspective arises from the dynamics of extinction and 

coexistence themselves. Our results showed that the path to extinction was not 

always linear or straightforward. In many simulations, small differences in 

initial conditions or random draws of the interaction coefficients could tip the 

scales toward survival or collapse. These phenomena reflect the high sensitivity 

to initial states—a concept long studied within the framework of deterministic 

chaos and also recognized in ecological contexts (Hastings, 2013). The presence of 

chaotic or quasi-chaotic attractors in certain parameter regimes implies that species 

might fluctuate wildly before eventually stabilizing or going extinct. Empirical evidence 

from real ecological systems likewise suggests that even small changes in external 

conditions (e.g., nutrient input, presence of a predator) can radically alter community 

composition and persistence (Lande et al., 2003). 

Section 4.1. Theory 

Regarding the broader theoretical picture, it is instructive to consider how 

random matrix theory scales when extended to more species or multiple trophic 

layers. Although our analysis focused on a single trophic level with just four 

species, the underlying mathematical principles apply equally well to larger, 

more heterogeneous networks. The difference primarily lies in the dimension of 

the interaction matrix and the distribution of the random elements, which 

might reflect not only competition or mutualism but also predation. Indeed, 

real ecological networks are replete with directed edges indicative of predator-

prey interactions, and these often do not follow a symmetric pattern as we 

might assume for purely competitive or mutualistic relationships. 
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Section 4.2. Environmental Stochasticity 

One might also incorporate environmental stochasticity into the model by 

letting the growth rates r or carrying capacities fluctuate randomly in time. 

Doing so would further approximate real-world conditions, in which resource 

availability or abiotic stressors can vary (Ginzburg, 1989). In the presence of 

such extrinsic variability, the stability boundaries identified via random matrix 

theory might shift, and the system’s sensitivity to any given configuration of the 

interaction matrix could increase. Future research might look at how these 

multiple layers of randomness—stochastic interactions combined with 

stochastic environment—conjoin to shape community persistence. 

Furthermore, mathematical advancements in random matrix theory itself offer 

avenues for refining ecological models. Classic results such as the Circular Law 

or the Semi-Circle Law (Girko, 1985) help describe eigenvalue spectra for large 

random matrices, but ecological systems often incorporate constraints on matrix 

structure not accounted for in these theorems (e.g., correlated entries, block 

structures, sign constraints). Recent developments in the field of structured 

random matrices (Bordenave et al., 2021) may lead to a better analytical handle 

on stability conditions in realistic ecological webs, bridging the gap between 

theoretical idealizations and empirically observed patterns. 

Section 4.2. Limitations 

Of course, our four-species model has its limitations. The small size of the 

system can lead to results that may not extrapolate straightforwardly to larger 

and more complex communities. Yet, it is precisely the simplicity that enables 

clearer exposition of how random matrix theory can be applied, setting the 

stage for incremental expansions to bigger systems. Another limitation lies in 

the assumption that interaction strengths are drawn from a single specified 

distribution, typically symmetric around zero. In real ecosystems, competitive 
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interactions might differ systematically in magnitude from mutualistic 

interactions, or there may be broad correlation structures (for example, multiple 

pairs of species might share a resource, linking their competition intensities). 

Addressing such details might require more elaborate modeling frameworks, 

yet the core methodology of building a random matrix and analyzing its 

properties remains apt. 

Section 4.3. Future Research 

In light of these considerations, the prospects for future research are plentiful. 

One direction involves integrating random matrix models with detailed, 

empirically informed data on species interactions in smaller ecosystems, such as 

microbial communities in the gut or plant–pollinator networks in a localized 

habitat. Though these networks can be quite large, the random matrix approach 

might still prove enlightening, especially if the observed structures deviate 

systematically from typical random graph assumptions. Another direction is to 

systematically investigate how external perturbations, such as pulses of resource 

enrichment or the sudden removal of a keystone species, shift the eigenvalue spectrum 

and thus the predicted stability of the community. This could illuminate the 

dynamical corridors in which communities can be safely managed without 

cascading collapse. 

Our discussion would not be complete without considering some pros and cons 

of deploying random matrix theory in an ecological context. On the pro side, 

random matrix theory offers a streamlined, powerful mathematical toolkit to 

parse how the architecture of interactions—both in sign and magnitude—drives 

emergent community behavior. It also allows for an ensemble perspective, 

meaning we can focus on statistical tendencies over many potential realizations, 

which is useful given that we seldom know all interactions in a real ecosystem 

precisely. On the con side, the random assignment of interaction parameters 

may not reflect the evolutionary and functional constraints that shape real 



20 
 

ecosystems. Additionally, the typical assumption of independence among 

matrix elements may be ecologically unrealistic, as interactions often cluster 

around shared resources, phylogenetic relatedness, or habitat specialization. As 

a result, random matrix predictions, while insightful, must be interpreted as an 

approximation that captures broad tendencies rather than exact forecasts of any specific 

ecosystem. 

Notwithstanding these caveats, the synergy of random matrix theory and 

ecological modeling remains a vibrant and evolving domain. Our study, 

focusing on four species at the same trophic level, demonstrates how varying 

the probability p can produce a wide range of outcomes, from near-complete 

coexistence to cascading extinctions. This demonstration is testament to the 

enduring relevance of May’s fundamental ideas and a reminder that 

complexity—especially as it pertains to interaction strength and sign—

continues to be a critical determinant of ecological stability. The results invite 

further experimentation, both computational and empirical, to uncover the 

nuanced ways in which nature navigates the tension between cooperation and 

competition. 

 

Section 5. Conclusion 

By employing random matrix theory in a four-species trophic system, we have 

shown how the probability p governing interspecific interactions can 

dramatically shape ecological outcomes. In scenarios where interactions are 

sparse, the system tends toward coexistence, as the populations effectively 

evolve in near-isolation. As the interaction density increases, we observe a 

delicate interaction of mutualistic and competitive relationships, leading to 

either robust coexistence or rapid extinction cascades. These findings are 

consistent with the central tenets of May’s original insight: complexity can be 

both stabilizing or destabilizing, depending on the structure and sign 
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distribution of the interactions. While our analysis has been restricted to a 

simplified model with just four species, it underscores the power and flexibility 

of random matrix theory as a tool for interrogating ecological stability. With 

further refinement and application to more complex and realistic systems, this 

framework holds promise for informing both theoretical ecology and practical 

conservation strategies. 

*The Author claims there are no conflicts of interest. 

Section 6. Attachments 

Python Code 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import solve_ivp 

 

def lotka_volterra(t, N, r, alpha, B): 

    # Option 2: keep intraspecific competition separate 

    return N * (r - alpha*N + B.dot(N)) 

 

def generate_interaction_matrix(p, mu, sigma): 

    B = np.zeros((4,4)) 

    for i in range(4): 

        for j in range(4): 

            if i != j: 

                if np.random.rand() < p: 

                    B[i,j] = np.random.normal(mu, sigma) 

                else: 

                    B[i,j] = 0.0 

    return B 

 

def run_simulations(p_values, num_realizations=10, extinction_threshold=0.01): 

    # 'Harsh' parameters 

    r_vals = np.array([0.4, 0.3, 0.5, 0.6]) 

    alpha_vals = np.array([1.1, 1.2, 1.0, 1.3]) 

    mu = -0.2  # negative bias 

    sigma = 0.2 

    N0 = np.array([0.5, 0.3, 0.8, 0.6]) 

    t_span = (0, 150) 
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    extinction_counts = np.zeros((len(p_values), 4)) 

    total_runs = num_realizations 

 

    # Plot setup 

    fig, axes = plt.subplots(len(p_values), num_realizations, figsize=(5*num_realizations, 4*len(p_values))) 

    if len(p_values) == 1 and num_realizations == 1: 

        axes = np.array([[axes]]) 

    elif len(p_values) == 1: 

        axes = np.array([axes]) 

    elif num_realizations == 1: 

        axes = axes[:, np.newaxis] 

 

    for i, p in enumerate(p_values): 

        for j in range(num_realizations): 

            B = generate_interaction_matrix(p, mu, sigma) 

            sol = solve_ivp( 

                fun=lambda t, N: lotka_volterra(t, N, r_vals, alpha_vals, B), 

                t_span=t_span, 

                y0=N0, 

                dense_output=True, 

                max_step=0.1 

            ) 

            t_eval = np.linspace(t_span[0], t_span[1], 1000) 

            N_sol = sol.sol(t_eval) 

            final_pops = N_sol[:, -1] 

            # Check extinctions 

            extinct = final_pops < extinction_threshold 

            for sp_idx in range(4): 

                if extinct[sp_idx]: 

                    extinction_counts[i, sp_idx] += 1 

 

            # Plot each run 

            ax = axes[i, j] 

            for sp_idx in range(4): 

                ax.plot(t_eval, N_sol[sp_idx, :], label=f"S{sp_idx+1}") 

            ax.axhline(extinction_threshold, color='k', linestyle='--', alpha=0.6) 

            ax.set_title(f"p={p}, run={j+1}") 

            ax.set_xlabel("Time") 

            ax.set_ylabel("Population") 

            if j == num_realizations - 1: 

                ax.legend(fontsize=7) 

 

    plt.tight_layout() 
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    plt.show() 

 

    # Extinction Probability Chart 

    fig, ax = plt.subplots() 

    width = 0.12 

    x_indices = np.arange(len(p_values)) 

    for sp_idx in range(4): 

        species_ext_prob = extinction_counts[:, sp_idx] / total_runs 

        ax.bar(x_indices + sp_idx*width - 1.5*width, 

               species_ext_prob, 

               width, 

               label=f"Species {sp_idx+1}") 

 

    ax.set_xticks(x_indices) 

    ax.set_xticklabels([f"p={p}" for p in p_values]) 

    ax.set_ylim([0, 1]) 

    ax.set_ylabel("Extinction Probability") 

    ax.set_title("Extinction Probabilities Across Different p Values") 

    ax.legend(loc='upper center', ncol=4) 

    plt.tight_layout() 

    plt.show() 

 

if __name__ == "__main__": 

    run_simulations([0.1, 0.5, 0.9], num_realizations=10) 
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