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The Navier–Stokes equations are a set of nonlinear partial differential equations
used to describe viscous incompressible fluid flow. It has been on the list of the
Clay Mathematics Institute’s millennium prize problems to decide whether or not
physically reasonable solutions to the Navier–Stokes equations do in general exist.
In this paper, the problem on the existence and smoothness of the Navier–Stokes
equations is solved. It is proven that the Navier–Stokes equations are globally
regular.

1. Introduction

The Navier–Stokes equations are thought to govern the motion of a fluid in R3,
[1]. Let u = u(x, t) ∈ R3 be the fluid velocity and let p = p(x, t) ∈ R be the
fluid pressure, each dependent on position x ∈ R3 and time t > 0. We take the
externally applied force acting on the fluid to be identically zero. The fluid is
assumed to be incompressible with constant viscosity ν > 0 and to fill all of R3.
The Navier–Stokes equations can then be written as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p, (1)

∇ · u = 0 (2)

with initial condition
u(x, 0) = u◦ (3)

where u◦ = u◦(x) ∈ R3. In these equations

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
(4)

is the gradient operator and

∇2 =

3∑
i=1

∂2

∂xi
2 (5)

is the Laplacian operator. When ν = 0 equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

u◦(x + ei) = u◦(x) (6)
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for 1 6 i 6 3 where ei is the ith unit vector in R3. The initial condition u◦ is a given
C∞ divergence-free vector field on R3. A solution of (1), (2), (3) is then accepted
to be physically reasonable [2,3,6,8] if

u(x + ei, t) = u(x, t), p(x + ei, t) = p(x, t) (7)

on R3 × [0,∞) for 1 6 i 6 3 and

u, p ∈ C∞
(
R3 × [0,∞)

)
. (8)

2. Solution of the Navier–Stokes problem

Theorem 1. Take ν > 0. Let u◦ be any smooth, divergence-free vector field
satisfying (6). Then there exist smooth functions u, p on R3 × [0,∞) that satisfy
(1), (2), (3), (7), (8).
Proof. Let the Fourier series of u, p be

ũ =

∞∑
L=−∞

uLeikL·x, (9)

p̃ =

∞∑
L=−∞

pLeikL·x (10)

respectively. Here uL = uL(t) ∈ C3, pL = pL(t) ∈ C, i =
√
−1, k = 2π, and

∑∞
L=−∞

denotes the sum over all L ∈ Z3. The initial condition u◦ is a Fourier series [2] of
which is convergent for all x ∈ R3. Substituting u = ũ, p = p̃ into (1) gives

∞∑
L=−∞

∂uL

∂t
eikL·x +

∞∑
L=−∞

∞∑
M=−∞

(uL · ikM)uMeik(L+M)·x

= −

∞∑
L=−∞

νk2|L|2uLeikL·x −

∞∑
L=−∞

ikLpLeikL·x. (11)

Equating like powers of the exponentials in (11) in accordance with Theorem B
of [5] yields

∂uL

∂t
+

∞∑
M=−∞

(uL−M · ikM)uM = −νk2|L|2uL − ikLpL (12)

on using the Cauchy product type formula [4]

∞∑
l=−∞

alxl
∞∑

m=−∞

bmxm =

∞∑
l=−∞

∞∑
m=−∞

al−mbmxl. (13)
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Substituting u = ũ into (2) gives

∞∑
L=−∞

ikL · uLeikL·x = 0. (14)

Equating like powers of the exponentials in (14) in accordance with Theorem B
of [5] yields

L · uL = 0. (15)

Applying L· to (12) and noting (15) leads to

pL = −

∞∑
M=−∞

(
uL−M · L̂

) (
uM · L̂

)
(16)

where p0 is arbitrary and L̂ = L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

∂uL

∂t
=

∞∑
M=−∞

L̂ ×
(
L̂ × ((uL−M · ikL)uM)

)
− νk2|L|2uL (17)

where u0 = u0(0). Without loss of generality [2], we take u0 = 0. This is due to
the Galilean invariance property of solutions to the Navier–Stokes equations. The
equations for uL are to be solved for all L ∈ Z3. From (17) we find that ũ turns
out to be of the form

ũ =

∞∑
l=0

al(x)e−νk
2lt (18)

of which is identical to a Maclaurin series

ũ =

∞∑
l=0

al(x)τl (19)

in the variable
τ = e−νk

2t. (20)

We are given that ũ converges for all x ∈ R3 at t = 0. This implies that ũ converges
for all x ∈ R3 at τ = 1. Therefore ũ converges for all x ∈ R3 and for all 0 6 |τ| 6 1
due to Taylor’s theorem [7]. Thus ũ converges for all x ∈ R3 and for all t ∈ [0,∞).
We then conclude that the Navier–Stokes equations are globally regular. �
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