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Abstract

This paper considers prime numbers as a sequence that can be described by arithmetic progressions miss-
ing on a few terms. This tool (cancelling sequences) can be used to generalise the sieves of Eratosthenes,
Sundaram, etc, and resolve them into generating formulae with a few unknowns.

Introduction
Prime numbers, if viewed from the perspective of Sieving, are basically a set of natural numbers that have some
missing terms. These terms are removed on the basis of different criteria for different sieves.

Consider the simplest sieve, the sieve of Eratosthenes [Vrd24]. What the sieve of Eratosthenes does is establish
an interval from 1 to n, and starts cancelling (crossing) all multiples of 2, up to n; then 3, up to n, and so on
until we get to

√
n. Once this happens, we can be sure that all the remaining numbers in the interval from

√
n

to n are prime numbers.

I have included a visual to explain this better; see Figure 1

Figure 1: Sieve of Eratosthenes applied over the first 100 natural numbers

In this figure, since n = 100, we consider all the numbers (excluding 1) up to
√
100, that is, 10. We cross out

their multiples. In this case, that would be the coral crossings of 2, green crossings of 3 pink crossings of 5 and
red crossings of 7. As you can see then the numbers left in the interval [10, 100] are all primes.

Here onwards, we will build a tool (cancelling sequences) that describes the progression of these terms as a
modified arithmetic progression. Once we have this, we can apply this to simplify problems or achieve exact
forms for π(n) & other formulae.
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Cancelling Sequences

0.1 Proposed Definitions
Def.I : A "cancelling factor", c ∈ N ( ̸= 1), is a number whose multiples cancel the terms of an arithmetic
progression.

Def.II : An arithmetic progression that excludes all terms which are multiples of c ∈ N (̸= 1) is called a "can-
celled arithmetic sequence".

Note : Throughout this paper, the terms "sequence" and "progression" have been used interchangeably.

Def.III : A "natural arithmetic progression" is an arithmetic progression with a1 = 1 and d = 1.

0.2 Formula for Cancelling Sequence and Example
If ac denotes the general term of a natural arithmetic progression (d = 1, a0 = 1 → N),
if we then reassign indices to the non-cancelled term we get,
ac : 1, 2, . . . , C - 1, //C, C + 1, C + 2, . . . ///2C, 2C + 1, . . .
n’(old index) : 1, 2, . . . , C - 1, C, C + 1, C + 2, . . . 2C, 2C + 1, . . .
n (new index) : 1, 2, . . . , C - 1, C, C + 1, . . . 2C - 1, 2C, . . .

Note : The new index lags behind the old one by the number of cancellations that have occurred.

Using 6 months worth of trial, I have found the following relation to hold between n’ and n. This was initially
guessed and its proof was done later using hard case-wise induction, Appendix [A]

n′ = n+

⌈ n
c +n

c + n

c . . .∞
− 1

⌉

Where ⌈ ⌉ is the ceil/smallest integer function [Natar]

If we take common divisors from the top of the fraction, this can be further simplified as,

n′ = n+

⌈
n

(
1

c
+

1

c2
+ · · ·+ 1

c∞

)
− 1

⌉
Since the parentheses house a simple geometric progression with the common ratio of 1

c , which is less than 1,
we can find the complete sum and substitute it such as.

n′ = n+

⌈
n

c− 1
− 1

⌉
To make this less abstract, let us consider an example;
Consider the arithmetic progression, with a0 = 1, d = 1 (natural numbers) with a cancelling factor, c = 3.
In simpler words count from 1 upto infinity while skipping every 3rd term.
Then,

n′ = n+

⌈
n

3− 1
− 1

⌉
= n+

⌈
n− 2

2

⌉
To get the sequence 1, 2, 4, 5, 7, 8, 10, . . . (skipping every multiple of 3),
we can use the formula,

an = n+

⌈
n− 2

2

⌉
I have provided the proof for the general case via induction in the Appendix [A].
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Combined Cancelling Sequences

0.3 Proposed Definitions
Def.IV : A "combined cancelling sequence", is an arithmetic progression, which has the multiples of more than
one cancelling factor missing.

Note : In the context of a combined cancelling sequence, we can consider a set of these cancelling factors,
appropriately named: "set of cancelling factors", C = { c1, c2, . . . }.

Def.V : An "Exclusive Combined Cancelling Sequence" (ECCS) is a combined cancelling sequence such that all
the cancelling factors are co-prime to each other.

Note : In this paper for the sake of conciseness and consequently relevance we will only be considering Exclusive
Combined Cancelling Sequences.

0.4 Example
Consider cancelling factors of c1 = 2 and c2 = 3 applied on a natural arithmetic progression;
For c1 = 2,
AP terms : 1, //2, 3, //4, 5, /6, 7, /8, 9, ///10, 11, ///12, . . .
n (old index) : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .
n’(new index): 1, 2, 3, 4, 5, 6, . . .

For c2 = 3,
AP terms : 1, 2, /3, 4, 5, /6, 7, 8, /9, 10, 11, ///12, . . .
n (old index) : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .
n’(new index): 1, 2, 3, 4, 5, 6, 7, 8, . . .

Combining the two,
AP terms : 1, /2, //3, //4, 5, //6, 7, /8, //9, ///10, 11, ///12, . . .
n (old index) : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .
n’(new index): 1, 2, 3, 4, . . .

The terms for the cancelled sequence with factor 2,

an,c=2 = n+

⌈
n2

2− 1
− 1

⌉
The terms for the cancelled sequence with factor 3,

an,c=3 = n+

⌈
n3

3− 1
− 1

⌉
Note : n2 and n3 here refer to the new index based on the individual cancelled arithmetic progressions of 2 and
3 respectively.

Since the sequences have now been combined, we account for cancellations from both the cancelling sequences.
Consider the new index = 2, which gives 5, this is because there are 3 cancellations before 5,

2 (index) + 3 (number of cancellations) = 5 (term).

To describe the combined cancelling sequence we can consider a trivial extension of this, which would be the
following formula,

an,c=2,3 = n+

⌈
n2

2− 1
− 1

⌉
+

⌈
n3

3− 1
− 1

⌉
Note : that the new index by n is different for both cancelling factors, i.e., n2,3

Note : This formula works perfectly until 6, but after that it start lagging by 1, from 12 onwards by 2 and so
on... It appears this is because of common multiples of the cancelling factor 2 and 3 as they have been cancelled
twice at 6, 12, .... To account for this we have to remove over accounting taking place in our formula.
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an,c=2,3 = n+

⌈
n2

2− 1
− 1

⌉
+

⌈
n3

3− 1
− 1

⌉
−
⌈

n2.3

2.3− 1
− 1

⌉
Note : 2.3 is presented as a subscript to n for better understanding only, it is a product and therefore equivalent
to 6.

0.5 Formula for Combined Cancelling Sequence
Before we generalise this, consider a case where we had 3 cancelling factors: 2, 3 and 5. Now when we get the
general term we will have cancelled 30 3 times, that is once by 2, then once by 3 and then once by 5. We are
also removing all pairwise cancellations (2, 3), (2, 5) and (3, 5) and will therefore remove 3 cancellations. By
doing this we have overshot our goal of maintaining at least 1 cancellations (3 - 3), and must add 1 back.

an,c=2,3,5 = n+

⌈
n2

2− 1
− 1

⌉
+

⌈
n3

3− 1
− 1

⌉
+

⌈
n5

5− 1
− 1

⌉
−
⌈

n2,3

2.3− 1
− 1

⌉
−
⌈

n3,5

2.5− 1
− 1

⌉
−
⌈

n2,5

3.5− 1
− 1

⌉
+

⌈
n2,3,5

2.3.5− 1
− 1

⌉
Such kind of accounting for over and under cancelling should give us the formula for an,

an,c1,c2,...cl = n+

l∑
i=1

⌈ nci

ci − 1
− 1⌉ −

l∑
i,j=1,2
1≤i<j≤l

⌈
nci,j

lcm(ci, cj)− 1
− 1⌉+

l∑
i,j,k=1,2,3
1≤i<j<k≤l

⌈
nci,j,k

lcm(ci, cj , ck)− 1
− 1⌉ − ...

This notation seems very complicated, and the sums can also be expressed using single-operation-sigmas,

an,c1,...cl = n+

m∑
k=1

⌈
n

ck − 1
− 1

⌉
−

m∑
k1=1

m∑
k2=k1+1

⌈
n

lcm(ck1
, ck2

)− 1
− 1

⌉

+

m∑
k1=1

m∑
k2=k1+1

m∑
k3=k2+1

⌈
n

lcm(ck1
, ck2

, ck3
)− 1

− 1

⌉
− · · ·

The proof for the Exclusive Combined Cancelling Sequence (ECCS, 0.3) is given in the Appendix [B] and is
just a consequence, as you shall see, of the inclusion-exclusion principle.

0.6 Formula for the Sieve of Eratosthenes
Here,
P is the set of cancelling factors (seed primes up to ⌊

√
n⌋ for primes until n considered),

n is the nth prime needed,
np is the new index based on the individual cancelled sequence of primes in n using cancelling factor p ∈ P.
l is the cardinality of the set P, i.e., |P| = l,
pi is the ith prime that is a member of the ordered set P.

an,P = n+

l∑
pi=2
1≤i<l

⌈ npi

pi − 1
− 1⌉ −

l∑
pi,pj=2,3
1≤i<j≤l

⌈
npi,j

pi.pj − 1
− 1⌉+

l∑
pi,pj ,pk=2,3,5
1≤i<j<k≤l

⌈
npi,j,k

pi.pj .pk − 1
− 1⌉ − ...

Here the set P is the set of cancelling factors, and is therefore the set of first l prime numbers. pi becomes
a cancelling factor, it is the ith prime and lastly npi

is the new index we get when the natural progression is
cancelled by the cancelling factor pi.

0.6.1 Number of unknowns and knowns

Since the npi term is an unknown from the perspective of just n and other prime numbers until ⌊
√
n⌋. We have(

n
1

)
+
(
n
2

)
+ ... +

(
n
n

)
=
∑n

k=1

(
n
k

)
= 2n - 1 (sum of binomal terms) many unknown terms. These terms can be

found analytically, but as we will see we are only interested in approximations, as there are far faster ways to
compute primes than this approach seems to suggest.
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0.6.2 Computational Efficiency

The Big-O notation complexity [Knu98] when using the Prime Number Theorem [HW08] and some approxima-
tions turns out to be,

O(

√
n
√
n

ln
√
n
)

I have included the proof for this in the Appendix [C]

0.7 Formula for the Sieve of Sundaram
Before we dive into the application of ECCS ( 0.3) to the Sieve of Sundaram, let’s briefly revise what it is [Kha19]:

Algorithm 1 Generate primes using the Sieve of Sundaram
Step 1: Create a list of integers from 1 to n (inclusive).
Step 2: Eliminate numbers from the list that can be expressed as i + j + 2ij where,
* i, j are integers,
* 1 ≤ i ≤ j,
* i + j + 2ij ≤ n
Step 3: The numbers left in the list are transformed to generate primes using the formula 2x + 1, where x
is the number in the list.
Step 4: The resulting numbers are all primes less than 2n + 2 with the exception of 2.

0.7.1 Important facts about the Sieve of Sundaram

1. There are no terms cancelled more than once

Proof. In the Sieve of Sundaram, the terms are generated by the expression i+ j + 2ij for pairs of integers i, j
such that 1 ≤ i ≤ j and i+ j + 2ij ≤ n. The term i+ j + 2ij is strictly increasing with respect to j for a fixed
i, since for any j1 < j2, we have:

i+ j1 + 2ij1 < i+ j2 + 2ij2.

This strict monotonicity ensures that for each i, the values of j produce distinct terms. Moreover, since j ≥ i,
no term can be counted more than once because the indices (i, j) and (j, i) represent different pairs when i ̸= j,
and the ordering i ≤ j prevents symmetry from leading to duplicate terms. Thus, each pair (i, j) generates a
unique term, ensuring no repetitions in the list of terms.

2. Given an n, we know how many numbers we need to go up for i to get i + j + 2ij ≤ n.

Proof. We can comment on how high i can go, given n, so we don’t waste computations at values of i and j,
where we are going to overshoot over n. We know that for each i, the corresponding j must satisfy the inequality
i+ j+2ij ≤ n. To find the maximum value of i, consider the case when j is at its smallest value, which is equal
to i. In this case, the inequality becomes:

i+ j + 2ij ≤ n

Simplifying this inequality, (i = j):
2i2 + 2i− n ≤ 0

Using the quadratic formula,

i ≤
−2±

√
22 − 4(2)(−n)

2(2)

Since i must be non-negative,

i ≤ −1 +
√
2n+ 1

2

Thus, the highest value i can take is:

imax =

⌊
−1 +

√
2n+ 1

2

⌋
Note : ⌊⌋ is the greatest integer function/ floor function [Natar]

5



This is the largest value of i that needs to be considered when running the Sieve of Sundaram for a given n.
For each value of i from 1 to imax, we compute the corresponding values of j such that i+ j + 2ij ≤ n.

3. Given an i & n, we know how many numbers we need to go up for j to get i + j + 2ij ≤ n.

Proof. The cancellation formula is:
i+ j + 2ij ≤ n

Rearranging for j, we get:
j + 2ij ≤ n− i

Factoring out j:
j(1 + 2i) ≤ n− i

Solving for j, we get:

j ≤ n− i

1 + 2i

Thus, for a given i, the largest integer j that satisfies the inequality is:

j =

⌊
n− i

1 + 2i

⌋
the last term that needs to be considered before incrementing i.

0.7.2 Modelling Sieve of Sundaram as a Cancelling Sequence for modelling

Since there are no conflicting cancellations in the "Sieve of Sundaram", we will need an approach where for
each i + j + 2ij only 1 cancellation occurs, not all multiples until n.

This can be done in one of two ways;
(1) Use the naive approach, that is account for all cancellations by (i + j + 2ij) cancelling factors and then

remove the ones after the first cancellation.

p =

⌊
n+ 1

n

⌋
+ 2

(
(n− 1) +

⌊
−1+

√
2(n−1)+1

2

⌋∑
i=1

⌊ (n−1)−i
1+2i ⌋∑
j=i

⌈
ni+j+2ij

(i+ j + 2ij)− 1
− 1

⌉)

− 2

⌊
−1+

√
2(n−1)+1

2

⌋∑
i2=1

⌊
(n−1)−i2

1+2i2

⌋∑
j=i2

⌊
−1+

√
2(n−1)+1

2

⌋∑
i1=1

⌊
n−1−i1
1+2i1

⌋∑
j1=i1

⌈
ni1+j1+2i1j1,i2+j+2i2j

lcm(i1 + j1 + 2i1j1, i2 + j + 2i2j)− 1
− 1

⌉

(2) Use a special function which moves forward if the cancellation occurs once

We achieve this with a simple algebraic function that returns 1 if y is greater than or equal to x and
0 if x otherwise. Let’s consider one such function.

D(x, y) =

⌊
y − x

|y − x|+ 1

⌋
+ 1 =

{
1 if x ≥ y,

0 if x ≱ y.

p =

⌊
n+ 1

n

⌋
+ 2

(n− 1) +

⌊
−1+

√
2(n−1)+1

2

⌋∑
i=1

⌊ (n−1)−i
1+2i ⌋∑
j=i

D(i+ j + 2ij, (ni+j+2ij − 1))


Note : It would be most useful to consider analytical or algebraic functions in D, i.e., functions with congruence
moduli used or free of ceils and floors such that summands can be simplified.

This statement can be made more algebraically pleasing, if we realise that we actually always know the number
of cancellations given an n. For example, if we have n, we know that i ≤

⌊
−1+

√
2n+1

2

⌋
. For each of these i’s we

have to take ⌊ n−i
1+2i⌋ many j’s. Each of these has a contribution of 1.
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The total number of cancellations is then,

⌊ n− 1

1 + 2(1)
⌋+ ⌊ n− 2

1 + 2(2)
⌋+ ...+ ⌊

n− (⌊−1+
√
2n+1

2 ⌋)
1 + 2(⌊−1+

√
2n+1

2 ⌋)
⌋

Note : The use of the floor function introduces discrete jumps, preventing algebraic simplification of the sum-
mation without explicitly evaluating it.
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Appendix

A Proof for Cancelling Sequence Formula
Proof. For a sequence Ac, a natural arithmetic progression with c as the cancelling factor:

ac : 1, 2, . . . , C - 1, //C, C + 1, C + 2, . . . ///2C, 2C + 1, . . .
n’(old index) : 1, 2, . . . , C - 1, C, C + 1, C + 2, . . . 2C , 2C + 1, . . .
n (new index) : 1, 2, . . . , C - 1, C, C + 1, . . . 2C - 1, 2C, . . .

Let P (n) be the statement:
P (n) : n′ = n+ ⌈ n

c− 1
− 1⌉, c ∈ N, c ≥ 2.

A.1 Base Case: n = 1

For n’ = 1, n = 1 (must), because C cannot cancel a number less than 2,

P (1) : n′ = 1 + ⌈1− c+ 1

c− 1
⌉ = ⌈ 1

c− 1
⌉ = 1, true for all c ∈ N, c ≥ 2.

Note : n′
k is n’ when n = k

A.2 Inductive Hypothesis
Assume that P (n = k) is true, i.e.,

n′
n=k = k + ⌈k − c+ 1

c− 1
⌉.

A.3 Inductive Step
For the conditions mentioned before, We need to prove that P (n = k + 1) is also true, i.e.,

n′
n=k+1 = (k + 1) + ⌈ (k + 1)− c+ 1

c− 1
⌉.

The recurrence that we can establish amongst terms of the old index is:{
n′
k+1 = n′

k + 1 if (c− 1) ∤ k,
n′
k+1 = n′

k + 2 if (c− 1) | k.

What follows is the description of why this recurrence holds,

A.3.1 Why does this recurrence hold ?

The reason we split into 2 cases is that, the skipped numbers create a "gap" and how much we jump depends
if (k + 1) [an index further than the one we are assuming] falls into it.

Only multiples of c are skipped; so when, moving from n′
n=k to n′

n=k+1 we need to figure out:
1) Does (k + 1) land on a valid number ?

If (k + 1) is not a multiple of c, then it is valid.
2) Does (k + 1) land on a skipped number ?

If (k + 1) is a multiple of c it gets skipped ahead to next valid number.

Example of recursive jumps
ac : 1, 2, //3, 4, 5, /6, 7, 8, //9, 10, 11, ///12, . . .
n’(old index) : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .
n (new index) : 1, 2, 3, 4, 5, 6, 7, 8, . . .

Consider:
The jump from n′

n=k=3 → n′
n=k+1=3+1=4

In this case, n′
k+1 = n′

k + 1 as no term was skipped in this form.
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The jump from n′
n=k=4 → n′

n=k+1=4+1=5

In this case, n′
k+1 = n′

k + 2 as one term was skipped in this form.

Why (c - 1)?
Whenever we remove numbers divisible by c (c, 2c, 3c, ...) the numbers left behind form a pattern.
The gap between consecutive c’s (cancelled) is always (c - 1),
For example:

1, 2︸︷︷︸ 4, 5︸︷︷︸ 7, 8︸︷︷︸ 10, 11︸ ︷︷ ︸
Note : The number of terms before the gaps occur are, (c - 1) i.e., 3 - 1 = 2.

Why (c - 1) | k ?
When figuring out the relationship between k to skipped number. If k is just before the number skipped by
c, then k + 1 must land on a mulitple of c,

k mod (c− 1) = 0

As the sequence resets every (c - 1) terms.
Otherwise,

k mod (c− 1) ̸= 0

term described by (k + 1) is safe.

A.4 Case-Wise Proof
Case I: (c− 1) ∤ k
To prove case I, the following must be true,

n′
k+1 = k + ⌈k − c+ 1

c− 1
⌉+ 1.

and we know the following to be true,

n′
k+1 = (k + 1) + ⌈ (k + 1)

c− 1
− 1⌉

Substituting these as equal and noting if the equality holds should suffice.

=⇒ k + ⌈k − c+ 1

c− 1
⌉+ 1 = (k + 1) + ⌈ (k + 1)

c− 1
− 1⌉

=⇒ ⌈k − c+ 1

c− 1
⌉ = ⌈ (k + 1)

c− 1
− 1⌉

=⇒ ⌈ k

c− 1
− 1⌉ = ⌈k + 1

c− 1
− 1⌉

We can take an integer out of the ceil function

=⇒ ⌈ k

c− 1
⌉ − 1 = ⌈k + 1

c− 1
⌉ − 1

=⇒ ⌈ k

c− 1
⌉ = ⌈k + 1

c− 1
⌉

Since (c - 1) ∤ k, k
c−1 should be a fraction when ceiled, that is = ⌈k+1

c−1 ⌉.

Case II: (c− 1) | k
To prove case II, the following must be true,

n′
k+1 = k + ⌈k − c+ 1

c− 1
⌉+ 2.

and we know the following to be true,

n′
k+1 = (k + 1) + ⌈ (k + 1)

c− 1
− 1⌉
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Substituting these as equal and noting if the equality holds should suffice.

=⇒ k + ⌈k − c+ 1

c− 1
⌉+ 2 = (k + 1) + ⌈ (k + 1)

c− 1
− 1⌉

=⇒ ⌈ k

c− 1
− 1⌉+ 1 = ⌈ (k + 1)

c− 1
− 1⌉

We can take an integer out of the ceil function

=⇒ ⌈ k

c− 1
⌉ = ⌈ (k + 1)

c− 1
⌉ − 1

Since (c - 1) | k, k mod (c− 1) = [(k + 1) mod (c− 1)]− 1, the following equality stands,

=⇒ ⌈ k

c− 1
⌉ = ⌈ k

c− 1
⌉+ 1− 1

Since Case I & Case II are true, by the Principle of Mathematical Induction, P (n) is true for all n ∈ N, c > 1.
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B Proof for Combined Cancelling Sequence Formula

B.1 Definitions and Notation
Let C = {c1, c2, . . . , cℓ} be a set of pairwise coprime cancelling factors. For any subset S ⊆ C, we define:

• lcm(S) as the least common multiple of elements in S

• |S| as the cardinality of S

• an as the nth term of the resulting sequence

• Ai as the set of multiples of ci up to n

• Ai1,...,ik as the intersection of sets Ai1 , . . . , Aik

B.2 Main Results
Theorem B.1 (Combined Cancelling Sequence Formula). For a set C = {c1, c2, . . . , cℓ} of pairwise coprime
cancelling factors acting on a natural arithmetic progression, the nth term of the resulting sequence is given by:

an = n+

ℓ∑
i=1

⌈ n

ci − 1
− 1⌉

−
∑

1≤i<j≤ℓ

⌈ n

cicj − 1
− 1⌉

+
∑

1≤i<j<k≤ℓ

⌈ n

cicjck − 1
− 1⌉

+ · · ·+ (−1)ℓ+1⌈ n

c1c2 · · · cℓ − 1
− 1⌉

(1)

B.3 Supporting Lemmas
Lemma B.2 (Coprime Intersection Property). For any subset S ⊆ C of pairwise coprime cancelling factors, a
number is divisible by all factors in S if and only if it is divisible by lcm(S), which equals the product of all
elements in S.

Proof. Since the elements of S are pairwise coprime, by the fundamental theorem of arithmetic, their least
common multiple equals their product. Therefore, if a number is divisible by lcm(S), it is divisible by each
factor in S, and conversely, if it is divisible by each factor, it must be divisible by their product.

Lemma B.3 (Counting Formula for Intersections). For any subset S ⊆ C of size k, the number of integers up
to n that are divisible by all elements in S is:

|AS | =
⌊

n∏
c∈S c

⌋
(2)

Proof. By Lemma B.2, we need to count multiples of
∏

c∈S c up to n. This is precisely
⌊

n∏
c∈S c

⌋
.

Lemma B.4 (Correction Term Property). The correction term for the overlap of k cancelling factors ci1 , . . . , cik
is: ⌈

n

ci1 · · · cik − 1
− 1

⌉
(3)

Proof. Consider k cancelling factors. By Lemma B.3, their multiples intersect at positions that are multiples
of their product. The correction term accounts for the shift in indexing caused by previous cancellations, hence
the ceiling function and the subtraction of 1.

B.4 Main Proof
We prove Theorem B.1 through structural induction on |C|.
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B.5 Base Cases
Proposition B.5 (Single Cancelling Factor). For |C| = 1, the formula reduces to:

an = n+ ⌈ n

c1 − 1
− 1⌉ (4)

which correctly counts cancellations of multiples of c1 as shown in Appendix [A].

Proposition B.6 (Two Cancelling Factors). For |C| = 2, the formula:

an = n+ ⌈ n

c1 − 1
− 1⌉+ ⌈ n

c2 − 1
− 1⌉ − ⌈ n

c1c2 − 1
− 1⌉ (5)

correctly accounts for all cancellations.

Proof. For two coprime cancelling factors c1 and c2:

• |A1| = ⌈ n
c1−1 − 1⌉ counts cancellations by c1

• |A2| = ⌈ n
c2−1 − 1⌉ counts cancellations by c2

• |A1,2| = ⌈ n
c1c2−1 − 1⌉ corrects for double-counting

By the inclusion-exclusion principle [Sta11], |A1 ∪A2| = |A1|+ |A2| − |A1,2|, which matches our formula.

B.6 Inductive Step
Theorem B.7 (Inductive Case). If the formula holds for all sets of size k, it holds for sets of size k + 1.

Proof. Let the formula hold for |C| = k and consider C ′ = C ∪ {ck+1}. By the inclusion-exclusion principle:
1. Add cancellations from ck+1: ⌈ n

ck+1−1 − 1⌉
2. Subtract overlaps with each previous factor:

−
k∑

i=1

⌈ n

cick+1 − 1
− 1⌉ (6)

3. Add triple overlaps: ∑
1≤i<j≤k

⌈ n

cicjck+1 − 1
− 1⌉ (7)

4. Continue alternating according to the inclusion-exclusion principle.
This exactly matches the form of our formula for k + 1 factors.

B.7 Verification of Properties
Theorem B.8 (Essential Properties). The formula satisfies:

1. Each cancelled term is counted exactly once.

2. Non-cancelled terms remain unchanged.

3. The sequence preserves order between remaining terms.

Proof. :

1. By the inclusion-exclusion principle [Sta11] and Lemma B.2, overlaps are accounted for exactly once.

2. For non-cancelled terms, all ceiling terms sum to zero as no cancellations occur.

3. The monotonicity of the original sequence is preserved for non-cancelled terms as the formula only adds
positive integers to account for cancellations.
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C Complexity Calculations
The computational efficiency [Knu98] of ECCS ( 0.3) depends on the sum of individual ceiled terms that are
being added and subtracted. We parameterise ECCS with n, as it reflects the scaling factor of the problem
perfectly. This is because once the n is decided, ⌊

√
n⌋ is fixed, and thereby all the primes being used less than

⌊
√
n⌋ are also determined as π(⌊

√
n⌋).

Note : The first ceil terms (single primes being added),
∑l

i=1⌈
nci

ci−1 − 1⌉ are basically O(π(⌊
√
n⌋)).

Note : π(n) is the prime counting function [HW08].

The second ceil terms (double primes being subtracted),
∑l

i,j=1,2⌈
nci

lcm(ci,cj)−1 − 1⌉ is again number of primes
being considered up to ⌊

√
n⌋, however we are now also considering their combinations, and therefore get

O(π(
(⌊√n⌋

2

)
)), where the inner most ( ) pair is a binomial.

Note : We will have to take lcm(s) of pairs, triplets, and so on until ⌊
√
n⌋. It is because of this that we require

O(2.π(
(⌊√n⌋

2

)
))

As we would expect this would continue for the remaining summands, giving us the following worst-case com-
plexity for this formula,

O(π

[(
⌊
√
n⌋
1

)]
) +O(2.π

[(
⌊
√
n⌋
2

)]
) +O(3.π

[(
⌊
√
n⌋
3

)]
) + ...+O(⌊

√
n⌋.π

[(
⌊
√
n⌋

⌊
√
n⌋

)]
)

We can open up the binomials, however because of lack of algebraic expressions dealing with π(n) we really
can’t be more precise about the asymptotic complexity than this,

=⇒ O

[
π(

⌊
√
n⌋!

1!(⌊
√
n⌋ − 1)!

) + 2.π(
⌊
√
n⌋!

2!(⌊
√
n⌋ − 2)!

) + 3.π(
⌊
√
n⌋!

3!(⌊
√
n⌋ − 3)!

) + ...+ ⌊
√
n⌋.π( ⌊

√
n⌋!

⌊
√
n⌋!(⌊

√
n⌋ − ⌊

√
n⌋)!

)

]
Since this is not very informative let us instead make some approximations knowing π(n) ≈ n

lnn we can approx-
imate our complexity analysis to reduce each O(π(x)) terms to O( x

ln x ), doing this for each term will help us
simplify the expression for complexity even more.

Note : To reduce the pain this notation is causing us let us also assume, ⌊
√
n⌋ = x. This will simplify the above

statement,

=⇒ O

[
π(

x!

1!(x− 1)!
) + 2.π(

x!

2!(x− 2)!
) + 3.π(

x!

3!(x− 3)!
) + ...+ x.π(

x!

x!(x− x)!
)

]
Each of the term is of the form, k.π( x!

k!(x−k)! ) where k = 1, 2, 3, ..., x.
Now using the Prime Number Theorem [HW08], we can substitute to get,

k.π(

(
x

k

)
) ≈ k.

(
x
k

)
ln
(
x
k

)
So, the entire sum becomes,

O(

x∑
k=1

k.

(
x
k

)
ln
(
x
k

) )
For large x,

(
x
k

)
≈ xk

k! when k is relatively small. The leading term simplifies to xk

ln x

Therefore, the asymptotic complexity simplifies to,

O(
xx

lnx
) = O(

√
n
√
n

ln
√
n
)

Note : The ceils on the
√
n have been dropped for the sake of simplicity.

Given how quickly (
√
n)

√
n grows and the formula becomes infeasible at values as low as n = 24, it is quite

obvious that this formula will never be used for any actual evaluation. It is still useful as we shall see for
expressing primes within different contexts, important formulae and solutions to conjectures in future papers.
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