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Abstract 

This study investigates the oscillatory motion of a rocking solid semi-cylinder to determine whether 

it exhibits simple harmonic motion (SHM) and to characterize its damping behavior. Using a 

theoretical framework derived from classical mechanics, the experiment aims to verify the 

independence of the oscillation period from amplitude, compare experimental and theoretical 

natural frequencies, analyze the sinusoidal nature of angular displacement over time, and quantify 

the system’s damping coefficient. The experimental setup involved tracking the motion of a semi-

cylinder displaced by small angles using video analysis and computational tools. The results 

confirm that the oscillation closely follows SHM principles, with a nearly constant period and 

frequency. The damping coefficient, relaxation time, and quality factor (Q-value) were also 

determined, indicating that the system exhibits underdamped oscillatory motion. These findings 

contribute to a deeper understanding of the dynamics of rocking semi-cylinders and their practical 

applications in mechanical and engineering systems. 
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1 Introduction 

A roly-poly toy, also known as a tumbler, is a round-bottomed toy hat tends to right itself when 

pushed at an angle. In fact, this behaviour can be observed from any type of object that shares 

the shape of a hemisphere, moreover, one can also observed a similar motion pattern in a solid 

semi-cylinder as the reference 2-dimensional plane to the motion of a hemisphere. When a roly-

poly is placed upon a horizontal support surface and displaced from its equilibrium state, the solid 

hemisphere or semi-cylinder will manifest oscillatory excursions due to the effect of gravity, which 

acts downward along the vertical direction. Therefore, our intuition immediately associates the 

oscillatory motion to a damped simple harmonic motion. 

This experiment studies the rocking oscillation motion of a solid semi-cylinder. The main objective 

of this experiment is to prove that this oscillation exhibits simple harmonic motion and describe 

the damping of the oscillation. It is hypothesized that the rocking oscillation of a solid semi-cylinder 

is an damped simple harmonic motion. The figure below shows the coordinate system and 

dimensions of a semi-cylinder from xy-plane in its equilibrium state. 

 

 

 

 

 

 

 

 

 

 

The acronyms on Fig. 1 represent its description. COM represents Centre of Mass, C represents 

the Centre of the Circle, O represents the Origin of the coordinate system, P represents Point of 

contact, R represents the Radius of the semi-cylinder, M represents the Mass of the semi-cylinder, 

whereas h represents the distance between C and COM. 
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Figure 1. Coordinate System and Dimensions of Semi-Cylinder 
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Now, a force is acted upon the semi-cylinder that it displaces an angle of θ from its axis. This 

causes its centre of mass and the point of contact to the surface to shift in position. Now, there 

are additional forces acting on the semi-cylinder in order to return to its equilibrium state. 

 

 

 

 

 

 

 

 

 

 

 

 

The angular displacement θ is measured negative as following the using of counter-clockwise 

direction as the positive direction due to the effect of torque. The initial angular displacement or 

amplitude, 𝜃0 , is measured at the instance of the external force is applied.  

From Classical Mechanics, the formula for the distance between C and COM, ℎ, and the Moment 

of Inertia at COM, 𝐼𝐶𝑂𝑀, of a solid semi-cylinder can be derived to be: 

ℎ =
4

3𝜋
𝑅 

𝐼𝐶𝑂𝑀 =
1

2
𝑀𝑅2 − 𝑀ℎ2 

If the motion is deduced to be simple harmonic, the linearized differential equation of motion has 

to follow: 

�̈� + 𝜔0
2𝜃 = 0 
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Figure 2. Free-Body Diagram of Semi-Cylinder 
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Therefore, using Newton’s Second Law, the derivation of the formula for the theoretical undamped 

natural frequency 𝜔0 of oscillation for the rocking semi-cylinder is obtained to be: 

𝜔0 = √
8𝑔

𝑅(9𝜋 − 16)
 

From this formula, the theoretical period, T, can be evaluated as well, since the period will be 

constant and independent of amplitude for an undamped system. Therefore, this experiment 

consists of 4 elements to verify that the oscillation is indeed simple harmonic, which are: 

1. Verifying if, as theory predicts, the period of an undamped harmonic oscillator, 𝑻  is 

amplitude independent by investigating the period over a time interval of 5 oscillations. 

2. Comparing the experimental natural oscillating frequency, 𝝎𝒐 with the theoretical value. 

3. Plotting the angular displacement against time graph of the oscillation and verifying the 

sinusoidal variation of the angular displacement. 

4. Investigate the damping coefficient,𝝁,of the system by measuring the maximum amplitude 

of the angular displacement after 5 consecutive periods and from that compare the results. 

2 Experiment Setup 

Material 
No. Item Description Quantity No. Item Description Quantity 

1. Solid Semi-Cylinder Block 1 5. Meter Rule 1 

2. Protractor 1 6. Marker Pen 1 

3. A4 Paper 1 7. Video Recorder 1 

4. Tape 15cm 8. OSP Tracker Software 1 
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Figure 3. Experiment Setup and Calibration using Tracker Tool 
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Initial Setup 
1. Refer to Fig. 3 above, to ease the process of calibration using Tracker software later, 

measure the radius of the semi-cylinder block using a ruler beforehand. Stick a piece of 

tape onto the block and plot a black dot on the centre of mass of the block using a marker 

pen. Tape a protractor onto a piece of A4 paper and mark several lines of angle such as 

10°,15°and 20°. Place the A4 paper as the background. 

2. Place the semi-cylinder block on a flat surface. Make sure the centre of the block is 

positioned with the origin axis of the protractor. Tape a piece of paper on the horizontal 

side of the block, but this step is optionally as it only eases the process to locate the angles. 

Part A: Measuring the period of oscillation using Tracker Software 
1. Exert a force with your finger on the right side of the block till it tilts to angle 10°. Next, start 

the recording button on the video recorder. Release your finger and let the block to 

oscillate until it returns to its equilibrium state. Stop the recording.  

2. Upload the recordings to Tracker Software. Refer to Fig. 3 above, calibrate the origin O of 

the block by using the Coordinate Axes Tool. Next, calibrate the dimension of the radius 

by using the Calibration Stick Tool. Using the Calibration Tape Tool, make sure that the 

horizontal radius has the same value as the vertical radius. Mark the initial angular 

displacement angle using the Protractor Tool.  

3. Determine the frame number which the finger is released as the start frame and the frame 

number which the block has returned to its equilibrium state as the end frame. Using the 

Point Mass Tool, create a point mass by selecting the black dot area. Next, select ‘Search’ 

and the displacement against time data will be recorded. 

4. From the graph and data chart, determine the time taken for 5 complete oscillations. 

5. Repeat Step 1 to Step 4 two more times by using different initial displaced angle, 15°and 

20°. Record the findings onto a data table. 

Part B: Plotting the sinusoidal graph for the oscillation of solid semi-cylinder 
1. From the Tracker Software, export the data collected, angular displacement θ and time 

elapsed t, to an Excel Spreadsheet. Using Microsoft Excel, plot the sinusoidal graph of 

angular displacement against time and label the graph. 

2. After verifying that the graph is sinusoidal and the motion is simple harmonic, create a 

MATLAB Programme to produce a more accurate angular displacement over time graph. 

Compare the experimental graph from Excel with the theoretical graph from MATLAB. 

3. Determine the equation of motion for the damped simple harmonic motion. 
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3 Data Collection to Verify the System is SHO 

Part A: Measuring the period of oscillation using Tracker Software 
 

𝜽𝟎 (𝒅𝒆𝒈) 𝒏 ∆𝒕𝟏 (𝒔) ∆𝒕𝟐 (𝒔) ∆𝒕𝟑 (𝒔) ∆𝒕𝒂𝒗𝒈 (𝒔) 𝑻 (𝒔) 

10° 5 1.691 1.687 1.693 1.690 0.338 

15° 5 1.692 1.695 1.685 1.691 0.338 

20° 5 1.710 1.698 1.715 1.708 0.342 

 

 

Part B: Plotting the sinusoidal graph for the oscillation of solid semi-cylinder 

Time, 𝒕 (𝒔) Angular Displacement,𝜽 (𝒓𝒂𝒅) Time, 𝒕 (𝒔) Angular Displacement,𝜽 (𝒓𝒂𝒅) 

0.00 0.261799 0.85 -0.16258 

0.01 0.255866 0.90 -0.08359 

0.05 0.152401 0.95 0.056464 

0.10 -0.07020 1.00 0.144808 

0.15 -0.22590 1.05 0.115185 

0.20 -0.19659 1.10 -0.00287 

0.25 -0.01521 1.15 -0.11230 

0.30 0.168254 1.20 -0.12803 

0.35 0.210278 1.25 -0.04283 

0.40 0.085664 1.30 0.071234 

0.45 -0.09917 1.35 0.123452 

0.50 -0.19649 1.40 0.076349 

0.55 -0.13496 1.45 -0.02788 

0.60 0.028734 1.50 -0.10468 

0.65 0.161115 1.55 -0.09550 

0.70 0.160399 1.60 -0.01217 

0.75 0.034346 1.65 0.076171 

0.80 -0.11174 1.70 0.100193 

  

Table 1. Table of Data for Part A 

Table 2. Table of Selected Data for Part B 
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4 Analysis and Discussion 

Analysis 

Part A: Measuring the period of oscillation using Tracker Software 
From the initial setup, the radius of the semi-cylinder R was measured to be 1.85 cm and the 

mass of the semi-cylinder was measured to be 11.5 g. On the other hand, from Table 1, the 𝜃0 

represents the initial angular displacement or amplitude whereas 𝑛  denotes the number of 

complete cycles of oscillations. The total time for 5 complete oscillations, ∆𝑡,was recorded up to 

3 times in order to obtain the mean value for  ∆𝑡𝑎𝑣𝑔 . The period for 1 oscillation 𝑇 was then 

calculated by dividing ∆𝑡𝑎𝑣𝑔  with 𝑛 .Now, the experimental period and natural frequency are 

compared to its theoretical counterpart in the Table 3 below. 

𝜽𝟎 (𝒅𝒆𝒈) 𝑻𝒆𝒙𝒑 (𝝎𝟎)𝒆𝒙𝒑 (𝝎𝟎)𝒕𝒉𝒆𝒐 𝑻𝒕𝒉𝒆𝒐 Relative Error 

10° 0.338 s 18.59 rad/s 18.59 rad/s 0.338 s 0.00374 % 

15° 0.338 s 18.59 rad/s 18.59 rad/s 0.338 s 0.06287 % 

20° 0.342 s 18.37 rad/s 18.59 rad/s 0.338 s 1.18343 % 

 

In spite of the 𝑇𝑒𝑥𝑝 was rounded to 3 decimal places, the relative error still persists by using the 

actual value. However, due to the fact that the relative error is extremely small, it can simply be 

ignored to show that the period of the oscillation is constant and it was determined to be 0.338 𝑠, 

given the 𝜃0 was very small so that the damping effect can be ignored. Thus, this result satisfies 
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Graph 1. Graph of Data for Part B 

Table 3. Table of Data Analysed from Part A 
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the equation of natural undamped simple harmonic motion �̈� + 𝜔0
2𝑥 = 0 , or in this case, refer to 

Eqn. 3, �̈� + 𝜔0
2𝜃 = 0. Hence, the natural angular frequency 𝜔0  is also a constant and can be 

determined by the equation 𝜔 =
2𝜋

𝑇
 to be 18.59 𝑟𝑎𝑑/𝑠 . Using Equation (4), the theoretical 

undamped natural angular frequency can also be calculated to be  𝜔0 = √
8(9.81 𝑚/𝑠)

(0.0185 𝑚)(9𝜋−16)
  ≈

18.59 𝑟𝑎𝑑/𝑠. Under the condition of 𝜃0 is very small, the damping effect is hardly noticeable on 𝑇 

and 𝜔0, However, the damping effect still persists as evidently shown from Graph 1, the data has 

been enlarged to show that the damping exists, but in reality the damping coefficient is small and 

only has a significant effect on the amplitude of the motion, these will be discussed below. 

Part B: Plotting the sinusoidal graph for the oscillation of solid semi-cylinder 
 

From Graph 1, it is evident that the oscillation of rocking solid semi-cylinder is sinusoidal and 

amplitude of each cycle of oscillation is decreasing over time, which is the characteristics of a 

damped simple harmonic motion. For simplicity purposes, the total time of the oscillation for 5 

complete cycles will be taken up to 1.69 s in the calculations for the following section. 

 

 

 

 

 

 

 

 

 

Graph 2 above shown the motion of oscillation with the initial angular displacement 𝜃0 or the 

amplitude set to 15° and convert to 0.2618 radian. The amplitude decay can be expressed as a 

function of time with the equation below that will be further discussed in Discussion section.  

𝐴 = 𝐴0𝑒

−[
𝜇

2𝑀(
3
2

𝑅2

ℎ
−2𝑅)

]𝑡
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𝐴1(0.34, 0.21657) 𝐴0(0, 0.2618) 
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𝐴5(1.69, 0.10229) 

Graph 2. Graph for Part B, with Amplitudes Highlighted after each cycle 
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Cycle Time, 𝒕 (s) Amplitude (rad) 

0 0.00 0.26180 

1 0.34 0.21657 

2 0.67 0.17916 

3 1.01 0.14881 

4 1.35 0.12345 

5 1.69 0.10229 

 

From Equation (5), 𝐴0  is the initial amplitude whereas 𝜇  is damping coefficient. In order to 

determine the value for 𝜇, logarithmic decay 𝛿 is utilised as it is the rate of the decay of amplitude. 

𝛿 =
𝜇

2𝑀(
3
2

𝑅2

ℎ
− 2𝑅)

𝑇 = 𝑙𝑛
𝐴0

𝐴1
 

Given the ratio of amplitude is 1 cycle apart, n=1, and analysing initial amplitude 𝐴0 and the 

amplitude of the first cycle 𝐴1. After substituting all the known value for each variable, the damping 

coefficient 𝜇 can now be determined from the logarithmic decrement 𝛿 to be: 

𝛿 = 𝑙𝑛
0.26180 𝑟𝑎𝑑

0.21657 𝑟𝑎𝑑
= 0.189667       ;     ℎ =

4

3𝜋
(0.0185 𝑚) = 7.852 × 10−3𝑚 

𝜇 =
2𝛿𝑀 (

3
2

𝑅2

ℎ
− 2𝑅)

𝑇
=

2(0.189667)(11.5 × 10−3 𝑘𝑔)(
3
2

(0.0185 𝑚)2

7.852 × 10−3 𝑚
− 2(0.0185 𝑚))

0.338 𝑠
 

Thus, 𝜇 = 3.66 × 10−4 𝑘𝑔 𝑚/𝑠. Now, a graph is created using MATLAB with all the known values. 

 

 

 

 

 

 

 

 

Table 4. Table of Amplitude after each Cycle 

 
(6) 

Graph 3. Graph for Part B, with Amplitudes Highlighted after each cycle from MATLAB 
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The relaxation time is defined as the time taken for the amplitude to decay to 𝑒−1 of its original 

value. Therefore, the value for amplitude is:  𝐴 = 𝐴0𝑒−1  

Refer to Equation (5) and Equation (7) above, the relaxation time 𝑡 can be determined to be: 

[
𝜇

2𝑀(
3
2

𝑅2

ℎ
− 2𝑅)

] 𝑡 = 1    =>    𝑡 =
2𝑀(

3
2

𝑅2

ℎ
− 2𝑅)

𝜇
 

Substituting the corresponding value into Equation (8), thus 𝑡 = 1.78 s 

 𝑡 =
2(11.5 × 10−3 𝑘𝑔)(

3
2

(0.0185 𝑚)2

7.852 × 10−3 𝑚
− 2(0.0185 𝑚))

3.66 × 10−4 𝑘𝑔 𝑚/𝑠.
= 1.78 𝑠  

The Q-value of a Damped Simple Harmonic Oscillator describes the number of radians the 

system vibrated through until the energy decays to 𝑒−1 of its original value. Given that the energy 

in a simple harmonic oscillator is proportional to the square of the amplitude, 𝐸 ∝ 𝐴2. Therefore, 

the time function of the energy will be 𝐸 = 𝐸0𝑒
−[

𝜇

𝑀(
3
2

𝑅2

ℎ
−2𝑅)

]𝑡

 where 𝐸0 is the original value of the 

energy.  

When 𝐸 = 𝐸0𝑒−1, the time taken for the energy decay is,  

𝑡 =
𝑀(

3
2

𝑅2

ℎ
− 2𝑅)

𝜇
 

Therefore, the Q-value is defined as:      𝑄 = 𝜔′𝑡 

Since 𝜇 is very small, therefore the damping resistance term can be ignored, hence 𝜔′ ≈ 𝜔0. 

Thus, by close approximation, the Q-value can be defined as 𝑄 = 𝜔0𝑡. 

Substituting the corresponding value of Equation (9) and 𝜔0 to Equation (11), it gives: 

𝑄 = (18.59 𝑟𝑎𝑑/𝑠) [
(11.5 × 10−3 𝑘𝑔)(

3
2

(0.0185 𝑚)2

7.852 × 10−3 𝑚
− 2(0.0185 𝑚))

3.66 × 10−4 𝑘𝑔 𝑚/𝑠.
] 

𝑄 = 16.58 𝑟𝑎𝑑 

Therefore, the Q-value of 16.58 rad agreed upon the behaviour of the motion of oscillator from 

Graph 2. 
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(11) 
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Discussion 
The Equation of Motion for a rocking solid semi-cylinder is derived using the Newtonian Method 

of Analysis. Since the process is extremely long and complicated, thus the full equation of motion 

for an undamped simple harmonic oscillation obtained is only shown below: 

𝑀 (
3

2

𝑅2

ℎ
− 2𝑅𝑐𝑜𝑠𝜃) �̈� + 𝑀𝑅ℎ𝑠𝑖𝑛𝜃(�̇�)

2
+ 𝑀𝑔𝑠𝑖𝑛𝜃 = 0 

Since 𝜃 very small, using small angle approximation, 𝑠𝑖𝑛𝜃 ≈ 𝜃 , 𝑐𝑜𝑠𝜃 ≈ 1 , and the term 𝜃�̇� is 

relatively very small compared to 𝜃, therefore it can be justifiably ignored from the equation. 

Now the damping coefficient 𝜇 is introduced, giving the damped equation of motion: 

𝑀 (
3

2

𝑅2

ℎ
− 2𝑅) �̈� + 𝜇�̇� + 𝑀𝑔𝜃 = 0 

Now, terms such as stiffness term and other equations can be solved by the ODE process. 

𝜃(𝑡) = 𝐴0𝑒

−[
𝜇

2𝑀(
3
2

𝑅2

ℎ
−2𝑅)

]𝑡

cos (𝜔′𝑡) 

𝜔′ =
√

𝑔

3
2

𝑅2

ℎ
− 2𝑅

−
𝜇2

4𝑀2 (
3
2

𝑅2

ℎ
− 2𝑅)

2 

The Dissipative Force by Friction can be derived using Power function, thus determining the 

dimensions for the Damping Coefficient 𝜇 to be [𝑘𝑔][ 𝑚][𝑠−1]. 

5 Conclusion 

In conclusion, this experiment confirmed that the oscillation of a rocking solid semi-cylinder 

satisfies the equation of simple harmonic motion shown in Part A and Part B. Therefore, the 

hypothesis is accepted because 𝜔 and 𝑇 were found to be a constant and were approximately 

equal to the theoretical predicted value for 𝜔0, refer to Equation (4), which is 18.59 rad /s with a 

negligible percentage difference. Thus, 𝑇 can also be concluded to be constant. 

From Part B, the sinusoidal variation of angular displacement against time is verified. It is also 

determined that the motion is damped with the damping coefficient 𝜇 = 3.66 × 10−4 𝑘𝑔 𝑚/𝑠. The 

time taken for the amplitude to decay to 𝑒−1 of its original value 𝑡 = 1.78 𝑠 which is around 5.5 

cycles later. The number of radians vibrated through until the energy decays to 𝑒−1 of its original 

value 𝑄 = 16.58 𝑟𝑎𝑑 which is around 2.6 cycles later. It can also therefore be concluded that the 

damping of the oscillation is underdamped and oscillatory. Both the amplitude and energy decay 

slightly over time which is shown from both the relaxation time and the Q-value. 
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