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Abstract

An algorithmic method is proposed to solve functional dependency relationships between func-
tions. To do so, a simple theorem is stated and three examples are provided, including the solution
to demonstrate the effectiveness of the method.

I am a mechanical industrial engineer, but I am still interested in mathematics. Two months ago,
I reread a book I had studied and found a problem in which the author established the functional de-
pendency relationship between functions by simple empirical observation but not through mathematical
analysis. I tried to submit this work to https://arxiv.org/, but I lack endorsements to review my
work because I am not dedicated to research or teaching.
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Theorem 1. Method to Find the Functional Dependency Relationship in the Case of Dependent Func-
tions m = n

Remark. Let the family F = {f1, f2, ..., fm} of functions mapping Rn to R be defined as:

F =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)
...
fm(x1, x2, . . . , xn)


For the case n = m, we consider an open set A ⊂ Rn and the family F of class-one functions A to

R. Then:

F =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)
...
fn(x1, x2, . . . , xn)


It is known that the necessary and sufficient condition for the family F to be functionally dependent

in A is that the determinant of its Jacobian matrix is identically zero within A. Since m = n, the matrix
is square and the Jacobian determinant can be computed.

Then, if the functional relation for the family F to be functionally dependent is:

F = c1f
a1
1 + c2f

a2
2 + · · ·+ cnf

an
n = 0 (1)

where the values c1 = c2 = · · · = cn ̸= 0 are numerical coefficients and the values a1 = a2 = · · · =
an ̸= 0 are numerical exponents of the applications. We can start obtaining the calculation of equation
(1) from the following expression:

dF = b1df1 + b2df2 + · · ·+ bndfn = 0 (2)

where b1, b2, . . . , bn are terms (numerical coefficients that can be multiplied, some of them, by any of
the applications f1, f2, . . . , fn) after solving the following system of equations.

The system of equations derived from equation (2) can be rewritten as follows:



b1
∂f1
∂x1

+ b2
∂f1
∂x2

+ · · ·+ bn
∂f1
∂xn

= 0

b1
∂f2
∂x1

+ b2
∂f2
∂x2

+ · · ·+ bn
∂f2
∂xn

= 0

...

b1
∂fn
∂x1

+ b2
∂fn
∂x2

+ · · ·+ bn
∂fn
∂xn

= 0

Technically, equation (2) could also be rewritten as:

c1a1f
a1−1
1 df1 + c2a2f

a2−1
2 df2 + · · ·+ cnanf

an−1
n dfn = 0 (2a)

From the identification of terms, the following relations hold:
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b1 = c1a1f

a1−1
1

b2 = c2a2f
a2−1
2

...

bn = cnanf
an−1
n

However, the system of equations derived from Equation (2) is already sufficient to solve the functional
dependency relationship among the applications, making Equation (2a) unnecessary.

The reason why the exponential coefficients a1 = a2 = · · · = an are ignored is straightforward: these
coefficients are absorbed into the terms b1, b2, . . . , bn, during differentiation.
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Demonstration

Formally, we need to perform the following operation, taking the product of the row vector of co-
efficients by the column vector of the applications to arrive at the functional dependency relationship:

F (x1, x2, . . . , xn) =
[
c1 c2 . . . cn

]

fa1
1

fa2
2
...

fan
n

 = 0

F = c1f
a1
1 + c2f

a2
2 + · · ·+ cnf

an
n = 0 (1)

where we have easily arrived at equation (1).

Since F is of class one, it admits the first total derivative. Differentiation functions as an inverse
process to integration. Therefore, knowing Equation (2),

dF = b1df1 + b2df2 + · · ·+ bndfn = 0 (2)

we can obtain equation (1) by integration, although equation (2) must first be constructed by ob-
taining the terms b1, b2, . . . , bn instead of determining them directly using the coefficients c1, c2, . . . , cn
from equation (1).

It is known by hypothesis that the family F is functionally dependent if it consists of m × n family
of functions where m = n, provided that its Jacobian determinant is identically zero.

The Jacobian matrix of the family F is:

J(x1, x2, . . . , xn) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn


And its Jacobian determinant is identically null, a necessary and sufficient condition for the family

of applications to be functionally dependent. This has been previously proven in another theorem, so:

|J(x1, x2, . . . , xn)| = det J = 0

If |J(x1, x2, . . . , xn)| = ∆ = 0 ⇐⇒ F is a family of functionally dependent functions.

Because the family F is of class one, it admits the first derivative. Therefore, the total derivative of
the family can be obtained:

dF =


df1(x1, x2, . . . , xn)
df2(x1, x2, . . . , xn)

...
dfn(x1, x2, . . . , xn)

We express the total derivatives of the functions in terms of their partial derivatives:
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df1 = ∂f1

∂x1
dx1 +

∂f1
∂x2

dx2 + · · ·+ ∂f1
∂xn

dxn

df2 = ∂f2
∂x1

dx1 +
∂f2
∂x2

dx2 + · · ·+ ∂f2
∂xn

dxn

...

dfn = ∂fn
∂x1

dx1 +
∂fn
∂x2

dx2 + · · ·+ ∂fn
∂xn

dxn

(3)

Including the partial derivatives from equation (3) to equation (2):



b1

(
∂f1
∂x1

dx1 +
∂f1
∂x2

dx2 + · · ·+ ∂f1
∂xn

dxn

)
+

b2

(
∂f2
∂x1

dx1 +
∂f2
∂x2

dx2 + · · ·+ ∂f2
∂xn

dxn

)
+

...+

bn

(
∂fn
∂x1

dx1 +
∂fn
∂x2

dx2 + · · ·+ ∂fn
∂xn

dxn

)
= 0

(4)

Regrouping equation (4):



(
b1

∂f1
∂x1

+ b2
∂f2
∂x1

+ · · ·+ bn
∂fn
∂x1

)
dx1+(

b1
∂f1
∂x2

+ b2
∂f2
∂x2

+ · · ·+ bn
∂fn
∂x2

)
dx2+

...+(
b1

∂f1
∂xn

+ b2
∂f2
∂xn

+ · · ·+ bn
∂fn
∂xn

)
dxn = 0

(5)

For equation (5) to represent a functionally dependent family, the following conditions must hold
simultaneously:

1. dx1 = dx2 = · · · = dxn ̸= 0

2. 
b1

∂f1
∂x1

+ b2
∂f2
∂x1

+ · · ·+ bn
∂fn
∂x1

= 0

b1
∂f1
∂x2

+ b2
∂f2
∂x2

+ · · ·+ bn
∂fn
∂x2

= 0
...

b1
∂f1
∂xn

+ b2
∂f2
∂xn

+ · · ·+ bn
∂fn
∂xn

= 0

(6)

Equation (6) represents a system of n equations with n unknowns. Its expanded matrix, including
the null coefficients, is given by:


b1

∂f1
∂x1

b2
∂f2
∂x1

. . . bn
∂fn
∂x1

b1
∂f1
∂x2

b2
∂f2
∂x2

. . . bn
∂fn
∂x2

...
...

. . .
...

b1
∂f1
∂xn

b2
∂f2
∂xn

. . . bn
∂fn
∂xn



1
0
...
0

 = 0 (7)

The system could be solved by obtaining an upper triangular matrix using the Gauss method and
applying backward substitution to find the terms b1, b2, . . . , bn, which contain numerical coefficients or
numerical coefficients that multiply some of the applications f1, f2, . . . , fn. It can also be solved directly
by manipulating the equations of the system to find the terms.

When finding the terms b1, b2, . . . , bn, we must identify the equalities that arise from the vari-
ables x1, x2, . . . , xn and their relationships with the applications f1, f2, . . . , fn, ensuring that the terms
b1, b2, . . . , bn contain only numerical coefficients multiplying some of the applications instead of the vari-
ables.
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Finding the terms b1, b2, . . . , bn for equation (2):

dF = b1df1 + b2df2 + · · ·+ bndfn = 0 (7)

The integration process of F is carried out for each of the summands in its variable, leading to
equation (1):

F = c1f
a1
1 + c2f

a2
2 + · · ·+ cnf

an
n = 0 (8)

Thus, the problem of finding the linear dependency relationship between n×n applications has been
solved.

Q.E.D.
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Solved Practical Examples of the Previous Theorem

Exercise 1

Let the family {f1, f2, f3} of functions from R3 to R be defined by:

f1(u, v, w) = x = u2 + v2 + w2,

f2(u, v, w) = y = u+ v + w,

f3(u, v, w) = z = uv + vw + wu.

1) Show that the family is functionally dependent in all R3.

2) Find an appropriate method to detail the functional relationship. You will have to find a functional
relationship expression of this type:

F (x, y, z) = mxi + nyj + pzk = 0

Note that if the previous expression took the value F (x, y, z) ̸= 0, the family would be functionally
independent.

SOLUTION.

1) Trying the Existence of Functional Dependence

Constructing the Jacobian matrix.

Let f be the matrix associated with the family f formed by the given functions:

f(u, v, w) =

f1f2
f3

 =

 u2 + v2 + w2

u+ v + w
uv + vw + wu


We can obtain the determinant of its Jacobian matrix. If it is null, there is functional dependence:

det J(u, v, w) =

∣∣∣∣∣∣
2u 2v 2w
1 1 1

v + w u+ w u+ v

∣∣∣∣∣∣ = ∆

Computing the determinant:

∆ = 2u(u+ v) + 2v(v + w) + 2w(u+ w)

− 2w(v + w)− 2u(u+ w)− 2v(u+ v)

= 2u2 + 2uv + 2v2 + 2vw + 2wu+ 2w2

− 2vw − 2w2 − 2u2 − 2wu− 2uv − 2v2

= 0.

Since the determinant is null, there is functional dependence, implying that the family is functionally
dependent throughout (u, v, w) ∈ R3.
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2) Usual Resolution Method. Trying it is impossible to solve it.

We have assigned each function to a variable such that:

f1 = x,

f2 = y,

f3 = z.

Starting with the equation:

F (x, y, z) = mxi+ nyj + pzk

Developing the equation:

F (x, y, z) = m(u2 + v2 + w2)i + n(u+ v + w)j + p(uv + vw + wu)k = 0

Expanding this equation does not yield a useful result. The equation in this form is analytically
unsolvable.

2) Theorem Resolution Method.

To determine the functional dependency relationship between the different functions, we apply The-
orem 1.

That is, we must find the equation:

F (x, y, z) = mxi + nyj + pzk = 0 (8)

which expresses the functional dependency between the functions in the F family using unknown
terms.

We need to determine the coefficients m,n, p.

To illustrate the procedure, we introduce the differential equation:

adx+ bdy + cdz = 0 (9)

which is derived from Equation (26) and contains the terms a, b, c.

Note that in this resolution, an alternative nomenclature is used for the variables, functions, and
terms to better align with practical problem analysis. The following equivalences are established:

(f1, f2, f3) = (x, y, z)
(c1, c2, c3) = (m,n, p)
(b1, b2, b3) = (a, b, c)

The procedure involves finding the previous terms to integrate the differential equation (9), obtaining
the equation of functional dependence among the given functions, arriving at equation (8).
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The differential equation for each of the functions has been taken and multiplied by each of the terms.

The variables x, y, z are defined according to the functions as follows:

x = f1(u, v, w) = u2 + v2 + w2,

y = f2(u, v, w) = u+ v + w,

z = f3(u, v, w) = uv + vw + wu.

The Jacobian matrix is given by:

J(u, v, w) =

 2u 2v 2w
1 1 1

v + w u+ w u+ v

 =

 ∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

 (9)

We develop the expression:

adx+ bdy + cdz = 0 (10)

Knowing that the total differentials dx, dy, dz are:

dx =
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw,

dy =
∂y

∂u
du+

∂y

∂v
dv +

∂y

∂w
dw,

dz =
∂z

∂u
du+

∂z

∂v
dv +

∂z

∂w
dw.

Thus, we derive:

a

(
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw

)
+ b

(
∂y

∂u
du+

∂y

∂v
dv +

∂y

∂w
dw

)
+ c

(
∂z

∂u
du+

∂z

∂v
dv +

∂z

∂w
dw

)
= 0

Rearranging terms:

(
a
∂x

∂u
+ b

∂y

∂u
+ c

∂z

∂u

)
du+

(
a
∂x

∂v
+ b

∂y

∂v
+ c

∂z

∂v

)
dv +

(
a
∂x

∂w
+ b

∂y

∂w
+ c

∂z

∂w

)
dw = 0

Substituting the values of the Jacobian matrix into the equation:

(2au+ b+ c(v + w)) du+ (2av + b+ c(u+ w)) dv + (2aw + b+ c(u+ v)) dw = 0

Considering that du ̸= 0, dv ̸= 0, dw ̸= 0, the values inside the brackets must necessarily be zero.
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We examine the values in brackets and obtain a system of three equations to solve for the coefficients
a, b, and c:

2au+ b+ c(v + w) = 0 (10)

2av + b+ c(u+ w) = 0 (11)

2aw + b+ c(u+ v) = 0 (12)

We perform the following operations:

Equation (10) - Equation (11):

2a(u− v) + c(v − u) = 0 ⇒ (2a− c)(u− v) = 0 ⇒ 2a = c (13)

Then,

a =
c

2
(14)

Substituting Equation (14) into Equation (10):

2
( c

2

)
v + b+ c(u+ w) = 0 ⇒ b = −c(u+ v + w) ⇒ b = −cy = −cf2 (15)

Thus,

c = 2 (16)

To simplify the solution, we take the lowest positive integer values:

a = 1, c = 2, b = −2y (17)

which provides the solution for the terms in the differential equation (2). Note that both a and c are
numerical coefficients, while b is a term.

Substituting these values into Equation (2):

adx+ bdy + cdz = 0 ⇒ dx− 2ydy + 2dz = 0

Integrating the previous differential equation, we obtain:

x− y2 + 2z = K = F (x, y, z)
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Since the integration constant K must be zero from functional dependence to hold, we conclude:

x− y2 + 2z = 0 ⇔ f1 − (f2)
2 + 2f3 = 0 (18)

Verification Equation 18.

Substituting the given functions:

(u2 + v2 + w2)− (u+ v + w)2 + 2(uv + vw + wu) = 0

Expanding:

(u+ v + w)2 = u2 + v2 + w2 + 2uv + 2vw + 2wu

Developing the expression:

u2 + v2 + w2 − (u2 + v2 + w2 + 2uv + uvw + 2wu) + 2(uv + vw + wu) =

u2 + v2 + w2 − u2 − v2 − w2 − 2uv − 2vw − 2wu+ 2uv + 2vw + 2wu = 0 (11)

Thus, the solution is correct, which confirms that the theorem is valid for determining functional
dependency relationships.
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Exercise 2

Let the family {f1, f2, f3} of applications from R3 to R be defined by:

f1(u, v, w) = x = u2 + v2 + w2,

f2(u, v, w) = y = u+ v + w,

f3(u, v, w) = z = u2 + v2 + w2 + 6uv + 6vw + 6uw.

1. Show that the family is functionally dependent at all R3.

2. Find an appropriate method to detail the functional relationship. You will have to find an expres-
sion for a functional relationship of the type:

F (x, y, z) = mxi + nyj + pzk = 0.

Note that if the previous expression were F (x, y, z) ̸= 0, the family would be functionally indepen-
dent.

SOLUTION.

1) Check Functional Dependence

Let f be the matrix associated with the given applications:

f(u, v, w) =

f1
f2
f3

 =

 u2 + v2 + w2

u+ v + w
u2 + v2 + w2 + 6uv + 6vw + 6uw


We compute the determinant of its Jacobian matrix. If the determinant is null, functional dependency

exists:

J(u, v, w) =

∣∣∣∣∣∣
2u 2v 2w
1 1 1

2u+ 6(v + w) 2v + 6(u+ w) 2w + 6(u+ v)

∣∣∣∣∣∣
Computing the determinant:

∆ = 2u[2w + 6(v + u)] + 2v[2u+ 6(v + w)] + 2w[2v + 6(u+ w)]

− 2w[2u+ 6(v + w)]− 2v[2w + 6(v + u)]− 2u[2v + 6(u+ w)]

= 2u(4v − 4w) + 2v(4w − 4u) + 2w(4u− 4v)

= 8uv − 8uw + 8vw − 8uv + 8uw − 8vw = 0.

Since the determinant is null, there is functional dependence, and the family is functionally dependent
for all (u, v, w) ∈ R3.
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2) Functional Dependency Relationship

The theorem that develops a systematic method to find the dependency relationship between different
functions will be used again.

We must find the relationship:

F (x, y, z) = mxi + nyj + pzk = 0 (18)

that describes the functional dependency among the functions in the F family, using unknown coef-
ficients.

We just need to determine the coefficients m,n, p.

We will explain the procedure again in a practical way for this new exercise.

Consider the expression:

adx+ bdy + cdz = 0 (19)

This is the differential equation derived from Equation (18), with the terms a, b, and c.

The following equivalences are established again:

(f1, f2, f3) = (x, y, z),

(c1, c2, c3) = (m,n, p),

(b1, b2, b3) = (a, b, c)

The procedure involves identifying these terms to integrate differential Equation (19), obtaining the
equation of functional dependence among the functions, leading to Equation (18).

The differential equation for each function has been taken and multiplied by the corresponding terms.

The variables x, y, z are defined according to the functions as follows:

x = f1(u, v, w) = u2 + v2 + w2,

y = f2(u, v, w) = u+ v + w,

z = f3(u, v, w) = u2 + v2 + w2 + 6uv + 6vw + 6uw

The Jacobian matrix J(u, v, w) is given by:

J(u, v, w) =

 2u 2v 2w
1 1 1

2u+ 6(v + w) 2v + 6(u+ w) 2w + 6(v + u)

 =

 ∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

 .

We develop the expression:

adx+ bdy + cdz = 0
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Knowing that the total differentials dx, dy, dz are:

dx =
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw,

dy =
∂y

∂u
du+

∂y

∂v
dv +

∂y

∂w
dw,

dz =
∂z

∂u
du+

∂z

∂v
dv +

∂z

∂w
dw.

Thus, we obtain the following result:

a

(
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw

)
+ b

(
∂y

∂u
du+

∂y

∂v
dv +

∂y

∂w
dw

)
+ c

(
∂z

∂u
du+

∂z

∂v
dv +

∂z

∂w
dw

)
= 0

Rearranging terms:

(
a
∂x

∂u
+ b

∂y

∂u
+ c

∂z

∂u

)
du+

(
a
∂x

∂v
+ b

∂y

∂v
+ c

∂z

∂v

)
dv +

(
a
∂x

∂w
+ b

∂y

∂w
+ c

∂z

∂w

)
dw = 0

Substituting the values from the Jacobian matrix:

(2au+ b+ c(2u+ 6v + 6w)) du+ (2av + b+ c(2v + 6u+ 6w)) dv + (2aw + b+ c(2w + 6u+ 6v)) dw = 0.

Since du ̸= 0, dv ̸= 0, dw ̸= 0, the expressions inside the brackets must necessarily be zero, leading to
the system of equations:

2au+ b+ c(2u+ 6v + 6w) = 0 (20)

2av + b+ c(2v + 6u+ 6w) = 0 (21)

2aw + b+ c(2w + 6u+ 6v) = 0. (22)

Performing the subtraction of Equation (20) from Equation (21):

2a(u− v) + c [2u+ 6v + 6w − (2v + 6u+ 6w)] = 0

2a(u− v) + c(4v − 4u) = 0

2a(u− v)− 4c(u− v) = 0

We do not take u, v into account, then:

(2a− 4c)(u− v) = 0 ⇒

{
a = 2c,

u = v.
(at least one must hold, or both simultaneously).
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We substitute the previously obtained value of a into Equation (20):

4cv + b+ c(8v + 6w) = 0 ⇒ b+ 12cv + 6cw = 0 ⇒ b = −6c(w + 2v).

Since we know that:

y = u+ v + w,

We can express:

w + 2v = y − u− v + 2v = y − u+ v.

From the previous calculation, we obtained:

u = v.

Thus, we simplify:

w + 2v = y.

Therefore:

b = −6cy.

Setting c = 1, we obtain:

a = 2, b = −6y.

Substituting these values into the differential equation (19):

2dx− 6ydy + dz = 0.

Integrating the above equation:

2x− 3y2 + z = K.

Since K = 0 due to the linear dependency relationship, we conclude:

2x− 3y2 + z = 0 ⇐⇒ 2f1 − 3f2
2 + f3 = 0.

Unlike the previous example, this relationship has not been explicitly verified.
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Exercise 3

Let the family {f1, f2, f3} of applications from R3 to R be defined by:

f1(u, v, w) = x = u,

f2(u, v, w) = y = v + w,

f3(u, v, w) = z = −u3 + 2v2 + 2w2 + 4vw.

1. Show that the family is functionally dependent at all R3.

2. Find an appropriate method to detail the functional relationship. You will have to find an expres-
sion for a functional relationship of the type:

F (x, y, z) = mxi + nyj + pzk = 0

Note that if the previous expression were F (x, y, z) ̸= 0, the family would be functionally indepen-
dent.

SOLUTION.

1) Check Functional Dependence

Consider the matrix associated with the family f formed by the given applications:

f(u, v, w) =

f1
f2
f3

 =

 u
v + w

−u3 + 2v2 + 2w2 + 4vw



We compute the determinant of its Jacobian matrix. If it is zero, there is a functional dependence:

J(u, v, w) =

∣∣∣∣∣∣
1 0 0
0 1 1

−3u2 4v + 4w 4v + 4w

∣∣∣∣∣∣
Computing the determinant:

∆ =

∣∣∣∣∣∣
1 0 0
0 1 1

−3u2 4v + 4w 4v + 4w

∣∣∣∣∣∣
= 4v + 4w + 0 + 0− 0− 4v − 4w = 0

Since the determinant is zero, there is functional dependence and the family is functionally dependent
to all (u, v, w) ∈ R3.

16



2) Functional Dependency Relationship

The theorem that develops a systematic method to determine the dependency relationship between
different functions will be used again.

We must find the relationship:

F (x, y, z) = mxi + nyj + pzk = 0 (23)

which expresses the functional dependency between the functions in the F family, using unknown
coefficients.

We only need to determine the terms m,n, p.

We will now explain the procedure in a practical way for this new exercise.

Let the expression be:

adx+ bdy + cdz = 0 (24)

This is the differential equation derived from Equation (23) with terms a, b, and c.

The following equivalences are established:

(f1, f2, f3) = (x, y, z)

(c1, c2, c3) = (m,n, p)

(b1, b2, b3) = (a, b, c)

The procedure involves identifying these terms to integrate differential Equation (24), obtaining the
equation of functional dependence among the functions, leading to Equation (23).

The differential equation for each function has been taken and multiplied by the corresponding terms.

The variables x, y, z are defined according to the functions as follows:

x = f1(u, v, w) = u,

y = f2(u, v, w) = v + w,

z = f3(u, v, w) = −u3 + 2v2 + 2w2 + 4vw

The Jacobian matrix J(u, v, w) is given by:

J(u, v, w) =

 1 0 0
0 1 1

−3u2 4v + 4w 4v + 4w

 =

 ∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

 .

We develop the expression:

adx+ bdy + cdz = 0
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Knowing that the total differentials dx, dy, dz are:

dx =
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw

dy =
∂y

∂u
du+

∂y

∂v
dv +

∂y

∂w
dw

dz =
∂z

∂u
du+

∂z

∂v
dv +

∂z

∂w
dw

So, we have:

a

(
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw

)
+ b

(
∂y

∂u
du+

∂y

∂v
dv +

∂y

∂w
dw

)
+ c

(
∂z

∂u
du+

∂z

∂v
dv +

∂z

∂w
dw

)
= 0.

Rearranging terms:

(
a
∂x

∂u
+ b

∂y

∂u
+ c

∂z

∂u

)
du+

(
a
∂x

∂v
+ b

∂y

∂v
+ c

∂z

∂v

)
dv +

(
a
∂x

∂w
+ b

∂y

∂w
+ c

∂z

∂w

)
dw = 0.

Substituting the values of the Jacobian matrix:

[
a+ 0 + c(−3u2)

]
du+ [0 + b+ c(4v + 4w)] dv + [0 + b+ c(4v + 4w)] dw = 0.

Since du ̸= 0, dv ̸= 0, dz ̸= 0, the values in brackets must necessarily be zero.

Examining the expressions inside the brackets, we obtain a system of three equations to solve for the
coefficients a, b, and c:

a+ c(−3u2) = 0 (25)

b+ c(4v + 4w) = 0 (26)

b+ c(4v + 4w) = 0 (27)

From Equation 25:

a = 3cu2 ⇒ a = 3cx2

From Equation 26 or 27 (are the same):

b = −4c(v + w) ⇒ b = −4cy
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Taking the value c = 1, we obtain:

a = 3x2,

b = −4y.

Substituting these terms into differential equation 24:

3x2dx− 4ydy + dz = 0.

Integrating the above equation, we get:

x3 − 2y2 + z = K = F.

Since K = 0 due to the linear dependency relationship, we conclude:

x3 − 2y2 + z = 0 ⇐⇒ f3
1 − 2f2

2 + f3 = 0.

Unlike the first exercise, this relationship has not been explicitly verified.
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