
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0894-0347(XX)0000-0

ABOUT THE RIEMANN HYPOTHESIS

THOMAS BROUARD

1. Introduction

Bernhard Riemann made the hypothesis, that is here proposed to confirm,
that the complex xi (ξ) function zeros are real [2] (p.139). The eta (η)
Dirichlet function will also be proposed to be used for a proof that the
Riemann zeta function nontrivial zeros, which are linked to the xi zeros,
have real part equal to 1

2 .

2.The zeros of ξ

Theorem 2.1. There exists a real sequence (an)n∈N such that the Riemann

ξ function can be written such as, for t ∈ C : ξ(t) =
∞∑
n=0

(−1)n|an|t2n.

Proof. According to Riemann [2] (p.138), for t ∈ C:

ξ(t) = 4

∫ ∞

1

d(x
3
2ψ′(x))

dx
x−

1
4 cos(

1

2
t log(x)) dx.

So, as Riemann typed: “Diese Function... ...lässt sich nach Potenzen von
tt in eine... ...convergirende Reihe entwickeln.”, which can be translated
as “This function... ...allows itself to be developed in powers of tt... ...as
a converging series.”, the Riemann ξ function can be such as, for t ∈ C:

ξ(t) =
∞∑
n=0

an(t
2)n, where for n ∈ N :

an = 4
(−1)n

22n(2n)!

∫ ∞

1

d(x
3
2ψ′(x))

dx
x−

1
4 (log(x))2n dx.

The function
d(x

3
2ψ′(x))

dx
= πx

1
2

∞∑
n=1

(
n2πx− 3

2

)
n2e−n2πx being positive

on (1;+∞), and having a finite limit at 1+, for all n ∈ N, (−1)nan > 0,
which gives the theorem 2.1. □

Noting for z ∈ C, Arg(z) as the principal argument of z being in (−π;π],
(un(t))n∈N = (ant

2n)n∈N, follows this theorem:

2020 Mathematics Subject Classification. Primary 11M26.

©XXXX American Mathematical Society

1



2 THOMAS BROUARD

Theorem 2.2. For any t in C such that ℜ(t) ̸= 0, ℑ(t) ∈ (−1
2 ,

1
2) and

ξ(t) = 0, t is real.

Proof. Let be t = a + ib ∈ C such that a ̸= 0, b ∈ (−1
2 ;

1
2), and ξ(t) = 0.

Thus,

(1)
∞∑
n=0

un+1 = −a0.

Let us name z =
∞∑
n=0

|un+1(t)|eiArg(un(t)) (convergence confirmed below). We

have:

ℑ(z) = ℑ

( ∞∑
n=0

|un+1(t)|ei
1
2
Arg(u2

n(t))

)

= ℑ

( ∞∑
n=0

|un+1(t)|e
i 1
2
Arg

((
un(t)

un+1(t)

)2
u2
n+1(t)

))

= ℑ

( ∞∑
n=0

|un+1(t)|ei
1
2
Arg(t−4u2

n+1(t))

)

= ℑ

( ∞∑
n=0

|un+1(t)|eiArg(t−2un+1(t))

)

= ℑ

( ∞∑
n=0

un+1(t)e
iArg(t−2)

)
= ℑ

(
−a0eiArg(t−2)

)
from the equation (1)

ℑ(z) = −a0 sin(Arg(t−2)).(2)

And:

ℑ(z) = ℑ

( ∞∑
n=0

|un+1(t)|eiArg(un(t))

)

= ℑ

( ∞∑
n=0

un+1(t)e
iArg

(
un(t)

un+1(t)

))

= ℑ

( ∞∑
n=0

un+1(t)e
iArg(−t−2)

)
= ℑ

(
−a0eiArg(−t−2)

)
from the equation (1)

ℑ(z) = a0 sin(Arg(t
−2)).(3)

Thus, thanks to the equations (2) and (3): a0 sin(Arg(t
−2)) = 0. Then,

t2 = a2 − b2 + i2ab is real, b = 0 because a ̸= 0, and t is real. □
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Therefore, as Riemann typed [2] (p.138) “...so kann die Function ξ(t) nur
verschwinden, wenn der imaginäre Theil von t zwischen 1

2 i und −1
2 i liegt.”,

which can be translated as “...it follows that the function ξ(t) can only
vanish if the imaginary part of t lies between 1

2 i and −1
2 i”, with the lemma

2.1 is proposed that the Riemann hypothesis is confirmed.

Lemma 2.1. For any t in C such that ℜ(t) = 0 and ℑ(t) ∈ (−1
2 ,

1
2), ξ(t)

is not null.

Proof. We proceed by contradiction. Let be t in C such that ℜ(t) = 0,

ℑ(t) ∈ (−1
2 ,

1
2) and ξ(t) = 0. Then, ξ(t) =

∞∑
n=0

|an|(ℑ(t))n. Because of the

symmetry of the zeros about the real axis (which can be proved by saying
that ξ(t̄) = 0 using the polar form of the xi expression of the theorem 2.1),
a0 = 0. But a0 is positive. We have the lemma 2.1. □

3.The nontrivial zeros of ζ

In 1859, Riemann wrote: Γ( s2 + 1)(s − 1)π
−s
2 ζ(s) = ξ(t) where s = 1

2 +
it. Let us now propose to use the Dirichlet eta (η) function, present in
an analytic continuation expression of ζ, on 0 < ℜ(s) < 1, where are its
nontrivial zeros.

Lemma 3.1. For any a in (0,∞), any n in N, any s in C, if ℜ(s) is in

(0, 1) and ζ(s) = 0, then

∫ ∞

0

xs−1

exa−4n + 1
dx = 0.

Proof. Let be a a positive real number, n in N, and s in C, such that
ℜ(s) ∈ (0, 1) and ζ(s) = 0. Lang [1] (p.157) and Spiegel [3] (line 15.82) give,
for ℜ(s) > 0:

ζ(s) =
η(s)

1− 21−s
and η(s) =

1

Γ(s)

∫ ∞

0

xs−1

ex + 1
dx.

Then, ζ(s) = 0 implies that

∫ ∞

0

xs−1

ex + 1
dx = 0, and the variable change

x = ua−4n gives the lemma 3.1. □

Theorem 3.1. For any s in C, if ℜ(s) is in (0, 1), ℑ(s) ̸= 0 and ζ(s) = 0,
then ℜ(s) = 1

2 .

Let be s = σ + it a nontrivial zero, with σ in (0, 1) and t a positive real

number, and let be a = exp
( π
2t

)
. The lemma 3.1 gives that:∫ 1

0

xs−1

exa−4n + 1
dx = −

∫ ∞

1

xs−1

exa−4n + 1
dx
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n going to infinity, the dominated convergence theorem makes the left
term converge to 1

2s . Thus,

ℜ
(

1

2s

)
+ o(1)

n→∞
= ℜ

(
−
∫ +∞

1

xs−1

exa−4n + 1
dx

)
= −

∫ ∞

1

x−σ cos
(
t 1−σ

σ ln(x)
)

1 + exp
(
a−4n x

1−σ
σ

) dx,with the variable change x = u
1−σ
σ

=

∫ 1

0

x−σ cos
(
t 1−σ

σ ln(x)
)

1 + exp
(
a−4n x

1−σ
σ

) dx
with the same variable change applied to ℜ

(∫ ∞

0

xs−1

exa−4n + 1
dx

)
= 0.

n going to infinity, the dominated convergence theorem makes this last
term converge to

1

2

∫ 1

0
x−σ cos

(
t
1− σ

σ
ln(x)

)
dx,

which equals
1

2

(1− σ)2

σ

1

(1− σ)2 + t2
. Then, because this term equals

ℜ
(

1
2s

)
:

(1− σ)2

σ

1

(1− σ)2 + t2
=

σ

σ2 + t2
.

This equation implies that t2((1−σ)2−σ2) = 0, and t being non null, σ = 1
2 .

The zeta nontrivial zeros being symmetric about the real axis (which can
be proved saying that ζ(s̄) = 0 using eta), with the lemma 3.2 is proposed
that the Riemann hypothesis is confirmed.

Lemma 3.2. For any s in C such that ℑ(s) = 0, and ℜ(s) in (0, 1), ζ(s) is
not null.

Proof. We proceed by contradiction. Let be s ∈ C such that ℜ(s) = σ ∈

(0; 1),ℑ(s) = 0, and ζ(s) = 0. Then η(s) =
+∞∑
n=1

(−1)n+1

nσ
= 0 and the series(

m∑
n=0

(2n+ 2)−σ − (2n+ 1)−σ

)
m∈N∗

converges to 0. We define, for x ∈

[1,∞), f(x) = x−σ. With the mean value theorem, exists a sequence (bn)n∈N

such that for all n ∈ N :
f(2n+ 2)− f(2n+ 1)

(2n+ 2)− (2n+ 1)
= f ′(bn) = −σb−σ−1

n . Then,

+∞∑
n=0

f ′(bn) = 0 =
+∞∑
n=0

1

bσ+1
n

. But, for all n in N, bn is in (2n + 1, 2n + 2) and

therefore positive, we have the lemma 3.2. □
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