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Abstract

We dedicate this text to a study of a function with interesting proper-
ties: besides being, by construction, well suited for a certain type of ap-
proximations, the function happens to be lacunary, i.e. without analytic
continuation outside the complex unit disk. It however satisfies a func-
tional equation which can be (with some restriction) solved everywhere
except the origin. Unfortunately, this solution cannot be understood as
its natural continuation beyond the disk.

MSC: 30B10, 30B40
We dedicate this text to a study of a function with interesting properties. It

was “discovered” in a specific approximation approach when asking for a simple
coefficient formula. Briefly: in the derivative-matching expansions of the form
[1]

f(z) ≈ f(0) +
∞∑
n=1

ang(z
n), g(0) = 0, g′(0) 6= 0, (1)

the coefficients an are determined as an =
∑
d|n fdhnd , where d|n means “d

divides n”. Numbers {fd} represent the power-expansion coefficients of f and
the sequence {hj} is the inverse of {gi} with respect to the Dirichlet convolution,
{gi} being the power expansion coefficients of g. From various possibilities for
g one may search for a one giving a simple expression for an. Avoiding the
trivial choice h = 1 = {δ1,i}i, g (z) = z (i.e. the Taylor series), one can consider
hn|n=1,2,3,... = 1, 1, 0, 0, 0, 0, . . . leading to (k, n ∈ N0)

gn =

{
(−1)k for n = 2k

0 otherwise
and an =

{
fn if n is odd
fn + fn

2
if n is even

. (2)

One then has

yo (z) ≡ g (z) =
∞∑
n=0

(−1)n z2n . (3)
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Figure 1:
a) Graph of

∑6
n=0 (−1)

n
x2

n ≈ yo (x).
b) Repeated square roots of the unity (black annulus): the first generation is
represented by the red circles, then second, third and fourth generations by
green, blue and yellow circles respectively. The set of all consecutive square
roots of unity is dense on a unit circle.

1 Unit circle
The definition (3) converges for all complex |z| < 1. On the real segment 〈0, 1) it
is a series with alternating signs whose terms decrease in norm and tend to zero.
With the domain of convergence being always a disk around the expansion point,
(3) necessarily converges for all |z| < 1. For z ≥ 1 the series diverge because
the individuals summands do not tend to zero. And yet, the behavior at the
unit circle is interesting: The graph of the function on the real axis (Figure 1-a)
seems to tend to a finite value when approaching one.

Before a more detailed investigation of the behavior on the unit circle let us
state one observation: yo is a lacunary function [2] with the unit circle being its
natural boundary. Indeed, the spacing between the powers of z with nonzero
coefficients grows rapidly enough for the function to fulfill the conditions of the
Ostrowski–Hadamard gap theorem (OHGP) implying that the function cannot
be analytically continued to and beyond the unit circle.

To investigate the behavior on the unit circle one can notice that the defini-
tion (3) implies the validity of the functional equation

yo(z) = z − yo(z2), (4)

with two self-consistency points z = 0 and z = 1. The first gives yo(0) = 0 (in
accordance with (3)). The second point leads to

yo(1) = 1− yo(1)⇒ yo(1) = 1/2,
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Figure 2: a) We study the continuity of yo at the unit circle by successively
taking the square root starting at z = 1. Choosing always the root in the
upper-half of the complex plane (all circles), we evaluate yo at every second
point (full circles). Doing a round trip, the points come back and approach
unity.
b) Functions ym(red), yo (blue) and yp (green).

which extends the definition of the function. Next one proceeds recursively

yo(−1) = −1− yo(1) = −3/2, yo(i) = i− yo(−1) = 3/2 + i,

yo(−i) = −i− yo(−1) = 3/2− i, yo(eiπ/4) = eiπ/4 − yo(i) = . . .

In this way one computes function values at arbitrary square roots of the unity
z = eimπ/2

n

, m,n ∈ N0, which represent a dense subset of the unit circle
(“square-root points” or SR points), see Figure 1-b. This extension is of course
only formal and non-analytic.

The OHGP tells us that in no point of the unit circle yo is analytic. We can
prove this independently thanks to the functional equation (4) and get some
more insight. For this purpose it is convenient to apply the functional equation
twice so as to get a value difference in two points yo(z4) = z2 − z + yo(z). We
choose a specific path when taking square roots, starting from 1 we go to −1 and
then we remain on the upper complex semi-plane, always taking as the square
root the point with half-argument, see Figure 2-a. We have after N steps

yo (1) =
[
eiπ − eiπ/2

]
+ yo(eiπ/2) =

[
eiπ − eiπ/2

]
+
[
eiπ/4 − eiπ/8

]
+ yo(eiπ/8)

= . . . =

{
N∑
n=0

[
eiπ/2

2n − eiπ/22n+1
]}

+ yo(eiπ/2
2N+1

).

So

yo (1)− yo(eiπ/2
2N+1

) =

N∑
n=0

[
eiπ/2

2n − eiπ/22n+1
]
≡

N∑
n=0

∆n ≡ DN . (5)
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The function arguments on the left-hand side of (5) become arbitrary close when
N rises, limN→∞ eiπ/2

2N+1

= 1. But what about the function values? Let us
compute the real part of ∆n

< (∆n) = <
(
eiπ/2

2n
)
−<

(
eiπ/2

2n+1
)
= cos

π

22n
− cos

π

22n+1
.

For all n ≥ 0 we have 0 < π
22n ≤ π, which is an interval where the cosine is

monotonic and decreasing. Therefore

cos
π

22n+1
> cos

π

22n
⇒ < (∆n) < 0.

If each term in (5) has a strictly negative real part then their sum is strictly
negative too, implying that D ≡ D∞ is nonzero. Using the root test we can in
addition prove that

∑N
n=0∆n converges (absolutely)

lim sup
n→∞

n
√
|∆n| = lim sup

n→∞

n

√∣∣eiπ/22n+1
(
eiπ/22n+1 − 1

)∣∣
= lim
n→∞

n

√∣∣eiπ/22n+1
∣∣ n√∣∣(eiπ/22n+1 − 1

)∣∣ = 1× 1

4
< 1,

where the second root tends to 1/4 since for small positive angles ϕ one has∣∣eiϕ − 1
∣∣ ∼ ϕ. The approximate value is D ≈ − (1.2321 + 0.5458i) . We can

conclude that yo is not continuous at one because in its arbitrary small neigh-
borhood the value of yo is significantly different yo (1) = yo

(
eiε1
)
+ D, where

ε1 > 0 is infinitesimal but D is not. This discontinuity is then propagated to
all SR points. Indeed, let ei(π+ε2) be the square root of eiε1 which lies in the
proximity of −1 in the lower complex half-plane, ε2 = ε1/2. We have

yo
[
ei(π+ε2)

]
= ei(π+ε2) − yo

(
eiε1
)
= −1− yo (1) +D

= −1− [1− yo (−1)] +D = −2 + yo (−1) +D,

where we were manipulating terms intuitively by setting ei(π+ε2) = −1 . The
result implies yo (−1) − yo

[
ei(π+ε2)

]
= 2 − D, i.e. the discontinuity is also

situated at z = −1. The procedure can be repeated recursively from z = −1 to
all daughter SR points, meaning that the function is discontinuous on a dense
subset. Strictly speaking, for this to be rigorously proven, one should show
that the appearing numerical terms (such as 2 − D ) do not exactly cancel in
some points. Nevertheless one can do two (and more) loops in the upper half
plane: Stopping in an infinitesimal neighborhood of z = 1 after the first round
trip, i.e. at z = eiε1 , we start the second round trip by taking this time the
square root in the proximity of −1, i.e. z = ei(π+ε2) =

√
eiε1 . Then the second

round trip continues in the upper half-plane, as show previously in Figure 2-a.
It is evident that the result after approaching z = 1 for the second time will
be just getting one additional D, yo (1) = yo

(
eiε3
)
+ 2D for some appropriate

and infinitesimal ε3. This discontinuity will also propagate to all remaining SR
points, producing an additional difference of D. If, in the previous case, the
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numerical factors somehow cancel at some points, then they do not cancel this
time, i.e. the function is on the unit circle indeed discontinuous everywhere.
Moreover, by adding more round trips one adds more Ds, meaning that the
norm of the function takes arbitrarily large values in any nonzero neighborhood
of each point of the unit circle.

Another interesting topic is the analysis of the derivatives. It suffices to
differentiate (4):

yo′(z) = 1−2zyo′(z2), yo′′(z) = −2yo′(z2)−4z2yo′′(z2), yo′′′(z) = . . . . (6)

Again, there are two self-consistency points z = 0, 1. Although seemingly triv-
ial, the case z = 0 allows us to determine derivatives at zero meaning we can
reconstruct the power series (3), i.e. it tells us that the functional equation (4)
is an equivalent way of defining yo inside the circle. At z = 1 we solve (6) and
get

yo′(1) + 2 yo′(1) = 1⇒ yo′(1) =
1

3
, yo′′(1) = − 2

15
, yo′′′(1) =

8

45
, . . . (7)

Arbitrary high derivatives can be determined in this way. Thanks to (6) the
derivatives can be propagated to an arbitrary SR point. Thus, for example,

yo′(−1) = 1 + 2 yo′(1) = 1 + 2× (1/3) = 5/3. (8)

One should be aware that these derivatives are purely formal, they do not exist
in the sense in which the derivative is defined.

2 Beyond the unit circle
Quite some body of literature focuses on the question of non-analytic continu-
ation of functions beyond their natural boundary, see e.g. [3]. Looking at the
latter (remark 6.9.12) and on other sources, it seems that the lacunary functions
are among the most resistant in this regard, no “natural” way of extending them
seems to be commonly accepted. In what follows we make an attempt to extend
yo using (4), yet we basically confirm the previous statement.

Anticipating our results, we are going to use for the attempted extension a
different function label, namely yp (z). We start by considering the real axis
outside the unit circle (using x instead z). For yp (x) we assume only that it
satisfies the functional equation (4) and the value at one: yp (1) = 1/2. Again,
we apply the functional equation (4) twice so as to make appear the difference
of yp values at two points yp (z) = z − z2 + yp

(
z4
)
. We start in the proximity

of one, x = 1 + h, and we will be interested in the limit h→ 0+. We have

yp(1 + h) =
[
(1 + h)− (1 + h)2

]
+ yp

[
(1 + h)4

]
=
[
(1 + h)− (1 + h)2

]
+
[
(1 + h)4 − (1 + h)8

]
+ yp

[
(1 + h)16

]
= . . . =

{
N∑
n=0

[
(1 + h)2

2n − (1 + h)2
2n+1

]}
+ yp

[
(1 + h)2

2N+2
]
. (9)
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Here two limits appear, h→ 0+ and N →∞. To proceed in a consistent way we
relate them choosing h = α/22N+2 where α > 0 is a real parameter. Applying
the limit we have

yp(1) = lim
N→∞

{
N∑
n=0

[
(1 +

α

22N+2
)2

2n − (1 +
α

22N+2
)2

2n+1
]}

+ yp (eα) ,

or, equivalently

yp (eα) =
1

2
+ lim
N→∞

N∑
n=0

[
(1 +

α

22N+2
)2

2n+1 − (1 +
α

22N+2
)2

2n
]

≡ 1

2
+ lim
N→∞

N∑
n=0

ωN,n =
1

2
+ lim
N→∞

ΘN (α) . (10)

Our main concern now is to show that the sum converges to a finite value. The
proof of the latter is important to our text but technical, and thus we present
it in Appendix. There we also derive the boundaries (x ≥ 1)

B [ln (x) /2] ≤ yp (x) ≤ B [2 ln (x)] , B (q) = 1

ln (4)

[
Ei (q)− Ei

(q
2

)]
, (11)

where Ei is the exponential integral. The limiting functions are shown in Figure
3-a. Furthermore, the Appendix contains the derivation of an elegant alternative
expression [4] for an efficient computation of yp

yp (eα) =
1

2
+

∞∑
k=1

αk

k! (2k + 1)
=

1

2
+Θ (α) , α ∈ R. (12)

There are interesting remarks to make:

• Function yp (eα) = 1/2 + Θ (α) is, as function of α, an entire function.
Indeed, for α ≥ 0 all terms in the sum (12) are positive, thus partial sums
rise. Yet, they are bounded by the exponential Θ (α) ≤ ∑∞k=0 α

k/k! =
exp (α). This implies convergence for all α ≥ 0. Because the convergence
domain is a disk centered at the expansion point, the yp series converges
for all α ∈ C.

• We used the functional equation (4) only to determine the value at x = 1,
we did not use the derivatives (7). Yet, because we derived the expression
for yp respecting (4), yp reproduces these values and they are not formal
(as for yo), but true derivatives of yp(x) at x = 1.

• Writing yp (z) = 1/2 +Θ (ln z) one sees that analytic properties of yp (z)
are driven by the logarithm in the argument. It implies yp is not defined at
z = 0 and that it has a cut starting at zero with infinitely many Riemann
sheets.
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Figure 3: The function yp(x) with its bounds (a) given by (11) for x > 1 and
its behavior compared to

√
x on a large interval (b).

The relationship yo↔ yp deserves an additional investigation, but let us before
study the asymptotic behavior of yp on the real axis using only rough (non-
rigorous) arguments. Let us assume that on the positive real axis the behavior
of its derivative can be approximated by an exponent yp′ (x) |x→+∞ ∼ axb,
a, b ∈ R. If we plug this into the functional equation for the first derivative (6)
we get for large x

yp′(x) = 1− 2 x yp′(x2) x→+∞
=⇒ axb = 1− 2ax2b+1.

The latter is in the limit x → +∞ exactly satisfied only for a = 1/2 and
b = −1/2. Thus

yp′ (x) |x→+∞ ∼
1

2
√
x
,

meaning that for a large positive x one has1 yp (x) |x→+∞ ∼
√
x (Figure 3-b).

As we will argue later, it is non trivial to apply (6) to the last expression in
order to get the behavior of the function at large negative x. One can do so,
but by precaution we change the function name again yp→ ym

ym′(x)|x→−∞ = 1− 2x
1

2
√
x2

= 2,

i.e. ym approaches a straight line. Here ym is defined as ym(x) = x − yp(x2),
x ≤ −1. A common picture of ym, yo and yp and is shown in Figure 2-b.

3 Yo and yp
The situation as we have it now can be summarized:

1Using yp(x) <
√
x ⇒ yp(x2) < x =

√
x2, it is not difficult to show that

√
x > yp(x) for

x ≥1. It suffices to recognize this property as true in a small right neighborhood of one and
then recursively transport it to an arbitrary large x. The square root is a significantly better
upper boundary than B [2 ln (x)].
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Figure 4: The left neighborhood of one: yo and yp (a) and the difference of yo
from the tangent (at x = 1) to yp (b).

• The yo function is analytic inside the unit circle and can be expanded in
one of the two self-consistency points of (4), namely at x = 0. There the
derivatives are in agreement with (4). The derivatives one obtains from
(4) at x = 1 define a different function (yp) which is analytic there and is
not the analytic continuation of yo.

• The function yp is analytic in the whole complex plane besides the cut on
the negative real axis. Particularly, it is analytic at x = 1, implying it is
different from yo inside the unit circle (cut excepted). By consequence, the
functional equation (4) has on this domain at least two different solutions.
The function yp cannot be defined at x = 0 since the set of derivatives
given by (4) at x = 0 is unique. Having these derivatives there means
being yo, which yp is not. Yp can be interpreted as an analytic function
on a Riemann surface with an infinite number of Riemann sheets generated
by the branch point situated at zero.

On x ∈ (0, 1) yo and yp behave similarly, in Figure 2-b they cannot be dis-
tinguished and both can be represented by the right half of the blue segment.
However, a more precise numerical inspection shows non-vanishing differences,
see Figure 4. The graph suggests that yo has no limit at one, it shows an
oscillatory behavior with limited but non-vanishing amplitude.

There is another important difference between yo and yp: Inside the unit
circle the function yo fulfills the functional equation (4) without exception, for
any z1 and z2 such that z2 = z21 one has

yo(z1) = z1 − yo(z2).

This is no longer true for yp, where z2 cannot be an arbitrary square root, but
the root with half-argument:

yp(reiϕ) = reiϕ − yp(r2ei2ϕ), r ∈ R0+. (13)
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Figure 5: a) The argument of yp is moved away from the real axis, together with
all its daughter square roots, along a continuous path to a complex point reiϕ.
We require the function value to be transported also in a continuous manner
which determines our choice of square roots we use when computing yp(reiϕ).
b) When computing ym(z0) we ask for a smooth transition of the value from
z = −1 along a continuous line. The value of z2 in the argument of yp (see
(14)) may leave the physical sheet for z0 far from −1. The blue area represents
arguments of ym for which the argument of yp is on the physical sheet. If we
evaluate ym for some z in the red area then arguments of yp are from the sheet
−1, in the green area from the sheet +1. Computing e.g. ym(i) we follow the red
line coming to the border of the blue and the red domain. For z transported in
this way z2 follows the dashed red path approaching −1 = ei(−π), i.e. α = −iπ
in (12). The evaluation of ym(−i) corresponds to the blue line which gives
dashed blue line for the transport of the yp value, approaching the branch cut
from above, −1 = ei(+π), i.e. α = iπ in (12).

Yet, yp fulfills this equation on a much larger domain. This restriction follows
from how yp was constructed. Considering (9)–(10) one sees, that the functional
equation was applied in steps, starting close to one. We followed the real axis
and a pair of consecutive arguments always respected the restricted equation
(13). We can of course apply the procedure also to an h with nonzero imaginary
part, but we want the function yp to be continuous when going off the positive
real axis. With a sequence of points {xn}∞n=0, xn

n→∞→ 1 such that xn+1 =
√
xn,

where the usual square root is used, we associate a sequence of complex points
{zn}∞n=0, zn

n→∞→ 1 meant to compute the value of yp at some z0 ∈ C. For
that we transport each xn along a smooth path to become zn. Along the path
connecting x0 and z0 we transport also the value of yp, see Figure 5-a. For
this transport to be smooth (yp is analytic), we need to keep our convention for
taking the square root. This naturally explains the origin of the restriction, yp
does not respect the equation (4) for an inappropriate root.
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At last one can analyze the behavior of yp with respect to (13) on the whole
Riemann surface. We will name the zeroth sheet as “physical” and put the index
of the sheet in the subscript next to the function name. The index increases
when going around zero in the counter-clock direction. For the physical sheet
ϕ = 0 the equation (13) stands

yp0(1) = 1− yp0(1) i.e. 1/2 = 1− 1/2.

This changes for different sheets. With ϕ = 2π one for example has (a numerical
approximation is shown)

yp1(1) = 1− yp2(1) i.e. (−0.7321− 0.5458i) = 1− (1.7321 + 0.5458i) .

The key point is of course yp1(1) 6= yp2(1). The functional equation is thus
genuinely satisfied only by yp on the physical sheet. Estimates for yp1,2(1)
come from the numerical evaluation of Θ (2πi) and Θ (4πi) using (12)2.

4 Ym
We use the expression

ym(z) = z − yp(z2) = 2z + yp(−z), z ≈ −1 (14)

to define ym in the neighborhood of z = −1. This definition is unambiguous
because for any z its square z2 is unique. The expansion point of ym is x =
−1 ∈ R, there its derivatives can be determined, see (8). Because we understand
ym as defined by its expansion at x = −1 and because we require continuity,
we compute the value of ym at some complex point z0 by transporting its value
from x = −1 to z0 along some continuous path, see Figure 5-b. Any point at
this path has a unique partner point z2 which follows a different path starting
at x = 1 and which is the argument of yp. By its relation to yp, one sees that
ym is an analytic function on the whole infinitely-sheeted Riemann surface, the
branch point situated at x = 0 excepted. One can constrain ym to a single
sheet (complex plane) by introducing a cut, its most natural place may be the
positive real axis, situated symmetrically to the expansion point. The function
ym also inherits from yp its behavior with respect to the functional equation
(4). Let ϕ be a small angle and r ∈ R0+. One has:

yp(r2ei2ϕ) = r2ei2ϕ − yp(r4ei4ϕ).

Then (14) leads to

ym(−z) = −z − 2z2 − ym(−z2) or ym(z) = z − 2z2 − ym(−z2), (15)

where z is the root of z2 with the half-argument (left equation) or the one with
the half-plus-π argument (right equation). An analogous approach to what is
presented here can be used for any function defined in a way sketched in (6) at
some SR point.

2Interestingly < yp2(1) ≈
√
3 and = yp2(1) ≈ sin

(
1√
3

)
.
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5 Discussion
Considering z inside the unite circle, z 6= 0, one observes that

yλ [z, λ (z)] ≡ λ (z) yo(z) + [1− λ (z)] yp(z)
is (as a function of its first argument) also a solution to the restricted equation
for an arbitrary function λ(z). We do not know about other continuous solutions
(analytic or not). If existing, they are not defined at zero and one. This follows
from our solution-constructing procedure (9)–(10) which provides a unique re-
sult (without any specific assumptions, e.g. about analyticity). We presume an
analogical construction exists at z = 0 giving yo as the unique solution.

For what concerns approximation properties, monomials are easy to express
in terms of yo3:

yo(xm) = xm − yo(x2m) ⇒ xm = yo(xm) + yo(x2m), (16)

which agrees with (2). The approximation (1) is based on matching derivatives
at zero. Yet, at least polynomials can be constructed also using yp, xm =
yp(xm) + yp(x2m), despite yp not being at zero defined. Using yp, polynomials
can be expressed4 outside the unit circle too.

Also, one might ask whether the expansion (1) is equivalent to the Taylor
series in the sense that (1) can be built by replacing each power xm in the Taylor
series by (16). The replacement itself is of course allowed, what is questionable
is the re-arrangement of the resulting series by powers of x in the argument of
yo. Since such a re-arrangement concerns an infinite number of terms one has
to provide a rigorous justification for it. We consider this question as open in
general, for specific situations the proof can be performed. Consider for example
a function with positive expansion coefficients on the positive real axis (such as
exp (x), Figure 6 left)

f (x) =

∞∑
n=0

anx
n =

∞∑
n=0

[
anyo(xn) + anyo(x2n)

]
, an, x ∈ R0+.

Evaluated at some point x0 ∈ R0+ strictly within the convergence radius, power
series are known to be absolutely convergent. We also have yo(x(2)n0 ) > 0, thus
the positive number anxn0 ≥ 0 is a sum of two positive numbers anyo(xn0 ) ≥ 0

and anyo(x2n0 ) ≥ 0. Necessarily 0 ≤ anyo(x
(2)n
0 ) ≤ anx

n
0 meaning that the two

sequences
∑∞
n=0 anyo(x

n) and
∑∞
n=0 anyo(x

2n) are each absolutely convergent
and so is their sum. We then re-arrange the sum, ordering it by powers appearing
in the argument of yo

f(x) =

∞∑
n=0

[
(a2n + an) yo(x2n) + a2n+1yo(x2n+1)

]
.

3We use yo in examples but what is presented applies also to yp or yλ.
4One notices, that for polynomials we have an exact finite expression, not an approxima-

tion.
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Figure 6: Approximation of exp (x) and cos (x) by f (0) +
∑10
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n).

If true for both, yo and yp, such an equivalence can play a role of the middlemen
in the replacement yo → yp: yo(xm) + yo(x2m) = xm = yp(xm) + yp(x2m) so
that one gets an yp-based expansion that goes beyond the unit circle.

A cosmetic defect of using yp appears on the negative real axis where its
values (from the upper or the lower edge of the cut) are complex. We therefore
propose to build approximations using ya:

ya (x) |x≤−1 = ym(x), ya (x) ||x|<1 = yo(x), ya (x) |x≥1 = yp(x),

ya (x) already shown in Figure 2-b. Approximations of two example functions
using ya (x) are shown in Figure 6.

6 Summary, outlook
In this text we have introduced a new function yo and analyzed it. We have
encountered several interesting properties: Yo is well suited for approximations
of a new type (1) whose construction is, rather unexpectedly, related to the
Dirichlet convolution. Yo turns out to be a member of a specific function class,
namely it is lacunary and no natural way of extending it beyond the unit circle
is known. Yet, realizing that yo obeys a functional equation which one is able to
solve also outside the unit disc, one may wonder whether a natural continuation
is possible. Unfortunately it is not: the solution should be interpreted as an in-
dependent function with the related functional equation restricted. Nevertheless
one may say that the “events” took an interesting turn.

We believe that the set of functions with these interesting properties may be
enlarged by studying other simple approximation forms. For example choosing
h = 1, 0, 1, 0, 0, 0, . . . leads to g (z) =

∑∞
n=0 (−1)

n
z3
n

, which is another lacunary
function with presumably similar properties to yo. This opens a large space for
further investigations.
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Appendix: Proof of convergence
We aim to prove the convergence of ΘN when N →∞, where

ΘN (α) =

N∑
n=0

[
(1 +

α

22N+2
)2

2n+1 − (1 +
α

22N+2
)2

2n
]
≡

N∑
n=0

ωN,n. (17)

Upper boundary (UB)

First, we note that if n is interpreted as a smooth parameter and N is fixed then
ωN,n increases with increasing n. In this case one can set an upper boundary
by replacing the sum with an integral where the upper integration limit is by
one higher than the upper limit of the sum, see Figure 7-a. We have (n→ x)

ΘN (α) ≤
∫ N+1

0

[
(1 +

α

22N+2
)2

2x+1 − (1 +
α

22N+2
)2

2x
]
dx

=
1

ln (4)

{
Ei
[
22x+1 ln

(
1 +

α

22N+2

)]
− Ei

[
22x ln

(
1 +

α

22N+2

)]}x=N+1

x=0
,

here Ei is the exponential integral. On the upper and lower integration limit we
get

UUB
N (α) =

1

ln (4)

{
Ei
[
22N+3 ln

(
1 +

α

22N+2

)]
− Ei

[
22N+2 ln

(
1 +

α

22N+2

)]}
,

LUB
N (α) =

1

ln (4)

{
Ei
[
2 ln

(
1 +

α

22N+2

)]
− Ei

[
ln
(
1 +

α

22N+2

)]}
=

1

ln (4)

{
LUB,1
N (α)− LUB,2

N (α)
}
.

For UUB
N (α) the limit N →∞ is easy to determine

22N+3 ln
(
1 +

α

22N+2

)
= ln

[(
1 +

α

22N+2

)22N+3]
= ln

[{(
1 + β−1

)β}2α
]
,

where β = 22N+2/α. Similarly we have for the second term of UUB
N (α)

22N+2 ln
(
1 +

α

22N+2

)
= ln

[{(
1 + β−1

)β}α]
.

So

UUB (α) ≡ lim
N→∞

UUB
N (α) =

Ei
[
ln
(
e2α
)]
− Ei [ln (eα)]

ln (4)
=

Ei (2α)− Ei (α)
ln (4)

.

For the lower limit one needs to use small argument expansions

Ei (h) = γ + ln (h) +O (h) and ln (1 + h) = h+O
(
h2
)
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Figure 7: The sum
∑4
n=0 wn is in both figures represented by black circles and

is exactly given by the area of blue rectangles, constructed either on the right
side (a) or on the left side (b) of the points, the histograms are just shifted. If n
can be interpreted as a smooth index and wn rises as function of n (red curve)
then an upper boundary is given by the integral (red hatched area) that goes
by one further than is the upper summation limit (a) and a lower boundary is
given by an integral that starts at the number by one smaller than is the lower
summation limit.

(γ is the Euler–Mascheroni constant). One has

LUB,1
N (α) = γ + ln

[
2 ln

(
1 +

α

22N+2

)]
+O

[
2 ln

(
1 +

α

22N+2

)]
= γ + ln (2α)− ln

(
22N+2

)
+O

( α

22N+2

)
.

Similarly

LUB,2
N (α) = γ + ln (α)− ln

(
22N+2

)
+O

( α

22N+2

)
.

Consequently

lim
N→∞

LUB
N (α) = lim

N→∞

LUB,1
N (α)− LUB,2

N (α)

ln (4)
=

ln (2α)− ln (α)

ln (4)
=

1

2
.

To summarize, we have an upper boundary

Θ (α) ≡ Θ∞ (α) ≤ Ei (2α)− Ei (α)
ln (4)

− 1

2
,

which increases with increasing α and approaches zero for α→ 0+.

Lower boundary (LB)

Similarly, for a sum which rises with the summation index, one can construct a
lower boundary by computing an integral, this time the lower integration limit

14



being by one smaller than is the starting value of the summation index, see
Figure 7-b

ΘN (α) ≥
∫ N

−1

[
(1 +

α

22N+2
)2

2x+1 − (1 +
α

22N+2
)2

2x
]
dx

=
1

ln (4)

{
Ei
[
22x+1 ln

(
1 +

α

22N+2

)]
− Ei

[
22x ln

(
1 +

α

22N+2

)]}x=N
x=−1

.

Briefly, we have

ULB
N (α) =

1

ln (4)

{
Ei
[
22N+1 ln

(
1 +

α

22N+2

)]
− Ei

[
22N ln

(
1 +

α

22N+2

)]}
,

LLB
N (α) =

1

ln (4)

{
Ei
[
1

2
ln
(
1 +

α

22N+2

)]
− Ei

[
1

4
ln
(
1 +

α

22N+2

)]}
,

from which follows

ULB (α) =
[
Ei
(α
2

)
− Ei

(α
4

)]
/ ln (4) , LLB (α) = 1/2,

where calculations are analogous to those presented for the upper boundary.
Thus we conclude

Ei
(
α
2

)
− Ei

(
α
4

)
ln (4)

− 1

2
≤ Θ (α) ≤ Ei (2α)− Ei (α)

ln (4)
− 1

2
.

Convergence

Finite upper and lower boundaries do not imply the convergence, one needs to
exclude oscillations between them for N →∞. To show that ΘN increases with
increasing N we will focus on the individual terms ωN,n in (17) and compare
ωN,n with ωN+1,n+1. The sum ΘN+1 has one term more than ΘN , we compare
them as represented here

ΘN+1 : ωN+1,0 ωN+1,1 ωN+1,2 . . . ωN+1,N ωN+1,N+1

l l l l
ΘN : ωN,0 ωN,1 . . . ωN,N−1 ωN,N

(18)

We have

ωN+1,n+1 − ωN,n =
[
(1 +

q

4
)8t − (1 +

q

4
)4t
]
−
[
(1 + q)2t − (1 + q)t

]
=(1 +

q

4
)4t
[
(1 +

q

4
)4t − 1

]
− (1 + q)t

[
(1 + q)t − 1

]
,

where q = α/22N+2 ≥ 0 and t = 22n ≥ 1. To prove that the expression is
positive we need to show that (1+ q

4 )
4t ≥ (1+ q)t. Considering q and t as fixed,

we introduce the parametric function χq,t (α) = (1 + q/α)αt with α > 1. The
above inequality is then equivalent to [χq,t (α)]

α=4
α=1 ≥ 0. It is now sufficient to
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demonstrate that χq,t (α) rises for α ≥ 1 for arbitrary q ≥ 0 and t ≥ 1. We
compute the derivative

d

dα
χq,t (α) = t

(
1 +

q

α

)αt [
ln
(
1 +

q

α

)
−

q
α

1 + q
α

]
= t
(
1 +

q

α

)αt
R.

The only suspicious term is the one in the square brackets. Using the substitu-
tion β = 1 + q

α we get

R = ln (β)− β − 1

β
= ln (β)−

(
1− 1

β

)
.

The function 1 − 1/x is a known lower boundary of the logarithm function for
x > 0, thus R is positive. Moreover, the sum ΘN+1 has one additional term,
namely ωN+1,0, see (18). All this implies that ΘN strictly grows with N . A
growing and bounded sequence is necessarily convergent.

Alternative proof

At last we want to mention an alternative proof of the convergence presented
to us on the online forum [4] which is, indeed, short and elegant. One first
re-arranges the sequence in the inverse order and gets (Hn<0 = 0, Hn≥0 = 1)

Θ (α) = lim
N→∞

N∑
n=0

ωN,n = lim
N→∞

N∑
m=0

ωN,N−m = lim
N→∞

∞∑
m=0

HN−m ωN,N−m

= lim
N→∞

∞∑
m=0

HN−m

[
(1 +

α

22N+2
)2

(2N+2)−(2m+1) − (1 +
α

22N+2
)2

(2N+2)−(2m+2)
]
.

Next, after verifying the necessary conditions are met, one applies the Tannery’s
theorem and interchanges the summation and the limit. This gives

Θ (α) =

∞∑
m=0

[
e

α

22m+1 − e α

22m+2

]
n=m+1

= =

∞∑
n=1

[
e

α

22n−1 − e α
22n

]
=

∞∑
n=1

[
(+1)

(
e

α

22n−1 − 1
)
+ (−1)

(
e

α
22n − 1

)]
=

∞∑
n=1

(−1)n+1 (
e
α
2n − 1

)
.

Now, expanding the exponential, one checks the required assumptions are obeyed
to change the order of the summations

Θ (α) =

∞∑
n=1

(−1)n+1

( ∞∑
k=1

αk

k!2nk

)
= −

∞∑
k=1

αk

k!

∞∑
n=1

(−1)n 1

2nk
,

where
∑∞
n=1

[
−2−k

]n is a geometric series. This gives an efficient way for com-
puting Θ (α) and yp(x = eα)

Θ (α) =

∞∑
k=1

αk

k! (2k + 1)
, yp (eα) =

1

2
+

∞∑
k=1

αk

k! (2k + 1)
. (19)
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