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Abstract 

 We propose a unified mass formula, log m = Alog x + B + Cx that accurately describes the 

masses of charged leptons (x=1, 2, and 3) and light and heavy quarks (x=13, 23, and 33) across all 

generations. Unlike the Koide mass-ratio formula, our approach provides a direct and precise 

formula for individual particle masses. The observed cubic dependency and mass increments are 

linked to 4D hypersphere geometry, governed by the spinor spacetime structures of the sedenion 

algebra and the spacetime symmetries. This novel framework offers new insights into elementary 

particles' mass spectrum, internal structures, and symmetry. 
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I. Introduction 

The Standard Model has served as the cornerstone for describing elementary particles for over 

half a century [1,2]. Despite its remarkable success, it leaves several fundamental unsolved 

problems, including the hierarchy problem [3,4], the mass gap [4], the origin of flavors and 

generations [5,6], the origin of the Koide mass law [7], neutrino mass [8], the fine-structure 

constant [10], parameter fine-tuning [10], gravity [11], and grand unification [12-14]. There is 

growing research interest in using various mathematical tools to develop better alternatives to the 

conventional Standard Model, such as geometric algebra [15,16], hypercomplex algebra [17-22], 

string theory [23], supersymmetry [24], grand unification theories [12], etc. In this work, we focus 

on addressing the mass spectrum of the three generations of leptons, light and heavy quarks. While 

the Standard Model relies on the experimental determination of particle masses and lacks a precise 

mass formula for individual particles, indirect relationships, such as those described by the Koide 

mass-ratio formula [7,25], provide some insight. However, these approaches often involve mixed-

generation mass terms and do not prescribe exact mass formulas for specific particles.  

Here, we propose a simple yet precise unified mass formula for the three generations of leptons 

and the light and heavy quark sectors. We further analyze the physical implications of this mass 

formula and its fitted parameters, exploring their intricate connections to hypersphere geometry 

[26] characterized by the spinor structures of sedenion algebra. The 16D sedenions, like 8D 

octonions and 4D quaternions, belong to a hyper-complex number system as a generation from the 

more well-known 2D complex number system to a higher dimensional space.  Our recent study 

[22] reveals that the 16-dimensional sedenion algebra is intrinsically linked to the SU(5) symmetry 

group, which encompasses the Standard Model's U(1) × SU(2) × SU(3) gauge symmetries. This 

sedenion-based framework extends the Standard Model by assuming that fermions are point-like 

Dirac particles with no internal structure or size. By providing a deeper understanding of the mass 

distribution of these charged particles and their potential connections to sedenion algebra, our 

findings offer fresh insights into the internal dynamics and symmetries of fundamental particles. 

 

II. Model  



This work aims to provide a precise and unified description of the masses of charged 

leptons, light quarks, and heavy quarks. This approach seeks to uncover the currently unknown 

relationships among these particles and to gain deeper insight into their internal topological 

structures and symmetries. Before introducing our proposed unified mass formula, we present 

the masses [27] of these particles across the three generations of leptons and quarks in Table 1. 

Since the masses of neutrinos - the neutral counterparts of charged leptons - remain unknown, 

they are excluded from our analysis. 

 

Table 1. Masses of the charged l and quarks 

Classification Particle Experimental Mass  

1st generation - Lepton  Electron (e) 0.51099895000 (15) MeV 

2nd generation Muon (μ) 105.6583755 (23) MeV 

3rd  generation Tau (τ) 1776.86 (12) MeV 

1st generation -  Light Quark  Up (u) 2.16 (0.19) MeV 

2nd generation Down (d) 4.67 (0.48) MeV 

3rd generation Strange (s) 93.40 (0.86) MeV 

1st generation -   Heavy Quark  Charm (c) 1270 (20) MeV 

2nd generation Bottom (b) 4180 (0.03) MeV 

3rd generation Top (t) 17269 (500) MeV 

 

To unfold the intricate relationship among all nine particles in the above table, we seek to explore 

possible connections within the same family. For the charged leptons, we have found simple linear 

mass distribution if the lepton masses are plotted using a log-log scale with the generation index k 

assigned to an x-axis coordinate 1, 2, and 3, respectively.  For light and heavy quarks, however, 

we obtain a linear appearance only if these data are plotted using a semi-log scale and the x 

coordinate must be assigned to a cubic k-relationship, i.e., x = k3, where k is the generation index.  

The fitted curves using a two-parameter formula are shown in Fig. 1.  



 

Fig. 1.  Linear fits to the masses of the lepton, light, and heavy quark families.  To achieve a linear 

appearance for the data curve, in the lepton case, a log-log scale is used for both x and y coordinates, 

and x= 1, 2, and 3 for electron, muon, and tau, respectively.  For light and heavy quarks, a semi-

log scale with x = 13, 23, and 33 is required for the data curves to appear linear.  

 

As shown in Table 1, we have found simple empirical mass-ratio formulae describing these 

generations of elementary particles for each sector.  As illustrated in Fig. 1, we obtain a linear 

relation using a log-log plot with a generation index x = 1,2 and 3 for the lepton sector. However, 

during our initial attempt to analyze the masses of quarks, we could not obtain a simple linear line 

in either a log-log or semi-log plot.  To achieve the goal, we must assign x = 13, 23, and 33, and use 

a semi-log plot. We obtain the following empirical mass formulae for the lepton, light, and heavy 

quark sectors. The log-log formula for leptons, the semi-log formula for quarks, and two fitting 

parameters with errors are shown in Table 2. 

 

Table 2. The two-parameter mass formula for the individual lepton, light, and heavy quark     

Particle Type Fitting Formula A Errors B Errors 

Leptons 

x =    

log 𝑚 = 𝐴 log(𝑥) + 𝐵 7.451  (0.192) −0.272 (0.063) 

Light Quarks  

x =    

 𝐿𝑂𝐺 𝑚 =  𝐴 𝑥 + 𝐵 0.0641 (0.0044) 0.2233 0.0037 



Heavy Quarks  

x =    

 𝐿𝑂𝐺 𝑚 =  𝐴 𝑥 + 𝐵 0.0826  (0.0024) 2.996 0.0021  

 

Although the fitted lines do not pass each data point exactly, the simple linear relations 

capture the key characteristics and show some intricate links among three generations of particles 

within the same family and distinctions between lepton and quark sectors. The mass data of leptons 

appear linear in a log-log plot with equal spacing in x. In contrast, that data would appear linear 

only in a semi-log plot with a cubic x-dependence for both light and heavy quark sectors.  To 

achieve fitting accuracy and ensure the fitted curve passes through each data point, we include a 

small term., and the resultant fitted curves of the mass for each sector are shown in Fig. 2. 

 

Fig. 2. Three-parameter fits for the masses of lepton, light quark, and heavy quark families. 

(A) The raw data and fitted curves for the lepton masses are shown on a log-log scale. 

(B) The raw data and fitted curves for the masses of light and heavy quarks are displayed on a 

semi-log plot. 

 

As shown in Fig. 2, we employed an enhanced three-parameter mass formula to achieve greater 

accuracy in the fits. The fitted curves closely align with each data point, demonstrating high 

precision. The corresponding fitted parameters are presented in a table. Table 3 lists the improved 

fitting formulas and the specific parameters for each lepton, light quark, and heavy quark family. 

The mass formulas for the lepton and quark sectors are fundamentally similar, with a key 

distinction: the parameters A and C are interchanged, reflecting the primary role of the A term. In 

the discussion section, we will delve into the physical implications of this dependency and explore 

the underlying reasons for the intriguing cubic x-dependence on the generation index. 

Table 3. The three-parameter mass formula and fitted parameters   



Category Fitting Formula A B C 

Lepton 

(e,  ) 

x =    

log 𝑚 = 𝐴 log 𝑥 + 𝐵 + 𝐶𝑥 

 

8.7222 0.01856 -0.3101 

Light Quark  

(u, d, s) 

x =    

log 𝑚 =  𝐴 𝑥 +  𝐵 + 𝐶 log  𝑥 

 

0.0741 0.2603 -0.2039 

Heavy Quark 

(c, b, t)  

x =    

log 𝑚 =  𝐴 𝑥 +  𝐵 + 𝐶 log  𝑥 

 

0.0881 3.0157 -0.1101 

  

Using the above Table, we can determine the mass ratio between any pair of particles 

belonging to the same family or cross the family from the above mass formula and reactions.  First 

of all, we could determine the average slope S, or define as the scaling factor for leptons as 

 𝑆𝑙𝑒𝑝𝑡𝑜𝑛 =  
𝑑 𝑙𝑜𝑔 𝑚

𝑑 log 𝑥
=A+2C ln 10 =  7.294 ~ √5  π2/3~ = 7.356.  For the quarks, due to the cubic 

x-dependence, one needs to consider this complication to calculate the effective scaling factor. 

With 𝑦 = 𝐴𝑥 + 𝐵 + 𝐶 log 𝑥 =  𝐴𝜉3 + 𝐵 + 3𝐶 log 𝜉,   one has 𝑆 =
𝑑 log 𝑚

𝑑 log 𝜉
= 3𝐴 ln 10 <

𝜉3 >𝑎𝑣𝑒+  3𝐶 = A(1+8+27) ln 10 +3C , 𝑆𝑙𝑖𝑔ℎ𝑡 = 5.531 ~ √5  π2/4 = 5.517.  For the heavy quarks 

  𝑆ℎ𝑒𝑎𝑣𝑦  = ..773 ~ π2/√2  = 6.979 .  One has  𝑆ℎ𝑒𝑎𝑣𝑦/ 𝑆𝑙𝑒𝑝𝑡𝑜𝑛 = 3/4   and  𝑆𝑙𝑖𝑔ℎ𝑡/ 𝑆ℎ𝑒𝑎𝑣𝑦 =

0.793~√10 /4 = 0.771. The simple relations to π2 of the scaling factors for each family of the 

leptons and quarks seem to imply some deeper connections to the 4D hypersphere [28] with a 

volume 𝑉4 = π2/2.  The above results of the scaling factor S are summarized in Table 4.  

Table 4. The mass and mass-ratio formulae, and scaling factor  

Category Fitting Formula A B C Scaling factor 

S 

Lepton 

(e,  ) 

x =    

𝑚 =  𝑥𝐴 10𝐵+𝐶𝑥 

𝑚𝑒 = 10𝐵+𝐶 

𝑚/𝑚𝑒 =  𝑥𝐴 10𝐶(𝑥−1) 

8.7222 0.01856 -0.3101 7.294 

~ √5π2/3 

Light Quark  

(u, d, s) 

 𝑚 = 𝑒𝐴𝑥𝑙𝑛1010𝐵 𝑥𝐶 0.0741 0.2603 -0.2039  5.531   



x =  

 =    

m = 𝑒𝐴𝑥𝑙𝑛1010𝐵 𝑥𝐶 

= exp(𝐴 𝑘3𝑙𝑛10) 10𝐵 𝑘3𝐶 

𝑚𝑢 = 𝑒𝑥xp
(𝐴 𝑙𝑛10) 10𝐵   

𝑚/𝑚𝑢 =  

exp(𝐴 (𝑘3 − 1)1𝑙𝑛10) 𝑘3𝐶  

~√5 π2/4  

Heavy Quark  

(c, b, t)  

x =  

 =    

m = 𝑒𝐴𝑥𝑙𝑛1010𝐵 𝑥𝐶 

= exp(𝐴 𝑘3𝑙𝑛10) 10𝐵 𝑘3𝐶 

𝑚𝐶 = 𝑒𝑥p(𝐴 𝑙𝑛10) 10𝐵   

𝑚/𝑚𝑐 =  

exp(𝐴 (𝑘3 − 1)1𝑙𝑛10) 𝑘3𝐶  

0.0881 3.0157 -0.1101 6.973 

~ π2/√5   

  

From the mass formula and fitted parameters given in Tables 3 and 4, one obtains the electron’s 

mass as 𝑚 = 10𝐵+𝐶 = 10−0.29154 = 0.51105, the up quark’s mass as 𝑚 = 10𝐴+𝐵 =

10𝐴+𝐵=100.3344 = 2.160, and the up quark’s mass as 𝑚 = 10𝐴+𝐵 = 103.1038 = 1270.06, 

respectively.  The sacking factor S for each lepton, light, and heavy quark sector is shown in the 

above table to be related to the 4D hypersphere.   The agreement with the experimental values 

validates again that our mass formula is precise.  In the next section, we shall discuss the links of 

the scaling factor to 4-D hypersphere geometry and explain the cause of the interesting cubic x-

dependence of the masses for quarks. ‘ 

 

III. Discussion and conclusions 

One can determine the mass ratio between any pair of particles belonging to the same 

family or cross the family from the above mass formula and reactions.  First of all, we could 

determine the average slope, or define as the scaling factor for leptons as  𝑆𝑙𝑒𝑝𝑡𝑜𝑛 =  
𝑑 𝑙𝑜𝑔 𝑚

𝑑 log 𝑥
=A+2C 

ln 10 =  7.294 ~ √5  π2/3~ = 7.356.  For the quarks, due to the cubic x-dependence, one needs 

to consider this complication to calculate the effective scaling factor. With 𝑦 = 𝐴𝑥 + 𝐵 +

𝐶 log 𝑥 =  𝐴𝜉3 + 𝐵 + 3𝐶 log 𝜉,   one has 𝑆 =
𝑑 log 𝑚

𝑑 log 𝜉
= 3𝐴 ln 10 < 𝜉3 >𝑎𝑣𝑒+  3𝐶 =  A(1+8+27) 

ln 10 +3C , 𝑆𝑙𝑖𝑔ℎ𝑡 = 5.531 ~ √5  π2/4 = 5.517.  For the heavy quarks   𝑆ℎ𝑒𝑎𝑣𝑦 = ..773 ~ π2/√2 



= 6.979 .  One has  𝑆ℎ𝑒𝑎𝑣𝑦/ 𝑆𝑙𝑒𝑝𝑡𝑜𝑛 = 3/4   and  𝑆𝑙𝑖𝑔ℎ𝑡/ 𝑆ℎ𝑒𝑎𝑣𝑦 = 0.793~√10 /4  = 0.771. The 

simple relations to π2 of the scaling factors for each family of the leptons and quarks seem to imply 

some deeper connections to the 4D hypersphere [2.] with a volume 𝑉4 = 
π2

2
.   

After the above analysis of the mass formula and the scaling factor, we now explore the 

links of sedenion mathematical structure to the 4D hypersphere geometry and the cubic x-

dependence in the mass formula for quarks.  In our recent sedenion study [221], we showed that 

the sedenion algebra could be linked to SU(5), which contains 𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3)  of the 

Standard Model.  Here, we make a brief introduction of the sedcenion mathematical structure. 

Using the Cayley-Dickson construction scheme [28], one can construct 2D complex numbers from 

a pair of 1D real numbers, Hamilton’s 4D quaternions from a pair of complex numbers, and 

Cayle’'s 8D octonions from a pair of quaternions, and 1.D sedenions from a pair of octonions.  

These hypercomplex algebras have found many applications in special relativity, Maxwell 

equation, relativistic quantum theory, and particle physics. The sedenion algebra contains sixteen 

basis elements, {𝑒0, 𝐞1, 𝐞2, … ¸𝐞15} , where 𝑒0 is the identity basis element, and all others are anti-

commutative following a set of multiplication rules. For better distinction among these elements, 

we define these operators as one quaternion t  {𝐈, 𝚪1, 𝚪2, 𝚪3} ,  and three quartets with four anti-

commutative basis elements,  {𝚯1, 𝐔1, 𝐔2, 𝐔3}, {𝚯2, 𝐕1, 𝐕2, 𝐕3} , and {𝚯3, 𝐖1, 𝐖2, 𝐖3} , 

respectively.  All sets contain a SU(2) spinor pseudo-time in these three quartets, each includes a 

pseudo-time anti-commutative operator, unlike the quaternion set with identity operators.  These 

three quartets play an important role in contributing to three generations of leptons and quarks. 

The mathematical structure e of sedenions is illustrated in Fig. 3. 



 

Fig. 3.  The mathematical structure of 1.-element sedenion algebra. (A) The schematic diagram 

showing sedenions  consist of a quaternion c and three  quaternion-like anti-commutative quartets, 

{𝚯1, 𝐔1, 𝐔2, 𝐔3}, {𝚯2, 𝐕1, 𝐕2, 𝐕3}, and {𝚯3, 𝐖1, 𝐖2, 𝐖3}, representing internal spacetime.  These 

three quartets describe the 12D internal structure dynamics of elementary particles. (B) The 

schematic diagram shows three 8-element octonion subsets, each sharing a common quaternion 

{𝐈, 𝚪1, 𝚪2, 𝚪3} ,  representing the 4D exterior Minkowski spacetime.  

 

As shown in Fig. 3, the 1.D sedenion algebra includes a 4D quaternion set, representing 

the external 4D Minkowski spacetime, and three additional 4D quartets that collectively describe 

the internal spacetime, amounting to twelve degrees of freedom. For a quantized n-dimensional 

structure composed of unit cells, the total energy correlates with the sum of the fundamental mode 

energies of each basic unit cell. According to Einstein's special relativity and relativistic quantum 

theory, 3D space and 1D time are treated on an equal footing, forming a unified 4D spacetime, 

with each axis contributing one degree of freedom. 



For a quantized 4D unit cell, it becomes evident why the scaling factor SSS for the mass 

increment rate, as shown in Table 4, is linked to 4D hypersphere geometry. This geometry reflects 

the interplay between the 4D quaternion Minkowski spacetime and the three 4D quartets 

representing the internal structure. The distinct cubic dependence of the x3-coordinate on the 

generation index for quarks versus the linear x-dependence for leptons arises from their respective 

internal symmetries: the SU(3) symmetry for quarks and the SU(2) symmetry for leptons. 

In our previous report, we highlighted that the sedenions encompass three distinct octonion 

subsets, each sharing a common quaternion set {I, Γ1, Γ2, Γ3}. From the first octonion subset, the 

generalized Dirac equation for the electron, formulated using octonions, the internal space consists 

of an SU(2) symmetry group {U1, U2, U3} which is coupled to external spacetime via the photon—

a vector boson with an electromagnetic (EM) field represented by b{Γ1, Γ2, Γ3}, where b denotes 

the creation or annihilation operator of a scalar boson. Similarly, for the muon, representing the 

second generation of leptons, an additional spinor set {V1, V2, V3} is included for coupling to the 

photon EM field. For the tau, the third generation, yet another spinor set {W1, W2, W3} comes into 

play.  This implies the coupling for the electron to the EM field involves the Uk triplet, and the 

muon with a coupling with both Uk and Vk triplets, and the tau with Uk, Vk, and Wk triplets.  

Consequently, as the generation index increases, the lepton mass formula exhibits a linear 

dependence on x, where x = 1, 2, 3 corresponds to the first, second, and third lepton generations, 

respectively.  

In that  work, we also demonstrated that three pairs of fermion creation and annihilation 

operators can be constructed: one pair, 𝑐3
+ =

𝑈3+𝑖𝛤2

2
, 𝑐3 =

−𝑈3+𝑖𝛤2

2
,  derived from inter-mixing 

between the spinor sets {Γ1, Γ2, Γ3} and {U1, U2, U3}, and one pair, 𝑐1
+ =

𝑈2+𝑖𝑈1

2
, 𝑐1 =

−𝑈2+𝑖𝑈1

2
 ,  from the intra-mixed Uk triplet, and the other pair, 𝑐2

+ =  
𝛤3+𝑖𝛤1

2
, 𝑐2 =

−𝛤3+𝑖𝛤1

2
,  with the 

intra-mixed  𝛤𝑘 triplet.  Using these three pairs of fermion operators, one can construct a 3 by 3 

matrix 𝑀𝑗𝑘 = 𝑐𝑗
+𝑐𝑘 , and then use matrix M to construct eight SU(3) generators.  These Gell-

Mann’s lambda matrices are given by  ʎ1 =  𝑀12 + 𝑀21, ʎ2 =  −i 𝑀12 + i𝑀21, ʎ3 =  𝑀11 −

𝑀22,  ʎ4 =  𝑀13 + 𝑀31, ʎ5 =  −i 𝑀13 + i𝑀31,   ʎ6 =  M23+M321, =  −i M23+iM32,  and ʎ8 =

 (𝑀11 + 𝑀22 − 2𝑀33)/√3    Because these SU(3) generators are the foundation for strongly 

interacting gluons and quarks, the inter-mixing between the 𝛤𝑘  operators for the exterior 



Minkowski space with 𝑈𝑘 of the particle’s internal space explains why gluons and quarks, unlike 

the photon, electron or other leptons, are spatially confined internally.  

To construct first-generation quarks, the spinor set {U1, U2, U3} must couple with gluons, 

and there is only one possible arrangement for this coupling. For the second-generation quarks, 

the inclusion of the spinor set {V1, V2, V3} and the gluon’s mixing dynamics provides 23 possible 

configurations for constructing a three spatial-component vector (X, Y, Z)  from combinations of 

{Uk, Vk}.   For third-generation quarks, this increases to 33 possible configurations among {Uk, Vk, 

Wk} of  (X, Y, Z). A fundamental distinction between leptons and quarks lies in their construction. 

For photons and leptons, there is no inter-mixing between the sets {Γ1, Γ2, Γ3}and {U1, U2, U3} 

allowing photons and leptons to propagate freely in Minkowski space. In contrast, the construction 

of gluons and quarks involves inter-mixing between these sets, leading to gluon and quark 

confinement [22] within the internal space. Furthermore, lepton construction utilizes complete 

spinor triplets {Uk,Vk,Wk} resulting in a linear dependence on the generation index x in the lepton 

mass formula. By contrast, quark construction requires mixing among different spinor triplets, 

producing a cubic dependence on x3 for the generation index in the quark mass formula. 

 

IV. Summary 

In summary, we present a detailed analysis of the masses of charged leptons and quarks, 

offering a simple unified formula that precisely matches their experimental values. Unlike the 

Koide mass-ratio formula or other approaches [27-31] focused on mass ratios, our method 

introduces a novel perspective to obtain a direct and universal formula. This approach provides 

deeper insights into the physical implications of the mass spectrum, the intricate patterns 

associated with the generation index, and the fundamental differences between leptons and quarks. 

Our analysis connects the fitted parameters and mass distribution to hypersphere geometry and 

sedenion algebra. While we do not derive the masses of leptons and quarks from first principles, 

the proposed mass formula—coupled with a qualitative explanation for the linear x-dependence of 

leptons and the cubic x3-dependence of quarks—offers some novel insights. These insights could 

help uncover the connections between particle masses, their internal structures, and underlying 

symmetries. 
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