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Abstract

The ratio of electromagnetic momentum to electromagnetic energy is thought
to be the velocity, but when calculated for a uniform velocity point charge is
off by a factor of 4/3. The apparent problem is fully resolvable if we note that
the electromagnetic stress energy tensor has a non-vanishing T ii for a particle
at rest, and if we then use the appropriate relationship for the stress energy
components for an object which has non-vanishing T ii in its rest frame.

1. Introduction

For a fluid without internal pressure the stress energy tensor is

T µν = ρ
dxµ

ds

dxν

ds
. (1)

Thus

T 10 = ρ
dx1

ds

dx0

ds
(2)

and

T 00 = ρ
dx0

ds

dx0

ds
(3)

In the frame where the particle is at rest, (3) becomes
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T 00
[rest] = ρ (4)

Inserting (4) into (2), we get

T 10 =
dxi

ds
T 00
[rest]

dx0

ds
(5)

∫
T 10d3x =

dxi

ds

∫
T 00
[rest]

dx0

ds
d3x (6)

The Lorentz contraction causes the volume element in the rest frame to
differ from the volume element in the non-rest frame by a factor of γ:

d3x =
1

γ
d3x[rest] (7)

γd3x = d3x[rest] (8)

Noting that dx0

ds
is equal to γ, inserting (8) into (6) gives∫

T 10d3x =
dxi

ds

∫
T 00
[rest]d

3x[rest] (9)

pi =
dxi

ds
p0[rest] (10)

This is a familiar result.
However when the p1 and p0[rest] of the electromagnetic field for a point

charge moving with uniform velocity are actually calculated we do not get the
(10) result of p1 = dx1

ds
p0[rest] [1], but instead get the result of p1 = 4

3
dx1

ds
p0[rest].

This is a longstanding paradox in electromagnetism.
Attempts to resolve the factor of 4/3 discrepancy have included efforts to

include the effects of the forces holding the charged particle together [1, 2, 3].
We will see that in reality the paradox is caused by the inappropriate use of
(10), which itself is based on the inappropriate (1), an equation only appro-
priate when rest frame T 11 vanishes. It turns out that for a charged particle
at rest T ii actually does not vanish. If instead of the inappropriate (10), we
use the appropriate equation for the realtionship between the components of
the stress energy for a situation where T ii

electromagnetic does not vanish in the
rest frame, (22) below, the paradox cleanly and completely disappears.
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2. The Relationship Between Components of a Stress Energy Ten-
sor When T ii Does Not Vanish in the Rest Frame

2.1.

The correct relationship for the components of the stress energy tensor
in a situation where a fluid has pressure in its rest frame is well-known [4, 5]
to be

T µν = (ρ+ P[rest])
dxµ

ds

dxν

ds
− ηµνP[rest] (11)

where ρ is the energy density in the rest frame and P[rest] is the pressure
in the rest frame.

This implies that

T i0 = (ρ+ P[rest])
dxi

ds

dx0

ds
(12)

and that

T 00 = (ρ+ P[rest])
dx0

ds

dx0

ds
− P[rest] (13)

In the rest frame, (13) becomes

T 00
[rest] = ρ (14)

Inserting (14) into (12) we get

T i0 = (T 00
[rest] + P[rest])

dxi

ds

dx0

ds
(15)

∫
T 10d3x =

∫
(T 00

[rest] + P[rest])
dx1

ds

dx0

ds
d3x (16)

Again noting that dx0

ds
is γ, inserting (8) into (16) gives∫

T 10d3x =
dx1

ds

∫ (
T 00
[rest] + P[rest]

)
d3x[rest] (17)

p1 =
dx1

ds

(
p0[rest] +

(∫
P[rest]d

3x[rest]

))
(18)

3



Comparing (18), the equation for a system where there can be pressure
in the rest frame, to (10), the special case where rest frame pressurelessness
is assumed, we see from the mathematical structures that (10) is indeed the
special case of (18) for a system with no pressure. (10) is only valid if the
pressure in the rest frame vanishes. Use of (10) for a situation where there
is pressure in the rest frame is incorrect, and can lead to incorrect results.

In the language of stress energy tensors, the “rest frame pressure” is
T 11
[rest] = T 22

[rest] = T 33
[rest]. (We will see that if these three quantities are not

equal, although “P[rest]” is no longer definable, a more general relationship,
(22), of which (18) is a special case, can be used.)

We will show by direct calculation that the T ii quantities are indeed non-
vanishing for a point charge at rest. Thus (10), the assumption used in
creating the “paradox”, is wrong to be used in this situation. (18) must be
used instead. It will be shown that when (18) is used there is no paradox.
The paradox occurred due to use of an invalid equation for the situation
examined.

2.2.

It might seem that we must get p1 = dx1

ds
p0[rest] by making a Lorentz

transformation of p0 for the particle at rest to a moving frame. However, we
will presently show that if T ii does not vanish in the rest frame we do not
actually get that result. Instead, we get a result that is a generalization of
(18).

The rule for transforming a 2-tensor is A′µν = ∂xµ

∂xα
∂xν

∂xβA
αβ. Letting the T µν

tensor be the Aµν , and having the coordinate transformation be the Lorentz
transformation, we get

T ′10 =(βγ) (γ)T 00
[rest] +

(γ) (βγ)T 11
[rest]

(19)

∫
T ′10d3x′ =

∫
(βγ) (γ)T 00

[rest]d
3x′ +∫

(γ) (βγ)T 11
[rest]d

3x′
(20)

In this case the non-primed frame volume element is the rest frame vol-
ume element, and the primed volume element is the non-rest frame volume
element. Thus using (8), we get
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∫
T ′10d3x′ =

∫
(βγ)(T 00

[rest])d
3x[rest] +∫

(βγ)T 11
[rest]d

3x[rest]

(21)

p1 =
dx1

ds
(p0[rest] +

∫
T 11
[rest]d

3x[rest]) (22)

We see that (18) was a special case of (22) where T 11
[rest] = T 22

[rest] = T 33
[rest],

in which case a quantity “P[rest]” can be defined as P[rest] ≡ T 11
[rest] = T 22

[rest] =

T 33
[rest]. If it is not the case that T 11

[rest] = T 22
[rest] = T 33

[rest] then there is no

definable P[rest] ≡ T 11
[rest] = T 22

[rest] = T 33
[rest], in which case (18) cannot be used,

but (22) is still valid, and (22) must be used.
We also note that in the derivation leading to (22) there is no assumption

of a fluid, and thus it is valid for any stress energy scenario, such as the stress
energy of an electromagnetic field.1

3. The Point Charge Paradox is Resolved When the Appropriate
Relationship Between Stress Energy Components for a Situation
with a Non-Vanishing T ii in the Rest Frame is Used

As previously explained, the paradox is that when p1 and p0[rest] are
calculated [1] for a point charge moving with uniform velocity it turns out
that p1 = 4

3
dx1

ds
p0[rest]. This was supposedly contradicted by the belief, based

on (19) that the relationship must be p1 = dx1

ds
p0[rest]. However, we have

shown that the appropriate relationship between the components of the stress
energy tensor when the T ii do not vanish in the rest frame is the relationship
from (22), for which (10) is a special case which is only true when the T ii

vanish in the rest frame.
Using the correct relationship between stress energy components for a

situation where T ii does not vanish in the rest frame we substitute the calcu-
lated result p1 = 4

3
p0[rest] into the left-hand side of the valid (22) relationship

that pi = dxi

ds

(
p0[rest] +

∫
T 11
[rest]d

3x
)
. Doing this, we get

1Actually, while (11), the equation that led to (18) is typically characterized as the
relationship for a fluid, its derivation does not at all depend on the characterized entity
being a fluid.
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4

3

dx1

ds
p0[rest] =

dx1

ds
p0[rest] +

dx1

ds

∫
T 11
[rest]d

3x[rest]

(23)

From (23) we see that if and only if
∫
T 11
[rest]d

3x[rest] is equal to 1
3
p0[rest],

then use of (22), the equation that is the appropriate equation if
∫
T 11d3x is

non-vanising in the rest frame, would resolve the paradox.
To see if

∫
T 11
[rest]d

3x[rest] is indeed equal to 1
3
p0[rest], we will need to calculate

p0[rest] and to calculate
∫
T 11
[rest]d

3x[rest].

To calculate p0[rest] we use the T µν
[electromagnetic] formula T µν

[electromagnetic] =
1
4
π
(
F µσF ν

σ − 1
4
ηµνF λωFλω

)
to calculate T 00

[rest], and then integrate. Since the
point charge is at rest in the rest frame, B[rest] = 0. Inserting into the
T 00 = 1

4
π
(
F 0σF 0

σ − 1
4
η00F λωFλω

)
formula, we then get

T 00
[rest] =

1

4
π

((
(E[rest])

2
)
− 1

4

(
2(E[rest])

2
))

(24)

T 00
[rest] =

1

4
π(

1

2
(E[rest])

2) (25)∫
T 00
[rest]d

3x[rest] =
1

4
π

∫
(
1

2
(E[rest])

2)d3x[rest]. (26)

p0[rest] =
1

4
π

∫
(
1

2
(E[rest])

2)d3x[rest] (27)

We note that this result actually is valid for any charge distribution at
rest.

To calculate
∫
T 11
[rest]d

3x[rest] we again use the T µν
electromagnetic =

1
4
π
(
F µσF ν

σ − 1
4
ηµνF λωFλω

)
formula (and again B[rest] = 0, being that B vanishes in the rest frame).

T 11
[rest] =

1

4
π

((
−(Ex

[rest])
2
)
+

1

4

(
2(E[rest])

2
))

(28)

∫
T 11
[rest]d

3x[rest] =

1

4
π

∫ ((
−(Ex

[rest])
2
)
+

1

4

(
2(E[rest])

2
))

d3x[rest]

(29)
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Because of the symmetry of the electric field for a point charge at rest,∫
(Ex

[rest])
2d3x[rest] =

∫
(Ey

[rest])
2d3x[rest] =

∫
(Ez

[rest])
2d3x[rest]; and thus

∫
(E[rest])

2d3x[rest],

which is
∫
(Ex

[rest])
2d3x[rest]+

∫
(Ey

[rest])
2d3x[rest]+

∫
(Ez

[rest])
2d3x[rest], is equal to

3
∫
(Ex

[rest])
2d3x[rest]. Thus

∫
(Ex

[rest])
2d3x[rest] =

1
3

∫
(E[rest])

2d3x[rest]. Inserting

this result into (29) we get

T 11
[rest]d

3x[rest] =

1

4
π

(
−
(
1

3
(E[rest])

2

)
+

1

4

(
2(E[rest])

2
))

d3x[rest]

(30)

∫
T 11
[rest]d

3x[rest] =
1

4
π

∫
(
1

6
E2)d3x[rest] (31)

Comparing (31) to (27), we see that
∫
T 11
[rest]d

3x[rest] is indeed equal to
1
3
p0[rest], exactly the result we had needed for the paradox to be resolved by

use of the correct equation for situations where T 11 is non-vanishing in the
rest frame, (22). The paradox is cleanly and simply resolved by using the
correct energy momentum relationship for situations with non-vanishing T ii

in the rest frame.

4. Appendix - Creating and Resolving Other Electromagnetic En-
ergy and Momentum Paradoxes

If we use other shapes and motions for the electric charge distribution we
can create other paradoxes if we naively assume the (10) p1 = dxi

ds
p0[rest] rela-

tionship that is not actually valid for situations where there is non-vanishing
T ii in the rest frame. (Interestingly the discrepancy factor is not always
4
3
–the 4

3
is not some special characteristic of electromagnetism.)

In these paradoxes, just as was the case with the point charge paradox,
the paradoxes are cleanly and simply resolved by using (22), the correct
energy momentum relationship for situations with non-vanishing T ii in the
rest frame

4.1.

Consider a plane of charge in the yz plane moving in the x direction.
As noted previously, p0[rest] is always that given by (27). Thus
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p0[rest] =
1

4
π

∫
1

2
(E[rest])

2d3x[rest] (32)

To calculate T 10 we note that in this case there is no magnetic field
perpendicular to the electric field, and thus ExB is zero. Thus the Poynting
vector, the T 10 from the T 10 = 1

4
π
(
F 1σF 0

σ − 1
4
η10F λωFλω

)
formula, is zero.

So

p1 = 0 (33)

Comparing (33) with (32) we see that

p1 =
dx1

ds
(0)p0[rest] (34)

From the perspective of (the inappropriate) (10) we see a discrepency
from the (erroneously) expected p1 = dx1

ds
p0[rest] result. The discrepancy this

time is a factor of zero, analogous to the discrepancy factor of 4
3
for the point

charge.
Let us see if we can resolve this new paradox by again using the appro-

priate (22) p1 = dx1

ds
p0[rest] +

dx1

ds

∫
T 11
[rest]d

3x[rest] relationship, instead of the

inappropriate (10) pi = dxi

ds
p0[rest] relationship that led to the supposed para-

dox. Substituting (34) into (22), we get

0 =
dx1

ds
p0[rest] +

dx1

ds

∫
T 11
[rest]d

3x[rest] (35)

Thus our new paradox will be resolved if and only if
∫
T 11
[rest]d

3x[rest] is

equal to negative p0[rest].

So we now calculate p0[rest], and calculate
∫
T 11
[rest]d

3x.

As noted earlier, (27) is valid for any situation where the charge distri-
bution is at rest. So

p0[rest] =
1

4
π

∫
(
1

2
(E[rest])

2)d3x[rest] (36)

We again will calculate
∫
T 11
[rest]d

3x[rest] from the
1
4
π
(
F 1σF 1

σ − 1
4
η11F λωFλω

)
formula. This again gives (28) leading to (29)
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∫
T 11
[rest]d

3x[rest] =

1

4
π

∫ (
(−(Ex

[rest])
2) +

1

4
(2(E[rest])

2)

)
d3x[rest]

(37)

This time the electric field is totally in the x direction, so (Ex
[rest])

2 =

(E[rest])
2. Thus (37) becomes

∫
T 11
[rest]d

3x[rest] =

1

4
π

∫ ((
−(E[rest])

2
)
+

1

4

(
2(E[rest])

2
))

d3x[rest]

(38)

∫
T 11
[rest]d

3x[rest] =
1

4
π(−1

2
(E[rest])

2)d3x[rest] (39)

Comparing (39) to (36), we see that
∫
T 11
[rest]d

3x[rest] is indeed negative

p0[rest], exactly the result we had needed for the paradox to be resolved by use

of the correct equation for situations where T 11 is non-vanishing in the rest
frame, (22). The paradox is cleanly and simply resolved by using the correct
energy momentum relationship for situations with non-vanishing T ii in the
rest frame.

4.2.

Now let us consider a plane of charge– this time in the xy plane – moving
in the x direction.

As noted previously, p0[rest] is always that given by (27) . Thus

p0[rest] =
1

4
π

∫
1

2
(E[rest])

2d3x[rest] (40)

To calculate T 10 we note that B has a magnitude of dx1

ds
times E[rest], and

is in the y direction, always completely perpendicular to E. Thus ExB has
a magnitude of dx1

ds
times E[rest] times E, and is in the x dir.

Therefore the Poynting vector is 1
4
π dx1

ds
E[rest] times E, and is in the x

direction.
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T 10 =
1

4
π(

dx1

ds
)(E[rest])E (41)

p1 =
1

4
π

∫
(
dx1

ds
)(E[rest])Ed3x. (42)

The Lorentz transformation equation for the electric field isE ′ = γ (E + β ×B).
Letting E ′ be the electric field in the non-rest-frame, and letting E and B
be the electric and magnetic fields in the rest frame, then this Lorentz trans-
formation formula gives E ′ = γ(E[rest] + β × B[rest]). Since B[rest] = 0, the
formula thus yields E = γE[rest]. Substituting this into (42) we get

p1 =
1

4
π

∫
(
dx1

ds
)(E[rest])(E[rest]γ)d

3x. (43)

Using (8) again, we get

p1 =
1

4
π

∫
(
dx1

ds
)(E[rest])(E[rest])d

3x[rest] (44)

Comparing (44) to (40), we see that

p1 =
dxi

ds
2p0[rest] (45)

From the perspective of (the inappropriate) (10) we see a discrepency
from the (erroneously) expected p1 = dx1

ds
p0[rest] result. The discrepancy this

time is a factor of two, analogous to the discrepency factor of 4
3
for the

point charge (and the factor of zero for the plane of charge moving in the
perpendicular direction).

Let us see if we can resolve this new paradox by again using the appro-
priate (22) p1 = dx1

ds
p0[rest] +

dx1

ds

∫
T 11
[rest]d

3x[rest] relationship, instead of the

inappropriate (10) pi = dxi

ds
p0[rest] relationship that led to the supposed para-

dox. Substituting (45) into (22), we get

2
dx1

ds
p0[rest] =

dx1

ds
p0[rest] +

dx1

ds

∫
T 11
[rest]d

3x[rest] (46)

Thus our new paradox will be resolved if and only if
∫
T 11
[rest]d

3x[rest] is

equal to p0[rest].
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To perform the test, we will need to calculate the quantitative values for
p0 and for

∫
T 11
[rest]d

3x[rest].

We already have p0[rest] as

p0[rest] =
1

4
π

∫
1

2
(E[rest])

2d3x[rest] (47)

To get
∫
T ii
[rest]d

3x[rest] we again use the 1
4
π
(
F 1σF 1

σ − 1
4
η11F λωFλω

)
for-

mula. This again gives (28) leading to (29):

∫
T 11
[rest]d

3x[rest] =
1

4
π

∫ (
−(Ex

[rest])
2 +

1

4
(2(E[rest])

2)

)
d3x[rest] (48)

This time there is no electric field in the x direction, so (Ex)2 = 0. Thus
(48) becomes ∫

T 11
[rest] =

1

4
π

(
−0 +

1

4
(2(E[rest])

2)

)
(49)

T 11
[rest]d

3x[rest] =
1

4
π

∫
1

2
(E[rest])

2d3x[rest] (50)

Comparing (50) to (47), we see that
∫
T 11
[rest]d

3x[rest] is indeed equal to

p0[rest], exactly the result we had needed for the paradox to be resolved by use

of the correct equation for situations where T 11 is non-vanishing in the rest
frame, (22). The paradox is cleanly and simply resolved by using the correct
energy momentum relationship for situations with non-vanishing T ii in the
rest frame.
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