
European  

 

A Simple Rigorous Proof of Riemann’s Hypothesis via 

Reflection Symmetry 

 

by Jau Tang 

Institute of Technological Sciences, Wuhan University, Wuhan 430074, China 

E-mail: jautang66@gmail.com 

ORCID: 0000-0003-2078-1513 

DOI:  10.20944/preprints202502.1458.v1 & 10.5281/zenodo.14868031 

 

Abstract 

We present a simple rigorous proof of Riemann’s hypothesis. This hypothesis has 

remained unsolved since Riemann’s original formulation in 1859, although numerous zeros 

have been found along the critical line with the assistance of computer calculations.  Our 

analytic proof  is based on the analysis of the reflection symmetry between 

|𝛤(𝑠 2⁄ )) 𝜁(𝑠) 𝜋𝑠 2⁄⁄ |2 and |𝛤((1 − 𝑠) 2⁄ )) 𝜁(1 − 𝑠) 𝜋(1−𝑠) 2⁄⁄ |2, although the zeta and Gamma 

functions are asymmetric. We show their global minimum along the x-direction throughout 

the critical strip, their zeros, and the non-trivial zeros of the zeta function must occur at 

s=1/2+iy. If the zeros were not along the critical line, we show contradictions to the properties 

of the symmetric functional pair would arise.  Thus, we prove rigorously the validity of 

Riemann’s conjecture.   
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1. Introduction 

Riemann’s hypothesis, first formulated in 1859 by German mathematician B. Riemann, is one of the 

most profound and long-standing unsolved problems in mathematics [1-6]. He postulated the non-

trivial zeros of the Riemann zeta function ζ(s) must lie along the critical line in the complex plane with 

𝑠 =
1

2
+ 𝑖𝑦.  This zeta function is deeply connected to the distribution of prime numbers, forming the 

foundation of modern analytic number theory.   This hypothesis is one among the list of 23 unsolved 

problems presented by D. Hilbert in 1900 at the Internal Congress of Mathematicians [4,5]. Despite 

numerous partial results obtained by notable mathematicians, such as Hardy [5], Selberg [6], and many 

others, and an astronomical number of zeros computationally identified with a zero having an 

imaginary part as large as 8.1 × 1034 [7], the Reimann hypothesis remains unsolved [8].  Its proof 

would have far-reaching implications across number theory, random matrix theory, quantum chaos, 

and cryptography.  We present in this report simple rigorous proof of Riemann’s hypothesis. Our 

approach is based on the analysis of the reflection symmetry between |𝛤(𝑠 2⁄ ) 𝜁(𝑠) 𝜋𝑠 2⁄⁄ |2 and 

𝛤 ((1 − 𝑠) 2⁄ ) 𝜁(1 − 𝑠) 𝜋(1−𝑠) 2⁄⁄ |2 to establish the validity of Riemann’s conjecture.  

 

2. The proof of Riemann’s hypothesis 

Riemann formulated the hypothesis in the seminal paper, entitled “On the Number of Primes Less 

Than a Given Magnitude”. In this work, he studied the properties of the Riemann zeta function, ζ(s), 

as [1-3] 

          𝜁(𝑠) =
1

𝛤(𝑠)
∫ 𝑑𝑥

∞

0

𝑥𝑠−1

𝑒𝑥−1
=

1

𝛤(𝑠)
∑ ∫ 𝑑𝑥

∞

0
𝑥𝑠−1𝑒−𝑛𝑥∞

𝑛=1 = ∑
1

𝑛𝑠
∞
𝑛=1    .         (1A) 

where s is defined on the complex plane.   

          𝜁(𝑠) = ∏
1

1−𝑝−𝑠
∞
𝑝:  𝑝𝑟𝑖𝑚𝑒  ,           (1B) 

which interestingly relates the zeta function to a product of terms involving prime numbers. According 

to Riemann’s hypothesis [4-6], the zeros of the zeta function occur only along the critical line with 

𝑠 =
1

2
+ 𝑖𝑦.  Because it is well-known that the zeros of the Riemann zeta function would occur along 
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the critical strip with x between 0 and 1 [5], to prove Riemann’s hypothesis one only needs to analyze 

the location of the minimum for |𝜉(𝑥 + 𝑖𝑦)|2 in the critical strip, which happens to be at the zeros if 

the zeta function, must lie along the critical line.   

2. 1. Riemann’s reflection-symmetric functional pair  

To prove Riemann’s hypothesis, we utilize the following Riemann’s functional pair [1] that possess 

reflection symmetry to the critical line, given as  

          𝐴 =
𝛤(𝑠 2⁄ )𝜁(𝑠)

𝜋𝑠 2⁄ , 𝐵 =
𝛤((1−𝑠) 2⁄ )𝜁(1−𝑠)

𝜋(1−𝑠) 2⁄ , 𝐴 = 𝐵.                                 (2A) 

            �̄�   =
𝛤(�̄� 2⁄ )𝜁(�̄�)

𝜋�̄� 2⁄ , �̄� =
𝛤((1−�̄�) 2⁄ )𝜁(1−�̄�)

𝜋(1−�̄�) 2⁄ , �̄� =  �̄�.                                                   (2B) 

To achieve our goals, we propose a novel approach that utilizes the reflection symmetry of 

|𝛤(𝑠 2⁄ )) 𝜁(𝑠) 𝜋𝑠 2⁄⁄ |2 = |𝛤((1 − 𝑠) 2⁄ ) 𝜁(1 − 𝑠) 𝜋(1−𝑠) 2⁄⁄ |2, involving the Riemann zeta function 

and the Gamma functions. 

 Despite the individual zeta and Gamma functions being asymmetric, the composite function 

pair has a reflection symmetry. We defined the following product pair 𝐴�̄� which equals t o  𝐵�̄�  , and 

               |𝐴|2 =
𝛤(𝑠 2⁄ )𝛤(�̄� 2⁄ )𝜁(𝑠)𝜁(�̄�)

𝜋𝑅𝑒(𝑠) = |𝐵|2 =
𝛤((1−𝑠) 2⁄ )𝛤((1−�̄�) 2⁄ )𝜁(1−𝑠)𝜁(1−�̄�)

𝜋1−𝑅𝑒(𝑠)   .                     (3) 

Defining 𝑠 = 𝑥 + 𝑖𝑦, �̄� = 𝑥 − 𝑖𝑦, we obtain 

            𝐹(𝑥, 𝑦) = |𝐴|2 =  
𝛤(

𝑥+𝑖𝑦

2
)𝛤(

𝑥−𝑖𝑦

2
)𝜁(𝑥+𝑖𝑦)𝜁(𝑥−𝑖𝑦)

𝜋𝑥                      (4A) 

            𝐺(𝑥, 𝑦) = |𝐵|2 =
𝛤(

1−(𝑥+𝑖𝑦)

2
)𝛤(

1−(𝑥−𝑖𝑦)

2
)𝜁(1−(𝑥+𝑖𝑦))𝜁(1−(𝑥−𝑖𝑦))

𝜋1−𝑥 .                             (4B)      

and 𝐹(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) = |𝐴|2 = |𝐵|2 ≥ 0.   

 Because  𝐹(𝑥, 𝑦) and 𝐺(𝑥, 𝑦)  are symmetric to the critical line which is parallel to the y-axis 

with x = ½, from Eq. (4), one can show 

          𝐺(1 − 𝑥, 𝑦)   = 

          
𝛤 (

1 − (1 − 𝑥 + 𝑖𝑦)
2

) 𝛤 (
1 − (1 − 𝑥 − 𝑖𝑦)

2
) 𝜁(1 − (1 − 𝑥 + 𝑖𝑦))𝜁(1 − (1 − 𝑥 − 𝑖𝑦))

𝜋𝑥
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        =
𝛤(

𝑥−𝑖𝑦

2
)𝛤(

𝑥+𝑖𝑦

2
)𝜁(𝑥−𝑖𝑦)𝜁(𝑥+𝑖𝑦)

𝜋𝑥 = 𝐹(𝑥, 𝑦) .                                                                 (5) 

Similarly, one can show 𝐹(1 − 𝑥, 𝑦) = 𝐺(𝑥, 𝑦). Therefore, one obtains  

          𝐹(𝑥, 𝑦) = 𝐹(1 − 𝑥, 𝑦) = 𝐺(𝑥, 𝑦) = 𝐺(1 − 𝑥, 𝑦),                   (6)                    

which exhibits the reflection symmetry of 𝐹(𝑥, 𝑦) and 𝐺(𝑥, 𝑦) to the critical line.   

 

2. 2. Proving lemma: 𝑭(𝒙, 𝒚)’s global minima and non-trivial zeros must be at s=1/2+iy   

 Now, we shall prove a lemma for the minima and nontrivial zeros of  𝐹(𝑥, 𝑦)  must lie along 

the critical line with x=1/2. Owing to the symmetry of 𝐹(𝑥, 𝑦) = 𝐹(1 − 𝑥, 𝑦) according to Eq. (6), 

their partial derivative x is anti-symmetric to the critical line, i.e.,  

            
𝜕𝐹(𝑥,𝑦)

𝜕𝑥
= −

𝜕𝐹(1−𝑥,𝑦)

𝜕𝑥
,

𝜕𝐺(𝑥,𝑦)

𝜕𝑥
= −

𝜕𝐺(1−𝑥,𝑦)

𝜕𝑥
                                 (7A)                                                         

Thus, their slopes, as the derivatives along the critical line, at x= ½ must vanish, i.e., 

            
𝜕

𝜕𝑥
𝐹 (

1

2
, 𝑦) =

𝜕

𝜕𝑥
 𝐺 (

1

2
, 𝑦) = 0.        (7B) 

 We shall show that the second-order partial derivatives along x are positive definite along the critical 

line so that the minimum points of 𝐹(𝑥, 𝑦) must occur only along the critical line so that the zeros of 

𝐹(𝑥, 𝑦) can only occur along this line. Here, we shall derive the first and second-order partial 

derivatives of 𝐹(𝑥, 𝑦) along x.  We first define  

           𝐹(𝑥, 𝑦) = 𝑀(𝑥, 𝑦)𝑁(𝑥, 𝑦) 

           𝑀(𝑥, 𝑦) = 𝛤 (
𝑥 + 𝑖𝑦

2
) 𝛤 (

𝑥 − 𝑖𝑦

2
) 𝜋𝑥⁄ > 0 

           𝑁(𝑥, 𝑦) = 𝜁(𝑥 + 𝑖𝑦)𝜁(𝑥 − 𝑖𝑦) ≥ 0.                      (8) 

And the first-order partial derivatives are given by  

          
𝜕𝐹(𝑥, 𝑦)

𝜕𝑥
= 𝑁(𝑥, 𝑦)

𝜕𝑀(𝑥, 𝑦)

𝜕𝑥
+ 𝑀(𝑥, 𝑦)

𝜕𝑁(𝑥, 𝑦)

𝜕𝑥
 

           
𝜕2𝐹(𝑥,𝑦)

𝜕𝑥2 = 𝑁(𝑥, 𝑦)
𝜕2𝑀(𝑥,𝑦)

𝜕𝑥2 + 𝑀(𝑥, 𝑦)
𝜕2𝑁(𝑥,𝑦)

𝜕𝑥2 + 2
𝜕𝑀(𝑥,𝑦)

𝜕𝑥

𝜕𝑁(𝑥,𝑦)

𝜕𝑥
                    (9) 

Because 𝑑𝛤(𝑧) 𝑑𝑧⁄ = 𝛤(𝑧)𝜓(𝑧), where 𝜓(𝑧)  is the digamma function [9], one has  



European  

            
𝜕𝑀

   𝜕𝑥
=

𝑀

2
(𝜓 (

𝑥+𝑖𝑦

2
) + 𝜓 (

𝑥−𝑖𝑦

2
) − 2 𝑙𝑛 𝜋),           (10A)

              and the 2nd-order derivative as given by  

          
𝜕2𝑀

𝜕𝑥2 =
𝑀

4
[(𝜓 (

𝑥+𝑖𝑦

2
) + 𝜓 (

𝑥−𝑖𝑦

2
) − 2 𝑙𝑛 𝜋)

2

+ 𝜓′ (
𝑥+𝑖𝑦

2
) + 𝜓′ (

𝑥−𝑖𝑦

2
)].                (10B)            

Because the tri-gamma function 𝜓′(𝑧)  is positive in the critical strip [9], one concludes 𝜕2𝑀 𝜕𝑥2⁄ >

0.  Now, let us show the 2nd-order derivative of 𝑁(𝑥, 𝑦)    is positive definite. One has 

         𝑁(𝑥, 𝑦) = 𝜁(𝑥 + 𝑖𝑦)𝜁(𝑥 − 𝑖𝑦) = ∑ ∑ 𝑒−𝑥(𝑙𝑛 𝑛+𝑙𝑛 𝑚))−𝑖𝑦(𝑙𝑛 𝑛−𝑙𝑛 𝑚)

∞

𝑚=1

∞

𝑛=1

 

𝜕2

𝜕          𝑥2
𝑁(𝑥, 𝑦) = ∑ ∑ (𝑙𝑛 𝑛 + 𝑙𝑛 𝑚)2𝑒−𝑥(𝑙𝑛 𝑛+𝑙𝑛 𝑚))−𝑖𝑦(𝑙𝑛 𝑛−𝑙𝑛 𝑚)∞

𝑚=1
∞
𝑛=1 .                  (11A) 

Along the critical line, one has 

          
𝜕2

𝜕𝑥2 𝑁(1 2⁄ , 𝑦) = ∑
4(𝑙𝑛 𝑛)2

𝑛
∞
𝑛=1 + ∑

2(𝑙𝑛(𝑛𝑚))2

√𝑛𝑚
𝑐𝑜𝑠(𝑦(𝑙𝑛(𝑛/𝑚)))∞

𝑛>𝑚=1 .     

Because the second damped oscillatory off-diagonal term cannot exceed its magnitude, which is 

smaller than the first diagonal term, therefore, 𝜕2 𝑁(1 2⁄ , 𝑦) 𝜕𝑥2⁄ is positive definite.  According to 

Eq. (8)  𝑀(𝑥, 𝑦) = |𝛤(𝑥 + 𝑖𝑦) 2⁄ |2 > 0,  𝑁(𝑥, 𝑦) = |𝜁(𝑥 + 𝑖𝑦)|2 ≥ 0, and 𝜕𝐹(1/2, 𝑦) 𝜕𝑥⁄ = 0 from 

Eq. (7B),  the minimum  of 𝐹(𝑥, 𝑦) = 𝑀(𝑥, 𝑦)𝑁(𝑥, 𝑦)  must occur along the critical line, which 

happens to be where the zeros are located, so the minima and zeros of  𝑁(1/2, 𝑦) =

𝜁(1/2 + 𝑖𝑦))𝜁(1/2 − 𝑖𝑦)  and 𝜁(1/2 + 𝑖𝑦) can occur at x=1/2, which also implies 

            
𝜕𝑁(1/2, 𝑦)

𝜕𝑥
= 0 

            
𝜕2𝐹(1/2,𝑦)

𝜕𝑥
= 𝑁(1/2, 𝑦

𝜕2𝑀(1/2,𝑦)

𝜕𝑥2 + 𝑀(1/2, 𝑦
𝜕2𝑁(1/2,𝑦)

𝜕𝑥2 > 0.                                   (12) 

 

2.3. Proving x=1/2 as the global minima of  𝑭(𝒙, 𝒚) and zeros of Riemann’s zeta function across 

the entire critical strip  

 From the above analysis, we have shown that the zeros and the local minima of  𝐹(𝑥, 𝑦) are 

located at x=1/2. Here, we shall further prove that the minim isn’t just a local minimum along the 

critical line but a global minimum within the entire critical strip.  According to Eq. (11A), one has 
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𝜕2

𝜕𝑥2 𝑁(𝑥, 𝑦) = ∑ 4(𝑙𝑛 𝑛)2∞
𝑛=1 𝑒−2𝑥 𝑙𝑛 𝑛 

                  + ∑ 2(𝑙𝑛 𝑛 + 𝑙𝑛 𝑚)𝑛>𝑚
2

𝑒−𝑥(𝑙𝑛 𝑛+𝑙𝑛 𝑚) 𝑐𝑜𝑠(𝑦(𝑙𝑛 𝑛 − 𝑙𝑛 𝑚)).                            (13)  

The first diagonal term is strictly positive definite in the critical strip.  The second oscillatory term has 

an exponential damping factor 𝑒−𝑥(𝑙𝑛 𝑛+𝑙𝑛 𝑚) with an overall magnitude smaller than the first diagonal 

term. Therefore, the sum of both diagonal and off-diagonal terms cannot be negative. Since we have 

both 𝜕2𝑁(𝑥, 𝑦) 𝜕𝑥2⁄ > 0 and 𝜕2𝑀(𝑥, 𝑦) 𝜕𝑥2⁄ > 0, thus 𝐹(𝑥, 𝑦) is a convex function throughout the 

critical strip and its minima can lie only along the critical line. The proof of the above lemma leads 

naturally to Riemann’s hypothesis, i.e., the zeros of the Riemann zeta function must lie along the 

critical line with x=1/2.  

We have shown above that the minima and the zeros of  𝐹(𝑥, 𝑦), as well as the nontrivial zeros 

of the zeta function, must lie along the critical line. If the minima or zero do not lie along the critical 

line, we can show in the following that contradiction to the reflection symmetry shall arise.   If one 

assumes 𝐹(𝑥0, 𝑦) = 𝑀(𝑥0, 𝑦)𝑁(𝑥0, 𝑦) = 0 at 𝑥0 ≠ 1/2, because  𝑀(𝑥, 𝑦)  is positive in the critical 

strip, one must have 𝑁(𝑥0, 𝑦) = 0  and  𝐹(𝑥0, 𝑦) must be at a  minimum with a vanishing slope 

𝜕𝐹(𝑥0, 𝑦) 𝜕𝑥⁄ . This cannot be true because of the reflection symmetry, one must have  𝐹(1 − 𝑥0, 𝑦) =

0, 𝑁(1 − 𝑥0, 𝑦) = 0, and 𝜕𝐹(1 − 𝑥0, 𝑦) 𝜕𝑥⁄ = 0 as well, i.e.,  

 
𝜕𝐹(𝑥0,𝑦)

𝜕𝑥
=

𝜕𝑀(𝑥0,𝑦)

𝜕𝑥
𝑁(𝑥0, 𝑦) +

𝜕𝑁(𝑥0,𝑦)

𝜕𝑥
𝑀(𝑥0, 𝑦) = 0 

𝜕𝐹(1−𝑥0,𝑦)

𝜕𝑥
=

𝜕𝑀(1−𝑥0,𝑦)

𝜕𝑥
𝑁(1 − 𝑥0, 𝑦) +

𝜕𝑁(1−𝑥0,𝑦)

𝜕𝑥
𝑀(1 − 𝑥0, 𝑦) = 0.                         (14A) 

However, because 𝑀(𝑥0, 𝑦) is positive and its derivative is non-zero in the critical strip, for the above 

equality to hold, one must have 

          
𝜕𝐹(𝑥0, 𝑦)

𝜕𝑥
=

𝜕𝑁(𝑥0, 𝑦)

𝜕𝑥
𝑀(𝑥0, 𝑦) = 0 

          
𝜕𝑀(1−𝑥0,𝑦)

𝜕𝑥
=

𝜕𝑁(1−𝑥0,𝑦)

𝜕𝑥
𝑀(1 − 𝑥0, 𝑦) = 0.               s                                                 (14B) 

Because  𝑀(𝑥0, 𝑦)   and 𝑀(1 − 𝑥0, 𝑦)  are non-zero, one must have  

           
𝜕𝑁(𝑥0,𝑦)

𝜕𝑥
=

𝜕𝑁(1−𝑥0,𝑦)

𝜕𝑥
= 0.                                                       (14C)                                                             
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However, the above criteria with the vanishing slope  of  𝑁(𝑥0, 𝑦) and 𝑁(1 − 𝑥0, 𝑦)   at 𝑥0 ≠ 1/2  is 

contrary to the fact that both derivatives are asymmetric, and 𝜕𝑁(𝑥0, 𝑦) 𝜕𝑥⁄   should differ from  

  𝜕𝑁(1 − 𝑥0, 𝑦) 𝜕𝑥 ⁄ unless 𝑥0 = 1/2.  This leads to contradiction to the assumption of at 𝑥0 ≠ 1/2.   

Consequently, we conclude 𝐹(𝑥0, 𝑦) and 𝜉(𝑥0 + 𝑖𝑦) cannot be zero unless 𝑥0 = 1/2. 

 

3. Conclusions 

In conclusion, we utilize Riemann’s reflection-symmetric functional pair  

|𝛤(𝑠 2⁄ )) 𝜁(𝑠) 𝜋𝑠 2⁄⁄ |2 and |𝛤((1 − 𝑠) 2⁄ )) 𝜁(1 − 𝑠) 𝜋(1−𝑠) 2⁄⁄ |2, although the individual Zeta and 

Gamma functions are asymmetric.  We first analyze their symmetric properties to prove the lemma for 

the global minimum of 𝐹(𝑥, 𝑦) along the x-direction occurs at x=1/2. We then show the zeros, minima, 

and non-trivial zeros of 𝜁(𝑠) must lie along the critical line and nowhere else throughout the entire 

critical strip. We further show if the zeros and the minima of 𝐹(𝑥, 𝑦) and the non-trivial zeros of  

𝜁(𝑥 + 𝑖𝑦) were not along the critical line, then self-contradiction to the symmetric properties of the 

functional pair would arise.  Therefore, we have rigorously proven the validity of Riemann’s 

hypothesis [10].  
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