
A RIGOROUS ALGORITHMIC INVESTIGATION FOR CONSTANT
APPROXIMATIONS VIA EXPRESSION SEARCH

SURYANSH S. SHEKHAWAT

Abstract. This paper presents a computational investigation that searches for arithmetic
expressions approximating a given target constant using a finite set of base expressions and
allowed operators. In our approach, the search is organized by a notion of DEPTH (i.e.,
the number of operations applied) and is limited to a maximum depth (typically 10 or 11)
due to computational constraints. We describe the algorithm rigorously, introduce precise
definitions and notation, present pseudocode in the algorithmic style, and discuss sample
solutions—including approximations for e, φ (the golden ratio), and π with their respective
depths and computed absolute errors. We also include an example run showing the number of
candidate expressions generated at each depth (with depth 10 evaluating approximately 2.5
million sequences). Finally, we discuss the inherent limitations, including memory (RAM)
requirements for deeper searches, and how increased computational power could extend the
search depth.

Introduction
The goal of this investigation is to approximate a target constant (for example, φ ≈

1.6180339887) by constructing arithmetic expressions from a single base constant and a fixed
set of allowed operations. In our implementation, we start from a BASE EXPRESSION (in
our case,

√
2) and combine it using binary operators (such as +, -, ×, ÷, and ∧) and unary

operators (such as neg,
√
·, recip, and fact).

Definition 1 (Depth). The DEPTH of an expression is defined as the number of operator
applications required to construct the expression from the base constant. For example, an ex-
pression constructed by one operation has depth 2 (the base plus one operator), while recursive
combinations lead to higher depths.

Definition 2 (Allowed Operators). The allowed operations are split into:
• Binary Operators: {+,−,×,÷,∧}.
• Unary Operators: {neg,

√
·, recip, fact}.

These operators are applied to previously generated expressions.

Definition 3 (Expression Search). The process of EXPRESSION SEARCH recursively
combines expressions from lower depths using allowed operators to generate new candidate ex-
pressions. At each depth level, the algorithm evaluates the absolute error between the candidate’s
value and the target constant.

Date: February 23, 2025.

1

2 2 ALGORITHM DESCRIPTION

Algorithm Description
The algorithm performs a parallelized search to generate and evaluate candidate expres-

sions. Below is the pseudocode in the algorithmic style using the algorithm and algorithmic
packages. Key statements are highlighted in BOLD.

Algorithm 1 SEARCH FOR EXPRESSION APPROXIMATIONS
1: INITIALIZE the target constant T , maximum depth Dmax, time limit Tlimit, and toler-

ance τ .
2: GENERATE BASE EXPRESSIONS: Create a set E1 containing the base expression(s)

(e.g.,
√
2).

3: SET best error ϵbest ←∞, best expression Ebest ← NULL.
4: for each depth d = 2 to Dmax do
5: IF elapsed time > Tlimit, THEN TERMINATE SEARCH.
6: INITIALIZE an empty set Ed.
7: FOR all valid combinations of expressions from previous depths that sum to d− 1:
8: FOR each allowed binary operator B:
9: COMPUTE v ← B(v1, v2) using expressions from lower depths.

10: IF v is a valid number, THEN add the new expression to Ed.
11: FOR each allowed unary operator U applied to an expression from depth d− 1:
12: COMPUTE v ← U(v1).
13: IF v is valid, THEN add the new expression to Ed.
14: EVALUATE every candidate in Ed: Compute error ϵ = |v − T |.
15: IF any candidate has ϵ < ϵbest, THEN update Ebest, ϵbest, and RECORD depth d.
16: OUTPUT the number of expressions generated at depth d.
17: IF ϵbest < τ , THEN TERMINATE SEARCH AND RETURN Ebest.
18: end for
19: RETURN the best approximation found, its evaluated value, and the associated error.

3

Results and Discussion
The algorithm was run with a maximum depth of 10. Several candidate expressions approxi-

mating the target constants were discovered, and the number of candidate expressions generated
at each depth was recorded. In total, approximately 2.5 million expressions were evaluated at
depth 10. Below are selected candidate approximations along with their computed absolute
errors (to 15-decimal precision):

e ∼
√
ππ + ππ

π
(Depth d = 10; ϵ ≈ 5.10915427902570× 10−5)

ϕ ∼
√
2

√√
2

√√
2+ 1√

2

(Depth d = 10; ϵ ≈ 3.06691394710893× 10−4)

π ∼
(√√

ϕ (ϕ+ ϕ)
)ϕ

(Depth d = 9; ϵ ≈ 2.44848846482600× 10−6)

e ∼ 1

√
2
√
2

1√
2

−
√√

2

(Depth d = 10; ϵ ≈ 2.18525236984390× 10−5)

ϕ ∼ π

π−π−1 −
1√
π

(Depth not recorded)

Limitations and Computational Considerations
The current investigation is limited by the maximum depth (d ≤ 10 or 11) that can be

feasibly searched. Mathematically, if N(d) denotes the number of candidate expressions at
depth d, then the recursive construction implies a recurrence of the form

N(d) ≈
d−1∑
i=1

N(i)N(d− i),

which exhibits super-exponential growth. Approximating

N(d) ∼ C · nd,

for some constants C > 0 and n > 1, even a small increase in d leads to a dramatic increase in
the search space.

For instance, at depth 10 the search generated roughly 2.5 million expressions. Assuming
each candidate expression requires about 200 bytes of memory, the depth 10 search consumes
roughly 8 GB of RAM. Increasing the depth to d = 11 may approximately double the memory
usage to around 16 GB, while a search at d = 12 could require over 32 GB of RAM. Thus, even
with a doubling of computational resources, only an incremental increase in d may be feasible.
Alternative strategies, such as more aggressive pruning or heuristic-guided search, might be
necessary to extend the search depth without incurring prohibitive hardware demands.

4 4 RESULTS AND DISCUSSION

Example Run for ϕ
Below is an example run of the code, presented in aligned LaTeX equations for clarity:

Depth 1:
√
2 = 1.414213562373 (error 0.203820426377)

Depth 2: 3 expressions generated.

Depth 3: (
√
2)

√
2 = 1.632526919438 (error 0.014492930688)

Depth 3: 13 expressions generated.
Depth 4: 67 expressions generated.

Depth 5:

√
√
2 +

√√
2 = 1.613511908037 (error 0.004522080713)

Depth 5: 358 expressions generated.
Depth 6: 2036 expressions generated.

Depth 7:

√
√
2 +

√
2√√
2
= 1.613511908037 (error 0.004522080713)

Depth 7: 11864 expressions generated.

Depth 8:

√√
2√
2
+ (
√
2)

√
2 = 1.622506369614 (error 0.004472380864)

Depth 8:
1√√√
2− 1√

2

= 1.615003273073 (error 0.003030715676)

Depth 8: 71140 expressions generated.

Depth 9:
√
2× (

√
2)

1
√

2+
√√

2 = 1.615583163058 (error 0.002450825692)

Depth 9:
√
2 +

(
(
√
2−

√√√
2)

√
2
)
= 1.617097760584 (error 0.000936228166)

Depth 9:

√√√√√√2 +
√√√√√

√
2 +

1√
2
= 1.618968422610 (error 0.000934433860)

Depth 9: 434136 expressions generated.

Depth 10:
√
2×

√
2

(
√
2)((

√
2)−

√
2)

= 1.617455854164 (error 0.000578134586)

Depth 10: (
√
2)

(
(
√√

2)

√√
2+ 1√

2

)
= 1.618340680145 (error 0.000306691395)

Depth 10:
√
2 +

1√(
(
√
2× (

√
2 +
√
2))

)
!

= 1.618337707605 (error 0.000303718855)

Depth 10:
√√

2 +
1√

2 + 1√√√
2

= 1.618167499313 (error 0.000133510563)

Depth 10:
(
(
√
2×
√
2)
)√√

2− 1√
2
= 1.618137779249 (error 0.000103790499)

Depth 10: 2.5 million expressions generated.

5

Conclusion
We have presented a rigorous algorithmic investigation for approximating constants by gen-

erating arithmetic expressions from a base constant using allowed operations. Our method—
organized by a notion of DEPTH—produces candidate expressions which are then evaluated
against a target constant. Sample solutions for e, ϕ, and π have been discussed with absolute
errors computed to 15-decimal precision. The example run demonstrates that, for instance, at
depth 10 the algorithm evaluates approximately 2.5 million candidate expressions. We have
also detailed the dramatic increase in memory requirements for deeper searches (with depth
10 consuming roughly 8 GB of RAM, and projections indicating that depth 11 and 12 may
require around 16 GB and 32 GB, respectively). Future work may focus on improved search
strategies and heuristics to enable deeper exploration of the expression space without incurring
prohibitive hardware demands.

References
(1) Borwein, P., Borwein, J., & Plouffe, S. The Inverse Symbolic Calculator. Canadian

Centre for Experimental and Constructive Mathematics, 1995.[?]
(2) Raayoni, G., et al. The Ramanujan Machine: Automatically Generated Conjectures on

Fundamental Constants. Nature, vol. 590, 2021, pp. 67–73.[?]
(3) Chudnovsky, D. & Chudnovsky, G. Approximations and the Computation of Pi. Com-

puters in Mathematics, 1990.[?]
(4) Beckmann, P. A History of π. St. Martin’s Press, 1971.[?]
(5) Wikipedia. Transcendental number. Retrieved from https://en.wikipedia.org/

wiki/Transcendental_number.[?]
(6) Wikipedia. Golden ratio. Retrieved from https://en.wikipedia.org/wiki/Golden_

ratio.[?]
(7) Bailey, D., Borwein, J., & Plouffe, S. The BBP Algorithm for Pi. American Mathe-

matical Monthly, 2007.[?]
(8) ProofWiki. eπ

√
163 almost an integer – historical note. Retrieved from https://

proofwiki.org/wiki/Almost_Integer.[?]
(9) Conway, J. H. & Guy, R. K. The Book of Numbers. Springer, 1996.[?]

Email address: shekhawatsuryansh@gmail.com

https://en.wikipedia.org/wiki/Transcendental_number
https://en.wikipedia.org/wiki/Transcendental_number
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Golden_ratio
https://proofwiki.org/wiki/Almost_Integer
https://proofwiki.org/wiki/Almost_Integer

	Introduction
	Algorithm Description
	Results and Discussion
	Example Run for
	Conclusion

