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Some words upfront.

This text has been written to satisfy the curiosity of young eager minds who
are willing to dig deep into the subject and acquire an understanding from a
foundational linguistic point of view. The reader can find a wealth of ideas
and exercises here which should enable him or her to get as well an intuitive as
formalist grasp upon the subject. All exercises are original and require a high
level of abstraction; the more formalist your argument is, the deeper one can
dig into improving the way to speak about the subject.

This book contains all material presented in high school as well as in a master
education in mathematics at a standard level university. The presentation is
original and emphasizes creative thought and formalization skills over mechan-
ically solving standard exercises; the reader is supplied with a huge amount of
ideas regarding the formalization of standard concepts in nature which are alpha
numerical or geometrical in nature. Every chapter proceeds by first acquiring an
intuitive understanding, followed by a formalization of the latter. Subsequently,
the reader is invited to solve standard exercises followed by challenges of a more
abstract nature requiring profound symbolic reflection. Ultimately, the goal is
to familiarize the reader with a low abstraction language and provide him or her
with the necessary manipulative skills. It is not mandatory to write down every
proof in an optimal symbolic way such that a computer can verify its vericacity
something which is impossible, especially in the field of topology.

Mathematics distinguishes itself from other languages regarding the concept of
truth which is absolute given the presumption of complete knowledge. In our
world, knowledge is incomplete and reflects itself into the inadequacy in deter-
mining the state of a system resulting in a feeling of discomfort when something
strange happens. In chapter fifteen, we proceed upon this matter when devel-
oping the field of vague or incomplete logic. Another way to proceed is not to
obfuscate logic but to make language more fuzzy. This is not an interesting
path to follow as it blocks the objectification process of truth something which
is contrary to the goal of the scientific endeavor. From a young age onwards,
I have experienced that an appropriate balance between metaphysical thought
and calculational power is the best strategy to proceed in ones understanding
of the world. It is not realistic to digest more than five pages a day in this
book for a very smart student. Hence, a minimal time span of a month needs
to be taken into account for completing a first reading of this book; more in
particular, it is utterly suited for a university course of a year during a bache-
lor education. The teacher is advised to create additional exercises in order to
guide the class through the assimilation and creation process. Brilliant students
however, should be able to make all exercises and acquire a full understanding
of this book by themselves. This deficit can be a stimulant for other students
to discuss their findings in a classroom environment. This version is a revised
version of the original manuscript which contained a few, not many, errors which
hve now been removed.
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Chapter 1

Mathematics, an interesting
language.

Every child has its own vocabulary what makes it difficult to speak to one and
another sometimes. Most words have a slightly different meaning for various
persons leading to misunderstandings at several levels. Mathematics is an at-
tempt to say something as unambiguous as possible, a formidable task indeed.
Even the notion of equality between different objects proves to be a trouble-
some one given that one needs a comparative operation which slightly alters
things. For example, are two bars of gold of the same shape? Transporting one
bar to the other can cause deformations which means that defining a uniform
measure stick can be troublesome, a problem which is related to the notion of
temperature. Given that mathematics is an exact language, it is possible to find
connections between different concepts, something which we call theorems. The
latter are deeply hidden in the language itself and we, humans, have the capac-
ity to discover them; it is often an art to succinctly formulate the concepts such
that the theorems become self evident. Likewise, one should take care that the
theorem is not vacuous or deprived of content such as is the case for the Riemann
hypothesis. In case you wish to prove a result and you find no logical reasoning
leading towards it, chances are high that you do not work with the appropriate
concepts. Youngsters often encounter that problem, they do not find the right
speech for uttering their thoughts. This is a matter of training and practice and
the reader shall gradually become aware of a variety of ways to reason about the
same thing; the choices we make, the so called axioms are diverse in nature and
have to potency to lead to different kinds of mathematics. Indeed, we make the
reader aware that realizing one’s imagination can deepen one’s understanding to
a huge degree; sometimes, I shall explain highly advanced methods of reasoning
and the interested reader may consult more specialist books regarding those
matters. My personal goal is to guide youngsters into the art of adequately
phrasing their thoughts as well as finding logical coherences between those; the
build-up of this book is entirely logical and the student is advised to understand
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every immediate step deeply.

This book is in the first place pedagogical in the sense that it submerges the
reader into the world of language and truth; that truthfulness is relative and
often is restricted by our language. This has serious implications for the science
of physics which still uses spoken language and this may be a matter of principle
instead of a lack of understanding. Spoken language is blurry which suggests a
limited form of magic. Science is not necessary an adversary of magic though
it captures her boundaries leading to a better world view. This book has to be
understood in this way also, as an attempt to control the environment; at that
point, a new form of magic arises, that language itself determines your science.
Hence, science also controls your imagination, one is easily convinced that girls
have more trouble with that as boys do. From this point of view, this book is
also suitable for girls as it is written from the magical point of view given that
all proofs are procured in the most metaphysical way possible without delving
too much into a computational form of evidence.

A proof is a logical reasoning and therefore logic ought to be a part of math-
ematics. Without logic, no correct proof and no theorems. The kind of logic
employed in mathematics is of the easiest kind, a theorem is either true or false
which we label under Boolean logic. Different kinds of logic will be discussed in
this book also, but they are all defined within the framework of the Boolean one.
Right means that it fits in all cases and wrong signifies that there can be found
at least one counterexample. Hence, we introduce the symbols ∀ and ∃ which
mean “for all”, respectively, “there exists”. Furthermore, the symbols A ∧ B
and A∨B apply whereas the first one is true if and only if both A and B are and
the second is true if and only if at least one them is. In human language, this
reads A and B, respectively A or B. The reader can now verify that A∧(B∨C)
is the same as (A ∧ B) ∨ (A ∧ C), a formula known as the rule of de Morgan.
These constitute the defining rules of classical logic, which is usually supple-
mented with an absolute negation, in contrast to intuitionistic logic which leads
to Heyting algebra’s. By definition ¬A if and only if A is false and obviously
¬¬A = A. The reader may verify that ¬(A ∨ B) is equivalent to ¬A ∧ ¬B. It
is also possible to devise a logic where certain sentences are true or false with
a certain probability. This kind of logic is called quantum logic which requires
the principle of superposition and therefore more advanced mathematics as mere
set theory. In quantum logic, one needs to take into account that verification
of truthfulness, in either a reality of some kind, requires an operation which
changes the state of the system which is not the case in classical logic. There,
the system is given by the unique Platonic space of all truisms. This implies
that, in quantum logic, verification of the sentence A after B does not provide
the same statistics as the one resulting from the verification of B after A unless
both changes are compatible. This is never the case for classical logic where
verification of truths are always interchangeable. Furthermore, there exists the
possibility to posit that the truthfulness of a sentence is undetermined which is
a further deepening of the fuzziness of logic. The Rosetta stone of classical logic
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is that the truth or falsity of any sentence within the language cannot always
be proved from the axioms. This result, known as the Godel incompleteness
theorem, is largely of philosophical interest.

The main idea behind the proof of this result is well known in linguististics;
within the science of mathematics it is always assumed that the verification of
the vericacity of a sentence is alway possible. If a sentence of the type A implies
B is true, then you may want to prove this by showing that ¬B implies ¬A.
A sentence which does not provide for a relation of the above kind between
A and B is meaningless; for example “this sentence is true” is of that this; in
the mathematical language this reads B = (χ(B) = 1) where χ is the truth
indicator. The problem is obvious given that the sentence is recursive in way,
it appears on both sides of the equation; henceforth, it is impossible to prove
whether it is right or wrong because sentences and truth evaluations of them
entirely cannot be mixed up. Likewise, one has “this sentence is false”. If you
assume it to be true then it must be false; reversely, assuming its falsity leads
to its truthfulness. These are all sentence with self reference, where the truth-
fulness of a part depends holistically upon the entire framework itself. It is, just
as sets, where a set is an element of itself, infinitely recursive and no stopping
to it.

Let it be clear; the foundations of mathematics can be disputed and we shall
elucidate this in the course of the first chapter when dealing with the axiom of
choice which is shown to be not compatible with the other, more reasonable,
axioms. Even the way of reasoning, called logic, is susceptible for alternation as
is exemplified by the notion of topi in which a sentence can be false and true at
the same time. This constitutes an example of quantal logic where the notion
of proof should be entirely different and the notion of reality is a much weaker
one as is the case in classical mathematics. We shall address these issues in this
book by means of lucid exercises. There exist mathematicians of the opinion
that the ultimate goal is to transcribe mathematical proofs in such a fashion that
a computer may verify its vericacity: those belong the Bourbaki club erected in
intellectual Paris. Although I can appreciate the utility of the philosophy, I am
not of the opinion that it is a very useful one for people who know what they
are talking about given the workload attached to such endeavor. My approach
is different and more practical; however, the reader should understand that,
often, the most difficult part of mathematics consists of phrasing exactly ones
thoughts: schooling and training is required here and in this sense the French
method is useful initially. Once having acquired a sufficient level of competency,
this laborious method can be abandoned.

This book builds up the entire edifice of mathematics from scratch: we start
by introducing and motivating set theory, something which you have all studied
in primary school but never properly understood. For example, how to define
the relationship between element and set symbolically? What about sets with
an infinite number of elements: how to formalize infinity? Are the operations
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of taking the intersection and union really not sensitive to the order of the sets
or is some quantal or non commutative effect relevant here? More specifically
A ∧B must be understood as A and B are intersected in that order instead of
the collection of elements which belong to A as well as B. This last interpreta-
tion is not mandatory and the method of Venn diagrams is rather ridiculously
restrictive in light of the first interpretation. However, we think as the French
here, start with the most symmetrical situation and then look for constructive
ways, within that setting, to break that symmetry. For example, every building
of the Louvre has plenty of more symmetries as the entire Louvre itself. Nature
appears to apply that strategy too: the building blocks are often simple and
highly symmetric but collectively chaotic patterns may arise. There is also a
principle of humility here; first, one should learn to fully master simple things
prior to moving on to more complex situations. After set theory has been un-
derstood, and that might take a while, we start by developing number theory
starting at the natural numbers followed by the integer, rational, real, complex
and Clifford numbers. In a way, we go beyond our human limitations here,
real numbers can never be written down exactly in decimal form; however, we
can capture them by means of geometrical concepts such as π versus half the
circumference of a circle of unit radius.

After having gotten numbers under the belt, we delve into the world of topology
which is kind of a restricted form of set theory. In a way, we forget about all the
exotic sets and we construct geometrical objects from pasting charts together.
A natural concept which arises is the one of homology which classically does not
fully capture the topology for a specific class of spaces of interest; however, we
suggest a more general definition which obviously captures the whole topological
space. In way, the dimension of the homology modules, being natural numbers,
codify a space allowing one to discern a tire from a sphere. In a way, the idea
behind homology is a universal one belonging to the field of category theory
and is grounded in the notion of the boundary operator which maps a compact
space of dimension n to its n − 1 dimensional boundary. One simply observes
that the boundary of the boundary is empty and therefore this linear operator
is nilpotent of degree two. There are various interesting things to say about
operators with such property and homology captures it all. The most simple
kind of space is like a sheet of paper infinitely extended in all directions; this is
an example of a two dimensional real linear space. The thing to observe is that
in linear spaces one can always add two displacements and the addition does
not depend upon the order. Likewise, a displacement can be shrunk, inverted
and expanded at will; the summation of two displacements v, w is denoted by

v + w = w + v

whereas the rescaling is noted by rv where r is a real number. On a sphere is
also possible to subsequently add two different displacements although the sum
depends upon the order taken; moreover taking any nonzero displacement, one
can always expand it such that it effectively results in the zero displacement
which is written down as rv = 0 for a certain r 6= 0. Hence, a sphere is not
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a linear space. On linear spaces, one disposes of a natural class of functions,
the so called linear operators, which preserve the properties of addition and
scalar multiplication. These functions provide approximations to general ones
on certain scales and constitute one of the defining objects of so called quadratic
surfaces of which the circle is an example in two dimensions. These topics con-
cern the abstract foundations of mathematics; next, we proceed with studying
more practical affairs which are used on daily basis in the physical sciences.
We pay due attention to analytical geometry which constitutes the basis for
general relativity. Abstraction returns however at the end of this book where
completely new topics are discussed which deal with geometry without analysis;
indeed, the ideas presented there are much more abstract and intrinsic as have
a much wider field of application. The passoniated student can become a real
mathematician there and work him or herself on expanding on the gems of the
theory presented there.

Another interesting aspect is that plenty of aspects, which are studied first in
a more common approach, are dealt with at a later stage in this book. The
presentation however is much deeper and suggests plenty of extensions towards
distinct other subjects such as non commutative number theory. An example of
this is provided by the definition of the exponential function as well as Euler’s
formula which, by virtue of the material studied previously, can be immediately
extended to the quaternions as well as the general Clifford numbers which are
used on a daily basis in physics. It is my conviction that we must depart from
the fetishism around fake research topics such as the Riemann Hypothesis in the
sense that an intrinsic, qualitative approach is ultimately the best one. Let me
finally salute the reader, that he may enjoy this book and spend lots of hours
on assimilating and mastering this material which should prove to be a source
of inspiration for further studies.
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Chapter 2

First steps: set theory.

The following three chapters are by far the most difficult ones in this book; al-
though they are written in a compact way, the reader should grind his teeth and
spend a sufficient number of days to it before he or she is entirely convinced that
this is the right way to proceed. Indeed, laying out the foundations needs to be
done with caution and the student of this book will return several times to these
first chapters while digesting to other ones; there is this most peculiar interplay
between practice, imagination and reflection and all three need to be dealt with
with a sense for measure and humor. Therefore, this chapter is my personal
brand resulting from these three processes: as the educated critical mind will
undoubtedly utter, the level of abstraction here is way beyond any education
in mathematics. But likewise is this so for the imaginative and reflective parts;
given that young adults have plenty of more imaginative intelligence as adults
do, I opted for immensely increasing their abstraction skills while preserving the
student’s imagination so that the very best may come out of the student teacher
interaction instead of the very worst. This is an attitude which requires work
and dialogue which is one of the reasons why this book pisses on the contem-
porary lazy so called didactical presentation techniques using stupid limiting
visual representations as well as repetitive exercises. The latter are on the level
of Fields medal winning topics god damned, the Nobel prize in mathematics.
So be prepared and isolate yourself in a room with enough sunlight and natural
peace.

Set theory is a very abstract and difficult domain indeed and as is the case for
any taste, it requires practice to distinguish a Rothschild Bordeaux from a mere
Chateau neuf du Pape. Since this ought to be your first moment of discovering
what it means to speak in a formal way, which is understood by everyone in
almost the same way, it is mandatory to practice one’s mind in the world of
incredible detail which hides in every phrase. Indeed, lawyers and judges are
very much aware of the game language is and in this regard the mathematician
is a bit as the police officer who likes it dry and clear. There is no a priori way
of telling here who is the most sane of mind given that the poet hiding in the
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judge is most capable of society reconversion. However, most judges would be-
come madmen if it were not for the police bringing them back to the most hard
and simple of realities from time to time. Hard logic, proof and observation;
nevertheless, the judge has a place in the police man’s world and the blue shirt
can speak intelligibly about the former in his “sprache”. He can even do this
in a way as to predict what the judge is going to do in an overwhelming ma-
jority of circumstances and those where his speech is not applicable is beyond
the proper phrasing capabilities of the judge. Even for the judge, those things
become fuzzy but nevertheless acceptable. This book is a policeman’s view on
the judge, at least this is so at the beginning. Gradually we shall develop gems
of the logic of the judge’s way of dealing with things but nevertheless so from
the point of view of the police officer. You have to learn to fly but not end up as
Icarus denying that the sun is not only bright but also hot. On the other hand,
the simple policeman should not oversimplify either: the utmost attention to
detail is required.

In mathematics, it is often so that the definition of a concept which we will
submerge to logical scrutiny starts from playing around with examples; how-
ever, as we shall teach to the student, the formulation of one’s ideas is the most
important step in order to reach the Valhalla of lofty results. When introducing
a set, people think about a collection of elements. But do the elements exist
in the very definite way before I see them? For example, we all think about
a shopping bag as containing fixed items such as a toothbrush, toothpaste, a
bread, some cheese and so on; so called elements. However, it may be completely
unnecessary to do this, maybe there is something in the bag beyond my reach.
For example half a liter of spoiled milk, dripping on the bread and ham. Set
theory does not contain such details and just posits the milk is there irrespective
of the fact whether I can use it still or not. Maybe it is in our advantage not
to start with a bag and items but just with “entities” which I can share ∩ and
unite ∪, operations which are called the intersection and union. We still have
not said anything useful here about these two operations given that we have
not yet assigned any properties. In everyday life, we have the impression that
A ∩ B = B ∩ A as well as A ∪ B = B ∪ A both properties being referred to
as the commutativity of the respective operations. This is not necessarily so
in nature, it does matter for example when I poor coffee in first in a bowl and
then hot water later on. In this case the coffee dissolves and raises upwards
causing for a homogeneous mixture. If I were to do it the other way around the
coffee would most likely keep on floating on the water. So this commutativity
of the union is not obvious, it refers to the fact that items are hard objects
and no particular law holds between them. They are independent as to speak;
this stance of individualism is required in science, we would not learn anything
from a holistic perspective. We have to subdivide and believe in holy freedom
otherwise nothing can be said about the I and its relations to others. We also
have that (A ∩ B) ∩ C = A ∩ (B ∩ C) and likewise so for the union, a prop-
erty which we call associativity of the respective operation. Now, we can talk!
Denote with A,B,C, . . . so called sets; we have no idea yet what they are but
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we shall further specify some properties regarding the operations ∩ and ∪. The
operations satisfy for sure A ∩A = A ∪A = A and we demand the existence of
a unique empty set ∅ such that

A ∩ ∅ = ∅
A ∪ ∅ = A

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

where this last rule is the same as the de-Morgan rule in Boolean logic. Set the-
ory at this level is equivalent to the rules of classical logic where the A denote
truisms and ∅ is given by “false”. Then A ∩ A = A reads as A and A are both
true is the same as A is true. A or A is true, denoted by A ∪ A is the same as
A is true. A and false is always false whereas the vericacity of A or false just
depends upon A. Finally A is true and B or C is true is the same as A and B
is true or A and C is true. So set theory is classical logic, it is a definite speech
about truisms. We will later on think of devilish ways to escape this definite
way of speaking about things which hinges upon many assumptions which could
equally well be false. But as mentioned earlier, the most simple rules can allow
for very complicated ones to arise by means of building. The old Greek alway
described elements or atomos as things which cannot be further subdivided;
hence the following definitions. We say that A is a subset of B is and only if the
intersection of A and B equals A which reads as A ⊆ B ↔ A∩B = A. An atom
A 6= ∅ is called a primitive set, that is, A has the property that if B ⊆ A then
B = A. The reader checks the obvious statement that A ∩ C 6= ∅ is a subset of
A; this follows from associativity and commutativity of the intersection because
A∩ (A∩C) = (A∩A)∩C = A∩C and therefore, by definition A = A∩C ⊆ C
in case A is an atom or primitive set. Indeed, we can only speak of subparts
when the operation of intersection is priceless. This suggests that primitive sets
are as elements of a set and to emphasize that distinction we denote A = {Â}
where Â is interpreted as an element and the brackets denote the bag. We use
the symbolic notation Â ∈ B as an equivalent to the more primitive statement
A ∩B = A.

The reader notices that we have defined elements from the operations ∩,∪
whereas normally the opposite happens. This is a much more human way of
dealing with language in the sense that the limitations attached to our opera-
tions define our notion of reality. The old approach starts from divine knowl-
edge which nobody possesses; in order to make logic dynamical and attached
to physical processes in space time mathematicians have invented the notion of
a Heyting algebra instead of a Boolean one. We shall not go that far in this
book but the interested reader should comprehend very well how this definition
is tied to the one of classical relativistic causality. Our point of view also allows
for quantal rules as long as the de-Morgan rule is suitably deformed; we shall
discuss such logic in this book and make even further extensions towards non-
associative and non commutative cases. Extension of the material presented is
left to the fantasy of the gifted reader. For example, an infinite straight line
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does not need to consist out of points, the latter being mere abstractions. Let
us first investigate further implications of our rules before we move on to further
limitation of the setting at hand. It is true that if B ⊆ C then every element
Â in B belongs to C. Indeed, Â ∈ B if and only if A ∩ B = A and therefore
A ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C) = A ∩ B = A proving that A ∩ C = A

and therefore Â ∈ C. Differently, Â ∈ B if and only if A ∩ B = A which is
equivalent to (A∩C)∩B = A and therefore A∩C 6= ∅ from which follows that
A ∩ C = A because A is an atom. Hence, elements of subsets belong to the set
itself. What about the intersection of two sets? First, we show that if Â ∈ B,C
then Â ∈ B ∩ C: this holds because A ∩ (B ∩ C) = (A ∩ B) ∩ C = A ∩ C = A

and therefore Â ∈ B ∩ C. The other way around, we have that if Â ∈ B ∩ C
then Â ∈ B,C because the intersection is a subset of both. Hence, the elements
in the intersection are precisely those which are in both of them. What about
the union? We show that if Â ∈ B ∪ C then either Â ∈ B or Â ∈ C because
A = A∩ (B ∪C) = (A∩B)∪ (A∩C) implying that at least one of them is non
empty and equal to A due to atomicity of the latter. Reversely, one has that
if Â ∈ B then it is an element of B ∪ C because A ∩ (B ∪ C) = A ∪ (A ∩ C)
which equals A ∪A or A ∪ ∅ due to atomicity of A. In both cases we have that
A ∩ (B ∪ C) = A because A ∪ ∅ = A = A ∪ A. Therefore, the elements in the
union are in correspondence to the elements of one of the sets.

As suggested previously this does not imply that sets are fully specified by their
elements nor that elements exist in the first place. For example, assume that S
consists of ∅, {1}, {1, 2}, then {1} is an atom, but {1, 2} does not merely consist
out of atoms. Standard set theory makes the assumption that

B = {Â|Â ∈ B}

meaning that a set equals a collection of its elements. In this case, we have
just proved that ∩ and ∪ coincide with the usual operations of intersection and
union. The reader might think this is all a bit abstract and utter “well, can
I just not assume this without all these rules?”. The simple answer is “no”;
mathematicians are very scarce on their assumptions indeed! Why writing an
extra sentence into the constitution when the latter is already a consequence of
the former rules?! The next question one could pose then is “well on then, but
how do you make up for all these theorems as well as the formal proofs?”. The
simple answer is that the results have to be in your mind prior to making up the
concepts! A proof is no more as a logical confirmation of a kind of naturalistic
observation in a way. Henceforth, it is merely an exercise to verify that the
concepts lead to the appropriate results. This applies in the case of set theory
due to the existence of the natural concept of an atom being equivalent to an
element.

These are by far not the only rules of set theory which we shall slowly expand
upon by means of more complicated objects and operations. Let us now deviate
a bit and reflect further upon the commutation and associative properties of
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the intersection as well as union. We imagined that a set can be thought of
as items in a bag; however, in reality our bag is a phantom bag given that the
operations of emptying and resorting do not matter in taking the intersection
or union. This would lead to complications involving the order of operations
leading to a non-commutative logic which we shall study later on in this book.
A true Frenchman would expect such rule to emerge in a way from the simple
ones and indeed this is the case. Another field where such a thing happens is
Riemannian geometry which is a generalization of flat Euclidean geometry.

We define the natural numbers n by means of the sum operation n = 1 + 1 +
1 + 1 + . . .+ 1 by means of the following prescription:

0 = {∅}
n+ 1 = {n, ∅}.

Hence, 1 = {{∅}, ∅}, 2 = {{{∅}, ∅}, ∅} etcetera; this is a partial dictionary made
out the symbols ∅, {, } which are part of any set theory. I have warned the
reader that symbolic notation often is the most difficult part of set theory and
the latter notation allows for a definition comprehensible by a computer albeit
the latter uses binary representations. We define in the same way n + m by
means of the prescription n+ (m+ 1) = {(n+m), ∅} where n+ 0 = 0 + n = n.
The reader shows that n + m = m + n for every natural number m which is
true by definition for m = 0. Indeed, suppose it is true for m = k, then we
show it holds for m = k + 1. Indeed, n + (k + 1) = {n + k, ∅} = {k + n, ∅} =
{k + (1 + (n − 1)), ∅} = {(k + 1) + (n − 1), ∅} = (k + 1) + n where, in the
first step, we have used the definition of the natural numbers, in the second the
assumption that k+n = n+ k and finally, in the third step, the associativity of
+. We pose that N is the set of all natural numbers, something which defines a
set theory by means of taking all subsets of N.

The operation + maps two natural numbers onto a natural number; it is associa-
tive, commutative and has 0 as a neutral element implying that 0+n = n+0 = n.
For any n, it is possible to define an inverse −n satisfying n + (−n) = 0 =
(−n) + n something we denote by n − n = 0; n + (−m) = n −m is a natural
number n > m and minus a natural number if n < m. The set of natural
numbers taken together with their inverse is called the entire numbers and is
universally denoted by Z. Z,+ is called a commutative group given that the
operation + is interior, associative, has a neutral element and inverse.

As previously stated, one starts by making a distinction between elements of a
set and sets themselves; we departed from the concept of an empty set ∅, the
intersection and union and therefrom we deducted the first three axioms of set
theory. The approach taken here is somewhat more general as we defined an
element as a primitive set. Zermelo-Frankel set theory has plenty of more as-
sumptions which have to do with infinity culminating into the axiom of choice.
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A fifth axiom deals with taking set theoretical differences

B \ C = {Â|Â ∈ B ∧ Â /∈ C}

and we shall always assume the difference set to exist. In the field of geometry,
it is not only possible to take the union of two lines or the intersection theirof
but we can also take the so called Cartesian product, defining a two dimensional
sheet. More in particular, given two sets B,C, we define the Cartesian product
B × C as the set of all tuples (x, y) such that x ∈ B and y ∈ C giving a six’th
axiom in S and henceforth is this last one closed with respect to × from which
holds

A× (B ∩ C) = (A×B) ∩ (A× C)

and
A× (B ∪ C) = (A×B) ∪ (A× C).

The existence of Cartesian products allows us to define relations where a rela-
tionship R between sets B and C constitutes a subset of B×C. In case B = C
we can demand plenty of criteria. With the notation xRy we intend to say that
x has a relation of type R to y if and only if (x, y) ∈ R; we call R reflexive if xRx
for all x ∈ B, symmetric if xRy implies that yRx for all x, y ∈ B and finally
transitive if xRy and yRz imply that xRz. A reflexive, anti-symmetric, transi-
tive relation is called to be a partial order and is noted by ≺ or ≤. A reflexive,
symmetric and transitive relation is called an equivalence relation and is usually
denoted by ≡. One should think of an equivalence relation as a generalization
of the equality sign given that it concerns objects with similar properties. One
should prove that an equivalence relationship defined on a set A pulverizes it in
equivalence classes x where

x = {y ∈ A|x ≡ y}.

The reader verifies that x = y if and only if x ≡ y and therefore the intersection
x∩y = ∅ if they are not equivalent. A partial order is a generalization of a total
order such as “Jon is larger as Elsa”. A partial order allows for two objects to
be not related at all.

We have defined the natural numbers by means of the operation +; N has a
natural total order ≤ defined by n ≤ n and n ≤ n + 1 and one takes the
transitive closure therefrom which is defined by imposing transitivity on the
existing relationship. This can be compared with lacing a chain. From the
natural numbers we constructed the entire numbers Z and the definition of ≤ has
a natural extension towards Z. We construct now the rational numbers starting
from Z×N0 and imposing the equivalence relationship (m,n) ≡ (m′, n′) if and
only if there exist a k, l ∈ N0 such that km = lm′, kn = ln′ where N0 = N\{0}.
The rational numbers are henceforth defined as the equivalence classes defined
by means of this equivalence relation.

The six axioms discussed are by far the most important ones of set theory and
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allow one to construct the rational numbers; the remaining two axioms concern
infinity and are in general added to generalize aspects of the rational numbers
to the real ones. We shall be very cautious here with the kind of infinity we
shall allow for culminating into a thorough discussion of the axiom of choice. In
fact, we shall demonstrate that this highly contested axiom is wrongly chosen
in the sense that it contradicts the existence of the real numbers. The kind
of mathematics required here is not at its place in this chapter; however, it is
presented here for matters of completeness and the reader is invited to thorougly
check the details later on. The seven’th axiom allows one to define subsets of
sets: given a set D, the power set 2D of all nontrivial subsets of D is a set and
belongs to S. This axiom leads to the construction of the ordinary numbers by
Cantor. The definition the Cartesian product is extended to so called “index”
sets something which requires a partial order ≺. An index set I is a set equipped
with a partial order ≺ such that for any x, y ∈ I there exists a z ∈ I such that
x, y ≺ z. This condition is required and sufficient if we want to take unique
limits such any reader should check. If this is not valid, then several sub limits
could exist; hence, we denote by

×i∈IAi = {(xi)i∈I |xi ∈ Ai}

where all I-tuples are partially ordered by ≺. Finally, we have the so called
axiom of choice which can be formulated as follows: given sets Ai, i ∈ I, with I
an index set, then the Cartesian product is nonempty. Another, but equivalent
formulation is that there exists a function f from I to ∪i∈IAi such that f(i) ∈
Ai. So, one can constitute a set by drawing an element from each set. This
axiom has plenty of ramifications in some parts of mathematics, in particular
functional analysis although some mathematicians have refuted it because some
results appear too strong and give the transfinite an equal status to the finite
situation. I have stated it already a few times: mathematics as such is not
open to proof; it is a language and we have to make some grammatical choices.
The reader has to reflect about these rules and be conscious of the fact that
commutativity, associativity as well as the formation of a power set are the
most simple of all symmetrical rules. An example which does not obey these
rules has been constructed from this ideal situation; for example, we shall study
later on non commutative or associative operations and construct those from the
simple commutative situation. This leads to non commutative groups, quantum
groups etcetera. This reminds us about the Egyptian architectural art followed
by the Roman and French symmetrical ones: super simple, magnificent and
logical.

To clarify, the axiom of choice supports the idea that the Cartesian product is
non empty whereas the Cartesian product axiom presupposes that the product
is a set. We now show that this axiom leads to the most bizzare of situations;
to this purpose, consider two rotations a, b with as angle r2π where r is an
irrational number, around the x and z axes respectively. One considers the free
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group F2 constructed from a, b which can be split into five parts

S(a), S(a−1), S(b), S(b−1), e

where S(a) contains all irreducible words starting with a. Clearly, one obtains
that S(a) ∼ S(b) from a geometrical perspective applying the rotation ab−1.
The axiom of choice allows for the construction M of a set which contains
exactly one representant from any F2 orbit on the sphere S2. The construction
goes as follows: consider the set of all equivalence classes M̃ of S2 under F2 and
denote by p : S2 → M̃ the associated projection. If one equips M̃ with a trivial
partial order ≺ by picking one element of M̃ and putting it on top of all others
which remain unrelated, then one arrives at an index set (M̃,≺) and the axiom
of choice is applied to ×

m∈M̃p
−1(m) giving rise to an element F . Consider the

subsets

A = S(a)M,B = S(a−1)M,C = S(b)M,D = S(b−1)M,M

and observe that bD = A ∪ B ∪ D ∪ M . The reader notices that bnD ⊆
bn+mD for n,m > 0 and subsequently limn→∞ bnD = S2 meaning that one can
define proper subsets which grow under a rotation and eventually cover up the
entire S2. The reader may enjoy finding out that similar observations lead to a
decomposition of the sphere giving rise to two identical spheres (all three of the
same radius).

Such paradoxes are at the heart of set theory and have far reaching consequences.
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Chapter 3

Advanced number systems.

This chapter is already somewhat more practical as the previous one; abstract
rules will now be applied to define and make specific computations. We com-
mence with representations of the entire or rational number and extend those
later on, by means of a countable completion procedure to the Archimedic field
of real numbers. After this, we study the complex number system as well as
the real Quaternions in order to finally introduce the Clifford algebra’s. Appli-
cations of these number systems are plenty: the complex numbers have been of
vital importance in the construction of quantum theory and extensions of the
latter physical theory regarding the quaternions have been made also. We have
up till now studied Z,+ and prior to introducing higher number systems it is
convenient to introduce some formal language. Z,+ has the property that

• + is internal implying that the sum of two entire numbers is again an
entire number,

• + is associative meaning that (n+m) + k = n+ (m+ k), in other words
the sum of a series of entire numbers only depends upon the numbers
themselves and not how you split them into pairs,

• there exists a neutral element 0 such that 0 + n = n+ 0 = n,

• given the neutral element 0, for any n there exists a unique inverse −n
such that n+ (−n) = (−n) + n = 0,

• the sum operation is commutative meaning that n+m = m+ n.

More in general, a set G with operation ? : G × G → G obeying those five
properties is called a commutative group. One has to understand very well that
those rules have been presented in the order of importance: the opposite or
inverse cannot be defined without the neutral element as well as the internal
character of the sum. It is easy to drop associativity as well as the existence
of a unique inverse: commutativity is the easiest property to give up on and
we shall study abundant calculational tools later on. The entire, rational, real
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as well as complex numbers all obey these rules and we shall proceed by the
definition of the multiplication. We declare by fiat that n.1 = 1.n = n as well
as the de Morgan rule n.(m+ 1) = n.m+n = (m+ 1).n; here from follows that

n.(m+ k) = n.m+ n.k = (m+ k).n

for all n,m, k ∈ N. Clearly, one obtains

n.(m+k) = n.((m+k−1)+1) = n.(m+k−1)+n = n.(m+k−2)+n.2 = . . . = n.m+n.k

by repeatedly applying this elementary rule. One shows now that the same
holds for all n,m, k ∈ Z by means of defining 0 to be the absorption 0.n =
n.0 = 0. 1 is by definition the identity element regarding the multiplication but
not any element different from 1 has an inverse in Z given that it would need to
satisfy m.n = n.m = 1. The multiplication is henceforth internal, associative,
commutative and has an identity element. Z,+, . with those properties is called
a ring; more precisely, we define a set G equipped with two operations +, . where
G,+ is a commutative group and . internal, associative and with identity 1 a
ring if moreover

g.(u+ v) = g.u+ g.v, (u+ v).g = u.g + v.g

a property which we call the distribuvity of the product regarding the sum. As
stressed previously, this rule is precisely the same as the de-Morgan rule from
classical logic and the reader is requested to construct a mapping given that false
equals 0 and true is given by 1 with the supplementary statemet that 1 + 1 = 0
which is the same as taking the natural numbers modulo 2. The relationship
mod2 maps a natural number to its remainder after division by two. Roughly
speaking, or coincides with plus and the conjunction by the multiplication. De
reader appreciates that these rules are of a universal nature given that the
large majority of known number systems satisfies these properties. Prior to
introducing more general number systems, it is good to reflect on some nature
“decimal” representations of them; the Arabs introduced so called powers nm

where n,m are two natural numbers. By definition holds that n0 = 1 and
nm+1 = n.nm so n1 = n, n2 = n.n, n3 = n.n.n and so on. In general, this reads
as n multiplied m times with itself. It is fairly obvious that any natural number
m can be uniquely decomposed as

m =
∑
k

ck.n
k

where ck is a natural number between 0 and n − 1. The proof of this result
follows from m = k.n+ r with r between 0 and n− 1 which simply means that
any number is between subsequent multiples n. Repeated application of this
rule gives

m = k1.n+ c0 = (k2.n+ c1).n+ c0 = k2.n
2 + c1.n+ c0 = . . . =

l∑
k=0

ck.n
k
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where the last sum is finite because at a given moment kl+1 = 0. Hence,
a number can be represented as clcl−1 . . . c1c0 and this code depends upon the
base number n. In case the base number equals 2 the number system is a binary
one and used in electronic devices such as microwaves and computers. Thus, one
has to make the following exercises: show that the number 3 = 2+1 has a binary
code of 11 and the number 7 = 22 +2+1 as 111. The most popular base number
is given by ten, perhaps because we have ten fingers or toes; the rest numbers
are henceforth 0 = ∅, 1 = 1, 2 = 1 + 1, 3 = 1 + 1 + 1, 4, 5, 6, 7, 8, 9. Therefore,
we note numbers such as 923 and so on; now, why is such a notation extremely
useful regarding the notions of addition and multiplication? The reason is that
0 ≤ ck + dk ≤ 2n− 2 as well as 0 < ckcl < n2 leading to the multiplication and
substraction rules thought in the elementary school; a convenient notion here is
the concept modulo “ mod ” where “n mod m” is the leftover of n by means
of division through m. This so far for the addition and multiplication of natural
numbers; rules which can be trivially extended towards the entire number system
and the reader is invited to make some exercises hereon. These are typically
things which people do in elementary school; we finish this section with some
novel concepts. A natural number n > 1 is called a prime number if and only
if n and 1 are the only few divisors meaning that in case n mod q = 0 and
0 ≤ q ≤ n then it holds that q = 1, n. One verifies now that 2, 3, 5, 7, 11, 13, . . .
constitute the first 6 prime numbers. The first exercise to make is proving that
every number can be written as a unique product of prime numbers, something
we call the prime number decomposition. For example, the decomposition of
6, 12, 21 into prime numbers are 6 = 2.3, 12 = 22.3, 21 = 3.7; calculate the prime
decompositions of 37, 41, 56.

We now proceed by the definition of the rational numbers starting from the
Cartesian product Z × N0 equipped with an equivalence relationship: that is,
the couples (m,n) and (m′, n′) are considered to be equivalent if and only if
there exist nonzero natural numbers k, l such that km′ = lm, kn′ = ln holds.
This is not a convenient way to think about this relationship and historically
the fraction

m

n

has been introduced. The equivalence law is then equivalent to a cancellation
rule for common factors above and below the bar. More precisely,

km

kn
=
m

n

and the addition respectively multiplication laws are defined by

m1

n1
+
m2

n2
=
m1n2 +m2n1

n1n2

m1

n1

m2

n2
=
m1m2

n1n2
.
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The identity element for the addition is given by 0
n where n can be arbitrary

and the identity element for the multiplication is given by n
n where n ∈ N0. The

reader verifies, as a reassuring exercise, that the addition and multiplication
laws are associative and commutative and that the distribuvity rule is satisfied
as well. So, Q,+, . is a ring; the inverse for the addition is clearly given by −mn
and one has to find an inverse for the multiplication for any non zero element.
With these additional properties, we call Q,+, . a number field; as far go the
mathematical properties of the rational numbers. Now, it must be clear to the
reader that the entire numbers Z can be represented as a rational number by
m := m

1 and that the different definitions of addition and multiplication are
preserved or commensurable. More precisely,

m+ n :=
m+ n

1
=
m

1
+
n

1
, mn :=

mn

1
=
m

1

n

1

and we summarize this property by stating that the mapping

Z→ Q : m→ m

1

is an algebraic homomorphism. The reader shows now that Q is the smallest
field encompassing the integer numbers (hint: define inverses with respect to
the multiplication). A second important property regards the extension of the
order relationship ≤; we utter that

m

n
≤ m′

n′

if and only if mn′ ≤ m′n. One controls that this definition is independent of
the representants of the equivalence class meaning that if r

s = m
n and r′

s′ = m′

n′

then rs′ ≤ r′s if and only if mn′ ≤ m′n. As a more difficult exercise, one shows
that it is impossible to enumerate the rational numbers in a way preserving
the order; use for this purpose the property that every two sequential rational
numbers have a rational midpoint.

This last property brings us to the construction of the real numbers R; plenty
of distinct methods exist for introducing them, for example by taking a metric
closure of Q in the natural metric. Given that topology and metrics are merely
studied in the subsequent chapter, we shall proceed in an alternative fashion; we
simply employ the order relationship to get a closure. It is easy to see that the
rational numbers contain holes with respect to the positive inverse of the square
operation; for example,

√
2 is defined to be the unique positive number such

that
√

2
2

= 2. We show that such a number, if we demand it to exist, is not
rational. Suppose that

√
2 = m

n then 2n2 = m2 which is impossible given that
the prime number 2 occurs an odd number of times in the prime decomposition
of the left hand side whereas the right hand side contains an even number of
factors. Henceforth

√
2 does not belong to the rational numbers and therefore

it contains “holes”. Note that the prime numbers are important regarding the
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multiplication which is the mirror property of the intersection regarding sets.
Indeed, prime numbers are the same as primitive sets in this regard and it is
therefore not a surprise that they are important. So, in a way, prime numbers
are the “elements” of the natural ones. The question now is how one constructs
a number such as

√
2! To rehearse our logic so far: (a) the natural numbers are

constructed by means of the addition given one elementary unit (b) the integer
numbers follow by taking inverses regarding the sum (c) the rational number
follow from the entire ones by taking inverses with respect to the multiplication
law and finally (d) the real numbers follow from a completeness property.

The completion is defined by means of a Dedekind procedure: take an increasing
sequence qn ≤ qn+1 of rational numbers qn which are all smaller as a rational
number q. We define two such sequences (qn)n∈N, (pn)n∈N to be equivalent if
and only if for any pn there exists a qm such that qm ≥ pn and vice versa.
The reader should verify that this relationship between increasing sequences is
indeed an equivalence; it is likewise possible to work with decreasing sequences
bounded from below. R,+, . is then defined as the set of these equivalence
classes equipped with the operations + and . making R,+, . into a field. We
shall construct by means of an example a sequence for the real number

√
2:

√
2 =
√

4− 2 = 2

√
1− 1

2

and
√

1 + z = 1 +
1

2
z +

∞∑
n=2

(−1)n+1 1.3 . . . (2n− 3)

2n
zn

and therefore
√

2 is approximated by means of a descending sequence

qm = 1− 1

4
−

m∑
n=2

1.3 . . . (2n− 3)

4n

of rational numbers. Henceforth, the real numbers constitute a complete and
totally ordered field satisfying the Archimedian property

ra ≤ rb

if and only if a ≤ b provided r > 0. Number theory can be further extended by
means of the following observation: a polynomial is a real function in terms of
one variable x of the form

P (x) =

n∑
k=0

akx
k

where ak ∈ R; a root of P is a real number c such that P (c) = 0. In case c is a

root of P (x) one can write P (x) as P (x) = (x−c)Q(x) with Q(x) =
∑n−1
k=0 bkx

k.
Show it! In case P consists out of n zero’s one can write

P (x) = an(x− c1) . . . (x− cn).
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In this case, we call P (x) totally factorisable and (x − c) a factor. One can
easily see that not every polynomial of this form can be factorized in this way:
for example

P (x) = x2 + 1

is always strictly positive and has no zero’s. To factorize it, one adds the number
i such that i2 = −1. In that case, we have

P (x) = (x− i)(x+ i)

showing one has to extend the real numbers with i; in other words, define

z = a+ bi

with a, b ∈ R and
C = {z|z = a+ bi; a, b ∈ R}

the set of complex numbers. Consider subsequently the polynomials P (z) =∑n
k=0 akz

k with ak ∈ C then one can prove that P (z) can be factorized or P (z)
has n zero’s. One remarks that it is sufficient that P (z) has at least one zero c
because then P (z) = (x− c)Q(z) where Q(z) is of degree n−1 which has a zero
again and so forth. A proof of the existence of at least one zero necessitates
higher mathematics, more in particular complex analysis and we shall return
to this issue further on in chapter 13. We equip C with an addition as well as
multiplication defined as:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

and
(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i.

One shows that C,+, . is a ring and one defines the complex conjugate as

z = a− bi

implying
zz = zz = a2 + b2

which only vanishes in case a = b = 0. Therefore, the number z
zz is the inverse

for z regarding the multiplication and henceforth C,+, . is a field. The field is
not Archimedean provided that the natural order defined by a + bi ≤ c + di if
and only if a < c or a = c and b ≤ d does not satisfy the property mentioned
before. In such case, one has 1 + 5i > 0 but (1 + 5i)2 = −24 + 10i < 0 which is
in contradiction to the Archimedean property. We delve deeper into the world
of complex numbers later on but note for now that

z + z′ = z + z′

and
zz′ = zz′
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whose proof is left as an easy exercise to the reader. As an application we shall
calculate zero’s of P (x) for P having degree one or two. For a function of degree
one ax+b the zero point is given by x = − b

a whereas for a polynomial of second
degree defined by

ax2 + bx+ c

we proceed by rewriting it as

a

(
x+

b

2a

)2

− b2

4a
+ c

which vanishes if and only if(
x+

b

2a

)2

=
b2 − 4ac

4a2
.

In case b2 − 4ac ≥ 0 then

x± =
−b±

√
b2 − 4ac

2a

whereas in the other case

x± =
−b± i

√
4ac− b2

2a

which proves explicitly that polynomials of degree two are factorisable over C.

Now, one might suspect that the most interesting number systems have been
studied already; however, there exists an interesting class of generalizations of
the complex numbers which are special cases of so called Kac-Moody algebra’s.
The most simple case is provided by the real quaternions RQ. This number
system has a close alliance to geometry in three dimensional space or four di-
mensional spacetime. For now, we restrict ourselves by studying the algebraic
properties and delay the discussion of the geometric aspects. RQ is generated
by two imaginary units i, j such that i2 = j2 = −1 and ij + ji = 0, ij = k;
henceforth, k2 = ijij = −i2j2 = −1 and jk = i, ki = j. A general quaternion q
is henceforth of the shape q = a + bi + cj + dk where a, b, c, d ∈ R. We define
the quaternion conjugate as

q = a− bi− cj − dk

and as such is qq = qq = a2 + b2 + c2 +d2 which is positive definite. The inverse
of q 6= 0 is therefore given by q

qq and therefore RQ,+, . is a non commutative
ring for which every nonzero element has an inverse.

There is a natural extension of this number system towards the Clifford alge-
bra’s; those are generated by elements ei for which holds that

eiej + ejei = αij
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with αij = 0 if i 6= j and αii = ±2. We denote this algebra with Cl(p, q) where
p is the number of plusses and q the number of minusses. The quaternions are
then given by Cl(0, 2); one can show that with the exception of Cl(0, 1) and
Cl(0, 2), the complex numbers and real quaternions, that in any of these rings a
nonzero element can be found which has no inverse for the multiplication. This
complicates matters given that Cl(1, 3) is frequently used in theoretical physics.
To wrap up the discussion, one shows that any Clifford number can be written
as

q = a+

p+q∑
n=1

aj1...jnej1 . . . ejn

where jk 6= jl if k 6= l. We shall later on study more properties of the Clifford
numbers but this suffices for now. Remark that the Clifford numbers are non
commutative regarding the multiplication and therefore require more than one
real dimension to represent them geometrically. Geometrizing algebra is a very
important branch of mathematics and we shall return to analysis with Clifford
numbers later on in this book.

So far a first introduction to number theory: everything can appear to be rather
abstract in nature but the reader will familiarize him or herself with those
concepts in the future. Finally a bit of notation: we have already stated that
the inverse of q regarding the sum is given by −q whereas for the inverse this
equals q−1. If one did not have any previous experience with this calculus, it is
necessary to show that

• ( 5
4 )−1 = 4

5 ,

• (1 + i)−1 = 1−i
2 ,

• 23 = 8,

• ( 1
3 )2 = 1

9 ,

• 1
i = −i,

• (1 + 2i)2 = −3 + 4i.

Exercises regarding the Clifford numbers.

• Prove that the Clifford monomials ei1 . . . eik with ir 6= is for r 6= s and k
even constitute a subalgebra of the Clifford algebra.

• Consider the Clifford numbers βij = eiej with i 6= j and define the com-
mutator [βij , βkl] = βijβkl − βklβij . Show that the commutator is again
of the form

∑
r∈{i,j},s∈{k,l}±αr′s′βrs where r′ = i if r = j and r′ = j in

case r = i.

• The βij constitute therefore a Lie algebra defined by means of the αij
symbols.
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• Classify all real Clifford algebra’s for which every non zero element has a
multiplicative inverse (there are three of them; the real numbers, complex
numbers and quaternions).
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Chapter 4

Topology.

One has to contemplate about topology as a refinement of set theory; it is to
say, we limit ourselves to special sets being the so called open sets. In nature,
an open set is an abstraction, an imaginary concept which has no real existence.
An open surrounding has to be thought of as a voluminous object: for example,
a straight line segment is the set of all real numbers between two extremal
values denoted by (a, b) = {x|a < x < b} with a natural length of b − a. A
point is an example of a closed set and has vanishing volume or length. We now
consider some properties regarding the set theoretical operations on the open
segments (a, b): the union of two open segments is declared open by fiat whereas
the intersection of two open segments is an open segment anew. Note that the
union of open segments can be written as a disjoint union. Given a set D, we
call a set τ(D) of subsets of D a topology if and only if

• ∅ ∈ τ ,

• A,B ∈ τ implies that A ∩B ∈ τ ,

• Ai ∈ τ implies that ∪i∈IAi ∈ τ for every second countable index set I.

I stress again that this definition depends upon the commutativity as well as as-
sociativity of the intersection and union; it is possible to define a non-associative
and non commutative topology by means of deformations. We shall study this
from the viewpoint of logic further on and the reader may repeat these construc-
tions almost ad verbatim here. In this chapter, we start pedestrian by studying
the classical case where taking the union can be seen as putting landscape maps
together; typically such charts overlap and all we demand is that the intersec-
tion of two charts is again a chart and that arbitrary many of them can be put
together. There exist special subsets E ⊆ D such that it is

• closed if and only if Ec := D \ E ∈ τ(D),

• compact if and only if for any coverage by means of open sets Oα of E
there exists a finite sub coverage Oi; i = 1 . . . n such that E ⊆ ∪ni=1Oi.
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Henceforth, the compact sets are those which can always be covered by means
of a finite sub cover such as for example a globe: irrespectful of how small you
make the charts, the globe is covered by a finite number of them. Given a point
p ∈ D, we say O is an open environment of p if and only if p ∈ O. Given
a point p, a basis of open environments is given by a countable collection of
open neighborhoods Oi of p, such that for any open V encompassing p it holds
that there exists an index i such that Oi ⊆ V . One could moreover demand
that Oi+1 ⊆ Oi by taking intersections but this is not mandatory however.
Regarding the closed sets X,Y one has to verify the following truisms: (a) ∅, D
are closed (b) X ∪ Y is closed (c) ∩i∈IXi is closed if and only if all Xi are as
such. Sets such as ∅, D which are open and closed at the same time are dubbed
cloped. Given B ⊆ D, the intersection of all closed sets X encompassing B
is closed and called the closure of B which we denote as B. The closure of a
set is therefore the smallest closed set encompassing the latter itself. In other
words, one adds elements or points which are limits of elements in B. More
concretely, we call x a limit point of a sequence (xi)i∈I if and only if for every
open neighborhood O of x holds that there exists an index j such that ∀j ≺ i
it holds that xi ∈ O. Now one shows that, using the properties of an index set,
if y were another limit point then the open neighborhoods of x and y coincide.
This motivates the following definition: a topology is Hausdorff if and only if
all disjunct points x and y have open neighborhoods each with empty mutual
intersection. It is to say that x ∈ O, y ∈ V and O ∩ V = ∅. For Hausdorff
topologies holds that the limit point of a sequence is unique. We now prove the
following result for topologies with a countable basis: a set is closed if and only
if it contains all its limit points. Indeed, suppose that B is closed, and (xi)i∈I is
a sequence in B with limit point x ∈ D, then it holds that x ∈ B otherwise one
can find an open neighborhood Bc of x which is disjoint with (xi)i∈I , something
which contradicts the definition of a limit point. Reversely, suppose that any
limit point of B belongs to B, then we show that B is closed; suppose it is
not, then we find an x ∈ B \ B such that for any basis-open neighborhood On
of x we find an element xn ∈ B ∩ On and as such it holds that x is a limit
point of (xn)n∈N ∈ B and henceforth, by assumption, an element of B which
leads to a logical contradiction. Later on, we give an example of a compact set
in a non-Hausdorff topology with a sequence containing no subsequence with a
limit point (in case you want to think about this; find an example in an infinite
number of dimensions). We shall study further characteristics of compactness
in the so called metric topologies, which are determined by a distance function
d.

So far, the treatment of topology appears to be very abstract and not very
useful at all, one can think of any topology one wants to and indeed, all subsets
of the real number system for example constitute a topology called the discrete
topology. Indeed, all sets are cloped there which suggests a huge triviality. The
physical reality we live in appears by very close inspection much more peculiar
given that we speak about distance functions and spheres such as for example
the circle with radius of 10 kilometer around Brussels measured from the Grand
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Place in bird flight. On earth this procedure only goes wrong when one traverses
half of the circumference; one step further in the same direction would replace
that journey by a different one where one originally departs in the opposite
direction. Therefore, at large distances, one can expect problems of this global
nature and in quantum geometry, one suspects those issues can occur at small
distances too. Typical scales here are much smaller as those of an atom. By
definition, a distance function d : X ×X → R+ defined on a set X satisfies

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x) for each x, y ∈ X,

• d(x, z) ≤ d(x, y) + d(y, z) the so called triangle inequality.

A distance function defines a so called Hausdorff topology with countable basis
by means of the open balls

B(x, ε) = {z|d(x, z) < ε}

giving rise to a countable basis defined by B(x, 1
n ) where n ∈ N0. Two points

x, y separated by means of a distance d(x, y) > 2ε can be surrounded by means
of two disjoint balls B(x, ε), B(y, ε) respectively. This representation of affairs is
still a bit abstract given that one wants to measure angles as well contemplate a
notion of orthogonality which is not so simple in this formalism. In other words,
we require further specialization extending beyond the distance function only.
Nevertheless, one can prove plenty of theorems in this primitive language relying
solely upon those three axioms. A generalization consists in specifying that the
distance function has a local origin; it is to say that the distance between two
points can be chopped into arbitrarily small pieces. This leads to the notion of
a path metric: d is a path metric if and only if the property holds that for any
two points x, y there exists a z such that

d(x, z) = d(y, z) =
d(x, y)

2
.

In other words, every two points define at least one midpoint. We shall later on
give a better representation of those facts.

We will study now an equivalence relationship between two topological spaces;
in other words, when are two topological spaces the same? To determine that,
we shall study topological mappings between two topological spaces X,Y . A
mapping f : X → Y is defined by means of a subset F of the Cartesian product
X ×Y ; F obeys the law that for any x ∈ X there exists exactly one y ∈ Y such
that (x, y) ∈ F . y is then denoted as f(x) and F is the graph of f . In human
language, this signifies that each element chosen from X has precisely one image
in Y . Concerning mappings, we formulate still the following extremal properties:

27



(a) f is injective if and only if f(x) = f(x′) implies that x = x′ or each x has a
different image (b) f is surjective if and only if for each y ∈ Y there exists an
x ∈ X such that f(x) = y or, in other words, every potential image is realized
effectively. Finally, we say that f is a bijection if and only if it is injective as
well as surjective; bijective mappings are equivalences between sets as we shall
see now. Suppose f : X → Y and g : Y → Z then g ◦ f : X → Z : x→ g(f(x))
is the composition of these two mappings. Show that g ◦ f is injective if and
only if g has this property on f(X) and f obeys this law on X. Show that g ◦ f
is surjective if and only if g is on f(X); finally, show that g ◦ f is a bijection if
and only if g is and f is injective. In case f : X → Y is a bijection, it becomes
possible to define a unique inverse f−1 : Y → X by means of

f−1(f(x)) = x

or f−1 ◦f = idX where idX constitutes the identity mapping on X. Derive here
from that

f ◦ f−1 = idY

using the surjectivity of f . Finally, one shows that f−1 also is a bijection; we
say henceforth that X and Y are equivalent if and only if there exists a bijection
from X onto Y . Using the previous properties, one shows that this relation is
reflexive, symmetric and transitive. Now, we are in position to define topolog-
ical equivalences f : X → Y ; f is continuous if and only if the inverse of each
open set O in Y , denoted by f−1(O), is open in X. For a continuous bijection,
one has that f−1 is continuous if and only if f(V ) open is in Y for any open V
in X. In case a function f satisfies this property, we call it an open mapping.
An example of a continuous bijection for which the inverse is not continuous, is
given by f : (−1, 0) ∪ (0, 1)→ (−1, 0)× Z2 : x→ (−|x|, θ(x)) where |x| = −x if
x < 0 and x if x ≥ 0. θ(x) = 0 for x ≤ 0 and 1 otherwise; finally, Z2 = {0, 1}.
The topology defined on (−1, 0)×Z2 is the natural one of (−1, 0) and is hence-
forth not Hausdorff on {0, 1}. One has that f((−1, 0)) = (−1, 0)×{0} which is
not open whereas (−1, 0) × Z2 is. A topological equivalence is given by means
of a bijection f which is continuous and open. Such mappings are called home-
omorphisms and the reader verifies that this definition obeys all requirements
of an equivalence relationship indeed.

We return to our study of metric topologies and in particular alternative charac-
terizations of compactness. A sequence (xi)i∈I is called Cauchy if and only if for
each ε > 0, there exists an i, such that for all i ≺ j, k one has that d(xj , xk) < ε.
In human language, this reads: if one proceeds sufficiently far in the sequence
then the points reside arbitrarily close together. Such a property suggests the
existence of a unique limit point x; a metrical space (X, d) for which any Cauchy
sequence has a limit point is called complete. In case K is a compact set, then
one shows that any sequence (xi)i∈I has a subsequence with a limit point in K.
The proof is simple, consider arbitrary finite (due to compactness) covers with
balls of radius 1

n ; then one finds a sequence of balls B(yn,
1
n ) such that finite

intersections ∩mn=1B(yn,
1
n ) contain an infinite number of xi ∈ K. This defines
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a subsequence with as limit point

x = ∩∞n=1B(yn,
1

n
)

in K. Reversely, suppose that any sequence in K has a Cauchy subsequence
with a limit point in K, then K is compact. Choose a cover of K of open balls -
without limitation of validity- B(yn, εn) where n ∈ N and suppose that no finite
sub cover exists. Define then Bm = ∪mn=1B(yn, εn), we henceforth arrive at the
conclusion that for any m there exists an m′ > m such that Bm′ ∩Bm

c∩K 6= ∅.
In particular, we construct a sequence (xm) with the property that for any m
there is an m′ > m such that xm′ ∈ Bm

c
. This sequence cannot contain a

Cauchy subsequence with some limit point x because x ∈ Bm for m sufficiently
large which is a contradiction. We just proved that a set is compact in a metric
topology if and only if any sequence contains a Cauchy subsequence with limit
point in K. Prove the following properties:

• define on R the function d(x, y) = |y − x|, show that this defines a metric
(easy exercise),

• prove that in the metric topology on R, the closed interval [a, b] is compact
(hint: use the decimal representation of real numbers) (difficult),

• suppose two topological sets X,Y , then the product topology τ(X × Y )
is the smallest topology containing τ(X)× τ(Y ), where the last contains
elements U × V with U ∈ τ(X) and V ∈ τ(V ),

• show that the Cartesian product K1×K2 of two compact sets is compact
in the product topology (average),

• a metrical space (X, d) is bounded if and only if there exists an M > 0
such that d(x, y) ≤ M for all x, y ∈ X; show that a compact space is
closed and bounded (easy).

Again, the reader might utter that this kind of considerations are far too general
and that our world is much more detailed in the sense that light rays bend
and twist around one and another and that this behavior is geometrical and
continuous in nature. To describe these features in detail, one needs the notion
of a local scalar product which we shall study further on in chapter six giving
further rise to analytical geometry. Note the following: suppose that γ : [a, b]→
X is a continuous curve joining x and y and define the length functional L(γ)
of γ where

L(γ) = sup
a=t0<t1<t2<...<tn+1=b

n∑
k=0

d(γ(tk), γ(tk+1))

and sup means taking the supremum of this sum over all finite partitions a =
t0 < t1 < t2 < . . . < tn+1 = b of the closed interval [a, b]. The supremum of
a set of real numbers A is the smallest number larger or equal as any number
x ∈ A. The supremum is also called the upper bound and the reader shows that
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by definition the supremum always exists and is unique by means of addition
of the number +∞. Likewise, one defines the infimum or under bound and
one shows again it exists and is unique. Concerning the sum, one notices that
breaking up an interval [tk, tk+1] into two disjoint pieces by means of addition
of an intermediate point tk < tk+ 1

2
< tk+1 the sum increases by means of the

triangle inequality. Henceforth, splitting up an interval [a, b] leads to a higher
sum by means of the triangle inequality.

Now, we will formulate our main result; a complete metric space (X, d) defines
a path metric d if and only if

d(x, y) = min
γ:[a,b]→X,γ(a)=x,γ(b)=y

L(γ).

In other words, when the distance between two points equals the minimal length
of a curve joining x to y we speak about a path metric space. The reader is ad-
vised to show this by means of using the midpoint property in order to construct
such curve using that L(γ) ≥ d(x, y). Reversely, in case such a curve exists, one
automatically finds a midpoint. A curve minimizing length is called a geodesic
and in a path metric space, the length of a geodesic equals the distance between
two points. Later on, we shall arrive at a more detailed characterization of
geodesics when imposing more structure. Again, those primitive notions allow
one to obtain a substantial amount of results some of which have been obtained
by Mikhail Gromov and Peter Anderson. Studying those primitive metric spaces
further on requires consultation of their work.

As one notices, our language is not rich enough to speak about notions such
as perpendicularity, angles etcetera. One gradually learns that this book will
become more and more specific, that the language gets more rich and complex
allowing for stronger connections and results. Compactness or local compactness
is an important notion because the (local) topology is finite in a way. Spaces
which are not locally compact often do not allow for certain mathematical struc-
tures to exist because there is too much “room” or space such as is the case for
integrals. We now arrive at very special building blocks: line segments, triangles
and pyramids as well as higher dimensional generalizations thereof. We shall
use those to describe certain topological spaces and characterize those: a cen-
tral element herein is the concept of homology which leads to further categorical
abstractions.

Exercises.
The intention of these short exercises is to show to the reader that path met-
ric spaces carry a notion of continuity which shall be further restricted to a
“smooth” structure which facilitates the definition of an angle as well as per-
pendicularity. This is also the case here, but the sum of angles around a point
does not need to equal 2π something which is for example the case with the top
point of a cone. This characterization translates into the fact that one cannot
stratify the top which is nevertheless possible for points on the mantle. The
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latter define a tangent plane or an infinitely small Euclidean structure which is
not the case for the top for which the following definitions hold also

• Take a point x and consider a sequence of neighboring points yn, zn equidis-
tant, meaning d(x, yn) = d(x, zn) from x at two different geodesics emanat-
ing from x such that in the limit for n to infinity, the sequence approaches
x as a limit point. In case the limit

lim
n→∞

d(x, yn)2 + d(x, zn)2 − d(yn, zn)2

2d(x, yn)d(x, zn)

exists, we put it equal to cos(θx(y, z)) whereby θx(y, z) is the angle in
radials between the two geodesics.

• Show that the total angle around the top of a cone is (a) well defined (does
not depend upon the partition into triangles) and (b) smaller as 2π.

• Construct with cutting and pasting a space with opening angle greater
as 2π; spaces of the previous type are called spherical and of the latter
hyperbolic.

• Alexandrov curvature: in a flat geometry, one has the property that the
vector to the midpoint in a triangle is given by

~xr =
1

2
( ~xa+ ~xb).

Consequently, the distance is equal to

d(x, r)2 =
1

4
(d(x, a)2 + d(x, b)2 + 2d(x, a)d(x, b) cos(θx(a, b))).

Considering the definition of an angle and taking midpoints rn between
yn, zn and likewise the limit for n to infinity, we are in position to study
the limit R of the quantities

Rn(y, z) = −d(x, yn)2 + d(x, zn)2 + 2d(x, yn)d(x, zn) cos(θx(yn, zn))− 4d(x, rn)2

d(x, yn)2d(x, zn)2 sin2(θx(yn, zn))

or alternatively

Rn(y, z) =
−2d(x, yn)2 − 2d(x, zn)2 + d(yn, zn)2 + 4d(x, rn)2

d(x, yn)2d(x, zn)2 sin2(θx(yn, zn))

with dimension one over meter squared. Symmetrize this expression over
all sides and one arrives at an expression depending upon the triangle only.

• In case R > 0, then is spherical, otherwise it is flat (R = 0) or hyperbolic
R < 0.
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Chapter 5

Simplicial homology.

Whereas the previous three chapters were very abstract, we shall now continue
to work with more tangible objects, things we know from everyday life. We
shall use abstraction of these objects to deal with them in a more appropriate
way. This has its advantages because it allows us to calculate with them; this
actually is the main miracle of abstraction, that it allows us to do things. The
topological spaces to be studied in this chapter are those which are modelled by
means of the n-dimensional real space

Rn = ×ni=1R = {(xi)ni=1|xi ∈ R}

which is the set of n-tuples of real numbers equipped with the product metrical
topology of R. One can extend the notion of a sum by means of the definition

(xi) + (yi) = (xi + yi)

and likewise can one define the scalar multiplication of a real number with an
n-tuple vector by means of

r.(xi) = (rxi).

More in general, let R be a field and G,+ a commutative group, then we say
that G is an R module in case there exists a scalar multiplication such that

1.g = g; (rs).g = r.(s.g); (r + s).g = r.g + s.g; r.(g1 + g2) = r.g1 + r.g2

for all r, s ∈ R and g, g1, g2 ∈ G. In case R = R we call the module a real vector
space. In Rn,+, we have special vectors ei, defined by the number 1 on the i’th
digit and zero elsewhere; herefore, it holds that

n∑
i=1

ri.ei = 0

if and only if it holds that all ri = 0 and moreover all vectors can be written
uniquely as

n∑
i=1

ri.ei.
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In case these properties hold for a set of vectors {vi|i = 1 . . .m}, then we call
{vi|i = 1 . . .m} a basis. One notices that we have used two integer numbers
here, n for the ei and m for all vj ; it is now a piece of cake to show tha n = m.
The reason is the following, because ei is a basis, one can write the vj uniquely
as

vj =

n∑
i=1

vijei

and reversely

ei =

m∑
j=1

ejivj .

Henceforth,
n∑
i=1

vije
k
i = δkj ; j, k : 1 . . .m

and
m∑
j=1

ejiv
l
j = δli; i, l : 1 . . . n

where δkj = 1 if and only if j = k and zero otherwise. This system of equations is
symmetrical in e and v and therefore m = n given that both mappings are injec-
tive. Henceforth n is a basis invariant and called the dimension of Rn,+. Now,
we have a sufficient grasp upon real vector spaces and we proceed by defining
special building blocks mandatory for the construction of simplicial manifolds.

What follows is a generalization of simple cutting and pasting of higher dimen-
sional triangles and pyramids. We may construct so called Euclidean bodies in
this way and the old fashioned approach towards a classification of topological
spaces upon a homeomorphism has been made as such. However, different lines
of argumentation which are less constructivist can lead towards such classifica-
tion too. Consider the space Rn+1 and consider a basis vi; i = 0 . . . n, then the
n simplex (v0v1 . . . vn) is defined by means of the closed space

(v0v1 . . . vn) = {
n∑
i=0

λivi|λi ≥ 0,

n∑
i=0

λi = 1}.

This is all a bit abstract and in order to get a picture of how such space looks like,
one imagines the 0, 1, 2, 3 dimensional cases. A zero dimensional simplex (v0) is
simply a point, a one dimensional simplex is given by the line segment (v0v1)
which may be embedded into the plane R2. A two dimensional simplex (v0v1v2)
is given by a triangle which can be embedded into R2 whereas finally (v0v1v2v3)
describes a pyramid in R3. In general, the simplex (v0v1 . . . vn) is a convex
space meaning that the line segment between two points x, y ∈ (v0v1 . . . vn)
completely belongs to (v0v1 . . . vn). The line segment between two points x, y is
the set

{λx+ (1− λ)y|0 ≤ λ ≤ 1}.
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Points of the simplex which do not belong to the interior of a line segment
belonging entirely to the simplex are called extremal. Show by means of exercise
that the only extremal points of (v0v1 . . . vn) are given by vi. One calls the
simplex the convex hull of the extremal points {vi|i = 0 . . . n}. We know now
how a module is defined as well as a simplex which allows us for the definition
of a linear operator. A mapping A : V → W between two R modules V,W is
linear if and only if

A(rv1 + sv2) = rA(v1) + sA(v2)

for all r, s ∈ R and vi ∈ V . Show that A is injective if and only if A(v) = 0
implies that v = 0. Now, we shall work a bit more abstractly: we do not need
at this point the property that vi ∈ Rn+1, something which was required for
matters of representation. We shall temporarily proceed by insisting that the
vi, wj are merely points which are not necessarily associated to vectors in some
linear space. Note that a simplex (v0v1 . . . vn) naturally possesses an orientation
defined by the order in which the vertices appear and that swapping two vertices
reverses the orientation, meaning for example

(v0, v1) = −(v1, v0).

An n dimensional simplcial complex is defined as a collection of n distinct sim-
plices such that any sub-simplex also belongs to it. We shall be interested in
taking forml sums of simplices of the same dimension k ≤ n; ab initio, you
might want to impose certain constraints such as (a) no branching meaning
that no more as two k dimensional simplices share the same k − 1 dimensional
sub-simplex. Also (b) you might want for every k simplex to appear exactly
once into such a sum so that we can think of it as being single valued. Also, you
might insist upon it being (c) oriented which in its most general sense would
mean that the contribution of internal k−1 dimensional sub-simplices vanishes.
This means that, upon taking a formal sum∑

i

ai(v
i
1, . . . , v

i
k)

where all (vi1, . . . , v
i
k) are different, we have that in case∑

w

∂w∂w1 . . . ∂wk−1
(vl1, . . . , v

l
k) = ±

∑
w

∂w∂w1 . . . ∂wk−1
(vs1, . . . , v

s
k) 6= 0

for at least two values s 6= l, then
∑
w ∂w∂w1

. . . ∂wk−1

∑
i ai(v

i
1, . . . , v

i
k) = 0

where ∂v is the linear operator attached to any vertex v defined by ∂v(vv0 . . . vi) =
(v0 . . . vi) in case none of the vj equals v and zero otherwise, here it is assumed1

that () = 1. This, taken together with condition (a) simply means that if

1Note that we deviate here slightly with the convention in the literature where () = 0.
This will result in a zero’th homology froup with one generator less; it is worthwile keeping
this in mind when discussing the definition of the Betti numbers.
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precisely two k dimensional simplices share the same k − 1 dimensional sub-
simplex then the induced orientations differ. Let us for now keep things in the
middle and see if those concerns really matter. We define the boundary operator
∂n : Zn → Zn−1 as the linear operator over Z mapping a simplex (v0v1 . . . vn)
to

∂k(v0v1 . . . vk) =

k∑
i=0

(−1)i(v0 . . . vi−1vi+1 . . . vk) =
∑
w

∂w(v0v1 . . . vk).

One verifies that ∂k−1∂kSk = 0 given any sum of simplices. From the def-
inition, it follows that the boundary of any linear combination of simplices
is oriented in the previous sense. Also, by the same virtue, any closed sum
Sk of simplices, meaning ∂kSk = 0, is oriented since

∑
w ∂w∂w1

. . . ∂wk−1
Sk =

(−1)k−1∂w1
. . . ∂wk−1

(
∑
w ∂wSk) = 0 given that ∂v∂w = −∂w∂v. Now, one may

wonder whether any closed Sn can be written as a linear combination of closed
simplicial complexes satisfying (a) and (b). We shall first prove that this is the
case for n = 1; take any one dimensional complex S1 = 1

2

∑
ij a

ij(vivj) where

aij = −aji where a factor 1
2 has been included because each simplex is summed

over twice. Assume now that the simplex is closed meaning that
∑
i aij = 0

and choose the smallest positive aij . Then at the vertex j, one certainly has
some k such that ajk ≥ aij , proceed towards k and substract aij from ajk. One
repeats this procedure a sufficient number of times until the curve comes back
to itself defining aij times a canonical loop obeying a and b. Now, the remainder
contains at least one edge less and is also closed; hence, upon repetition of this
procedure we arrive at our result. Now, a one dimensional simplicial omplex
is rather trivial as each such structure can be consistently oriented. This is no
longer true in two dimensions and we shall generalize here the construction of
a Mobius strip in order to provide for a counterexample. I will not provide all
details but the reader will see how it works. Take an oriented square with four
corner boundary points in order (according to the orientation of the boundary)
given by 1, 2, 3, 4 and identify the line segments 12 with 34 and 23 with 41, then
the reader notices that, given a representation in terms of a simplicial complex,
all the interior lines are cancelled when taking the boundary of this simplicial
complex, but the “boundary lines” between 12 and 23 are doubled. So, this sum
is not closed; to compensate for this, take a second identical construction but
now with opposite orientation on the “boundary lines” and glue them together.
Then, the boundary of this doubled complex vanishes but there is no way to
undo the bifurcation at the lines 12 and 23 which are now adjacent to four half
planes instead of two. It appears that we have to live with such “anomalies” as
there is no way to exclude them, therefore we consider all formal linear com-
binations of k dimensional simplices. To repeat, we consider a formal linear
combination Tk of k simplices closed if and only if ∂kTk = 0 and exact if and
only if Tk = ∂k+1Sk+1 for some Sk+1. It is clear that exact simplicial complexes
are closed using the crucial property of a boundary operator and we define ac-
cordingly the Z modules Ck(Sn) of all closed k sums and Ek(Sn) of all exact
k sums, where En(Sn) = {0} and C0(Sn) equals ZV−1 with V the number of
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points or vertices in Sn. Clearly it holds that Ek(Sn) ⊆ Ck(Sn) and we define
the homology classes Hk(Sn) as the quotient module

Hk(Sn) =
Ck(Sn)

Ek(Sn)

being the Z module of Ek(Sn) equivalence classes in Ck(Sn). We say that two
closed sums Tk, Yk are equivalent if and only if Tk−Yk ∈ Ek(Sn). So far for the
general theory of simplical complexes, we now arrive to the very important sub
theory of topological spaces A homeomorphic to a simplicial complex Sn; the
important step herein consists in proving that Hk(A) is well defined because
homeomorphic simplicial sums define the same homology module. The reader
may try to show this fact by him or herself as a kind of difficult exercise but
it it clear that the statement is rather obvious. Indeed, the boundary operator
is defined independently of the simplicial decomposition. The dimension of
Hk(Sn) plus one, in case k = 0, is called the k-th Betti number bk of the
simplicial complex Sn. The reader now makes the following exercises: take a
two dimensional spherical surface and show that b2 = 1, b1 = 0, b0 = 1. The two
torus T2 is defined by taking an oriented square and glue opposite sides to one
and another; show that b2 = 1, b1 = 2, b0 = 1. In general, one defines the Euler
number of a two dimensional simplicial complex S2 as

χ(S2) = D − L+ V

where D is the number of triangles and L the number of line segments. One can
show that the Euler number is a topological invariant; calculate that the Euler
number of a two sphere is given by 2 = b2 − b0 + b1 = 1 − 0 + 1 and that of a
torus by 0 = 1− 2 + 1. In general, one shows that

χ(Sn) :=

n∑
i=0

(−1)iVn−i =

n∑
i=0

(−1)ibn−i

where Vi equals the number of i dimensional sub-simplices. To start with the
calculation of the dimension of a homology class, note that an element of Hk(Sn)
corresponds to a closed k dimensional connected surface which cannot be con-
tracted to a point. Concerning the calculation of b1 on the two sphere, it is clear
that any closed curve can be reduced to a point whereas on the two torus two
fundamental circles do existwhich are not the boundary of a two dimensional
simplicial complex. Consider two closed surfaces A2 and B2 and remove a two
disk from both of them; now, paste each of the remainders along the circular
boundaries resulting in a new closed surface denoted by A2 � B2. Show that
the operation � is associative as well as commutative with as identity element
the two dimensional surface S2. Calculate that the Euler number of the n-fold
crossproduct of T2 equals 2− 2n; more in particular, it holds that

χ(A2 �B2) = χ(A2) + χ(B2)− 2.

Later on, we shall study the notion of a manifold and one of the most important
results is that any closed, compact, connected and oriented two dimensional
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topological space is homeomorphic to S2 or an n-fold product T2 � T2 � . . . � T2.
This formula can be generalized towards any dimension, where the connected
sum is then defined by means of cutting out the interior of a ball and identifying
the boundaries; the reader verifies that in general

χ(An �Bn) = χ(An) + χ(Bn)− 2

for n even and
χ(An �Bn) = χ(An) + χ(Bn)

for n odd. This implies that closed, compact, connected as well as orientable
two dimensional manifolds are completely characterized topologically by means
of the Euler number. For closed manifolds, one shows that bn−i = bi something
which is called Betti duality, a result which may be proved by definition of a
duality operator ? on the simplicial complexes such that S?n is homeomorphic
to Sn and Hk(Sn) is mapped bijectively to Hn−k(S?n). One can imagine ? as a
natural generalization of the following operation on a one dimensional simplicial
complex S1: it maps every line segment r to a point r? and each point p to a
line segment p? such that ? interchanges the operation ⊆ meaning r? ⊆ p? if
and only if p ⊆ r. S?1 is a closed simplicial complex if and only if S1 is in case
no branching occurs; the Euler number changes in case S1 shaws branching as
the reader verifies. Henceforth, the manifold condition is mandatory and Betti
duality does not hold for general closed simplicial complexes. The reader should
prove that two circles having a common point show bad behavior under the du-
ality transformation. The notion of a variety is henceforth really special and our
result, that closed two dimensional and oriented varieties are classified by the
Euler number only does not hold in higher dimensions. Here ends our discus-
sion of simplicial homology which can be summarized by a chain of operations
∂k : Zk(Sn)→ Zk−1(Sn) met ∂0 : Z0(Sn)→ Z and2 ∂k+1∂k = 0. Such a struc-
ture is called a chain and those objects enjoy plenty of beautiful characteristics
which are much more primitive as the topological point of departure. An initial
point for higher mathematics therefore!

It is clear, from the simplicial point of view, that topological spaces of dimension
n cannot be classified by means of the Betti numbers. The reader is invited to
show this by means of braiding three closed surfaces in different ways. Later on,
we shall study the Euler number from the viewpoint of vectorfields, akin Morse
theory, as well as closed differential forms determined by the homology classes.

Exercise: the Poincaré conjecture.
The conjecture of Poincaré is that every 3 dimensional compact, closed topo-
logical spaceM which is path connected and has trivial first homotopy class, is
homeomorphic to the 3 dimensional sphere. Note that I am speaking of homo-
topy instead of homology which is another and much crazier way of constructing
topological invariants; the reader is encouraged to wade through the literature

2In the literature, this is zero given that there one takes another definition of ∂0.
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on homotopy which is full of rich results (for example, the homotopy groups are
also labelled by a discrete index, referring to dimension, but they may well be
nontrivial beyond the dimension of the embedding space). The first homotopy
group consists out of all equivalence classes of continuous closed curves with a
base point which cannot be continuously deformed into one and another while
keeping the base point fixed. Obviously, for the torus, the homology group is
Z⊕Z which basically means that you consider linear combinations over Z of two
independent generators, whereas the first homotopy group is given by the free
group in two letters a, b since there is no relationship between the two genera-
tors. However, this is no longer true upon considering the torus and cutting out
a small disc. The boundary of the latter is obviously the boundary of the com-
plement of the disc (and is therefore trivially zero in the homology group) but
it cannot be deformed into any other existing element in the homotopy group
of the torus. Nevertheless one may trivially prove that if the first homotopy
group vanishes, then the first homology group must vanish too; the reverse is
not true however. Note that this theorem does not hold in higher dimensions
as for example S2×S2 provides for a counterexample. Taking the classification
of closed, compact and connected two dimensional topological spaces we have
just given, I once constructed the following simple argument. As of today, I do
not know where my error resides and I encourage the reader to think about it.

• Show that M allows for a path metric d.

• Consider an arbitrary point p and show that for sufficiently small r, the
surface Lr := {x|d(p, x) = r} is homeomorphic to the 2 dimensional sphere
S2.

• Show that there exists a critical point r0 such that Lr0 is no longer a
sphere.

• In case Lr0 is a point, the theorem is proved; otherwise we have a compact
2 dimensional topological space obtained from the sphere by means of
identification of k dimensional subspaces where k can range from 0 to 2.

• Show that the subsequent connected components of the topological space
for r > r0 are again two dimensional connected, closed spaces3 which can
only close up to a point in a three dimensional closed space in case they
are homeomorphic to the sphere S2.

• Subsequently, to close the topological space, all components different from
some S2 and possibly the S2 themselves must be pasted together leading
to a nontrivial first homotopy class which is forbidden.

3This seems to be the crucial step! It is certainly true for the theorem in two instead of
three dimensions where a circle possibly biffurcates into two circles which, in case they rejoin,
gives rise to a nontrivial homotopy. The reader may convince himself of that by studying the
example of a torus versus a long “saussage”. In both cases, we have that for generic points x
the circles of radius r around x identify at some points but split later again into two distinct
circles which in case of the torus rejoin and in case of the saussage individually collapse to a
point.
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• Consequently M is a 3 dimensional sphere.

Simplicial gravitation.
Simplicial metric spaces are very simple and entirely characterized by means of
distances d(v0v1) defined on the line segments (v0v1). One defines the following
operators: xw(v0 . . . vi) = (wv0 . . . vi) and ∂w(wv0 . . . vi) = (v0 . . . vi) in case
none of the vj equals w. The remaining cases where this last condition is violated
lead to the null simplex with as boundary conditions ∂w(w) = 1, xw1 = (w)
where 1 = () is the empty simplex. From this, it follows that (xw)2 = 0 as
well as (∂w)2 = 0. One verifies that the operator ∂ =

∑
w∈S ∂w is the usual

boundary operator what shows that ∂w constitutes the appropriate derivative
operator defined by means of the boundary operator ∂. The empty simplex
constitutes the neutral element regarding the cross product ∗ defined by means
of

(v0 . . . vi) ∗ (w0 . . . wj) = (v0 . . . viw0 . . . wj).

One simply verifies that xwxv = −xvxw and likewise for the operators ∂v, ∂w.
Henceforth, the creation operators associated to a vertex generate a Grassmann
algebra; moreover, it holds on the vector space of simplices that

∂vxw + xw∂v = δ(v, w)

such that the ∂v represent Grassmann annihilation operators. Bosonic line
segment operators are consequently defined by means of

∂(vw) = ∂w∂v

and such operators satisfy

∂(vw)(yz) = δ(v, y)δ(w, z)− δ(v, z)δ(w, y)

giving rise to an oriented derivative. The simplex algebra is henceforth defined
by means of polynomials spanned by monomials which are formal products of
simplices (v0 . . . vj) for all j : 0 . . . n. Mind that this formal product does not
equal the crossproduct implying that 1 does not constitute the neutral element.
Given that on general spaces bi relations carry an evaluation by means of the
metric d it is natural to limit the function algebra to two simplices (v0v1) given
that other simplices do not procure for independent variables. The bosonic
character of 1 implies that the ∂v, xw constitute Fermionic Leibniz operators on
the function algebra. Indeed, one has that

∂v((w)Q) = ∂v((xw1)Q) = ∂vxw(1Q)− ∂v(1xwQ) =

(k + 1)δ(v, w)1Q− xw(1∂vQ)− ∂v(1xwQ)

which reduces to

(k + 1)δ(v, w)1Q− (xw)∂vQ− 1xw∂vQ− 1∂vxwQ = δ(v, w)1Q− (xw)∂vQ

39



where k denotes the degree of the monomial Q given by the number of factors.
This follows immediately from the Leibniz rule given that the operator

xw∂v + ∂vxw = δ(v, w)

is bosonic. Henceforth, the even simplex variables behave bosonically whereas
the odd ones fermionic. Indeed,

∂v((wz)Q) = ∂v((xw(z))Q) = ∂v(xw((z)Q)+((z)xwQ)) = −xw∂v((z)Q)−(z)(∂vxwQ)

which reduces to

= xw((z)∂vQ)− (z)(∂vxwQ) = (wz)∂vQ.

Given that the usual derivatives of a function are defined by means of the
infinitesimal intervals (x− |ε|, x+ |ε|) where f(v + ε, v − ε) gets identified with
the coordinate function f(x). This is logical given that the v ± ε are fermionic
and independent such that the intervals (v − ε, v + ε) ∼ x are bosonic. Note
that products of the form (v − ε)(v + ε) can be further derived such that

∂xf(x) = L
[
∂(v−ε,v+ε)f(v − ε, v + ε)

]
where L merely retains the monomials depending exclusively of the line seg-
ments. This phenomenon clearly occurs in (vw)2 whose (vw) derivative equals

2(vw)− 2(v)(w).

To obtain the standard commutation-relations on the function algebra generated
by (vw) we define

x̂(vw)Q := x(vw)x1Q

where Q is a polynomial defined on the edges (r, s) and x(vw) is a bosonic Leibniz
operator defined by

x(vw)(v0 . . . vj) = (vwv0 . . . vj).

By definition, one has that
x(vw)(rs) = 0

if and only if r or s equals v, w and moreover

(x(vw) + x(rs))((vw) + (rs)) = 2(vwrs)

which vanishes unless (r, s) is the opposite side of a pyramid which we shall
forbid from now on. In particular, this does not apply to geodesics

γ(v0vi) := (v0v1) + (v1v2) + . . . (vi−1vi)

which satisfy

xγ(v0vi) :=

i∑
j=1

x(vj−1vj)
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and therefore
xγ(v0vi)γ(v0, vi) = 0.

Next, we define the derivatives

∂γ(v0,vi) :=

i∑
j=1

∂(vj−1vj)

and consider the operator

∂̂γ(v0,vi) = L ◦ ∂γ(v0,vi)

and one calculates that

∂̂γ(v0,vi)x̂γ(v0,vi) − x̂γ(v0,vi)∂̂γ(v0,vi) = 1

on the function algebra generated by the monomials Q of the form (γ(v0, vi))
k

where k > 0. We have now a tool to do physics; in particular,generated by the
monomials Q of the form (γ(v0, vi))

k where k > 0. We have now a tool to do
physics; in particular,

EP (γ(v0, vi)) = P (

i∑
j=1

d(vj−1vj))

is the evaluation function. The reader is invited to expand this theory further as
well as to implement the Fourier transformation from chapter fourteen on conic
tangent spaces. Hint: integrate in “hyperbolic” or “spherical” coordinates by
replacing the n− 1 sphere with the level surface Hn−1(ε, v0) = {x|d(v0, x) = ε}
for ε sufficiently small such that Hn−1(ε, v0) belongs to the star neighborhood
of v0. See chapter thirteen for more information.

Betti numbers.
Give an example of two oriented spaces with the same Betti numbers and develop
the homology concept further on with the purpose of distinguishing both (very
difficult).
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Chapter 6

Linear spaces and
operators.

The reader profits from reconsidering the path taken so far towards further
specialization of our mathematical language: we started from set theory which
allows for huge constructions, the next step was to narrow our scope to general
topology and in particular simplicial homology. Finally, we stumbled upon the
notion of a manifold which we have treated on an intuitive level so far and shall
make exact further on in this book. The advantage of more specific structures
is that they allow for more results, that they are better under control: herein,
the mathematician often anticipates an unproved stability result namely that
structures nearly satisfying the idealized rules also obey the same properties to
a good approximation. That is the real virtue of subtle simplification, that it
allows us to understand things which are not valid from a higher, more general
point of view. Albert Einstein often spoke about this in a way that one needs to
represent things as easy as possible but not too simplistic; too many limitations
often involve a huge risk that things get too narrow whereas too little assump-
tions lead towards the problem that even the most simple of observations do
not enjoy a stringent explanation within your framework. Science is the art
to explore that very fine boundary in a better and better way, little by little
without dogmatic certainty but with reason and intelligence.

In this philosophy, linear spaces are too specific but we shall later on study
manifolds which do look like linear spaces on a “small scale” and henceforth
constitute a wide generalization of the former. So, we apply now the opposite
strategy and study first the “simple” case prior to studying the more general
one. A linear space is a bi-module defined over the field of the real or complex
numbers; the prefix “bi” refers to the fact that the scalar multiplication can
occur from the left as well as from the right and that both are equal in this
case which is logical because both number systems are commutative regarding
the multiplication. For quaternionic modules, we could speak about a left and
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right or bi one and those situations do differ in plenty of cases. We say that
the linear space is finite dimensional if and only if the dimension over the field
is finite and infinite dimensional otherwise. The dimension is still well defined
as the number of basis vectors given that the existence of a basis can be shown
from set theoretical considerations.

A linear mapping A : V → W from one linear space to another over the same
field is a function satisfying

A(r.v + s.w) = r.A(v) + s.A(w)

where the dot denotes scalar multiplication. Evidently one has that A(0) = 0
and A(v) = A(w) if and only if A(v−w) = 0. Henceforth, the so called nucleus
of A, defined by Ker(A) = {v|A(v) = 0} measures the deviation from injectivity
of A. Every image A(w) has as inverse w + Ker(A). The nucleus is henceforth
itself a linear subspace of V . In the same way, one has that the so called image

Im(A) = {A(v)|v ∈ V }

constitutes a subspace of W . It is now evidently true that

Im(A) ∼=
V

Ker(A)

meaning that both linear spaces are isomorphic to one and another. Indeed,

A :
V

Ker(A)
→ Im(A) : w + Ker(A)→ A(w)

is linear and bijective which are the defining characteristics of an isomorphism.
A trivial consequence of this theorem is that

dim(Ker(A)) + dim(Im(A)) = dim(V )

where “dim” stands for dimension. Linear mappings can be represented by
means of matrices defined with respect to basis vectors ei in V and fj in W
respectively. The definition is given by

A(ei) =

m∑
j=1

Ajifj

where j is called the row index and i the column-index; taking a general vector
v = viei gives rise to the matrix multiplication

A(v) =

m∑
j=1

(

n∑
i=1

Ajiv
i)fj .

The composition of two linear mappings A : V →W en B : W → Z results into
the matrix product

(BA)ji =

m∑
k=1

BjkA
k
i
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where m represents the dimension of W . From now on, we dispose of the
summation-signs, a convention which has been named after Einstein; so

n∑
i=1

Ajiv
i

is noted as
Ajiv

i.

A 2× 3 matrix, or a matrix with 2 rows and 3 columns is represented as(
a b c
d e f

)
and regarding the matrix product BA one has the rule that the column dimen-
sion of B has to be equal to the row dimension of A. Show by means of a
computational exercise that

(
1 2 3
2 3 4

) 2 1
1 3
3 2

 =

(
13 13
19 19

)
.

Show that in general for 2× 2 matrices A,B one has that

AB −BA 6= 0

where 0 denotes the zero matrix. This result shows that the matrix multipli-
cation is in general non-commutative and hitherto such operators constitute a
non-commutative ring. The latter has been constructed as an object formed
by elements which belong to a field. One can justifiably wonder whether the
non-commutative number systems such as the quaternions and Clifford alge-
bra’s can be represented as matrices over the complex numbers. The answer is
yes and one can obtain representations in different dimensions; regarding the
quaternions q one has that

q =

(
a+ ib ic− d
ic+ d a− ib

)
where a, b, c, d ∈ R. Another way of writing those in terms of Pauli matrices is
provided by

q = a.1 + ic.σ1 + id.σ2 + ib.σ3.

Now that we have understood a few essentials of matrix calculus, we arrive at the
following natural question regarding matrix representations of linear operators:
is it possible to find a basis ei in V associated to a linear operator A : V →
V such that A has a particularly simple matrix representation regarding ei?
Evidently, the formulation is somewhat vague up till now but try to ensure
yourself that for an arbitrary n × n matrix A it almost always holds that A =
ODO−1 where OO−1 = 1n = O−1O and Dj

i = λiδ
j
i with δji = 1 if and only if
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i = j and zero otherwise. D is a so called diagonal n× n matrix and the λi are
called the eigenvalues such that

A(Oei) = λi(Oei)

which translates as the statement that Oei constitutes an eigenvector of A met
eigenvalue λi. O is called an invertible or reversible n×n matrix. The reasoning
behind it is very simple: in general, it holds that almost any square matrix O
is invertible such that O has n2 degrees of freedom; the mapping O → ODO−1

reduces exactly n dimensions in case all λi in D are different because the equa-
tion V DV −1 = ODO−1 implies that (V −1O)D = D(V −1O) such that V = OD′

with D′ diagonal and henceforth any D “orbit” is n2 − n dimensional. Given
that the number of degrees of freedom in D also equals n we have in total n2

degrees of freedom and henceforth we obtain a “generic” n×n matrix. Prior to
proceeding, we study the effect of a change of basis on the matrix representation
of A. Denoting e′i = O(ei) then one has

A′ij e
′
i = A(O(ei)) = A(Oji ej) = AkjO

j
i ek

and as such A′ij = (O−1)ikA
k
l O

l
j . So, generically, one can find a basis with respect

to which the matrix representation for A is diagonal. The reader should show
that all eigenvalues are unique as well as the eigenvectors (upon a normalization
constant) in case all λj differ. One can find exceptions to this rule! Show that
the matrix

N =

(
0 1
0 0

)
satisfies N2 = 0 and therefore cannot be diagonalized. This is a simple con-
sequence of the fact that any eigenvalue must be equal to zero and henceforth
N = 0 in case N can be diagonalized which is a contradiction. In two dimen-
sions, one can by means of a suitable choice of basis ensure that an operator
can be exclusively represented by one of the following matrices:

A =

(
λ1 0
0 λ2

)
A =

(
λ 1
0 λ

)
.

In case the reader wishes to prove such a result, as well as a suitable extension
towards higher dimensions, then I advise further reading up to the end of the
chapter prior to dealing with this challenge. An n × n matrix A can still be
interpreted in a different way as being merely the representation of a linear
operator with respect to a vector space basis. One can see A as a collection of n
ordered column vectors A = (v1, . . . , vn). This viewpoint allows one to interpret
A as a simplex or the multi-dimensional cube determined by the column vectors
vi. The determinant det(A), to be defined below, calculates then the oriented
volume of that cube which is just the product of the lengths of the basis vectors
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ei if the latter are perpendicular to one and another. We derive a formula for
det(A) from conditions the oriented volume needs to satisfy. First of all, det is
multilinear in the columns; it is to say:

det(v1, . . . , vi−1, a.vi + b.wi, vi+1, . . . , vn) =

adet(v1, . . . , vi−1, vi, vi+1, . . . , vn) + bdet(v1, . . . , vi−1, wi, vi+1, . . . , vn)

as well as nilpotent in the sense that if vi = vj for some i 6= j then the
determinant vanishes. This last condition merely reflects that if some axis
coincide then the matrix defines a lower dimensional object with vanishing
volume. Finally, one imposes the normalization condition that det(1n) = 1.
These three conditions fully determine the functional description for the de-
terminant: from the first and second condition one derives that the determi-
nant is fully anti-symmetrical; it is to say that det(v1, . . . , , vi, . . . , vj , . . . , vn) =
−det(v1, . . . , , vj , . . . , vi, . . . , vn). Combining this fact with the third and first
condition one arrives at

det(A) =
∑
σ∈Sn

sign(σ)A1
σ(1) . . . A

n
σ(n)

where σ is a so called permutation and sign denotes the sign thereof. Due to
the anti-symmetrical nature of the determinant, each index is allowed to appear
exactly once which is encoded in the above formula by means of a permutation.
The latter is a bijection of {1, 2, . . . , n} onto itself whereas the sign denotes the
even or odd nature of the number of swappings one has to perform to arrive
from the identity mapping to σ, where an even number results in the value one
and the odd number in minus one. One shows that permutations constitute a
non commutative group Sn with n.(n−1).(n−2) . . . 3.2.1 elements and we show
now that the sign function is well defined meaning no odd and even number
of swappings can occur. The proof is a bit technical; denote with (ij) the
swapping operation of the i’th and j’th index leaving the remainder invariant,
then it holds that

(ik)(ij) = (jk)(ik)

(ik)(jl) = (jl)(ik)

(ik)(ij) = (ij)(jk)

for distinct i, j, k, l. First of all, it is clear that any permutation can be written
as a product of such swapping operations. Given a non trivial product of such
swappings equivalent to the identity, then it is a simple matter to prove that
it contains an even number of swappings using above swapping rules. Indeed,
given σ = l(ik)s(jk) where l, s are products of swappings and l does not contain
a swapping with the index k then the reader shows that it is possible to rewrite
this decomposition as σ = ls′ where s′ does not contain the index k and has
precisely the same number of swappings as s has modulo two. In this way, one
proves that σ contains an even number of swappings. From this it follows that
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two different products l, s for any permutation σ always differ by an even number
of swappings by denoting that ls−1 is equivalent to the identity. Henceforth,
the function sign is well defined; show that the determinant of a 2× 2 matrix is
given by

det

(
a b
c d

)
= ad− bc.

Prove now that

• sign(ρσ) = sign(ρ)sign(σ)

• det(AB) = det(A)det(B).

This last rule holds due to

det(AB) =
∑
σ∈Sn

sign(σ)(AB)1
σ(1) . . . (AB)nσ(n)

=
∑
σ∈Sn

∑
m1,...,mn

sign(σ)A1
m1

. . . AnmnB
m1

σ(1) . . . B
mn
σ(n)

where m1, . . . ,mn is another notation for a permutation. One easily under-
stands this as follows: assuming that mi = mj then for every permutation σ
it holds that the associated term is compensated by the one associated to the
permutation σ(ij). Henceforth, we have that

det(AB) =
∑

σ,ρ∈Sn

sign(σ)A1
ρ(1) . . . A

n
ρ(n)B

ρ(1)
σ(1) . . . B

ρ(n)
σ(n)

=
∑

σ,ρ∈Sn

sign(σρ)A1
ρ(1) . . . A

n
ρ(n)B

1
σ(1) . . . B

n
σ(n)

= det(A)det(B).

This implies in particular that det(A−1) = (det(A))−1. Hence, the determinant
of A = (v1, . . . , vn) differs from zero if and only if the vi constitute a basis which
is equivalent to invertibility of A. Show that the inverse of

A =

(
a b
c d

)
is provided by

A−1 =
1

ad− bc

(
d −b
−c a

)
.

The reader is advised to explicitely write out the determinant for 3×3 matrices
as well as to develop a suitable formula for the inverse of such matrix.

Now, we return to the study of the classification of matrices in “standard form”
by means of a basis transformation, the so called Cartan problem which requires
the proof of existence of eigenvalues λ as well as associated eigenvectors vλ
satisfying

A(vλ) = λvλ.
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Another way of phrasing this is to say that the nucleus of A− λ1n is nontrivial
which is true if and only if

det(A− λ1n) = 0.

At this point, determinants become useful because this formula can be inter-
preted as a root equation for a polynomial of the n’th degree. As we know, this
polynomial can be entirely factorized over the field of complex numbers C and
we obtain in general n distinguished complex eigenvalues showing that almost
any matrix can be diagonalized. The reader is now advised to consider the pre-
vious example in two dimensions where two eigenvalues coincide and consider
further examples of operators of a higher nilpotency in three or more dimen-
sions.

The vigilant reader has meanwhile noticed that that determinant of a matrix is
a basis invariant and henceforth associated to a linear mapping; that is,

det(O−1AO) = det(O)−1det(A)det(O) = det(A).

Therefore, it is noticed that the eigenvalue polynomial det(A−λ1n) is an oper-
ator invariant. In particular, it is shown that the functional coefficient of k’th
degree corresponding to the n− k’th power of λ constitutes an invariant under
basis transformations. For k = 1 this gives (−1)n−1Tr(A) where the so called
trace Tr is defined by means of

Tr(A) =

n∑
i=1

Aii.

Verify as an exercise in an explicit way that the trace is indeed a basis invariant
and study the specific functional form of the higher invariants as well. One
might try to write those as polynomials of traces of powers of the matrix; in
particular in two dimensions it holds that

2det(A) = (Tr(A))2 − Tr(A2).

Show that, in case one replaces the real number λ by the matrix A in the
eigenvalue polynomial that it holds then that the resulting matrix equals the
zero matrix. This is known as the theorem of Cayley Hamilton (hint: suppose
first that A can be diagonalized and use then the definition of an eigenvalue
as a root of the eigenvalue polynomial and finally employ that any matrix can
be arbitrarily well approximated by one which is diagonalizable) which reads in
two dimensions as

A2 − Tr(A)A+ det(A)12 = 0.

Show finally that Tr(AB) = Tr(BA) and that this implies that no pair of
matrices A,B exists such that

AB −BA = 1n
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a formula which is known as the bosonic Heisenberg relation and requires an
infinite number of dimensions for operators having infinite traces. Note that it
is possible to find two by two matrices such that

AB +BA = 12

known as the fermionic Heisenberg relationship. Bosons require henceforth an
infinite number of dimensions whereas fermions live in dimensions equal to n =
2d where the reader should find a realization for d = 1. Finally, we define the
notion of transposition AT as well as the complex conjugation A of a matrix A

(AT )ij = Aji , (A)ij = Aij .

Show that

(AB)T = BTAT , (AT )T = A, (rA+ sB)T = rAT + sBT , (A−1)T = (AT )−1

and similar properties for the complex conjugation. The hermitian conjugate,

which is of fundamental importance in this book, is given by A† = A
T

and the
reader may verify that

(AB)† = B†A†, (A†)† = A, (rA+ sB)† = rA† + sB†, (A−1)† = (A†)−1

In particular, it holds that for

A =

(
a b
c d

)
,

AT =

(
a c
b d

)
swapping rows as well as columns. Prove that for

N =

(
0 1
0 0

)
it holds that NTN + NNT = 12, N

2 = 0 giving rise to the namer that N
constitutes a fermionic creation-operator. This suffices for a first encounter
with linear spaces and operators; the next chapter treats the subject in more
depth and we continue now with succinct excercises.

Exercises regarding Hermitian projection operators.

• Let P,Q be two Hermitian projection operators meaning that P 2 = P ,
Q2 = Q, P † = P,Q† = Q. Show that P + Q constitutes a Hermitian
projection operator if and only if PQ = QP = 0. Show that the same
holds for PQ if and only if PQ = QP .
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• Two Hermitian projection operators P,Q are orthogonal if and only if
PQ = 0; we define the partial order ≤ by means of P ≤ Q if and only if
QP = PQ = P . Prove explicitly that ≤ defines a partial order on the set
of Hermitian projection operators. In particular, it holds that P ≤ Q and
Q ≤ P implies that P = Q. Also, P ≤ Q and Q ≤ R leads to P ≤ R.

• We call the set of Hermitian projection operators on a vector space,
equipped with ≤, a raster. Show that for any P,Q there exists a min-
imal projection operator P ∨ Q such that P,Q ≤ P ∨ Q and any R such
that P,Q ≤ R satisfies P ∨Q ≤ R. On the other hand, one may construct
a maximal projection operator P ∧ Q ≤ P,Q. Show that ∨,∧ do not in
general obey the rule of de Morgan:

P ∧ (R ∨Q) 6= (P ∧R) ∨ (P ∧Q).

• Show that the raster possesses a unique minimum as well as maximum
provided by 0 and 1 respectively.

• Show that there exist minimal nonzero Hermitian projection operators,
called atoms. Every Hermitian projection operator may be written as a
sum of orthogonal atoms.

Quantum logic.
Given that in the previous exercise ∨ and ∧ may be conceived as “or” and “and”
respectively, it becomes possible to understand quantal logic by means of using
Hermitian projection operators as propositions. Reflect on this and retrieve
classical pointer propositions.

Hilbert space.
Let v and w be two complex vectors and denote by

〈v|w〉 = v†w ∈ C

the so-called scalar product of v and w. Prove that

〈v|w〉 = 〈w|v〉, 〈v|v〉 ≥ 0 and equality holds if and only if v = 0

〈v|aw + bz〉 = a〈v|w〉+ b〈v|z〉

and the reader verifies that these equalities imply that

〈av + bz|w〉 = a〈v|w〉+ b〈z|w〉.

As a challenging exercise, the reader proves that

|〈v|w〉| ≤ ||v||||w||

where ||v|| =
√
〈v|v〉. Prove from hereon that

||v + w|| ≤ ||v||+ ||w||
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the so-called triangle inequality. Finally, let A be an operator, then show that

〈v|Aw〉 = 〈A†v|w〉.

Dirac notation: a vector v is also denoted as |v〉 and a conjugate vector v† as
〈v| so that |v〉〈v| is the Hermitian projector on v in case 〈v|v〉 = 1.

Non-commutative Quantum logic.
We generalize the operations ∧ and ∨ to a context in which they are no longer
commutative; this procedure holds as well for the classical Boolean logic or the
quantual logic explained above where the de Morgan rule gets a minor blow. It
is natural to interpret ∧ as well as ∨ as mappings ∧,∨ : P × P → P : (x, y)→
x ∧ y, (x, y) → x ∨ y where P denotes the lattice of propositions defined by
means of a linear Euclidean space in the quantal case. Define the mapping

S : P × P → P × P : (x, y) → (y, x) and consider ∧
′
(V,W ) := W ◦ ∧ ◦ S ◦ V

as well as ∨
′
(V,W ) = W ◦ ∨ ◦ S ◦ V where V : P × P → P × P is required

to be invertible as well as is the case for W : P → P . Requiring ∧
′
(V,W ) to

satisfy
(
∧
′
(V,W )

)′
(V,W )

= ∧ it is sufficient and mandatory that W 2 = 1 as well as

S ◦ V ◦ S ◦ V = 1. This demand is of a special algebraic nature which we dub
by the name of an involution; so we are going to study involutive deviations
from quantal logic. An involution gives rise to a notion of duality; in particular
self-duality is defined by the condition that

∧
′
(V,W ) = ∧,∨

′
(V,W ) = ∨.

It is natural to propose first S symmetrical logics; these are given by

∧
′(V,W ) ◦ S = ∧

′(V,W ),∨
′(V,W ) ◦ S = ∨

′(V,W ).

This can only happen by choosing V such that

V ◦ S = S ◦ V

reducing a previous condition to

V 2 = 1

whereas it still holds that

∧
′(V,W ) = W ◦ ∧ ◦ S ◦ V.

In case ∧, ∨ coincide with the standard Boolean or Quantal operations denoted
by ∧d, ∨d where d = c, q one has that

∧d ◦ S = ∧d, ∨d ◦ S = ∨d.

In such a case,

∧ := ∧
′(V,W )
d = W ◦ ∧d ◦ V
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a small simplification of the previous formula and ∨ is defined in a similar way.
Now, to remain entirely clear, it is so that the d index should be the same in
∧, ∨ but (V,W ) becomes (R, T ) for ∨ whereas the former pertains to ∧. We
now isolate the “de Morgan expression” a ∧ (b ∨ c):

∧ ◦ (1× ∨)(a, b, c) = W ∧q V (1× T ∨q R)(a, b, c).

It is subsequently natural to call T - (∧q, V ) compatible if and only if ∧qV (1×
T ) = T ′ ∧q V for some T ′ : P → P . Likewise, it is natural to call V - ∨q
compatible if and only if V (1×∨q) = (1×∨q)V ′ for some V ′ : P 3 → P 3. Under
these assumptions, the previous expression reduces to

WT ′(∧q(1× ∨q))V ′(1×R)

which was the desirable separation. It is furthermore natural to suggest further
restrictions

WT ′ = 1, V ′(1×R) = 13.

Truth evaluators ω
The material presented below constitutes an extension of the notes I have re-
ceived once from Rafael Dolnick Sorkin; in classical Boolean logic one disposes
of truth evaluator ω of logical sentences which constitutes a homomorphism
from the set of propositions P,∨c,∧c to Z2,+, . where 0 is interpreted as false
and 1 as true and ∨c is the so called exclusive or in the sense that a∨c b is true
if and only if exactly one of them is true. It is to say that

ω(a ∨c b) = ω(a) + ω(b), ω(a ∧c b) = ω(a)ω(b).

In quantum logic, there is no such thing as a truth evaluator; one can only
say wether a particular assertion is true or false with a certain probability. A
quantum reality is then a particular choice of mapping from P to Z2 but it
makes no sense any longer to speak about a homomorphism because the de-
Morgan rule fails in general: the lattice is not distributive. As such, it may
very well be that you have a quantal reality ω for which ω(a) = ω(b) = 1, but
ω(a ∧q b) = 0. To get an idea of what more general realities are about, let us
describe a classical system in a quantum mechanical fashion. An example is
give by means of the weather, “the sun shines”, modelled by |l〉, or “it is dark”
given by |d〉. Quantum mechanically, one disposes of a complex two dimensional
Euclidean space spanned by the extremal vectors |l〉, |d〉. Consider now a general
state

|ψ〉 = α|l〉+ β|d〉
and study the class of truth functionals ω which merely depend upon

|α|2

|α|2 + |β|2
,
|β|2

|α|2 + |β|2

something which reduces to a parameter 0 ≤ λ ≤ 1 due to

|α|2

|α|2 + |β|2
+

|β|2

|α|2 + |β|2
= 1.
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When all truth evaluators merely depend upon this parameter only, the complex
plane may be reduced to the line segment connecting both extremal vectors
|l〉, |d〉 to one and another. An example of such a gneralized reality is provided
by

ωlε : [0, 1]→ Z3

given by means of the prescription

ωlε(
√
λ|l〉+

√
(1− λ)|d〉) = χ(λ+ ε− 1) + 2χ(λ− ε)χ(1− ε− λ).

ωl and is henceforth connected to the question whether the light shines and ε is
the tolerance of the observer. This truth evaluator says “yes”, given by means
of 1, in case 1− ε ≤ λ ≤ 1, under determined or “vague” 2 when ε ≤ λ ≤ 1− ε
and no, given by 0, when 0 ≤ λ ≤ ε. We have that χ is the so called character-
istic function defined on the real numbers by means of χ(x) = 1 in case x ≥ 0
and zero otherwise. The issue is that we departed from a quantum mechanical
description of the weather and by reduction of the allowed questions arrived to
a classical system where, moreover, ωlε is nonlinear.

Most physicists would suggest at this moment that we did not make a sufficient
distinction between classical and quantum logic as yet because ∧q,∨q are com-
mutative, assiociative but ∧q is not distributive with regard to ∨q which is the
case for ∧c, ∨c. In our most general setting, one has that ∧ and ∨ are neither
commutative, nor associative

∨(1×∨)(a, b, c) = T∨dR(1×T∨dR)(a, b, c) 6= T∨dR(T∨dR×1)(a, b, c) = ∨(∨×1)(a, b, c)

and likewise so for ∧. The main distinction between classical and quantum logic
resides in the fact that the set of propositions constitutes a distributive lattice
in the former case whereas it does not in the latter; this results in the statement
that the classical rule

µ(a|b)µ(b) = µ(b|a)µ(a)

is no longer true in the quantal case. Here, µ is the probability measure that
a is true; in other words, the truth determinations of a and b depend upon
the order in which they occur. This has so far not been accounted given that
a homomorphism ∨c,q,∧c,q does not make any distinction in the order of the
factors. Therefore, classically, for our homomorphism ωc(a ∧c b) is determined
by the unordered tuple {ωc(a), ωc(b)}. Quantum mechanically, it is as such
that the reality ωq(a ∧q b) is not provided by the ordered couple (ωq(a), ωq(b))
as elements of Z2 but also depends upon a, b themselves. It is not so that

µ|v〉(a|b) =
µ|v〉(a ∧q b)
µ|v〉(b)

due to commutativity of ∧q as well as a ∧q b = 0 for distinct one dimensional
Hermitian projection operators a, b on a Hilbert space H. The exact formula is
given by

µ|v〉(a|b) =
Tr(|v〉〈v|bab)
Tr(|v〉〈v|b)
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and the reader notices that the non-commutativity of a and b is of vital impor-
tance. Henceforth, the ontological mapping defined in quantum theory is given
by κ : P → L(H) where P is the set of prepositions with a yes or no answer
onto the lattice of Hermitian projection operators defined on the Hilbert space
of states of the system. The classical Lagrange formula

µ(a|b)µ(b) = µ(b|a)µ(a)

where µ is determined by the state of the system is abandoned upon provided
that ∧q a la Von Neumann offers no alternative. The natural question henceforth
is whether we may find a natural ∧ as well as a consistent set of realities

ωρq : P → Z2 × [0, 1]

attached to density matrices ρ defined on H, such that

ωρq (a) = (1, λ)

and
ω′ρq (a) := (0, 1− λ)

is defined as the complementary observation. It is clear that ωq is not always
given by a homomorphism; prior to proceeding, it is important to understand
∨q. It is clearly so that in quantum theory, we have an extended ontology; we do
not only pose the question “what is the probability that a∧c b holds given that
a as well as b are true” such as the case in classical logic, but we insist on the
formulation “what is the chance that a ∧q b holds given that a after b has been
experimentally established”. The right answer is easy if a ∧ b is represented by
the Hermitian operator bab which is logical given that the order of measurement
matters. In general, one shows that

a ∧q b = lim
n→∞

(
1

2
(ab+ ba)

)n
and in the framework of our deformation theory ∧ is given by means of

V (a, b) = (1, bab)

at least this is so for atomistic elements a, b. For atomistic elements, bab
Tr(ab) is

again a rank one Hermitian projection operator; however for projection oper-
ators of general rank, this is no longer the case. Here, we have to extend our
definition of V as going from P ×P → C×C where C are the so called positive
operators on Hilbert space. An operator A is positive if and only if A is self
adjoint and

〈v|A|v〉 > 0

for all v 6= 0. As an exercise, the reader understands that the definition of ≤
extends to the Hermitian operators by means of A ≤ B if and only if

〈v|(B −A)|v〉 > 0.
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Show that in such a case, the definitions of ∧q and ∨q can be extended in a
rathr aritrary fashion (we shall provide for a construction below). Indeed, it is
impossible to define A ∧ B as the largest Hermitian operator smaller or equal
than A,B and A∨B as the smallest Hermitian operator greater or equal to A,B
respectively (see the following example). Nevertheless, it is possible to define a
weaker notion of maximality for A∧B meaning that if A∧B ≤ C ≤ A,B then
C = A ∧B. As an xample, consider

A =

(
0 0
0 4

)
, B =

(
3 2
2 3

)
the matter having eigenvalues 1, 5 and the reader may verify that the operators

C =

(
0 0
0 2

)
, D =

(
b 0
0 5

2

)
for 32b = 89

4 − ( 27
2 )2 are both intersections in the second sense but not in the

first as the reader may verify. A rather canonical construction hinges on the
spectral theorem for Hermitian operators, something which we shall study in
the next section. Briefly, it says that any Hermitian operator A can be written
as

A =
∑
i

λiPi

where the λi are the real eigenvalues and the Pi Hermitian projection operators
such that PiPj = δijPi. Therefore, take A,B and order all eigenvalues

λ0 < λ1 . . . < λk

with k ≤ 2n where n is the dimension of Hilbert space. Note that some of the λi
may belong to A as well as B; in that case, we consider the projection operators
Ri := Pi ∨qQi where the Qi refer to B otherwise Ri equals Pi or Qi. Start now
with λ0, the smallest eigenvalue, and consider the operator C0 = λ0R0; clearly
C0 ≤ A,B. Proceed now towards the minimal λj such that Sj := ∨ji=2Ri obeys
[Sj , R0] = 0 and consider the projection operator

T1 := Sj(1−R0)

then the reader verifies that this is an Hermitian projection operator and that
T1R0 = 0. In case no such j exists, then define A ∧q B = λ0R0 + λ1(1 − R0),
otherwise proceed with C1 := λ0R0 + λ1T1. The reader now understands that
he has to look at λj+1 and construct the smallest Sk := ∨ki=j+1Ri such that

[Sk, R0 + T1] = 0.

In case no such k exists A ∧q B = λ0R0 + λ1T1 + λj+1(1− R0 − T1) otherwise
we consider

C2 = λ0R0 + λ1T1 + λj+1T2
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where T2 = Sk(1−R0−T1) and the procedure continues. It is obvious that the
final result is no necessarily an optimal Hermitian operator which is smaller or
equal to both A,B. The construction of ∨q is similar, but then one starts at the
largest eigenvalue of both operators. W is henceforth determined on the rank
1 matrices by means of the identity. Therefore, for rank one projectors a, b it
holds that

a ∧ b = T ◦ ∧q ◦R(a, b) = bab.

Subsequently, one has that

ωρq (a) = (1,Tr(ρa))

or
ωρq (a) = (0, 1− Tr(ρa))

for a of rank one. Clearly, by definition

ωρq,1(a|b) :=
π2(ωρq (a ∧ b))
π2(ωρq (b))

equals the probability that a is measured after b. Here πj equals the projection
on the j’th factor. Elaborate further on this theory and determine a suitable ∨
operation. Hint: the latter is cannot be given by a∨b = a+b in the deformation
framework provided that ∨q does not allow one to determine the projection of
a on b as is given by Tr(ab). This is something which is mandatory to extract
the sum operation. To define ∨ it is advised to use the classical rule

¬(a ∨c b) = (¬a) ∧c (¬b)

and using ¬¬ = 1, it holds that

a ∨ b = ¬((¬a) ∧ (¬b)).

In quantum theory, ¬(a) is provided by 1− a and henceforth, we arrive at

a ∨ b = 1− (1− a) ∧ (1− b)

which leads to a violation of the de Morgan rule given that

a∧(b∨c) = a∧(1−(1−b)∧(1−c)) = (1−(1−c)(1−b)(1−c))a(1−(1−c)(1−b)(1−c))

whereas
(a ∧ b) ∨ (a ∧ c) = 1− (1− cac).(1− bab).(1− cac).

General exercise.
Determine matrix representations of deformed logic’s in terms of commutative
albeit possible non-associative ones. It is to say that

∧ = (∧̃ijk)i,j,k:1...n

where
∧̃ijk(aj , bk) = ∧̃ijk(bk, aj)

constitute S symmetrical logics on the product space ×nP where P provides for
elementary propositions. Classify first the S symmetric deformations of Boolean
logic on general proposition sets.
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Chapter 7

Hilbert spaces and some
important theorems.

Until now, we have been silent about the subject of topologies on linear spaces
as well as on spaces of linear operators defined upon the former. The reason is
very simple: all such spaces have been equivalent to Rn from the set theoret-
ical point of view and all “natural” topologies which spring to ones mind are
equivalent to the in product norm topology. In a countable infinite number of
dimensions, these topologies become inequivalent and we shall study those at
an early stage of this chapter. We shall commence with studying and in product
geometry and see how it connects to probability theory as well as topology: the
philosophy then is that such flat geometry precedes all these concepts in a well
defined sense.

There exist many distinguished means of presenting the material below but I
am of the opinion that the succinct presentation beneath is the most efficient
one. A distinguished feature of Euclidean geometry is that the underlying set
is given by means of linear space, this is no longer true when studying curved
geometry. This very feature shaped a too limited characterization for two thou-
sand years of several geometrical concepts such a the one of an oriented line
segment connecting two points x, y. The old view was that those could be con-
nected by means of a free vector y− x which is then assumed to be “thight” to
the point x. Crucial herein is the minus sign as an operation suggesting that it
is possible to add vectors without caring about their “anchoring” to particular
points. Mathematically, this results in the notion of a linear space with the zero
displacement 0 as a neutral element mistakingly dubbed as the “origin” of the
latter space. This preferred origin has been long subject of “theological debate”
which has its philosophical side too: is earth the center of the universe which
never in motion? Or must one speak about the sun or another heavenly body in
this regard? Newton and his friends were the first to cut the Gordian knot: they
introduced the concept of an affine space by allowing for translations removing
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any preference of origin whatsoever. Indeed, the mapping x → x + a does not
commute with the addition given that

(x+ y) + a 6= (x+ a) + (y + a).

It leaves however the difference invariant in the sense that

(y + a)− (x+ a) = y − x

such that vectors, bound or free, have a significantly distinct status from points.
In Newton’s world, nothing is fixed and that was a grand realization by itself.
Mathematicians such as Gauss, Riemann and Cartan did proceed even further
on: modern cosmos has no translation symmetry any longer and cannot be de-
scribed any more in the language of affine spaces. The importation of these
realization into physics has been the great achievement by Albert Einstein by
means of theory of general relativity which constitutes by far a superior explana-
tion behind everyday large scale observations in the universe. Euclidean space
or an (in)finite dimensional flat geometry is defined henceforth by means of a
real vector space H as well as scalar product 〈v|w〉 where v, w ∈ H. The scalar
product between v and w is supposed to be equal to the product of the ori-
ented length of the projection of w upon v times the length of v. This quantity
satisfies, by means of simple experience, the following properties:

〈v|w〉 = 〈w|v〉
〈v|aw + bu〉 = a〈v|w〉+ b〈v|u〉

〈v|v〉 ≥ 0 where equality holds if and only if v = 0.

The scalar product henceforth determines the notion of perpendicularity; the
very fact that we have here on earth a preferred notion of perpendicularity is of
a physical nature. Albert Einstein discovered that this information is encoded
partially into the gravitational field. It could be that an alien would experience
this gravitational field differently and that it would suggest a different local
geometry. One can speak about complex geometries: in such a case, one defines
in exactly the same fashion a sesquilinear form where now

〈v|w〉 = 〈w|v〉

with the complex conjugation defined as usual by means of

a+ bi = a− bi.

For example, C constitutes a one dimensional Hilbert space with as scalar prod-
uct vw. As stated in the introduction, a Hilbert space carries some natural
topologies; to define those, we show that the scalar product defines in a canon-
ical fashion a metric d. We first prove that the quantity ||v|| defined by

||v|| =
√
〈v|v〉
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and called a norm has identical properties to those of a modulus of a complex
number. An important step herein is the so called Cauchy-Schwartz identity

|〈v|w〉| ≤ ||v||||w||

signifying that the projection of w on v multiplied with the length of v is less
or equal to the product of the lengths of v and w, a result one expects to hold
trivially. The formal proof goes as follows:

0 ≤ ||v + λw||2 = ||v||2 + |λ|2 ||w||2 + 2Re
(
λ〈w|v〉

)
where Re(a + ib) = a is the real part of the complex number z = a + bi. One
verifies that the real part of the complex number z may be written as 1

2 (z + z)
whereas the imaginary part equals −i 1

2 (z − z). The modulus of a complex
number is defined by means of

|z| =
√
zz =

√
a2 + b2

and satisfies
|z + z′|2 = |z|2 + |z′|2 + (zz′ + zz′)

whereas the last term equals, up to a factor of two,

aa′ + bb′

and the absolute value is bounded from above by |a| |a′|+ |b| |b′|. The square of
this last expression is given by

a2a′2 + b2b′2 + 2 |a| |a′| |b| |b′| ≤
(
a2 + b2

) (
a′2 + b′2

)
= |z|2 |z′|2

and consequently one has that

|z + z′|2 ≤ (|z|+ |z′|)2

and hitherto
|z + z′| ≤ |z|+ |z′|

a formula known as the triangle inequality. Consequently, we may define a
metric on the complex plane by means of

d(z, z′) = |z − z′| .

Returning to the proof of the triangle inequality, one notices that we may pick
λ such that

Re
(
λ〈w|v〉

)
= − |λ| |〈v|w〉|

whereas, in general, the left hand side is always larger than the right hand side.
Therefore, we have that

0 ≤ ||v||2 + |λ|2 ||w||2 − 2 |λ| |〈v|w〉|
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which is a quadratic polynomial inequality in the positive variable |λ|. The
existence of at most one positive root demands that

0 ≤ 4 |〈v|w〉|2 − 4||v||2||w||2

which proves the result and equality only holds if and only if w = −λv. Conse-
quently,

||v+w||2 ≤ ||v||2 + ||w||2 + 2 |〈v|w〉| ≤ ||v||2 + ||w||2 + 2||v||||w|| = (||v||+ ||w||)2

which proves the triangle inequality for the norm. Consequently, each Hilbert
space H defines a canonical metric topology by means of

d(v, w) = ||v − w||

and we demand that H is complete in this topology. This condition is extremely
important for the theory of linear operators but let us start by making some
preliminary observations. Two non-zero vectors v, w are perpendicular to one
and another if and only if 〈v|w〉 = 0 and we say v is normed if and only if
||v|| = 1. Due to the axiom of choice, any Hilbert space has an orthonormal basis
(ei)i∈I meaning 〈ei|ej〉 = δij where δij equals 0 if i 6= j and 1 otherwise. The
mindful reader notices that δij constitutes a basis invariant whereas δij is only
invariant under orthogonal or unitary transformations. For finite dimensional
Hilbert spaces, one has that, with v =

∑n
i=1 v

iei, it holds

〈v|w〉 =

n∑
i,j=1

viwjδij

which constitutes a generalization of the standard in product in three dimen-
sional Euclidean geometry. Show that by means of a basis transformation

e′i = Oji ej we have that δ′ij = 〈e′i|e′j〉 = O
k

iO
l
jδkl. Exercise: define Hilbert

spaces over the real quaternions.

We now consider some operations or constructions one can perform with real
or complex Hilbert spaces. The best known ones are applied in the theory of
quantum mechanics and are given by the tensor product ⊗ as well as direct sum
⊕. Given two Hilbert spaces Hi, the tensor product H1 ⊗H2 constitutes again
a Hilbert space spanned by pure vectors v1⊗v2 where vi ∈ Hi. Regarding sums∑n
i=1 ziv

i ⊗ wi, the following equivalences are in place

z(v ⊗ w) ≡ (zv)⊗ w ≡ v ⊗ (zw)

v ⊗ w1 + v ⊗ w2 ≡ v ⊗ (w1 + w2).

We define H as the linear space of such equivalence classes and make a comple-
tion in the metric topology defined by means of the scalar product

〈v1 ⊗ w1|v2 ⊗ w2〉 := 〈v1|v2〉〈w1|w2〉.
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In a similar vein, the direct sum H1⊕H2 is defined by means of the equivalences

z(v ⊕ w) ≡ (zv)⊕ (zw)

v1 ⊕ w1 + v2 ⊕ w2 ≡ (v1 + v2)⊕ (w1 + w2)

with as scalar product

〈v1 ⊕ w1|v2 ⊕ w2〉 := 〈v1|v2〉+ 〈w1|w2〉.

One verifies that a basis for H1⊗H2 is provided by means of vi⊗wj where the
vi constitute a basis of H1 and wj of H2. A basis for H1 ⊕ H2 is provided by
vi ⊕ 0, 0⊕ wj .

In a vector spaces, a basis defines a scalar product and the mapping of bases to
Hilbert spaces is surjective. Bases connected by means of a transformation O
satisfying

O
k

iO
l
jδkl = δij

determine the same scalar product and reversely alike scalar products define
separate bases connected by such a transformation. One verifies that those
matrices constitute a group, U(n) for n dimensional complex Hilbert spaces
and O(n) in the real case, the so called unitary respectively orthogonal groups.
The above formula reads in matrix language

OHO = 1

whereas OH = (O)T = (OT ). Show that in two dimensions the unitary matrices
are explicitly given by

O =
1√

|a|2 + |b|2

(
a −b
b a

)
with a, b ∈ C. This group has three real parameters; the reader is advised to
determine an alike representation for O(2). Given linear operators A : H1 → H3

and B : H2 → H4 then we may define operators

A⊕B : H1 ⊕H2 → H3 ⊕H4

as well as
A⊗B : H1 ⊗H2 → H3 ⊗H4

by means of
A⊕B(v1 ⊕ v2) = A(v1)⊕B(v2)

and
A⊗B(v1 ⊗ v2) = A(v1)⊗B(v2).

The reader should reflect for a moment and convince himself that ⊗ serves
for the purpose of combining separate systems; it is to say functions in n real
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variables fk : (x1, . . . , xn) → C and m real variables gk : (y1, . . . , ym) → C
define functions in n+m real variables by means of

F =
∑
k

ak(fk ⊗ gk) : Rn+m → C : (x1, . . . , xn, y1 . . . , ym)→

∑
k

akfk(x1, . . . , xn)gk(y1, . . . , ym).

Here, one should not regard Rn+m as a vector space but as a set ; in the vector
space language, it holds that Rn+m = Rn⊕Rm. It is a result from real analysis
that F : Rn+m → C may be written as

∑
k ak(fk ⊗ gk); in other words, one has

a complex vector space of functions L2(Rn+m) which equals L2(Rn)⊗L2(Rm).

One now makes the following exercises: be A : V → V and B : W → W
operators on finite dimensional vector spaces; show that

Tr(A⊕B) = Tr(A) + Tr(B), Tr(A⊗B) = Tr(A)Tr(B)

and
det(A⊕B) = det(A)det(B), det(A⊗B) = det(A)mdet(B)n

where n = dim(V ) and m = dim(W ). In case V,W constitute moreover Hilbert
spaces; show that

(A⊕B)H = AH ⊕BH , (A⊗B)H = AH ⊗BH .

Prove that the operations ⊕,⊗ are associative with {0},C as identity element
respectively; denote with ⊗F the mapping on the space of Hilbert spaces defined
by ⊗F (H) = H⊗F . Construct a iF such that iF ◦ (⊗F ) = id where id is given
by the identity transformation. Show that ⊗F is not surjective unless F = C
which shows that there does not exist any pF obeying (⊗F ) ◦ pF = id. Make
a similar construction for ⊕F and notify that nor ⊕,⊗ are commutative. Here,
we have found an example of a mapping, derived from an operation, with a left
but no right inverse. Introduce now the concept of an anti-Hilbert space F⊗ as
a formal right inverse for F ; it is to say that

F ⊗ F⊗ = C.

In that case iF equals ⊗F⊗ on the image of ⊗F . This procedure is entirely
analogous to taking negative integers or fractions starting from the natural
numbers. Do the same for ⊕ and reflect further hereupon. More in particular,
denote with ai bosonic annihilation operators defined by

aia
†
j − a

†
jai = δij1

and posit that

F ≡ {v =

∞∑
i=1

λiai|〈0|vv†|0〉 <∞with scalar product 〈v|w〉 = 〈0|wv†|0〉}
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where |0〉 constitutes the so called Fock vacuum defined by ai|0〉 = 0. F⊗ equals
then for example

{v = λja†j |with as scalar product 〈v|w〉 = 〈0|v†w|0〉}

such that
v ∈ F ⊗ F⊗

is given by
∑
i λiµjaia

†
j . The scalar product is given by∑

i

|λi|2|µj |2〈0|aja†iaia
†
j |0〉

which equals |λj |2|µj |2. Therefore, all modes in F with i 6= j are killed such
that the positive norm requirement is restored. These phantoms need to be
eliminated with the purpose of retaining a one dimensional space.

Remark that this non-commutative “product” also appeared in set theory by
means of ×. More precisely, given a set A, an anti-set obeys

A×A× = {1}

where the last one is a set with one element 1 and henceforth serves as the
identity element for ×. To represent an anti-set in the set like fashion; denote
that if A = {x|x ∈ A} and A× = {ω?A} where ωA : A → {1} is the constant
mapping onto 1 and ? is the associated duality relation, then

A× {ω?A} = ωA(A) = {1}.

Later on, the reader shall deepen his understanding of the fact that Hilbert
spaces are employed in physics to describe separated entities such as elementary
particles whereas the concept of an anti-Hilbert space can be used to describe
particle collisions to create novel types of particles. To collide or not to collide
could be mere approximations due to the point description of a particle and the
reader is invited, as an exercise of collosal difficulty, to search for a concept of
touching.

With this knowledge at hand, it becomes possible to solve standard problems
from flat geometry; very strong results are possible here which do not hold in
general due to topological as well as metrical complications. The magic of flat
geometry is entirely hidden into the vector space structure. For example, on
the surface of a ball, any two straight lines, defined as the intersection of the
spherical surface with a two dimensional plane containing the barycenter of the
sphere, intersect at a length of pi times the radius. In the two dimensional plane
on the other hand, there exists a preferential class of parallel lines defined by the
property that they do not intersect. In the three dimensional Euclidean space,
we call a two dimensional space a plane, a one dimensional a line and a zero
dimensional one a point. In Euclidean space, there is only one zero dimensional
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subspace constituting the neutral element for the addition, denoted by {0},
also called the origin. A straight line or geodesic is parametrized as follows
r = {λ.v + a|λ ∈ R, v, a ∈ R3} and a plane as vl = {λ.v + µ.w + a|λ, µ ∈
R, v, w, a ∈ R3} where the free vectors v, w can be chosen to be orthonormal.
A straight line can always be written as the intersection of two planes and a
plane is completely determined by means of a point and a perpendicular vector.
To understand this at a higher level, we introduce the totally anti-symmetrical

symbol εijk where ε123 = 1 and εijk = sign

(
1 2 3
i j k

)
which is merely a

convenient notation for the sign of a permutation mapping 1 to i, 2 to j and 3
to k. Henceforth, in this notation,

det(A) = εijkA
1
iA

2
jA

3
k

for a 3 × 3 matrix A. Here i, j, k constitute indices with respect to vectors
belonging to an orthonormal basis and therefore, the ε symbol has a geometrical
significance. Indeed, δikεklmv

lwm = (v × w)i is a vector which is orthogonal to
v, w (use the anti-symmetry for that) and δkl is the inverse of the δij symbol.
It is to say that

δikδkj = δij , δikδ
kj = δij .

The square length

(v × w)2 = εlmnδ
liεijkv

mvjwnwk = (δmjδnk − δmkδnj)vmvjwnwk

which equals
v2w2 − (〈v|w〉)2

and this has the geometrical significance of the surface squared of the parallelipid
spanned by the vectors v, w. Henceforth, we have construed a unit vector

n =
v × w
||v × w||

perpendicular to the two dimensional subspace spanned by v, w equipped with
an orientation such that v rotates right handedly into w. The plane

vl = {λ.v + µ.w + a|λ, µ ∈ R, v, w, a ∈ R3}

then consists precisely out of the points x satisfying the equation

〈n|x− a〉 = 0

which is a linear system in x. In this case x = (x1, x2, x3) satisfies an equation
of the form

n1(x1 − a1) + n2(x2 − a2) + n3(x3 − a3) = 0.

Determine the vector perpendicular to the plane determined by 2x−3y+z−12 =
0 and compute the point which is the closest to the origin.

Other important equations are given by the so called quadratic equations with
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as an important example, the n sphere. The latter is defined as the set of all
points x located at a fixed distance r from the point a. The corresponding
equation is given by

||x− a||2 = r2

which reduces in three dimensions to

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 = r2.

In exactly the same way, the equation of a circle embedded in R2 is provided by

(x− a)2 + (y − b)2 = r2.

Show in two different ways that the intersection of the two sphere with a plane
in three spatial dimensions is either empty, a point or a circle. Prove that
the same result holds for the intersection of two spheres. These properties
are not valid any longer for so called curved geometries which we shall study
later on. In a similar vein, we shall study the concept of a triangle as well
as some theorems regarding properties of them in general curved geometries
for which the flat case is of special symmetric nature. Due to the symmetry,
extremely sophisticated results exist in flat geometry: old books will serve the
reader well who is willing to study those. I am however of the opinion that at
this point it is much more important to understand the general setup which
reveals the “true” inner workings of general geometry. This is indeed much
more gratifying than becoming a specialist in studying linear and quadratic
equations, an art which can be further generalized, in an intermediate step
towards analytic geometry, provided by algebraic geometry. We now elaborate
further on simplicial geometry which is so called piecewise flat. Show that the
number of simplices a(n) in which an n dimensional cube can be partitioned
equals n!. A simple proof consists in showing that the volume of an n simplex
is given by 1

n! ; indeed, the volume of a n dimensional simplex with length r is
given by b(n)rn. Henceforth,

b(n+ 1) = b(n)

∫ 1

0

drrn =
b(n)

n+ 1

which proves by iteration that b(n) = 1
n! .

This wraps up our discussion about Hilbert spaces; we now return to an elab-
oration on the theory of linear operators as well as delicate topologies defined
on such algebra’s. This subject is of extreme importance regarding the old op-
erational formulation of quantum mechanics construed by Heisenberg, Jordan
and associated gangsters such as Von Neumann. First, we study two distinct
topologies on general Hilbert spaces H prior to engaging into further discussion
of the space of linear operators. On H, we did study the norm topology and
one proves now the vericacity of the following two statements:

• A set in a finite dimensional Hilbert space is compact in the norm topology
if and only if it is closed and bounded; hence, the reader must prove the
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reverse of the more general result in metrical spaces that a compact space
is closed and bounded.

• In an infinite dimensional Hilbert space with countable basis (en)n∈N we
have that the unit sphere is no longer compact in the norm topology. Hint:
argue briefly that the sequence (en)n∈N has no convergent subsequence.

We now arrive at a weaker topology having all advantages of the finite dimen-
sional norm topology and which coincides with the latter in the finite dimen-
sional case. It is clear that the norm topology is too strong in infinite dimensions
and we require a weaker one spanned by linear functionals ω, defined as map-
pings from H to C, a one dimensional lens through which one perceives the
Hilbert space. The space of linear functionals constitutes a vector space called
the algebraic dual; we are merely interested in those functionals which are con-
tinuous in the norm topology. Such functionals constitute again a vector space
called the topological dual H?. Show that for a finite dimensional Hilbert space,
the topological and algebraic dual coincide. An important characterization of
continuous functionals is that they are bounded, meaning that

|ω(v)| ≤ C||v||

for a certain C > 0; reversely, it is clear that any bounded linear functional is
continuous in the norm topology. We shall give a proof of the former statement:
assume that the functional is not bounded, then our task is to show that it
is not continuous either. More in particular, there exists a sequence of unit
norm vectors vn such that ω(vn) → ∞ in the limit for n to ∞. By taking
a subsequence, we may assume that ω(vn) > n2 and the sequence of vectors

wk =
∑k
n=0

1
n2 vn converges to w =

∑∞
n=0

1
n2 vn of finite norm (show that the

sequence
∑
n>0

1
n2 converges) whereas k < ω(wk) → ∞ in contradiction to

continuity.

Because a continuous linear functional provides one with a one dimensional view
upon Hilbert space, it has to coincide with a projection on a vector v. It is to
say that

ω(w) = 〈v|w〉

with ||v|| < ∞ and the reader is encouraged to provide for a formal proof of
this theorem. This viewpoint is evident from the geometrical view given that ω
is completely determined by means of its nucleus W = {w|ω(w) = 0} as well as
the action upon its normal vector v

||v|| . This motivates the following definition,

the sets
Oε;v1,...,vn(w) = {w′| |〈w − w′|vi〉| < ε for i = 1 . . . n}

constitute open neighborhoods of w in dimensions determined by vj and con-
stitute a basis for the weak or ?-topology.

Open neighborhoods of w in the weak topology control henceforth the modulus
of the projection of the difference vector w−w′ on a finite dimensional subspace
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and leave the components perpendicular to it invariant. Given that the norm
topology controls all dimensions, it is therefore stronger as the weak one is; in
particular, every open set in the weak topology is open in the strong one, a
result which follows from the Cauchy Schwartz inequality

|〈w − w′|vi〉| ≤ ||w − w′||||vi||.

It is henceforth obvious that the same results hold in the weak topology for
all Hilbert spaces and that those coincide with the norm topology in the finite
dimensional case. In particular, it holds that a set is compact in any Hilbert
space if and only if it is bounded in norm and closed in the weak topology.
Show that in case a set is bounded in the norm that it is closed in the weak
topology if and only if it is so in the norm topology. This is obvious given that
boundedness controls an infinite number of dimensions leaving one with a finite
number and those are controlled by means of the weak topology. Henceforth,
the unit sphere is closed and compact in the weak topology but merely closed
in the norm topology a result known as the Hahn Banach theorem. The reverse
is also true, a set which is compact in the weak topology is always bounded in
norm. We leave the proofs of these statements as challenging exercises for the
reader.

We shall now deal with topologies on spaces of linear mappings A : H → H
as well as prove some important theorems regarding operators having a spe-
cial geometrical significance such as the unitary operators out of the previous
chapter. In particular, we are interested in situations where one disposes of an
orthonormal basis of eigenvectors as well as some limitations on the eigenvalues.
One disposes of plenty of topologies on specific classes of operators all of which
are equivalent in a finite number of dimensions. We start with the supremum
norm topology:

||A||sup = sup
||v||=1

||Av||.

In case the latter is finite, we call the operator A bounded (which is again
equivalent to continuous) and the entire edifice of bounded operators is poured
into the framework of so called C?-algebra’s. This theory is an abstraction of
the concrete situation delineated below and we are not going to pay too much
attention to this given that the operators useful in physics are of an unbounded
nature. To deal with those devilish objects, we require weaker topologies to
probe them, called the strong and weak ? topologies to name two of them. The
first one is defined by means of the open sets

Oε;v1,...vn(A) = {B| ||(B −A)vk|| < ε for k = 1 . . . n}

whereas the latter is defined by means of

Oε;v1,...vn,w1,...,wn(A) = {B| |〈(B −A)vk|wk〉| < ε for k = 1 . . . n}.
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One shows that both topologies satisfy the Hausdorff property and that the
weak-? topology is weaker as the strong one.

We first introduce some important notions regarding linear operators on Hilbert
spaces. The reader may suspect that some subtleties arise which have to do with
infinity and were not present in a finite number of dimensions. For example,
operators A do have a domain D ⊂ H, which we assume to be dense in the
norm topology, on which A is well defined. The adjoint operator A† of A is
then retrieved by means of the following procedure. Consider a subspace D? of
vectors v such that

|〈v|Aw〉| < C(v)||w||

for all w ∈ D. Then, we have that the functional w → 〈v|Aw〉 has a unique
continuous extension to H due to the density of D. We obtain the existence of
a vector z such that

〈v|Aw〉 = 〈z|w〉

and we define A†v = z and subsequently it easily follows that A† is a linear
operator. Henceforth, the domain of A† is given by D?. Next cases are of
extreme importance:

• A = A† and D = D? in which case the operator is self adjoint,

• AA† = A†A and D = D? in which case the operator is normal,

• UU† = U†U = 1 and D = D? = H in which case the operator is unitary,

• P 2 = P = P † and D = D? = H in which case the operator constitutes a
Hermitian projection.

One verifies that in the finite dimensional case it holds that A† = AH and
moreover, unitary operators constitute generalizations of U(n). Determine the
domain of the operator defined by Aen = nen for n ∈ N where em constitutes an
orthonormal basis and show that it is dense in H; prove that D ⊆ D? and that
A = A† on D. We progress now towards the proof of two different theorems:
the first one concerns the extension of a special class of operators to Hermitian
ones, where the extension of an operator is a new one with a larger domain
coinciding with the old operator on its domain. A second result reveals that a
normal operator can be decomposed into sums of scalar multiples of Hermitian
projection operators in the weak-? topology.

The importance of the first theorem resides in the second one; this one states
that in the finite dimensional case any normal matrix can be diagonalized with
respect to an orthonormal basis of eigenvectors. This last aspect is of primary
importance to have a probability interpretation such as is the case in quantum
theory. Show, by means of exercise, that in a finite number of dimensions
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Hermitian operators have only real eigenvalues whereas unitary operators have
eigenvalues located on the unit circle in the complex plane. Finally, normal
operators can have any complex eigenvalue whatsoever. As said before, one
has a connection between unitary and self adjoint operators and in that vein
it is easier to deal with the problem of unitary extensions of so called partial
isometries V with as domainD which is not necessarily dense. A partial isometry
is defined by means of the property that

〈V (v)|V (w)〉 = 〈v|w〉

for all v, w ∈ D. By means of continuity, we can extend V to the closure D of D
resulting in a unitary mapping between D and Im(V ) where Im(V ) = {V w|w ∈
D} constitutes the image of V . It must be clear to the reader that only in case
the orthogonal complements

D⊥ = {w|〈w|v〉 = 0 ∀v ∈ D}

and
(Im(V ))⊥

have identical dimension that we are in position to extend V to a unitary op-

erator U by means of W : D⊥ → (Im(V ))⊥ where U = V ⊕W : H → H. The
reader notices that given a subspace W , W⊥ is closed in the weak and therefore
also norm topology; the sub space W⊥⊥ := (W⊥)⊥ is moreover equal to the
weak closure of W .

One notices therefore that a partial isometry has many unitary extensions in case
the dimensions of the orthogonal complements are the same or none whatsoever
in case this is not true. Now, we return to the mapping connecting Hermitian to
unitary operators; Von Neumann knew the so called Cayley transform between
Hermitian and unitary operators in finite dimensional Hilbert spaces. A self
adjoint operator A is mapped to

U = (A− i1)(A+ i1)−1

where (A±i1) is invertible in a finite number of dimensions given that Av = ∓iv
which has no solution. One understands this by means of observing that

∓i||v||2 = 〈v|Av〉 = 〈Av|v〉 = ±i||v||2

implying that v = 0. Moreover, (A + i1) commutes with (A − i1) leading to
unitarity of U as is confirmed by means of a small computation. Von Neumann
wondered which conditions A should obey such that U is a partial isometry. In
such a case, an extension can be made towards a unitary operator defining a
Hermitian one by means of the inverse Cayley transformation:

A = −i(U + 1)(U − 1)−1.
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The operator A ± i1 has to be injective so that it becomes possible to take an
inverse which suggests that the conditions D ⊆ D? and A = A† on D have to
be obeyed which is coined by the term of a symmetric operator. In the infinite
dimensional case, it is not necessarily so that A ± i1 is surjective. The Cayley
transform is henceforth a linear mapping

U : Im(A+ i1)→ Im(A− i1)

and we have to prove three things : (a) verify that U constitutes a partial
isometry (b) close the operator Im(A± i1) and finally (c) verify wether Im(A+
i1)⊥ and Im(A− i1)⊥ have the same dimension. Regarding (a) one notices that

〈U(A+i1)v|U(A+i1)w〉 = 〈(A−i1)v|(A−i1)w〉 = 〈Av|Aw〉+i〈v|Aw〉−i〈Av|w〉+〈v|w〉

and this last expression equals, using the symmetry of A,

〈Av|Aw〉+ 〈v|w〉 = 〈(A+ i1)v|(A+ i1)w〉

for all v, w ∈ D. In the standard literature, one closes the operator A prior to
taking the Cayley transformation although this is not mandatory; U extends
trivially to an operator

U : Im(A+ i1)→ Im(A− i1)

and one requires (c) to extend U to a unitary operator on H. This last condition
may be formulated as

Im(A± i1)⊥ = Ker(A† ∓ i1).

Indeed,
〈w|(A± i1)v〉 = 0

for all v ∈ D is equivalent to w ∈ D? and

〈(A† ∓ i1)w|v〉 = 0.

The latter is true if and only if (A† ∓ i1)w = 0 because D is dense in H; by
definition it holds that Ker(B) = {w|Bw = 0} which produces the right result.

We have just shown our first deep result: symmetric, densly defined opera-
tors have self adjoint extensions if and only if the dimensions of the subspaces
Ker(A† ∓ i1) are equal to one and another. Now we work towards our second
main result regarding normal operators A with as special cases Hermitian and
unitary operators. That is, there exists a projection valued measure dP (z) on
the complex plane such that in the weak ? topology holds that

A =

∫
C
z dP (z).

We first encounter here an integral, something which we shall study in full
detail in the next chapter; subsequently we shall merely touch upon the most
fundamental definitions. Suppose one would like to achieve such a result, then it
is logical that the operator (A−z1) is not invertible in case dP (z) 6= 0; logically,
one has three possibilities:
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• (A − z1) is not injective, nor surjective; in such a case z belongs to the
discrete spectre,

• (A − z1) is not injective, but surjective; in such a case z belongs to the
residual spectre,

• (A − z1) is injective, but not surjective; in such a case z belongs to the
continuous spectre.

Regarding normal operators, the reader may first show that the residual spectre
is empty. Note that if A is normal, then Az = A − z1 obeys this property
too; moreover, A is injective if and only if A† is also which is equivalent to the
statement that Av = 0 if and only if A†v = 0. Mind that surjectivity of A does
not imply surjectivity of A†. Suppose that z belongs to the residual spectre
then we have that

〈v|Azw〉 = 0

for all w implies that v = 0 due to surjectivity of Az. This implies that
Ker(A†z) = Ker(Az) = 0 which is the necessary contradiction. Henceforth, we
have shown that the residual spectre is empty. In case z belongs to the discrete
spectre, one can find a unique Hermitian projection operator Pz on Ker(Az).
Pz commutes with A, APz = PzA = zPz because 〈v|APzw〉 = z〈v|Pzw〉 =
〈zPzv|w〉 = 〈A†Pzv|w〉 = 〈v|PzAw〉 and the same commutation relations hold
between A† and Pz given that the projector is Hermitian. Moreover, suppose
that z 6= z′ and both belong to the discrete spectre, then it holds that PzPz′ = 0
which follows from

zPzPz′ = APzP
′
z = z′PzPz′ .

This strongly resembles the result we wish to obtain in the sense that on infinite
dimensional Hilbert spaces, the discrete spectre consists at most out of a count-
able number of points. We procure an example of a bounded linear operator
with a compact spectre (which one can show to be always the case). Given
that Aen = 1

nen for n > 0 and em an orthonormal basis: the discrete spectre
is given by { 1

n |n ∈ N0} and 0 belongs to the continuous spectre given that the
vector

∑∞
n=1

1
nen does not belong to the image of A. Henceforth, the continuous

spectre may have “measure zero” and henceforth not contribute to the spectral
decomposition.

The continuous spectre is clearly void for normal operators on finite dimensional
Hilbert spaces and the reader shows as an easy exercise that

A =
∑

z∈σd(A)

zPz

where
∑
z∈σd(A) Pz = 1 and σd(A) denotes the spectre consisting entirely out

of discrete eigenvalues. One should get used to the following notation: given a
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unit vector v, define by means of the expression

P = vv†

the operator with as action Pw = v〈v|w〉. Prove that P is a rank one Hermitian
projection operator with property AP = zP and in particular Av = zv imply-
ing that v is an eigenvector. The entire complexity of the theorem regarding
the infinitesimal aspect having to do with the integral resides entirely in the
treatment of the continuous spectre in an infinite number of dimensions. We
shall not present the matter here at the fullest level of generality because this
brings along some technical complications muddling with the main line of argu-
mentation. Note that in the finite dimensional case, we did use the fundamental
theorem of complex algebra, namely that every polynomial defined over C can
be factorized.

In case z belongs to the continuous spectre, then we have in particular that the
image of the unit sphere under Az does not contain an open neighborhood of
the origin. Otherwise, we have the property that Az is surjective: henceforth,
there exists a sequence of unit vectors vn such that

||Azvn|| → 0

in the limit for n towards∞. Therefore, elements in the continuous spectre con-
tain approximate eigenvectors. Henceforth, Im(Az)

⊥ vanishes due to injectivity
of Az implying that Im(Az) is dense in H. It holds moreover that for z 6= z′,

lim
n,m→∞

〈vn|wm〉 = 0

where (vn)n∈N corresponds to Az and (wn)n∈N with Az′ giving a generalization
of the standard orthogonality property for Hermitian projection operators as-
sociated to discrete eigenvalues.

Finally, we deal with the construction of the spectral measure: given the mea-
surable set O ⊆ C, one defines PO as the smallest Hermitian projection operator
having the property that for each z ∈ σ(A)∩O and sequence of approximating
eigenvectors (vn)n∈N associated to z, then it holds that ||PO(vn) − vn|| → 0 in
the limit for n→∞. A measurable Borel set is defined by means of:

• every open set can be measured,

• the complement of a measurable set is measurable,

• any union of measurable sets can be measured.

We postpone the delicate aspects of measure theory to the next chapter and
now proceed with the closure of the proof. It may be clear that

POPV = PO∩V
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and the diligent reader delivers a proof. Given a countable partition (Bn)n∈N
of C by means of measurable sets1 we consider

A(Bn)n∈N =

∞∑
n=0

znPBn

where zn ∈ Bn. The integral is then defined by means of refining the partition
and the remainder exercise consists in showing that the sum converges in the
weak-? topology towards the integral as well as A. The first assertion is true by
definition whereas the latter follows from prudent estimates.

This extremely important theorem, known as the spectral theorem, allows one
to define measurable functions f : C→ C replacing the complex variable by the
normal operator A. We have that

f(A) :=

∫
C
f(z)dP (z)

where we have used the spectral decomposition

A =

∫
C
zdP (z).

There exist two important generalizations of this theorem: the first one consists
in replacing the complex numbers by means of the quaternions RQ and to
consider quaternion bi-modules with a quaternion valued scalar product. A
second generalization consists in dropping the condition

〈v|v〉 ≥ 0

and to allow for this quantity to become negative. This kind of generalization is
much more subtle and requires amongst others the introduction of conjugated
null pairs. These comments wrap up our discussion about linear spaces and
functions; as usual, there is much more beef into the cow as made explicit above
but these constitute the main results indeed. In the next chapter, we study
non-linear function theory as well as geometry and cosmology. The reader is
now invited to make some exercises.

Exercises on Von Neumann extensions of linear operators.

Consider the operator i ddθ on the space of differentiable functions on the unit
circle S1 with circumference 2π. Show that this operator is essentially self
adjoint and densely defined on the Hilbert space of square integrable functions
on the circle. Consequently, this operator has a unique Von Neumann extension.
As an additional exercise, prove that[

i
d

dθ
, θ

]
= i((2π − 1)δ(θ) + 1)

1A partition satisfies the property that Bn ∩Bm = ∅ for n 6= m as well as ∪∞
n=0Bn = C.
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where δ(θ) is defined by means of∫
dθ δ(θ)f(θ) = f(0)

for any continuous function f on the unit circle.

Perform now the same study for i ddx defined on complex valued functions with
as domain [a, b] by imposing boundary conditions f(a) = f(b) = 0. Show that
the operator on this function domain D is symmetrical and determine the ad-
joint domain D? (differentiable functions on the line segment without boundary
conditions). The closure of i ddx requires some weaker boundary conditions. To

calculate those, note that the kernels of the operators d
dx ± 1 are provided by

a∓Ne
∓x where a∓N is a suitable normalization constant. One obtains therefore

a one parameter group of unitary operators

U(θ) : a−Ne
−x → eiθa+Ne

x

providing for a one parameter family of Von Neumann extensions.

Delta-Dirac distributions.
Let x ∈ R be a real variable and f : R → C a continuous function, then we
define a distribution δ(x) by means of∫

R
δ(x)f(x)dx = f(0).

The integral representation of δ̂ constitutes a linear functional on the complex
vectors space of complex valued functions f : R→ C provided by

δ̂(f) = f(0).

The latter is a weak limit of a sequence of continuous functionals construed by
means of

gn := nχ[− 1
2n ,

1
2n ]

where
χA(x) = 1

if and only if x ∈ A and zero otherwise. More precisely

δ̂(f) = lim
n→∞

∫
R
gn(x)f(x) :=

∫
R
δ(x)f(x)

whereby this last notation constitutes a formal representation. Likewise, one
may define δ̂z by means of

∫
R δ(x− z)f(x) = f(z). Prove that∫

R
δ(x− z)δ(x− y)dx = δ(y − z)
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by insisting on∫
R
dz

∫
R
δ(x− z)δ(x− y)dxf(z) =

∫
R
dxδ(x− y)

∫
R
δ(x− z)f(z)dz

for any continuous function f(z). Let f, g be two continuous functions from R
onto C differing from zero only on a compact set such that

〈f |g〉 =

∫
R
f(x)g(x)dx

is well defined. Show that the latter expression provides for a scalar product and
define L2(R, dx) as the Hilbert space defined by means of this scalar product by
taking the completion. Define subsequently the following linear operator X(f)
by means of

(X(f))(x) = xf(x).

Show that the latter is densely defined, essentially self adjoint (vanishing de-
ficiency indices) and that the spectre is continuous and equals the entire R.
Finally, the projective measure P is given by means of

P ((a, b)) = χ(a,b)

as well as
(dP (z)f)(x) = δ(x− z)f(z)dz

such that finally

(X(f))(x) =

∫
R
zδ(x− z)f(z)dz = xf(x).

Heisenberg equations.

In the traditional operational formulation of quantum theory, one has the so
called Heisenberg pair (X,P ), modelled by means of Hermitian operators on an
infinite dimensional Hilbert space

[P,X] = i1.

Herein, one considers the so called Schroedinger representation on L2(R, dx)
where X has been defined previously and

P = i
d

dx
.

In chapter ten, we will explicitly verify that the spectrum of P is given by R
and that the so called distributional eigenvectors are provided by e−ikx. The
latter define the so called Fourier transformation.
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Chapter 8

Higher dimensional
analysis.

In this chapter, we study special functions g : Rn → Rm; in particular, we define
the differential Dg, vectorfields, dual fields, general tensor fields, the exterior
derivative as well as general integration theory. All these issues may be gener-
alized towards the infinite dimensional context where one defines the so called
Fréchet derivative, but we shall avoid these intricacies associated to inequivalent
topologies. It is of extreme importance to have a solid grasp upon tensor calcu-
lus in terms of index manipulation as well as to have a deep understanding of the
geometrical significance of algebraic relationships. The degree of sophistication
of the calculus, in particular the Lie bracket, is entirely due to the structural
properties of the space Rn. We shall return to this issue in chapter fifteen when
we revise the status of the torsion tensor; in general spaces, the notion of torsion
is interchangeable with the one of a “deformed” Lie bracket where the latter
has to be seen as a kind of vector space calibration given that it has the same
symmetries as the torsion tensor, although it is no tensor, and moreover satisfies
the Jacobi identity which is not the case for general torsion tensors. In what
follows, the norm we shall employ is poured into standard form associated to
the standard scalar product. The coordinates in Rm associated to an orthonor-
mal basis may be noted by x′µ, x′ν where those regarding an orthonormal basis
in Rn are denoted by xα, xβ . Given g : Rn → Rm, the notation gµ(xα) has
a unique meaning and we commence by defining partial derivatives ∂α = ∂

∂xα .
These are fixed by the condition that

lim
h→0

||f(x+ heα)− f(x)− ∂αf(x)h||
h

= 0

where h is a real number. In case n = m = 1 one disposes merely of one partial
derivative called the derivative; show that

• ∂xxn = nxn−1 for n ≥ 1,

• ∂xc = 0 for a constant c,
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• ∂xym = 0 for another variable y.

Prove now that in case all partial derivatives exist in a point x, then f is contin-
uous in that point. More in general, the function f : Rn → Rm is differentiable
if and only if there exists a unique linear mapping Df(x) : Rn → Rm such that
it holds

lim
||h||→0

||f(x+ h)− f(x)−Df(x)h||
||h||

= 0

for a nonzero h ∈ Rn. It is child’s play to show that Df(x) = ∂αf(x)dxα where
dxα(h) = hα and consequently all partial derivatives do exist in x in case the
derivative does. The reverse is not necessarily true: consider for example any
continuous function in two variables with as restrictions f(x, 0) = x2, f(0, y) =
y2 and f(x, x) = |x| for x, y sufficiently close to zero. Then all partial derivatives
do exist in zero (with value zero) but not so for the total derivative as the reader
may easily verify by probing the (1, 1) direction. In case all partial derivatives
exist in a neighborhood of a point x and are moreover continuous in x, then the
derivative of the function exists in x. Try to deliver this proof for yourself.

Given that partial derivatives constitute so called Leibniz operators on functions
f : Rn → Rm, a natural step consists in studying the commutativity properties.
The following result holds: in case all second order derivatives ∂α∂βf exist and
are continuous then it holds that

∂α∂βf = ∂β∂αf.

We leave an easy proof of this statement to the discretion of the reader. One
knows now that the matrix

Hα
β (x) = δαγ∂γ∂βf(x)

is symmetric for good functions and therefore one has a spectre of real eigenval-
ues. Define now ∆(x) as the number of positive minus the number of negative
eigenvalues of Hα

β (x), the so called deficiency index of the Hessian and call a
point x critical in case ∂αf(x) = 0 for all α. Critical point and their deficiency
indices play an important part and carry topological information as has been
revealed by Brouwer and Morse. Finally, one shows that the following rules hold

• ∂α(f ⊗ g)(x) = (∂αf)⊗ g(x) + f ⊗ (∂αg)(x),

• ∂α(af + bg)(x) = a∂αf(x) + b∂αg(x),

• ∂α(f(g(x))) = ∂gβ(x)f(g(x))∂αg
β(x).

The first identity is known as the Leibniz rule, the second one expresses linearity
whereas the third follows from the previous two.

We now study differentiable generalizations of topological homeomorphisms:
g : O ⊆ Rn → V ⊆ Rn is called a Cn diffeomorphism for n ∈ N0 if and only
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if g is a homeomorphism and for each k ≤ n the derivatives Dkg as well as
Dkg−1 exist. In the sequel, we chiefly study C2 or C∞ diffeomorphisms but
exceptional circumstances may occur. It is natural to consider the mapping
f ◦ g : O ⊆ Rn → Rm whose notation can be abbreviated to

fµ(gβ(xα))

and the task at hand is to take xα derivatives keeping in mind that x′β(xα) :=
gβ(xα). We already know that

∂αf(x′β(xγ)) = ∂′δf(x′β(xα))∂αx
′δ(xγ)

using Einstein summation in the δ indices. Often, this rule translates as

∂α =
∂x′β

∂xα
∂′β

leading to the formula
∂x′β

∂xα
∂xα

∂x′γ
= δβγ

and likewise so for xα, x′β exchanged. δβγ is a so called (1, 1) tensor defined by

means of δβγ = 1 if α = γ and 0 otherwise. At the vector space level, it is
possible to identify eα with ∂α such that basis vectors acquire an operational
significance. Insisting upon

dxα(∂β) = δαβ

to hold, one derives that dxα has a status in (Rn)? the topological dual of Rn.
Application of a diffeomorphism results in

dx′α =
∂x′α

∂xβ
dxβ

which is normal given that
dx′α(∂′β) = δαβ

constitutes an invariant under local diffeomorphisms of Rn. We now define
vectorfields as differential operators

V(x) = V α(x)∂α

such that under a local diffeomorphism of Rn the following transformation law
holds

V′(x′) = V ′α(x′(x))∂′α = V α(x)∂α

implying that

V ′α(x′(x))
∂xβ

∂x′α
= V β(x).

Likewise, we define dual fields

ω = ωαdx
α
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transforming as

ω′α
∂x′α

∂xβ
= ωβ .

The vectorfields V,W constitute a Lie-algebra with defining property

[V,W] = VW−WV =
(
V α∂αW

β −Wα∂αV
β
)
∂β

which transforms as a vectorfield. We are now in a position to define tensor
products of vectorfields and one forms where we put all vectors to the left and
all one forms to the right. This leads to mathematical objects such as

Tα1...αr
β1...βs

(x)∂α1 ⊗ . . .⊗ ∂αr ⊗ dxβ1 ⊗ . . .⊗ dxβs

with as transformation law

T ′α1...αr
β1...βs

(x′) =
∂x′α1

∂xγ1
. . .

∂x′αr

∂xγr
∂xδ1

∂x′β1
. . .

∂xδs

∂x′βs
T γ1...γrδ1...δs

(x).

This object is called an (r, s) tensor with r contravariant and s covariant indices.

In the definition of a determinant of a matrix we encountered the procedure of
anti-symmetrization and associated this with the correct fashion to compute vol-
umes of parallelipids. We proceed now by defining lower order “determinants”
having a corresponding significance for lower dimensional surfaces by using this
same procedure again. Especially, we define the “wedge” product of one forms
dxα, the latter has the properties of associativity and is anti-symmetric as well

dxα ∧ dxβ = −dxβ ∧ dxα

and finally dxα1 ∧dxα2 ∧ . . .∧dxαk defines a (0, k) covariant tensor. From these
definitions, it is clear that

dxα1 ∧ dxα2 ∧ . . . ∧ dxαk =
1

k!

∑
ρ∈Sk

sign(ρ)dxαρ(1) ⊗ . . .⊗ dxαρ(k)

and given that the dimension of Rn equals n, we have that the space of k-forms

is associated to the number

(
n
k

)
= n!

(n−k)!k! . Given a function f : Rn → R

we define the exterior derivative

df = ∂αfdx
α

which clearly constitutes a coordinate invariant. Regarding a k form

A = Aµ1...µkdx
µ1 ∧ . . . ∧ dxµk

one has the definition

dA = ∂µAµ1...µkdx
µ ∧ dxµ1 ∧ . . . ∧ dxµk
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an expression which is invariant under coordinate transformations given that
second partial derivatives are symmetric, an expression which vanishes by means
of the anti-symmetric ∧-product. Consequently, the entire expression behaves
as a total anti-symmetric (0, k + 1) tensor. Note that the boundary operator ∂
in simplicial homology and the exterior derivative both satisfy

d2 = 0 = ∂2

which can easily be verified by the reader. Henceforth, d allows for the same
construction as ∂ resulting in a de-Rahm cohomology theory. One immediately
understands where this is leading to: if Ωk is a measure for k dimensional sur-
faces, then dΩk constitutes a measure for k+ 1 dimensional surfaces depending
only upon the k-dimensional boundary. This is precisely the content of the
Stokes theorem which we shall study later on at the level of Lebesgue integrals.
Stokes theorem can be proved however at a meta level in the following fashion:
given a duality relation 〈Ωk, Sk〉k between k-forms and k-surfaces satisfying

• 〈Ωk, Sk ∪ Tk〉k = 〈Ωk, Sk〉k + 〈Ωk, Tk〉k − 〈Ωk, Sk ∩ Tk〉k where Sk ∩ Tk is
put equal to ∅ in case it regards a lower dimensional surface,

• 〈Ωk, ∅〉k = 0 and 〈aΩk + bΩ′k, Sk〉k = a〈Ωk, Sk〉k + b〈Ω′k, Sk〉k,

• there exists a linear operator Dk mapping a k-form to a k + 1-form such
that 〈Ωk, ∂Sk+1〉k = 〈Dk(Ωk), Sk+1〉k+1.

The third condition is merely non-trivial to the extend that the domain of the
adjoint operator must be equal to the full measure space; the latter is ensured
in case

|〈Ωk, ∂Sk+1〉k − 〈DkΩk, Sk+1〉k+1| ≤M |〈Ωk, ∂Sk+1〉k|
k+2
k

for a certain M > 0, independent of Sk+1, in the limit for Sk+1 → ∅. This
condition is called the micro boundary condition. From the definition of Dk and
∂2 = 0 one can derive thatDk+1Dk = 0, and provided that d constitutes the only
covariant operator existent in differential geometry, it holds that Dk = ckd with
ck a real constant. Therefore, an adequate notion of an integral must satisfy the
micro boundary condition with Dk = d. As an aside, there exist many candidate
integral procedures which all coincide in the appropriate class of functions such
as the Riemann, Stieltjes and Lebesgue integral. The philosophy behind the
d operator is that it allows for a k-form to extend in the k + 1-dimensional
world in a way such that the k+1 volume only depends upon the k dimensional
boundary.

In the remainder of this chapter, we introduce the Lebesgue integral on a wide
class of functions encompassing the differentiable ones. We treat this subject
in the most general fashion for topological spaces X equipped with a Hausdorff
topology τ(X). We recall the reader that the Borel-Sigma algebra B(X) defined
by τ(X) is generated by the open sets A ∈ τ(X) by taking complements as well
as at most countable unions and intersections. Given B(X), we define a measure
µ by means of the properties
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• µ(A) ≥ 0 for all A ∈ B(X),

• µ(∪n∈N0
An) =

∑
n µ(An) if for all n 6= m holds that An ∩Am = ∅,

• µ(∅) = 0.

We say that the measure is non degenerate if µ(B) > 0 for each B ∈ τ(X);
therefore, open sets have a nonzero volume. The construction of the Lebesgue
integral is rather elaborate and depends upon rather strong convergence criteria
I have criticized in the past. A function f : X → R is measurable if and only
if f−1(C), with C ∈ B(R), belongs to B(X); hence, the inverse of a measurable
set is measurable. One shows that a continuous function is measurable by using
the construction that every measurable set can be construed out of open sets.
The Lebesgue construction employs a splitting of into a positive and negative
part f = f+−f− where f+ = max{f, 0} and f− = max{−f, 0} and the integral
for measurable, positive functions is given by:∫

f±(x)dµ(x) = sup
partitions (An)n∈N

∑
n

(
inf
x∈An

f±(x)

)
µ(An).

For a positive continuous function f : R → R+ one has that the integral has
the geometrical significance of the surface enclosed by the graph of f , the x-
axis as well as the vertical line segments through the initial and final points if
those are relevant. This surface is computed by subdivision of the x-axis into
small intervals and by multiplication of the infimum of the function over this
interval with the length of it. Finally, summation over all these products is taken
and the integral constitutes the upper limit of such sums by means of further
subdivision of those intervals such that the infimum increases. The connection
between k-forms Ωk = Ωµ1...µkdx

µ1 ∧ . . . ∧ dxµk and measures is then provided
by subdivision of an open set by means of k-dimensional little cubes v1 . . . vk
and write the expression

∫
Sk

Ωk as follows∑
cubes

Ωµ1...Ωµk
(x0)vµ1

1 . . . vµkk

where x0 is the corner of the cube on which the vectors vj act. Clearly, this
expression is invariant under coordinate transformations. Show now that the
following holds for differentiable one forms Ω1 = fdx :

•
∫

defines a duality between one forms and one dimensional simplicial
complexes satisfying three conditions (in particular the micro-boundary
condition); it holds that

∫
[a,b]

df = f(b)− f(a),

• the one dimensional version of Stokes theorem suggests that d and
∫

are
inverses; more detailed, show that dx

∫
[a,x]

f(s)ds = f(x)dx and therefore∫
constitutes the right inverse of d when limited to one forms; the kernel

of d equals all constant functions and henceforth
∫

is not a left inverse of
the Stokes operator,
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• from d(fg) = dfg+fdg it follows that
∫

[a,b]
(g(x)∂xf(x) + f(x)∂xg(x)) dx =

f(b)g(b)− f(a)g(a) known as the rule of partial integration.

The law of partial integration is very important regarding the calculation of
many one dimensional integrals. Apart from Stokes theorem, another impor-
tant property of integrals holds which is provided by invariance under action of
diffeomorphisms showing that the duality is intrinsic. We comment in a more
precise way about this issue in the chapter on differentiable geometry.

Lebesgue supposed that the associated limits over all partitions are finite and
posed that the integral of f is provided by the prescription∫

f(x)dµ(x) =

∫
f+(x)dµ(x)−

∫
f−(x)dµ(x).

The canonical extension towards complex functions is self evident and we sub-
sequently discuss two important theorems. The first one is Fubini’s theorem
which is often used while calculating integrals: let X,Y be two Hausdorff
topological spaces equipped with a Borel-sigma algebra B(X),B(Y ), define
B(X × Y ) starting from the product topology on X × Y generated by means
of opens squares A × B with A ∈ τ(X) and B ∈ τ(Y ). Clearly, it holds that
B(X) × B(Y ) ⊂ B(X × Y ) allowing for the construction of product measures
µ × ν. Let f : X × Y → C be a measurable function for which holds that
supy∈Y

∣∣∫
X
f(x, y)dµ(x)

∣∣ <∞ and supx∈X
∣∣∫
Y
f(x, y)dν(y)

∣∣ <∞ then it holds
that ∣∣∣∣∫

X×Y
f(x, y)d(µ× ν)(x, y)

∣∣∣∣ <∞
and moreover∫

X×Y
f(x, y)d(µ× ν)(x, y) =

∫
X

dµ(x)

(∫
Y

f(x, y)dν(y)

)

=

∫
Y

dν(y)

(∫
X

f(x, y)dµ(x)

)
.

Note that the uniform boundaries regarding the partial integration are necessary.
Consider the space R×R+

0 and the function f(x, y) = e−x
2y then it holds that∫

R
e−x

2ydx =

√
π

y

and ∫
R+

0

e−x
2y =

1

x2

which is not uniformly bounded. Then, one arrives at∫
R+

0

dy

(∫
R
e−x

2ydx

)
=∞ =

∫
R
dx

(∫
R+

0

e−x
2ydy

)
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where in the first integral the slow fallof of
√

π
y towards y = +∞ is responsible

for the divergence and likewise so for the pole on x = 0 for 1
x2 in the second

case.

The second theorem is Lebesgue’s dominated convergence theorem which goes
as follows: suppose that a sequence of measurable functions fn converging point
wise to a function f such that |fn| ≤ g for all n and g is integrable. Then it
holds that

lim
n→∞

∫
fndµ =

∫
fdµ

and
∣∣∫ fndµ∣∣ ≤ ∫ gdµ as well. The proofs of these theorems are rather boring

and easy; the interested reader may consult a good book on the matter. One
finally shows that the Lebesgue integral obeys the necessary duality conditions
in each dimension such that the adjoint of the boundary operator ∂ equals the
exterior derivative d.

Exercises compute some derivatives and integrals.

• compute
∫ 1

0
dx
∫ 1

0
dy sin2(π(x+ y)),

• compute ∂x∂y sin(xy + y2),

• compute all solutions of (∂2
x − ∂2

y)f(x, y) = 0,

• compute
∫ x

1
1

y2+aydy.
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Chapter 9

Complex analysis.

Complex analysis regards function theory in a single complex variable; this
theory has stronger results as the one of a function in one real variable due
to very special properties of the complex plane. Indeed, the latter has closed
curves which do not self intersect, a topological property which reflects itself in
the analysis. This has non-local consequences starting from local considerations
and we shall just see how this arises by making use of Stokes theorem. This
is the magic of the number i when considering the basic variable z = x + iy.
As usual, one can perceive z as a composition of two real variables x, y which
suggests the use of the pair of complementary variables z, z. From the point of
view of partial differential operators, this gives

∂

∂z
=

1

2
(∂x − i∂y) ,

∂

∂z
=

1

2
(∂x + i∂y)

with as properties
∂

∂z
z = 1,

∂

∂z
z = 0

and reversely when switching z by z. Henceforth, a function in one complex
variable z, f(z) obeys the equation

∂

∂z
f(z) = 0

at least when those partial derivatives regarding x, y do exist. A complex valued
function in z may be interpreted as a one form in R2 using

f(z) = Ref(z) + iImf(z)

where the mapping needs to occur in a fixed coordinate system. The transfor-
mation properties of f(z) under z → z(z′) do not match the transformation
laws of a one form meaning that the mapping between a complex function in
a complex variable and a one form in the real plane in two real variables is
not a canonical, meaning God given, one. As an example, consider f(z) = z
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and z = z′2; hence f(z′2) = (x′2 − y′2) + 2ix′y′ where ∂x
∂x′ = 2x′, ∂y

∂x′ = −2y′,
∂y
∂x′ = 2y′ as well as ∂y

∂y′ = 2x′ such that

Ref ′(z′) 6= ∂x

∂x′
Ref(z′2)± ∂y

∂x′
Imf(z′2)

where f ′(z′) = f(z′2). Nevertheless, employing the notation F(z) = Ref(z)dx−
Imf(z)dy, then one notices that the condition

∂

∂z
f(z) = 0

is equivalent to
dF(z) = 0, ∂αFα = 0

meaning that the one form is closed and has zero divergence. Using dz = dx+idy
one arrives at

f(z)dz = F(z) + i(Fxdy − Fydx).

The imaginary part is closed due to d(Fxdy−Fydx) = (∂αFα) dx∧dy = 0 using
the zero divergence condition. Stokes theorem then implies that

0 =

∫
S

dF(z) + i d(Fxdy − Fydx) =

∫
∂S

f(z)dz

where S constitutes any surface in R2 whereupon df(z) exists. Consequently,
the integral of f over any closed curve depends merely upon the homology class
within which f is analytical meaning

∂

∂z
f(z) = 0.

Now, we show that in case f(z) is analytical, then the z-derivative ∂
∂z f(z) exists

and is analytical again. Clearly, we merely have to show that the second partial
derivatives exist and are continuous; in that case

∂

∂z

∂

∂z
f(z) =

∂

∂z

∂

∂z
f(z) = 0.

The proof of the latter statement goes as follows

lim
|z−a|→0

f(z)− f(a)

z − a
=

∂

∂a
f(a)

following from
f(z)− f(a)

z − a
=

(f(z)− f(a))(z − a)

|z − a|2
=

(Ref(z)− Ref(a))(x− b) + (Imf(z)− Imf(a))(y − c)
|z − a|2
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−i(Ref(z)− Ref(a))(y − c) + i(Imf(z)− Imf(a))(x− b)
|z − a|2

∼ ∂

∂a
f(a)

|z − a|2

|z − a|2

where in the last step we used ∂
∂z f(z) = 0. Using Stokes theorem as well as

taking the limit of extremely small circles around a point a, the reader verifies
by explicit computation that∫

S1(a,ε)

f(z)

z − a
dz = 2πif(a)

where S1(a, ε) denotes the circle with radius ε around a. From this, it follows
that f(a) can be derived an infinite number of times with regard to a and that
all derivatives are analytic. This result can easily be generalized to∫

γ

f(z)

z − a
dz = 2πnif(a)

where γ constitutes a closed curve in a neighborhood of a winding n times
around a.

One of the most important properties of an analytic function is that the latter
may be written as a converging power sequence in a neighborhood of a; more
specifically,

f(z) =

∞∑
n=0

an(z − a)n

whereas the right hand side is finite for |z − a| < ε. The proof of this assertion
is pretty easy and follows from∫

S1(a,ε)

f(z)

z − a
dz = 2πif(a).

When differentiating n-times with regard to a one gets

n!

∫
S1(a,ε)

f(z)

(z − a)n+1
dz = 2πi

(
∂

∂a

)n
f(a)

from which it follows that∣∣∣∣( ∂

∂a

)n
f(a)

∣∣∣∣ ≤ n!

εn
max

z∈S1(a,ε)
|f(z)| .

Subsequently one shows that

f(b) =
∞∑
n=0

1

n!

(
∂

∂a

)k
f(a)(b− a)n
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following from

f(b)− f(a) = (b− a)
1

2πi

∫
S1(a,ε)

f(z)

(z − b)(z − a)
=

(b− a)
1

2πi

∫
S1(a,ε)

f(z)

(z − a− (b− a))(z − a)

= (b− a)
1

2πi

∫
S1(a,ε)

f(z)

(z − a)2

∞∑
n=0

(
b− a
z − a

)n
=

∞∑
n=0

(b− a)n+1
(
∂
∂a

)n+1
f(a)

(n+ 1)!
.

We have used that
1

1− z
=

∞∑
n=0

zn

for |z| < 1 as holds upon direct verification. Convergence of the sequence follows
from ∣∣∣∣∣ (b− a)n

(
∂
∂a

)n
f(a)

n!

∣∣∣∣∣ ≤M
(
|b− a|
ε

)n
such that the series converges for

|b− a| < ε.

A complex valued function f(z) is called meromorphic if and only if it is analytic
everywhere except at isolated points ai such that f(z)(z−ai)ni is analytic with
limz→ai f(z)(z − ai)ni 6= 0. We therefore have that∫

γj

f(z)(z − aj)nj−1dz = 2πi lim
z→aj

f(z)(z − aj)nj

where γj constitutes a closed curve winding once around aj . In the case that
nj = 1 we call aj a pole and res(aj) := limz→aj f(z)(z − aj) the residue; we
henceforth obtain in that case that∫

γ

f(z)dz = 2πi
∑

all poles aj∈S

mjres(aj)

where mj constitutes the winding number of γ around aj . This formula is
of extreme importance for the calculation of meromorphic functions and one
proceeds by making a few exercises on the matter later on. Finally, by means of
an exercise, one shows that any complex polynomial of degree n has precisely n
roots; in case this is not so, then there exists a polynomial Q(z) without roots
implying that the function 1

Q(z) is analytic on the entire complex plane such

that
1

Q(a)
=

1

2πi

∫
S1(a,R)

dz

Q(z)(z − a)
.

Taking the limit for R to infinity, one shows that the right hand side vanishes.
Henceforth, Q(a) must be infinitely large, a contradiction.

87



Chapter 10

Special functions.

The chronology of presentation of the material so far has been very different
from standard books. Consequently, the viewpoints as well as methods to be
gained are considerably more profound. We shall start by the exponential func-
tion given that it constitutes the basis for a lot of material to come. ex can
be introduced in several ways and we shall treat plenty of them. First, erx

constitutes an eigenfunction of the operator ∂x; it is to say that

∂xe
rx = rerx.

The reader notices that the function fn(rx) =
(
1 + rx

n

)n
obeys

∂xfn(rx) = rfn−1(rx)

henceforth taking the limit for n to infinity produces erx. Indeed,

erx = lim
n→∞

(
1 +

rx

n

)n
and one shows that this expression converges in two steps (a) for a positive rx
one has that fn(rx) defines an increasing sequence and (b) the supremum is
provided by

erx =

∞∑
n=0

(rx)n

n!

which is finite for any rx. Show that, from the power expansion,

∂xe
rx = rerx.

Moreover, one has that

er(x+y) = lim
n→∞

(
1 +

r(x+ y)

n

)n
= lim
n→∞

((
1 +

rx

n

)(
1 +

ry

n

)
− r2xy

n2

)n
= erxery

something which easily follows from ∂xe
r(x+y) = rer(x+y), ∂xe

rxery = rerxery

and er(0+y) = ery = er0ery. Finally, one may prove this property from the series
expansion which suggests that the exponential function is well defined for any
complex variable z en obeys
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• ez+w = ezew,

• e0 = 1,

• |eix| = 1 for all x ∈ R.

This last property says that the mapping x→ eix from the real axis on the unit
sphere preserves length and wraps a infinite number of times around. Henceforth

eix = cos(x) + i sin(x)

where

cos(x) =

∞∑
n=0

(−1)nx2n

(2n)!

and

sin(x) =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

One verifies immediately that ∂x sin(x) = cos(x), ∂x cos(x) = − sin(x) and there-
fore ∂2

x sin(x) = − sin(x) and likewise so for cos(x). From the definition of the
modulus, it follows that

cos2(x) + sin2(x) = 1

and the Simpson rules emerge from eixeiy = ei(x+y). It is to say that

• cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

• sin(x+ y) = cos(x) sin(y) + sin(x) cos(y).

We have represented the complex number in polar decompostion z = reiθ where
r ≥ 0 and θ = 0 . . . 2π with 2π is equal to the length of the unit circle. The
polar decomposition may be generalized to normal operators:

A = |A|U

where |A| =
√
A†A en U constitutes a partial isometry. The exponential func-

tion has an inverse given by the natural logarithm ln(x); this obeys by definition

x+ y = ln(ex+y) = ln(exey) = ln(ex) + ln(ey)

and henceforth it holds for a general complex number that

ln(z) = ln(reiθ) = ln(r) + iθ.

One notices that this definition has a discontinuity on the positive real axis
because the limit from above equals ln(x) whereas from below ln(x) + i2π. This
phenomenon is called a singular cut meaning that the function has a disconti-
nuity there preventing for a unique continuous extension to exist. Depending
upon the choice of reference point on the cirkel, this cut may be put anywhere
the reader wants it to. Away from the cut, ln is analytical as the reader may
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verify.

Starting from the exponential function, one may define special functions such
as the alpha, beta and gamma function. These are defined in a standard wy by
means of the special integrals. As such is the gamma function Γ(x) for x ≥ 0
defined by means of

Γ(x) =

∫ ∞
0

e−ssxds.

Prove that
Γ(x+ 1) = (x+ 1)Γ(x)

for x > 0 and Γ(1) = 1 = Γ(0). Especially, it holds that Γ(n) = n! for any nat-
ural number n > 0. Show that the gamma function has a unique meromorphic
extension to C with poles in −n, n ∈ N0. It is not the intention to study all
detailed properties of those functions and the reader is invited to look them up.

There exist many special (approximative) eigenfunctions of plenty of differen-
tial operators of interest; those are given by Hermitian extensions of densly
defined, symmetrical operators on specific function spaces defined by existence
and boundedness conditions on partial derivatives of the functions of interest.
More in particular, we considers sums operators such as

W i1...ik(x)∂i1 . . . ∂ik

where k ∈ N. As and example in one real variable, one has the so called Laguerre
polynomials which are eigenfunctions of

−∂2
x + ω2x2

with ω > 0. One can easily find those by means of the ladder operator a =
i∂x + iωx defined on the Hilbert space with inproduct

〈f |g〉 =

∫
f(x)g(x)dx.

Partial integration gives a† = i∂x − iωx such that

−∂2
x + ω2x2 = a†a+ ω

and as such the eigenfunctions of the original operator equal those of a†a. There
exists precisely one Ψ such that a(Ψ) = 0 and consequently all eigenvectors are
provided by (a†)n(Ψ) which follows from

[
a, a†

]
= 2ω. Calculate also the cor-

responding eigenvalues. The reader is invited to get a grip on such techniques
which one often encounters in theoretical physics!

Clifford exponential function.
Define the Clifford exponential function from different viewpoints, for example
as a Clifford generalization of the power series associated to ex or an “eigenvec-
tor” of the operator ∂A1

with Clifford valued eigenvalues.
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Chapter 11

Cohomology and the
de-Rahm isomorfism.

This small chapter deals with a deep insight connecting closed volume forms as
well as homology classes of simplicial complexes. More accurately, we dispose
of the d operator and an integral satisfying the micro-boundary condition such
that Stokes theorem is obeyed by. We are interested in the R module Ck of
closed k-forms Ωk defined by dΩk = 0 and ambiguous up to a k form dΩk−1;
the main distinction with standard homology theory consists in the fact that d
increases the dimension whereas ∂ decreases it. This suggests a duality which is
H?
k = Ck; indeed, consider the action of an element Ωk ∈ Ck on a closed surface

Sk ∈ Hk defined by means of

Ω̂k(Sk) =

∫
Sk

Ωk

then we must first show this definition is fine. In case Sk is equivalent to S′k
given that both constitute a boundary of Tk+1, then we obtain

Ω̂k(Sk)− Ω̂k(S′k) =

∫
Tk+1

dΩk = 0

where we used Stokes theorem as well as the closed character of Ωk. Also, we
have that

̂Ωk + dΩk−1(Sk) = Ω̂k(Sk) +

∫
∂Sk

Ωk−1 = Ω̂k(Sk)

where we have used Stokes theorem as well as the assumption that Sk has no
boundary. This proves that everything is well defined given that the expression
does not depend upon the choice of representatives of the homology as well
as cohomology classes. First, we show that the mapping is injective; this is
equivalent to proving that for any non-trivial closed k-form Ωk ∈ Ck there
exists a non-contractible closed Sk so that Ω̂k(Sk) 6= 0. In case this is not so,
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we obtain that the integral over a k-surface Rk with boundary is completely
determined by the boundary meaning that∫

R′k

Ωk =

∫
Rk

Ωk

in case that ∂Rk = ∂R′k. Moreover, the dependency on the boundary is local and
additive such as is the case for integrals. Consequently, there exists a k−1 form
Ωk−1 such that dΩk−1 = Ωk by means of Stokes theorem. This proves injectivity
and finally one proves surjectivity by posing that for any nontrivial Sk ∈ Hk

there exists a closed, but not exact, Ωk such that Ω̂k(Sk) = 1; this is easily
proved by showing that any k-form Ωk defined on Sk may be extended in a way
such that dΩk = 0 is satisfied (in general, an infinite number of differential forms
obey this property). Henceforth, we have proved that the de Betti numbers
could have been defined from cohomology instead of simplicial homology. This
ends the topic of this chapter.
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Chapter 12

Riemannian and Lorentzian
geometry.

The goal of this chapter constitutes in extending the calculus of chapter eight
towards so called manifolds; these are spaces which locally look as Rn. In
particular, we define a Cn manifoldM as a topological space locally looking as
Rn; more in detail, there exists a cover with open sets Oα homeomorphically
mapped onto φα : Oα → Vα ⊆ Rn with homeomorphisms φα onto the image Vα
which is given by an open neighborhood of the originWα or an intersection of the
latter with the half space {x|xn ≥ 0}. In the last case, one has that Wα∩{x|xn =
0} captures a piece of the boundary. In case that Oα ∩ Oβ 6= ∅ one constructs
the mapping φβ ◦φ−1

α : φα(Oα∩Oβ)→ φβ(Oα∩Oβ) which is demanded to be a
Cn diffeomorphism. We shall always suppose that the manifold is paracompact,
which means it may be covered by means of a countable number of compact sets,
and not necessarily connected although this supposition constitutes a standard
request in the classic work or Hawking and Ellis. V constitutes a vectorfield on
M if and only if for any function f : M→ R and chart (φα,Oα) on M holds
that there exists a Vα on Vα such that

V(f) = Vα(f ◦ φα).

Vα is called a local representation of V with respect to the chart (φα,Oα).
From this, one may define dual fields by means of their action on vectorfields as
well as general tensorfields. Likewise, we may generalize the notion of a k-form
as well as that of an exterior derivative; as an intermediate step, we define the
push forward, pull back and Lie derivative. A diffeomorphism ψ : M →M is
defined as a homeomorphism such that for any two charts (φα,Oα) and (φβ ,Oβ)
such that ψ(Oα) ∩ Oβ 6= ∅ holds that

φβ ◦ ψ ◦ φ−1
α : Vα → φβ ◦ ψ(Oα) ⊆ Vβ

a Cn differentiable mapping and likewise so for ψ−1. This is a matter of agree-
ment, that the level at which the diffeomorphism may be derived is the same as
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the one of the “chart transformations”. Given a diffeomorphism ψ : M →M
and function f : M → R we define the push forward of f by means of ψ as
(ψ?f)(x) = f(ψ−1(x)). The pull back is then defined as the push forward using
ψ−1 instead of ψ and is noted as ψ?f . One generalizes the above definitions
for injective, differentiable mappings ψ : M → N . Given a vectorfield V on
M, the push forward ψ?V is defined by means of ψ?V(ψ?f)(ψ(x)) = V(f)(x)
and likewise so for the pull back. In the same fashion, we may, by means of
duality, define the push forward and pull back of one forms as well as general
tensorfields. In a coordinate representation, this reads:

(ψ?V)α(ψ(x)) =
∂yα(ψ(x))

∂xβ
V β(x)

and the reader makes the obvious generalization towards one-forms and tensor-
fields. We shall now measure the “difference” of φ?V with V; provided that
such a definition must be coordinate independent, we can merely allow for in-
finitesimal differences. Given that one parameter family of diffeomorphisms ψt
such that ψt+s = ψt ◦ ψs for t, s sufficiently small and ψ0 = id the identity
transformation. Consequently, we may define the differential

dψ?sf

ds
|s=0(x) = V(f)

where V α(x) = dxα(ψ−s(x))
ds |s=0

. The ψs are defined by means of

dyα(ψs(x))

ds
= −V α(ψs(x)).

Henceforth, we have obtained a connection between vectorfields and one param-
eter families of diffeomorphisms; this allows us to define the Lie derivative of a
general tensorfield

LV(T )(x) = lim
s→0

ψ?sT (x)− T (x)

s

and in the context of function, vectorfield and one form this procures LV(f)(x) =
d
ds |s=0ψ

?
sf(x) = V(f)(x) as well as

(LVW)(f)(x) =
d

ds
|s=0(ψ?sW)(f)(x) =

d

ds
|s=0W(ψ?−sf)(ψ−s(x)) =

−WV(f)(x) + VW(f) = [V,W] (f)(x)

and similarly so for the one-forms. One notices that

d(ψ?Ω) = ψ?(dΩ)

for each k-form Ω. Henceforth,

LVd = dLV
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which can also be shown by means of the formula

LV = diV + iVd

which is valid on the space of k-forms, where iV is the contraction associated
to the vectorfield V,

iVΩµ1...µkdx
µ1 ∧ . . . ∧ dxµk = V µ1Ωµ1...µkdx

µ2 ∧ . . . ∧ dxµk .

From the point of view of measure theory, one obtains by definition that (ψ?µ)(ψ(A)) :=
µ(A) for any measure µ as well as measurable set A; therefore,∫

B
fdµ =

∫
ψ(B)

(ψ?f)(ψ?dµ)

what we call the covariant property of the integral. Show that the definitions of
ψ?µ and ψ?Ω where Ω is a k-form coincide and that the integral is provided by∫

M
fΩ.

So far, we have not said anything in particular about differential geometry and
concentrated on manifolds. In other words, we have to define a local inproduct
depending upon the manifold coordinates. Henceforth, we are interested in
(0, 2) covariant tensorens hαβ as well as gαβ defining local orthonormal bases va
as well as ea such that

hαβv
α
a v

β
b = δab

and
gαβe

α
ae
β
b = ηab

where ηab is the so called Minkowski metric defined by means of

η11 = 1, ηij = −δij ; i, j = 2 . . . n

and all other components vanish as well. In case n = 4, ea is called a tetrad or
vierbein; metrics such as δab are called Riemannian and constitute a generaliza-
tion of finite dimensional Hilbert spaces whereas ηab is dubbed Lorentzian and
defines non-compact null sets

ηabv
avb = 0.

Our first task consists in showing that these geometries constitute specifica-
tions of the standard path metric and Lorentzian path metric spaces defined
previously. In that vein, we define the metric distance between two points as
the length of the shortest curve connecting them or the longest timelike curve
in the Lorentzian case respectively. Prior to presenting the characterization of
these curves, we must say something about the causal structure defined by ηab.
A vector va is called (a) causal if and only if ηabv

avb ≥ 0 (b) zero or lightlike if
and only if ηabv

avb = 0 and (c) spacelike if and only if ηabv
avb < 0. Moreover,
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we call a causal vector va future pointing with respect to the tetrad ea if and
only if v0 > 0. In what follows, we presume that one disposes of a globally well
defined tetrad which precludes certain topologies such as the one given by the
Mobius strip. This last one is constructed by considering a rectangle, take the
short edges and rotate one component for 180 degrees and subsequently identify
them. The supposition on (M, g) may be simplified by stating that the latter
needs to be time orientable as well as orientable.

Given a differentiable curve γ : [a, b]→M, we say that it is future pointing and
causal if and only if the tangent vector to any point is. The length of such a
curve is provided by

L(γ) =

∫ b

a

√
g(γ̇(s), γ̇(s))ds

and likewise so for the length of any curve in Riemannian geometry. We define
J+(x) as the set of all points y which are connected to x by means of a future
pointing causal curve starting at x. Likewise, we define J−(x) as the set of all y
which may be connected to x by means of a future pointing causal curve starting
at y. We study now extremal curves connecting two points x and y which are
considered to be fixed. For that purpose, we have to consider a “differential”
with regards to the curve and put it equal to zero; the result is

0 = δL(γ) =

∫ b

a

1

2
√
g(γ̇(s), γ̇(s))

(2gµνδγ̇
µ(s)γ̇ν(s) + ∂αgµν γ̇

µ(s)γ̇ν(s)δγα(s))

and one has to further rewrite this equation by making use of δγ̇µ(s) = ˙(δγµ(s))
until it reduces to the form∫ b

a

F (γ(s), γ̇(s), γ̈(s))µδγ
µ(s)ds.

By noticing that this expression has to vanish for all δγµ(s) one arrives at the
following equations

γ̈µ(s) + Γµναγ̇
α(s)γ̇ν(s) = 0

where Γµνα = 1
2g
µκ (∂νgκα + ∂αgνκ − ∂κgνα) is the so called Christoffel sym-

bol. The parametrization s is called the affine parametrization given that the
above equation remains invariant under the transformations s→ bs+ a. Given
that the integral is reparametrization invariant as well as invariant under co-
ordinate transformations, this set of equations has to transform as a vector
under coordinate transformations and the reader may now verify the effect of a
reparametrization. We compactify this equation as

γ̇ν∇ν γ̇µ = 0

where
∇νV µ = ∂νV

µ + ΓµνκV
κ
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for each vector V µ. The reader verifies that γ̇µ(s)∂µ = d
ds as well as that ∇µV ν

transforms as a (1, 1) tensor. Likewise, we have that V ν∇νWµ −W ν∇νV µ −
[V,W ]

µ
= 0 for all vectors V,W. The first property signifies that the covariant

derivative has a geometrical significance whereas the last one asserts that it is
torsion-free which is equivalent to

Γµνκ = Γµκν .

The equation γ̇ν∇ν γ̇µ = 0 is known as the geodesic equation and the associated
solutions, being curves, are geodesics. We extend now the definition of the
covariant derivative as follows

∇µf = ∂µf

or in coordinate free notation,

∇f = df,∇V = ∇µV νdxµ ⊗ ∂ν .

Using
∇V = V µ∇µ

we extend the definition as

∇W(ω(V)) = (∇Wω)(V) + ω(∇WV)

∇W(S ⊗ T ) = (∇WS)⊗ T + S ⊗ (∇WT )

where ω is a one form and S, T general tensors. From the specific form of the
Christoffel symbolenm, the reader derives that ∇g = 0 meaning that the metric
is covariantly. It is clearly so that geodesics maximize the Lorentzian distance
in case they are causal whereas a Riemannian metric involves a minimization
procedure.

We study now a few tensors which one may construct from the covariant deriva-
tive as well as contractions theirof which are of primordial importance in the
geometric analysis and theory of general relativity. The first case regards a (1, 2)
tensorfield

T(V,W) = ∇VW−∇WV− [V,W]

and the reader verifies indeed that T(V,W) = −T(W,V) and

T(fV + Z,W) = fT(V,W) + T(Z,W).

For the metric connection, defined by means of the Christoffel symbols, one has
that the Torsion tensor vanishes and the reader is invited to study connections
with torsion. The second case regards a (1, 3) tensorfield denoted by

R(V,W)Z = ∇V∇WZ−∇W∇VZ−∇[V,W]Z

an expression which is anti symmetrical in V,W. In components, this reads
R β
µνα and we may raise or lower indices by means of gαβ en gαβ respectively.
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From the general Jacobi identity [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for
operators, we conclude that, applied to the metric connection, it holds

R β
[µνα] = 0,∇[αR

δ
βγ]κ = 0

where the square brackets are symbolic representations for the operation of total
anti-symmetrization. These identitities are called the first and second Bianchi
identity; moreover, one verifies by means of explicit calculation

R κ
µνα gκβ = Rµναβ = Rαβµν .

This tensor field is known as the Riemann tensor and is of great importance in
the theory of general relativity. The first contraction

Rµν = R α
αµν

is a symmetric tensor called the Ricci tensor and its second contraction

R = Rµνg
µν

is the Ricci scalar. The metric tensor determines a unique volume element

dV (x) =
√

det(gµν)dx1 ∧ dx2 ∧ . . . ∧ dxn

and one verifies that this expression is coordinate independent. From this, one
constructs the so called Einstein-Hilbert action∫

dV (x)R(x)

the variation of which regarding the metric components produces the Einstein
equations.

I encourage the reader to make computations, for example that the Torsion
and Riemann tensors are really tensors and do not depend upon the derivatives
of the vectorfields. The Bianchi identities are verified from the Jacobi identity
without making any computation in a coordinate system, whereas the remaining
symmetries do depend upon the metric and torsionless nature of the Christoffel
connection.

Exercise: Morse theory.
We have meanwhile studied the Betti numbers from the viewpoint of homology
and cohomology by means of the de Rahm theorem. Now, we offer a third vision
argumenting that all information is contained in the vectorfields.

• Argue that all topological information in a manifold is contained in the
tangent bundle of vectorfields.
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• Show that all local, topological information in a vectorfield is given by
the zeroes V = 0 and some characteristics of the matrices ∂(αV

β) and

∂[αV
β] evaluated in the critical points. Realize that this information must

correspond to some topological invariant.

• The first tensor is symmetric and has real eigenvalues; clearly, the eigen-
values are invariants and in particular the n−, n0, n+ representing the
number of negative, null and positive eigenvalues are too.

• The second tensor is anti-symmetric and has imaginary eigenvalues; prove
that a similar topological classification holds here.

• argue why the absolute values of the eigenvalues will not contribute any
topological information by rescaling the vector fields around the critical
points

• In case it holds locally that V α = δαβ∂βΦ, prove then that ∂[αV
β] = 0.

• Show that on the torus, there exists a vectorfield without critical points
whereas the Betti numbers are 0, 1, 1. This shows that the Betti numbers
cannot be retrieved from a single vectorfield. Denote by the index Ni the
number of critical points with n0 = 0 and n− = i; construct vectorfields
on the torus with isolated zeroes only which are all non-degenerate (that
is n0 = 0) such that N1 can take any value one likes and compute that
N2 − N1 + N0 = 0. This suggests that

∑n
k=0(−1)kNk equals the Euler

number: for manifolds with boundary, it must be that the vectorfields are
normal to the boundary. Note that the definition of a boundary of a man-
ifold is different from the one we employed so far and the reader may very
well restrict himself to orientable manifolds in which the latter definition
coincides with the one given by means of the boundary operator. The
manifold definiton says that a coordinate chart around a boundary point
in an n dimensonal manifold looks like a half space in Rn bounded by the
hyperplane xn = 0. The reader must first find out that for the Mobius
strip, the manifold boundary is given by a circle whereas the boundary in
the other sense also contains a straight line segment connecting the two
opposite sides. That the vectorfield must be normal to the boundary in
order provide for the correct answer can be easily seen for example by
considering the 2 disc; the reader can easily construct vectorfields in R2

which cross the boundary and have no critical points whereas the Euler
number of the 2 disc is one. However, insisting upon being outward nor-
mal to the smooth boundary the reader immediately sees that that the
vectorfield must contain a critical point which is in this case a minimum
n+ = 2. Note also that this theorem does not hold for vectorfields which
are tangent to the boundary, for the two disc for example, one may pro-
duce a rotation around the z axis in the origin and one computes that the
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signature is (0, 0) leading to the Euler number 0 instead of 1 (however the
viewpoint expressed in the next item reveals that the degree is 1 leading
to the correct answer in this case). Likewise, when cutting a small disk
out of the torus, the reader may easily construct a vectorfield which is
tangent to the boundary, for example −(r − 1) cos θ∂r + sin θ∂θ, and has
two critical points r = 1, θ = 0, π on the boundary of signature (+−)
(the reader notices that this coincides with the degree) suggesting that
the Euler number should be minus two instead of minus one. There is
another reason why the tangent version does not hold in an odd number
of dimensions which is that one may consider the mapping V → −V which
causes the above sum to transform as (−1)n something which only spaces
with Euler number zero don’t feel in case n is odd (which includes all
closed spaces due to Betti duality). Indeed, the reader may immediately
prove that for a vectorfield on a line segment which needs to vanish at
the boundary points and has no degenerate critical points, it holds that
the values of the above sum are given by −1, 0, 1 (and the Euler number
is of course one) whereas on the circle only 0 occurs as it should! The
viewpont of the vectorfield being outward normal of course breaks this
argument as the mapping is simply not allowed for. Given those details,
the reader may try to prove that

∑n
k=0(−1)kNk equals the Euler number

for vectorfields with isolated, nondegenerate critical points on compact
manifolds with boundaries such that the vectorfield is outward normal to
those. The reader might try to generalize this theorem by considering vec-
torfields with degenerate and non-isolated critical points and disregarding
all types of critical points which occur an infinite number of times. For
example, take on the torus the vectorfield ∂φ

(
sin2(θ) + sin2(φ)

)
, then one

has 4 critical points corresponding to θ, φ = 0, π and the reader easily
verifies that the Hessian vanishes there. Therefore, one must say that for
critical points of type (0, 0) the associated contribution vanishes. Now,
take a different vectorfield (sin(φ)∂φ+sin2(φ−θ)∂θ, then there are 4 criti-
cal points corresponding to φ = 0, π and θ = 0, π. The reader verifies that
the Hessian is diagonal in those points with eigenvalues 0, 1 and (0,−1)
respectively. Hence critical points of type (0,+) and (0,−) should con-
tribute opposite. By considering the vectorfield (sin(φ2 )∂φ + sin2(φ− θ)∂θ
the reader shows that there are only two critical points φ = 0 and θ = 0, π
and the Hessian is in both cases of type (0,+) showing that all types of
degenerate points should have vanishing contribution. We will now come
to a contradiction showing that one cannot in general allow for a contin-
uum of degenerate points; consider the the genus two surface which we
obtain from taking the sum of two tori by cutting out small discs in both
of them and identifying the boundaries. Consider a coordinate system in
say the first torus around the midpoint of this disc, containing the entire
disc of radius r around the origin and define the annulus as all points with
coordinates (x, y) such that 0 < (r − ε)2 < x2 + y2 < (r + ε)2 then the
inside region of the disc may serve as a coordinate system on the second
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torus and the outside on the first torus. Consider now the vectorfield

(x2 + y2 − r2)∂y

and convince yourself that it can easily be extended towards both tori
without any further critical points. Then, the reader notices we have a
continuum of critical points for which the symmetrical part of the Hessian
is of type (+,−) except for x = 0 where two degenerate critical points
of type (0,+) and (0,−) exist. So, we cannot ignore the continuum and
the reader should see that we have precisely two connected branches of
signature (+−), this suggests one to consider those branches as contribut-
ing one time each leading to the correct conclusion that the Euler number
is minus two. Hence, our only option being that all isolated zeroes are
non-degenerate and that non-degenerate branches have to be counted as
one of the same type.

• The presentation so far has been somewhat old fashioned meaning that
obviously not all degenerate points are the same; it is just so that we
cannot distinguish between them from the viewpoint of quasi-local analysis
which caused for all above problems. To rectify this, consider an isolated
critical point and draw a small ball around it such that no other critical
point is contained in it. Choose any coordinate system whatsoever and
take for example the flat metric h in it; then one can define a mapping
from the sphere to the standard sphere Sn−1 in Rn by means of

x→ V (x)√
h(V (x), V (x))

.

This mapping will define a unique element of the n−1’th homology group
which is Z, which upon compairing it with the standard generator deter-
mines a unique integer, the degree, which says how many times it wraps
around the sphere and with what orientation. Of course, for one criti-
cal point, the sphere wraps just once and the sign corresponds precisely
to the index as defined above. This mapping does not depend upon the
coordinate system chosen and the degree is a topological invariant. Of
course, this viewpoint allows for a more accurate analysis of degenerate
critical points and the reader may verify that the full thereom holds for
any vector field with isolated critical points replacing the index by the
degree. Similarly, an extension can be made towards vectorfields with a
continuous number of crtitical points.

Einstein-Cartan theory.
One might consider the introduction of a torsion tensor in the definition of the
connection; it is to say, define

∇̂ = ∇+ T

where T is a (1, 2) tensorfield which is anti-symmetric in the covariant indices
and ∇ is a suitable symmetric deformation of the Christoffel connection. One
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has in particular that
2Γ̂γ[αβ] = T γαβ

as well as
∇αgβκ − T γαβgγκ − T

γ
ακgβγ = 0

to ensure that
∇̂αgβκ = 0.

As an exercise: calculate Γγαβ and recover the Christoffel connection by putting
T = 0. Calculate the Riemann tensor and torsion corrections to the first and
second Bianchi identity. Define the Einstein action I(g, T ) which depends now
upon g, T , as well as the Einstein tensor Gαβ and spin tensor Sαβκ by means of
the variations

Gαβ(x) =
δI(g, T )

δgαβ(x)
, Sαβκ (x) =

δI(g, T )

δTκαβ(x)
.

This produces two equations measuring the energy content and rotation of the
universe by means of similar quantities in the matter sector. The reader is
invited to find the appropriate four conservation laws of energy-momentum plus
spin. Determine torsion corrections on parallel transport by means of geodesics
which can only feel torsion by means of symmetrical corrections in the Christoffel
part. Compute the lowest order corrections to the exponential mapping defined
in the following chapter.
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Chapter 13

Dispersion of a bundle of
geodesics and blowing up or
collapsing of spheres.

In this chapter, we proceed in the study of global geometric properties of Rie-
mannian and Lorentzian apace times. The subject of study par excellence re-
gards the study of neighboring geodesics with respect to one and another. Do
they expand or contract; is there rotation or expansion? In other words, we shall
study in detail consequences of the geodesic deviation equation on the qualita-
tive and weakly quantitative level. It is evidently possible to obtain sharper
results for Riemannian spaces as it is for Lorentzian ones given that the former
do define in a natural fashion a notion of compact surfaces. Lorentzian geometry
does not enjoy this property and merely allows one to obtain results regarding a
timelike curve or world line. The Riemannian context is pretty well understood
but the Lorentzian one however has plenty of open gaps for research. Hence-
forth, one may be invited to deliver an original contribution to mathematics
and I shall touch a few of these problems in this chapter.

To start with, one considers a geodesic γ(s) such that the length of the tangent
vector V(s) = d

dsγ(s) is constant. Indeed,

d

ds
g(γ̇(s), γ̇(s)) = (∇V(s)g)(γ̇(s), γ̇(s)) + 2g(∇V(s)V(s),V(s)) = 0

due to the fact that the metric is covariantly constant and where one employs
the geodesic equation. In the Lorentzian case, we choose a parametrization such
that the length of the tangent vector equals one for timelike ones, zero for null
geodesics and minus one for space like geodesics. Denote with T ?Mx the linear
space of all vectors in x, then we define the mapping

expx : TMx →M : v → expx(v)
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where expx(v) is the endpoint of the geodesic in affine parameter length one
such that the tangent vector in x is given by v. Clearly, one has that

D expx(0)(w) = w

where w ∈ TT ?M(x,0) ∼ T ?Mx what simply means that in first order, the
metric is given by a global Euclidean or Minkowskian one. Define T ?M =
∪x∈MT ?Mx, then we introduce a topology which is equal to the product topol-
ogy O × V where O ⊆ M and V ⊆ Rn. The exponential mapping constitutes
henceforth a local diffeomorphism meaning that there exists an open neighbor-
hood V of 0 in T ?Mx such that

expx : V → expx(V)

is a diffeomorphism. Given two points x and y then it is possible for them to
be connected by multiple geodesics due to a non trivial topology (think about
winding on a cylinder) or the existence of focal points (think about a lens).
We now derive the geodesic deviation equation: given a one parameter family
of geodesics γ(s, t) where s : a . . . b and t ∈ (−ε, ε) with as tangent vectors

V =
(
∂
∂s

)?
en Z =

(
∂
∂t

)?
then it holds that

[V,Z] = 0

and consequently
∇V∇VZ = ∇V∇ZV = R(V,Z)V

where in the first equality, we have used that the connection is Torsionless
whereas the geodesic equation ∇VV = 0 has been employed in the second one.
The latter equation is of the form

Z̈ +A(s)Ż +B(s)Z = 0

with A,B matrices and the dot operation indicates derivation regarding s. Such
an equation is of the Newtonian type with A the friction matrix and B the
oscillation frequency (B > 0) or expansion factor (B < 0) squared. Indeed, in
one dimension this reads as

z̈ + aż + bz = 0

what may be rewritten by

ḧ+ (b(s)− 1

2
ȧ(s)− 1

4
a2(s))h = 0

with h(s) = e
1
2

∫ s
0
a(t)dtz(s). The last one is of the type

ḧ(s) + c(s)h(s)

and we call c(s) minus the expansion squared in case it is smaller as zero and
the oscillation frequency squared in case it is larger than zero. Indeed, for c con-
stant, the solutions are given by xe

√
cs+ye−

√
cs and x cos(

√
−cs)+y sin(

√
−cs)
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respectively where x, y are arbitrary real constants. As we shall see later on,
this simple computation allows us to bound a few geometrical properties.

Along a geodesic, one may define the notion of Fermi-Walker transport of a
tensor by means of

∇VT = 0

where V constitutes the tangent vector along the geodesic. One can easily verify
that Fermi-Walker transport keeps the expression

g(Z,W)

constant for any Z,W along some geodesic. One notices here that transport of
a vector is the mathematical concept expressing the operation of dragging an
infinitely small measure stick along the world line of the observer; this pulling
happens without force and is exclusively determined by means of relationships
inherited from the space time metric. This constitutes therefore a very impor-
tant physical concept and a geodesic may be interpreted as a forceless propulsion
through space time; Einstein interpreted this as the motion of a free observer
in a gravitational field which gave rise to the birth of the theory of general rel-
ativity.

An orthonormal basis is a set of n orthonormal vectorfields ea which may be
interpreted as a local reference system which is generically not associated to a
special coordinate system given that the vectors ea do not commute,

[ea, eb] 6= 0.

A Lie algebra is defined by demanding that

[ea, eb] = f cabec

for real constants f cab. Because parallel transport of an orthonormal basis pro-
duces an orthonormal basis, it defines a Lorentz transformation by writing out
the transported reference system in terms of the local one. It is to say, we have
a transformation Λ(x,w)a

′

b where w ∈ T ?Mx and b is a (Lorentz) index re-

lated to eb(x) and a′ a (Lorentz) index with regard to ea
′
(expx(w)). A Lorentz

transformation constitutes a symmetry of the Minkowski metric meaning that

Λ(x,w)a
′

b Λ(x,w)c
′

d ηa′c′ = ηbd.

One verifies that those form a continuous group of dimension n(n−1)
2 and that

it has 4 disjoint components in case n = 4 which are determined through the
matrices 1, T, S, ST where T indicates time reversion and S space reversion. The
Euclidean case, determined by means of the rotation group, has been studied
previously.

Another useful tool to study geodesics is provided by means of Synge’s function,
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a mathematical object generalizing the quadratic form

σ(x, y) =
1

2
(y − x)µ(y − x)νηµν

on Minkowski, where x, y represent points in R4. The definition then implies
that σ(x, y) equals some extremal value of

I(x, y) =
1

2
(t1 − t0)

∫ t1

t0

gµν
dxµ(s)

ds

dxν(s)

ds
ds

where xµ(s) is a curve connecting x with y. One calculates that the extremal
values are provided by the geodesic curves xµ(s); moreover, the latter expression
is invariant under affine reparametrizations s→ as+b implying one may consider
only variations δxµ(s) such that the end points t0, t1 remain fixed. The reader
should complete the following computation

δI(x, y) = (t1 − t0)

∫ t1

t0

gµν

(
D

ds

dxµ(s)

ds

)
δxν(s)ds

where
D

ds
= ∇ d

ds

and δxµ(t0) = δxµ(t1) = 0. This variation dissapears if and only if

D

ds

dxµ(s)

ds
= 0

which is the geodesic equation indeed. Henceforth, Syge’s function equals

σ(x, y, w) =
1

2
g(w,w) =

1

2
εL2(x, y, w)

where w ∈ T ?M, L(x, y, w) equals the length of the geodesic emating from x
with tangent vector w and endpoint expx(w) = y. Here, ε = 1 for timelike
geodesics and −1 for space like ones. Supposing that w varies continuously
when x and y do, we decide that w only serves to indicate that several geodesics
between x and y may exist. The reader now verifies that

σ(x, y, w),µ := ∂xµσ(x, y, w) = −wµ = gµνw
ν , σ(x, y, w),µ′ := ∂yµ′σ(x, y, w) =

−gµ′κ′Λκ
′

ν (x,w)wν .

From this it follows that

2gµνσ(x, y, w),µσ(x, y, w),ν = σ(x, y, w)

and likewise so for derivatives with respect to y.

We shall finish this chapter by giving away further details regarding Rieman-
nian geometry and the exercises concern original extensions of these theorems
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towards Lorentzian geometry. Let us begin with the usual definition: given two
vectors v, w, then the surface of the parallelipid spanned by v, w is given by
means of g(v, v)g(w,w)− (g(v, w))2 and we define sectional curvature s(v, w) as

s(v, w) = − g(R(v, w)v, w)

g(v, v)g(w,w)− (g(v, w))2
.

A metric is of constant sectional curvature if and only if

Rµναβ =
R

n(n− 1)
(gµβgνα − gµαgνβ).

Consequently, the Ricci tensor reads

Rµν =
R

n
gµν

implying any space of constant sectional curvature is an Einstein space. One
notices that the mapping g → −g leaves the Ricci tensor invariant whereas the
Ricci scalar and sectional curvature are mapped to their opposite. In particular,
this is also true for the Einstein action in an even number of dimensions. It may
be clear that in case only sectional curvature matters, we must focus on the
study of homogeneous and isotropic model spaces of constant sectional curva-
ture. These are evidently unique; these model spaces are maximally symmetrical
where a symmetry is represented by means of a diffeomorphism ψ : M → M
such that ψ?g = g. In case we speak about a one parameter family ψt of
diffeomorphisms this leads to

LVg = 0

where V constitutes the generating vectorfield. The reader verifies that this
equation may be rewritten as

∇(αVβ) = 0

where Vβ = gβαV
α and the round brackets represent the operation of sym-

metrization; it is to say

Z(α1...αn) =
1

n!

∑
σ∈Sn

Zασ(1)...ασ(n)
.

This equation is known as Killing’s equation and the reader easily sees that

there are exactly n(n+1)
2 of them leaving n(n−1)

2 + n parameters where n is

the number of free coordinates of a point. Therefore, any space with n(n+1)
2

lineairly independent Killing fields is called maximally symmetric. Using the
Killing equation in the definition of the Riemann tensor gives

∇α∇βV α = R α
αβγ V γ .

More in general, from

∇α∇βVγ −∇β∇αVγ = −R κ
αβγ Vκ
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follows that
∇α∇βVγ +∇β∇γVα = −R κ

αβγ Vκ

and consequently, using the symmetries of the Riemann tensor, one obtains

∇α∇βVγ = R κ
βγαVκ.

We now study the prototype Riemannian maximally symmetric spaces with
null, positive and negative sectional curvature respectively. These geometries
are not unique and may differ topologically from one and another: for example,
in two dimensions, one disposes of a flat cylinder, torus and plane. Clearly, any
cylinder may be isometrically embedded into R2/Tx,a and likewise for the torus
in R2/{Tx,a, Ty,b} where Tx,a defines a translation over a distance a > 0 in the
x direction. In that vein, the plane is maximally symmetric and one can show
that any flat metrical space can be construed by means of elementary cutting
and pasting of such quotients. The maximally symmetric ones are called flat,
spheric and hyperbolic respectively.

The prototype maximal flat spaces are provided by the Euclidean (Rn, δαβ)
where δαβ refers to a canonical flat coordinate system. The reader may construct
distinct flat spaces by gluing two of them together by means of a so called
wormhole; specifically, cut a n−1 dimensional torus out of Rn and connect those

by means of a n dimensional cylinder. One knows that the n(n+1)
2 -dimensional

symmetry group of (Rn, δαβ) is provided by SO(n)×Rn where SO(n) constitutes
the special orthogonal group with as elements matrices Oµν such that

OαµO
β
ν δαβ = δµν

and with determinant one. Moreover, one has a n dimensional translation group
Rn with as total action

((O, a)x)α = Oαβx
β + aα.

SO(n) is generated by means of the anti-Hermitian matrices A meaning that

A† = −A which implies that the group is n(n−1)
2 dimensional. Regarding global

properties, it holds that between any two points x and y one can find exactly
one geodesic which is the straight line segment connecting both points. The
canonical volume measure is given by dx1 ∧ . . . ∧ dxn which may be rewritten
as

rn−1dr ∧ ΩSn−1

where r =
√∑n

i=1(xi)2 and ΩSn−1 constitutes the canonical volume measure
on the n − 1 dimensional sphere which is closed but not exact. This fact can
easily be shown using the property that ∂r is perpendicular to Sn−1(r) as well
as the scaling formula d(rx, ry) = rd(x, y) for any r > 0. Henceforth, balls of
radius r around a point x always have a volume equal to

rn

n
Vol(Sn−1).
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Another important property which the reader may show is that the sum of
interior angles in a triangle equals π.

Now we shall describe maximal model spaces of positive sectional curvature
which equals the n dimensional sphere of radius r in (Rn+1, δαβ); the symmetry
group equals SO(n+ 1) which provides for the correct dimension. The distance
between two points x, y is provided by the arclength θ of the segment of the
circle determined by x, y and the origin, where

cos(θ) =
xαyα
r2

and x, y n + 1-dimensional vectors. In order to understand the geometry, one
does not need any explicit computation; it is fully determined by means of
the parameter r and in particular this implies that the sphere has a constant
sectional curvature of the form a

r2 on dimensional grounds. A small computation
in two dimensions reveals that a = 1 and the reader verifies that∫

S2

R
√
h = 4πχ(S2) = 8π

where we bring to the recollection that χ is the Euler number. This result holds
for any Riemannian metric on the sphere a result which is called the Gauss
Bonnet theorem. The reader is invited to prove this as a non-trivial exercise
(hint: show that the variation of the density to the metric produces a total
derivative in two dimensions). One immediately appreciates that the geodesic
expansion equation reduces to

d2

ds2
Z = − 1

r2
Z

providing one with solutions of the form Z(s) = b sin
(
s
r

)
in case Z(0) = 0. This

result implies that the sum over all angles in a geodesic triangle is larger as π
given reconvergence of geodesics.

Finally, we arrive at the model of the hyperbolic space Hn(r), r > 0, which we
may derive out of n+ 1-dimensional Minkowski as the hyperbola

Hn(r) = {x|xαxβηαβ = r}.

This space is maximally symmetric with as symmetry group SO(n, 1) which
constitutes the n + 1-dimensional Lorentz transformations; this Riemannian
space has again constant sectional curvature which is equal to − 1

r2 as an explicit
calculation in n = 2 shows. Geodesics expand henceforth according to b sinh

(
s
r

)
and therefore the shorter r te faster geodesics diverge from one and another.
This has as a ramification that the volume of a ball of radius s grows faster as
is the case in Euclidean space; concretely

V (s) =

∫ s

0

dtrn−1

(
sinh

(
t

r

))n−1

V (Sn−1).
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The volume in the spherical case computes

V (s) =

∫ s

0

dtrn−1

(
sin

(
t

r

))n−1

V (Sn−1)

and the reader is invited to calculate those integrals explicitely.

Taking all considerations into account, it is clear that the following result holds:
if (M, h) constitutes an n-dimensional Riemannian manifold with sectional cur-
vature greater or equal to R ∈ R then one has that the volume of any ball
with radius r is smaller or equal to that of the ball with identical radius in the

model space Hn
(

1√
−R

)
or Sn

(
1√
R

)
depending of whether R < 0 or R > 0

respectively. The reason is evident: consider any x ∈ M and take the Eu-
clidean sphere with radius r on the tangent space and wharp that by means of
the exponential map, then small angular cones δΩ wich constitute a bundle of
radial geodesics are deformed in such a way that the volume equals at most the
one int the reference space, given that in general more compression as well as
rotation takes place. One can write this decently down by means of the geodesic
expansion equation.

One can try to achieve a similar result in Lorentzian geometry and study growth
patterns of the so called Alexandrov sets A(x, y) where y ∈ J+(x) and

A(x, y) = J+(x) ∩ J−(y).

A(x, y) is therefore the set of all points located on causal future oriented curves
from x to y. One notices henceforth that there appears to be a connection
between global propertiees of the Riemann tensor on one hand and topology on
the other. This is indeed as such and more profound results may be obtained
(see Milnor, Perelman). Topology from the differentiable viewpoint leads to rich
results such as the Brouwer and Kakutani fix point theorems as well as Morse
theory which we have treated already.
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Chapter 14

Curved spacetime and
bending of light rays: a
taste of relativity theory.

This small chapter is a bit a loner in this book given that it regards applica-
tions in gravitational physics of the geometrical and analytical ideas studied
previously. As mentioned, the Einstein field equations may be derived from the
action principle ∫

M
R
√
−g

for a Lorentzian metric g and manifold without boundary M. In case M has
a boundary, it is mandatory to include the so called Hawking-York-Gibbons
boundary term (integral) to compensate for the exterior derivatives appearing
in the variation of the (bulk) Einstein-Hilbert action. One computes that

δ
√
−g

δgαβ
= −1

2

√
−ggαβ

as well as
δR

δgαβ
= Rαβ + gγκ

δRγκ
δgαβ

.

The last tensor
δRγκ
δgαβ

is symmetric under exchange of α, β and γ, κ separately
and therefore cannot contain the Riemann tensor. Closer inspection reveals that

gγκδRγκ = ∇αV α(δgκγ)

where the vectorfield V α(δgκγ) depends in a linear fashion upon the covariant
derivatives of δgκγ . The reader should try to see that this has to be true without
making any computation (hint: the scalar needs to be of second order in the
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derivatives and of first order in the variation of the metric field). Consequently,
one has that ∫

(Rαβ −
1

2
Rgαβ)δgαβ

√
−g +∇αV α(δgκγ)

√
−g

and the last term may be rewritten as∫
∂α(
√
−gV α)dx1 ∧ . . . ∧ dxn

which equals the exterior derivative of some n−1 form. In case the manifold has
no boundary ∂M = ∅, this term vanishes due to Stokes theorem. The vacuum
Einstein equations are henceforth given by

Rαβ −
1

2
Rgαβ = 0

and the reader is invited to determine the Hawking-York-Gibbons boundary
term (hint: study the notion of exterior curvature provided that infinitesimal
information from the bulk around the boundary is of importance). The Einstein
(symmetrical) tensor

Gαβ = Rαβ −
1

2
Rgαβ

obeys
gγα∇γGαβ = 0

a conservation law which follows straight from the second Bianchi identity. In
physics, this law has the significance of conservation of energy and momentum
which is provided by a four current. It is important to understand that this
conservation law is a geometrical identiy and holds for any Einstein tensor irre-
spective of the equations with or without matter. One immediately understands
the proof of the Gauss Bonnet theorem which is that the Einstein tensor van-
ishes in two dimensions: indeed Gαβg

αβ = (1− n
2 )R together with the identity

Rαβ = R
2 gαβ which only holds in n = 2, we arrive at Gαβ = 0. This implies

that, apart from the boundary terms, Einstein’s theory is topological in n = 2
meaning no metrics are distinguished. Physicists interpret this result by posit-
ing that no gravitational laws exist in 1+1 dimensions; evidently, this is not the
case in a higher number of dimensions. The vacuum Einstein equations may be
simplified to

Rαβ = 0

implying that the Ricci tensor vanishes. Proof that the conservation law for the
Einstein tensor is a direct consequence of the invariance under the action of a
one parameter group of diffeomorphisms; in particular, it holds that in such a
case

δgαβ = εLVgαβ = 2ε∇(αVβ).
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Therefore, the conservation law is a direct consequence of a continuous symme-
try, a result which is known in general as Emmy Noether’s theorem.

The Einstein equations are very hard to solve explicitely in general; under very
general conditions it holds that there exists a unique solution up to a bulk dif-
feomorphism. Much more easy and straightforward is to engage into a post
Newtonian expansion (this allows you to get rid of the nasty bulk diffeomor-
phisms); that is, write gαβ = ηαβ+εhαβ on a manifold whose topology is that of
Rn and write out the Einstein equations up to second order in ε. The resulting
differential equations are known as the graviton equations.

In Einstein’s theory, another central concept is geodesy which is explicitated by
means of the geodesic equations; pointlike objects are completely characterized
by means of their mass and move on geodesics. One could imagine different
equations such as

∇VV + αR(∇VV,V)∇VV = 0.

In case the object has an extension, one could make the latter dynamical by
introducing the expansion tensor

∇(αVβ)

or rotation tensor
∇[αVβ].

Light rays travel by good approximation on null geodesics, at least in the optical
approximation (excluding quantum effects). One computes henceforth things
such as change of frequency by parallel transport of the wave vector over the
null geodesic and consequently projecting them on the tangent vectors of the
worlines of the distinct observers. Specifically, let k be a wavevector tangent
in a point x and y a point in the future connected by means of a null geodesic
with x. Let n and m be the normalized tangent vectors to the world lines of
two apparati in x and y respectively, then it holds that the frequency of the
wave as measured in x by the apparatus equals g(k, n)/~ with ~ a universal
constant. The frequency measured in y is given then by g(k′,m)/~ where k′

equals the Fermi-Walker transport of k along the null geodesic in y. In that
way, one computes redshifts (meaning a lower frequency) due to interaction
with the gravitional field.

Exercises : differential equations, existence and unicity of solutions.
We have used in this chapter equations of the kind

df(x)

dx
+ P (f(x)) = 0

where P (f) equals a polynomial of the kind

n∑
i=0

gif
n
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with gi real valued functions in the real variable x. By choosing an ε > 0 and

positing that the differential df(x)
dx in the ε approximation is given by f(x+ε)−f(x)

ε
one easily shows that all f(nε) are fixed given f(0). Take the limit for ε to zero
and prove that the continuously differentiable closure exists and is unique in
case all gi are differentiable.

• Apply the same tactic to prove that equations of the form ∂tf(t, xi) =
P (f, ∂if, ∂i∂jf, . . .) have a unique solution given f(t0, x

i) for all xi and
chosen t0.

• Generalize this theorem to equations of the form

gij(f, x)∂i∂jf +Ai(f, x)∂if + P (f) = 0

and argue that a substantial difference exists regarding the qualitative
behaviour of the solutions in case g is Lorentzian or Riemannian. In the
first case, the complex numbers are not important whereas in second case
they are. This is because surfaces of the form x2 − y2 always have real
zeroes whereas for any y ∈ R this is not the case for x2 + y2.

• To understand this last point, we study the nucleus of the operators ∂2
x−∂2

y

and ∂2
x+∂2

y . In the first case, we obtain the eigenfuctions eik(x±y) whereas

in the second case they are ekx±iky with k ∈ C. Usually, one considers
real k due to boundedness properties of eiky which constitutes the basis
for the Fourier transformation. In the Lorentzian case, those functions
remain bounded for all x whereas they blow up for Riemannian geometries.
Stability of nature henceforth requires a Lorentzian metric.

Exercises: the Fourier transformation on Lorentzian spaces.
Fourier waves on Minkowski space time are of the form eika(xa−xa0 ); the huge
advantage being that the wave vector ka does not depend upon the space time
coordinates and therefore has an interpretation as a conserved physical quantity
called the momentum. It is therefore not appropriate to search for generaliza-
tions of those waves by considering the so called generalized d’Alembertian

gαβ∇α∇β

due to time dependency of the metric coefficients and henceforth, Fourier waves
with distinct spatial characteristics intertwine in time. Fourier waves should
therefore be defined starting from a space time point of view and not one of
space.

• Consider a base point (source) x and a Fourier wave φ(x, y, k) where y
is the point of detection and k ∈ TMx the wave vector defined in x.
Because k must define a pure wave vector in y there exists a linear mapping
?(x, y) : TMx → My satisfying ?(yx) ◦ ?(xy) = id. Arithmetically, it is
reasonable to presume the existence of an operation � and associated
involution † such that

φ(x, y, k)† = φ(y, x, k?(xy)), φ(y, x, k?(xy))�φ(x, y, k) = φ(x, x, k).
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Moreover, one normalizes that φ(x, x, k) = 1�.

• For a normal Fourier wave, one has that 1� = 1 and as such is � the
multiplication of complex numbers and † the complex conjugate.

• Consider now the idea of propagation, that is that the reception of the
wave at y is the consequence of information travelling over a path γ :
[0, 1] → M from γ(0) = x to γ(1) = y. Show then that the most simple
first order differential equation is of the form

d

ds
φ(x, γ(s), k) = iµg(k(s), γ̇(s))φ(x, γ(s), k)

with D
dsk = 0. µ is a constant here.

• Prove that on Minkowski, solutions are given by

φ(x, y, k) = eiµka(ya−xa)

and therefore independent of the chosen path. This is a topological prop-
erty given that it is Riemann flat and as such has no local gravitational
degrees of freedom.

• Let γ be a geodesic from x to y, then it holds that

φ(x, y, k) = e−iµg(k,n)

with expx(n) = y.
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Chapter 15

Further abstraction:
exercises.

This chapter is entirely new and contains novel means of reflection about ge-
ometry. To summarize again, we started from the edifice of set theory, followed
by number theory, theory of linear spaces and operators, differential geometry
based upon the notion of a perfect exterior derivative d obeying d2 = 0. We
were somewhat extravagant is using coordinate dependent methods associated
to local linear properties. We shall now forget about perfect exterior derivatives
as well as local arthmetic properties inherited from function theory on Rn. This
implies we have to abandon a naive definition of the Lie bracket and we shall
try to restitute it later on from the viewpoint of generalized connection theory.

Topological differentials.
Let X be any topological space (we do not insist upon it being metrical yet)
and consider an equivalence relation R ⊂ X×X which is topologically open. R
defines vectors, that is (x, y) ∈ R is a vector connecting x with y; the correspon-
dance to the usual vectors on a manifold being that (x, y) has to be thought of
as the vector at x such that thenimage of the exponential map equals y, so they
defined in a way relative to a meric and not a coordinate system. As said in the
introduction, the notion of transport can easily be generalized and is defined by
means of the following

∇X : {(x, y, z) : y, z ∈ R(x, ·)} → X ×X : (x, y, z)→ ∇(x,y)(x, z) = (y, w)

is called the transported relation regarding (x, z) over (x, y) from x to y and
as such it indicates a preffered path or geodesic at least locally. ∇X should
obey the following further properties: (a) for any x, there exists an open O
around it, such that {x} × O ⊂ R and such that for any y, z ∈ O holds that
∇(x,y)(x, z) ∈ R, allowing one to define the composition of two transporters (b)
∇X is continuous in the product topology (c)∇X(x, x, z) = (x, z), ∇X(x, y, x) =
(y, y) indicating that transport over the zero vector is the identity map and

116



the zero vector gets transported into the zero vector. Before we proceed, it
is useful to defientwo projections π1 : R → X : (x, y) → x and π2 : R →
X : (x, y) → y. We shall impose a furter condition on R which is that for
any x and sufficiently small neighborhood O around it, that for any y, z, p, q it
holds that (π2(∇(x,y)(x, z)), π2(∇(x,p)(x, q))) ∈ R meaning that for sufficiently
small vectors sufficiently small vectors around a point, the resulting endpoints
of the parallel transport again constitute a vector. Another, useful operation
is the reversion P which maps (x, y) into (y, x), something which has to do
with the linear structure of vectors. To localize, the reversion, we define P̃ (x, y)
as ∇P (x,y)(P (x, y)) ∈ R(x), so again, taking the minus sign is a geometrical
operation. On R, it is now possible to define two kinds of (non-commutative)
sums; the first one is mere composition, that is

(x, y) ◦ (y, z) = (x, z)

being non local operation and the second one

(x, y)⊕ (x, z) = ∇(x,y)(x, z) ◦ (x, y)

being a local operation. The reader notices that the reversion also defines a
minus operation

(x, y)	 (x, z) = (x, y)⊕ P̃ (x, z).

So, the reader understands that the local notion of a sum is a geometrical one
and not one which merely originates from the manifold structure. Now, we can
easily define the torsion functor

T : X ×R(x)×R(x)→ R(x) : (x, y, z)→ ((x, y)⊕ (x, z))	 ((x, z)⊕ (x, y))

and we shall prove that in a way this coincides with the usual definition in case
y, z converge to x at the same rate. The Riemann function may be defined in a
sufficiently small neighborhood of x as

R(x, p, q, r) = ((x, p)⊕ ((x, q)⊕ (x, r)))	 ((x, q)⊕ ((x, p)⊕ (x, r))).

The reader notices here that we did not include the commutator in this definition
as we have no natural substitute for a vectorfield, neither commutator and
all draggings are supposed to define commuting vectorfields anyway. We shall
investigate these two definitions in further detail in the next section. There is no
meaningful topological way to define this, you need a metric for that. Finally,
we may consider functions between two metrical spaces (X, dX), (Y, dY ) with
vector structures R, T and transporters ∇X , ∇Y defined upon it: we then say
that F : X → Y is differentiable in a surrounding of x ∈ X in case for any
open V ⊂ T (F (x)) there exists an open neighborhood O ⊂ R(x) such that
the canonical bi-continuous mapping DF (w, v) : (w, v) ∈ O2 → V2, v, w ∈ O
defined by (F (v), F (w)) = DF (v, w) satisfing

DF (((x, y)⊕ (x,w)) = DF (∇(x,y)(x,w)) ◦DF (x, y)
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also obeys

d2(DF ((x, y)⊕ (x,w))	 (DF (x, y)⊕DF (x,w)))

ε
→ 0

in case d1(x, y) = εa, d1(x,w) = εb, where a, b > 0 constants, which is the
linearity condition. To define the torsion and Riemann “tensor”, we need addi-
tional information. A connection is called weakly metric compatible if and only
if

d(∇(xy)(xz)) = d((xz))

which is, by itself insufficient to select for an “integrable” class of connections;
for example, consider R2 with the standard Euclidean metric and define the
connection ∇(x,y)(x, z) = (y, y + R(z − x)) where R is the rotation over the
minimum of the angle θ between the vector y − x and z − x and π − θ in
opposite orientation to the one defined by z − x and y − x. Then the reader
convinces himself that the angle is not preserved and that the torsion function
vanishes identically. So, we must insist upon a stronger metric compatibility
which says that the angles are preserved. For doing this, we need a path metric
defined by the property that for any x, y ∈ X it holds that there exists a z ∈ X
such that

d(x, z) = d(y, z) =
d(x, y)

2
.

The latter is equivalent to stating that there exists a curve, called a geodesic,
γ : [0, 1]→ X which minimizes the length functional L for paths with endpoints
x, y and, moreover, L(γ) = d(x, y). The latter is defined by

L(γ) = sup
0=t0<t1...<tn=1,n>0

n−1∑
j=0

d(γ(tj), γ(tj+1))

and γ can be parametrized in arc-length parametrization by means of the Radon
Nikodym derivative. Furthermore, this only makes sense if the geodesic con-
necting two points x, y close enough to one and another exists and is unique
so that we can associate vectors to geodesics. Consider a point x ∈ X and
take a sequence of points yn, zn placed on two half geodesics emanating from x
converging in the limit for n to infinity towards x. In case the limit

lim
n→∞

d(x, yn)2 + d(x, zn)2 − d(yn, zn)2

2d(x, yn)d(x, zn)

exists, we define the angle θx(y, z) between both geodesics by equating the latter
expression to cos(θx(y, z)). So, we must also require that ∇X preserves angles;
in short, θx(y, z) = θp(π2(∇(x,p)(x, y)), π2(∇(x,p)(x, z))) for x, p, y, z sufficiently
close to one and another. Obviously, this is still not enough given that one
may consider the connection ∇(x,y)(x, z) = (y, y − (z − x)) and notice that
(x, y) ⊕ (x, y) = (x, x) = 0. The reader sees immediately that angles as well
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as distances are preserved and that the torsion vanishes since (x, y) ⊕ (x, z) =
(x, y − (z − x)) and (x, z)⊕ (x, y) = (x, z − (y − x)) so that

((x, y)⊕ (x, z))	 ((x, y)⊕ (x, z)) = (x, y − (z − x))⊕ P̃ (x, z − (y − x)) =

(x, y − (z − x))⊕ (x, y − (z − x)) = (x, x) = 0

since P̃ (x, z− (y−x)) = ∇(z−(y−x),x)(z− (y−x), x) = (x, x− (z− y)) = (x, y−
(z−x)). So, therefore we need to impose the strongest form, which amounts to
an integrability condition which is that the d geodesics are auto-parallel curves
meaning that for any geodesic γ from x to y in arclength parametrization, it
holds that

∇(γ(t),γ(s))(γ(t), γ(s)) = (γ(s), γ(2s− t))

for s > t sufficiently small. In that case, we find back the ordinary Levi-Civita
connection with vanishing torsion in case for metrics on a manifold. To allow for
torsion, one may impose that for any vector x, y sufficiently small, there exists
a unique curve γ from x to y in arclength parametrization such that for t < s
sufficiently small, the above condition holds. We shall henceforth insist upon the
last integrability condition. To give a nontrivial example of our construction,
take two manifolds glued together at a point p, with identified induced metrics
on both meaning there exist two orthonormal basis at p which are identified by
means of a linear mapping T : TMp → TNp : v → T (v) and T−1 of course for
the opposite directions. Then, for general vectors a ∈ Mp corresponding to a
unique vector (p, x) and b ∈ TNp corresponding to a unique vector (p, y), one
can define a⊕ b ≡ a⊕M T−1(b) in M resultng in a vector (p, z) and vice versa
for b⊕ a ≡ b⊕N T (a). So, usually, the torsion function does not vanish, but it
does so for infinitesimal vectors a = εa′, b = εb′ keeping a′ and b′ fixed. In the
limit for ε to zero (as we shall show in full detail below) will a⊕ T−1(b) reduce
to ε(a′ + T−1b′) +O(ε2) so that in first order of ε, we have that

(a⊕ T−1(b))	 (b⊕ T (a)) = ε(a′ + T−1(b′)− T−1(b′ + T (a′)) +O(ε2) = O(ε2)

and we will show below that even the second order term in ε vanishes in case
the torsion tensors are anti-podal. Notice that differentiability is a priori a
metric dependent concept but as the reader may verify, this is not the case for
smooth metrics and general metric compatible connections defined by scalar
products on a manifold. Here, the metric locally trivializes and the connection
gives subleading corrections so that the sum reduces to the ordinary one. Let
us work this out in full detail here so that the reader understands that the usual
manifold definitions follow from ours. Given a metric tensor, gµν the reader
verifies that the general connection is given by

Γ̂δµν = Γδµν −
1

2

(
T δ
µν + T δ

νµ − T δ µν
)

where
T δ µν
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is the Torsion tensor which is anti-symmetric in µν and in the previous expres-
sion, lowering and raising of indices has been done by means of the metric tensor.
Now, take two vectors V , W at x, take ε > 0 and consider the exponential map
defined by εV , equivalent to (x, y) and εW , equivlent to (x, z) respectively. Up
to second order in ε those are given by

y = x+ εV − ε2

2
Γ̂(V, V )

and likewise for W . Parallel transport of εW along εV gives

W (y) = εW − ε2Γ̂(V,W )

and likewise for V,W interchanged. Hence,

∇(x,y) (x, z) =

(
y, x+ εV − ε2

2
Γ̂(V, V ) + εW − ε2Γ̂(V,W )− ε2

2
Γ̂(W,W )

)
and likewise for V,W interchanged. The reader notices that Γ̂(V, V ) can be

retrieved from the geodesic equation and therefore Γ̂(V,W ) from the transport
equation, both in order ε2. We shall make this now precise. One sees now that

(x, y)⊕ (x, z) =

(
x, x+ ε(V +W )− ε2

2

(
Γ̂(V +W,V +W ) + T (V,W )

))
implying that

π2 ((x, z)⊕ (x, y)) = x+ ε
(
W + V − ε

2
T (W,V )

)
−ε

2

2
Γ̂
(
W + V +

ε

2
T (W,V ),W + V +

ε

2
T (W,V )

)
.

Hence,

((x, y)⊕ (x, z))	 ((x, z)⊕ (x, y)) = (x, x+ ε2T (W,V ) +O(ε3))

so, as promised, the torsion tensor emerges in leading order ε2. To make this
precise in our setting, consider the generalized geodesics γy, γz in arclength
parametrization representing with γy(0) = x, γy(1) = y and likewise for γz.
Furthermore, choose any reference direction γq then we have that with

T̂ := T (s) := π2(T (x, γy(s), γz(s)))

that

θ(T̂ , γq), lim
s→0

d(x, T (s))

s2

are well defined and fully capture the Torsion tensor without coordinates. In
order to find the Riemann tensor, we need to be a bit more careful and expand
terms up to the third power of ε; more in particular,

(x, y) :=

(
x, x+ εV − ε2

2
Γ̂(V, V )− ε3

6

(
(V Γ̂)(V, V )− Γ̂(Γ̂(V, V ), V )− Γ̂(V, Γ̂(V, V ))

))
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and

W (y) = W − εΓ̂(V,W )− ε2

2

(
(V (Γ̂))(V,W )− Γ̂(Γ̂(V, V ),W )− Γ̂(V, Γ̂(V,W ))

)
so that

π2 ((x, y)⊕ (x, z)) = x+εV−ε
2

2
Γ̂(V, V )−ε

3

6

(
(V Γ̂)(V, V )− Γ̂(Γ̂(V, V ), V )− Γ̂(V, Γ̂(V, V ))

)
+

ε

(
W − εΓ̂(V,W )− ε2

2

(
(V Γ̂)(V,W )− Γ̂(Γ̂(V, V ),W )− Γ̂(V, Γ̂(V,W ))

))
−ε

2

2

(
Γ̂(W,W )− ε

(
Γ̂(Γ̂(V,W ),W ) + Γ̂(W, Γ̂(V,W ))− (V Γ̂)(W,W )

))
−ε

3

6

(
(W Γ̂)(W,W )− Γ̂(Γ̂(W,W ),W )− Γ̂(W, Γ̂(W,W ))

)
.

We seek now for the associated geodesic of time ε which maps to this endpoint;
that is we have to solve for

Z(V,W, ε) = V +W − ε

2
T (V,W ) +

ε2

6
K(V,W )

such that

x+ εZ − ε2

2
Γ̂(Z,Z)− ε3

6

(
(ZΓ̂)(Z,Z)− Γ̂(Γ̂(Z,Z), Z)− Γ̂(Z, Γ̂(Z,Z))

)
equals the previous expression up to third order in ε. This leads to

(W Γ̂)(W,W )− Γ̂(Γ̂(W,W ),W )− Γ̂(W, Γ̂(W,W )+(V Γ̂)(V, V )− Γ̂(Γ̂(V, V ), V )−

Γ̂(V, Γ̂(V, V )) + 3(V Γ̂)(W,W )− 3
(

Γ̂(Γ̂(V,W ),W ) + Γ̂(W, Γ̂(V,W ))
)

+

3
(

(V Γ̂)(V,W )− Γ̂(Γ̂(V, V ),W )− Γ̂(V, Γ̂(V,W ))
)

must be equal to

−K(V,W )−3

2

(
Γ̂(V +W,T (V,W )) + Γ̂(T (V,W ), V +W )

)
+((V+W )Γ̂)(V+W,V+W )−

Γ̂(Γ̂(V +W,V +W ), V +W )− Γ̂(V +W, Γ̂(V +W,V +W ))

which leads to

K(V,W ) = (W Γ̂)(V, V )+(W Γ̂)(V,W )+(W Γ̂)(W,V )+(V Γ̂)(W,V )−2(V Γ̂)(V,W )−2(V Γ̂)(W,W )

−5

2
Γ̂(Γ̂(V,W ), V ) + 2Γ̂(Γ̂(V, V ),W ) +

1

2
Γ̂(Γ̂(W,V ), V )+

1

2
Γ̂(Γ̂(W,V ),W ) +

1

2
Γ̂(Γ̂(V,W ),W )− Γ̂(Γ̂(W,W ), V ) +

1

2
Γ̂(V, Γ̂(V,W ))+
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1

2
Γ̂(W, Γ̂(V,W )) +

1

2
Γ̂(V, Γ̂(W,V ))+

1

2
Γ̂(W, Γ̂(W,V ))− Γ̂(V, Γ̂(W,W ))− Γ̂(W, Γ̂(V, V )).

The kinetic term can be rewritten as

2
(

(W Γ̂)(V,W )− (V Γ̂)(W,W )
)

+
(

(W Γ̂)(V, V )− (V Γ̂)(W,V )
)

+2
(

(V Γ̂)(W,V )− (V Γ̂)(V,W )
)

+
(

(W Γ̂)(W,V )− (W Γ̂)(V,W )
)

which suggests for two distinct Riemann tensors and two derivatives of torsion
tensors. Further computation yields that

K(V,W ) = 2R̂(W,V )W+R̂(W,V )V+2∇̂V T (W,V )+∇̂WT (W,V )+
1

2
T (V, T (V,W ))+

1

2
T (W,T (W,V )).

The reader must note here that we used the following defition of the Riemann
tensor

R̂(X,Y )Z = ∇̂X∇̂Y Z − ∇̂Y ∇̂XZ − ∇̂[X,Y ]Z;

Note also that K(V, λV ) = 0 and the reader immediately calculates that

Z(S,Z(V,W, ε), ε) = S + V +W − ε

2
(T (V,W ) + T (S, V ) + T (S,W )) +

ε2

6
(K(S, V +W ) +K(V,W ) + 3T (S, T (V,W )))

and therefore

D(S, V,W, ε) := Z(Z(S,Z(V,W, ε), ε),−Z(V,Z(S,W, ε), ε)) = −εT (S, V )+

ε2

6
(K(V,W ) +K(S, V +W )−K(V, S +W )−K(S,W )) +

ε2

6
(3T (S, T (V,W ))− 3T (V, T (S,W )) + 3T (S + V +W,T (S, V )))

and the expression of order ε2

6 reduces to

2
(
R̂(S, V )W + R̂(W,S)V + R̂(V,W )S

)
+6R̂(V, S)W+3R̂(V, S)V+3R̂(V, S)S+3∇̂ST (V, S)+3∇̂V T (V, S)

+∇̂V T (W,S)+2∇̂WT (V, S)−∇̂ST (W,V )+3T (S, T (V,W ))−3T (V, T (S,W ))+3T (S+V+W,T (S, V ))

In the absence of torsion, our vectorfield reduces to

ε2

2
(2R̂(V, S)W + R̂(V, S)V + R̂(V, S)S).

In general, the reader may enjoy observing that D(S, V,W, ε) = −D(V, S,W, ε);
in order to eliminate the quadratic terms in the above expression, it is useful to
consider

E(S, V,W, ε) := D(S, V,W, ε)−D(S, V,−W, ε) =
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ε2
(

2

3

(
R̂(S, V )W + R̂(W,S)V + R̂(V,W )S

)
− 2R̂(S, V )W +

1

3
∇̂V T (W,S)

)
+ε2

(
−2

3
∇̂WT (S, V ) +

1

3
∇̂ST (V,W ) + T (S, T (V,W )) + T (V, T (W,S)) + T (W,T (S, V ))

)
so that we now have a tensor! The reader immediately notices that in the
absence of torsion this expresion reduces to

−2ε2R̂(S, V )W

by means of the first Bianchi identity, so we would have isolated the Riemann
curvature. In general, the first Bianchi identity reads

R̂(S, V )W + R̂(W,S)V + R̂(V,W )S =

T (T (S, V ),W )+T (T (W,S), V )+T (T (V,W ), S)+∇̂ST (V,W )+∇̂WT (S, V )+∇̂V T (W,S)

so that the above expression reduces to

ε2
(
−2R̂(S, V )W + ∇̂ST (V,W ) + ∇̂V T (W,S) +

1

3
(T (S, T (V,W )) + T (V, T (W,S)) + T (W,T (S, V )))

)
.

In order to get rid of the torsion terms, the reader may verify that

1

3
(E(S, V,W, ε) + E(W,S, V, ε) + E(V,W, S, ε)) =

ε2 (T (S, T (V,W )) + T (V, T (W,S)) + T (W,T (S, V )))

using the first Bianchi identity again. So, therefore

8

9
E(S, V,W, ε)−1

9
E(V,W, S, ε)−1

9
E(W,S, V, ε) = ε2

(
−2R̂(S, V )W + ∇̂ST (V,W ) + ∇̂V T (W,S)

)
There is no way to further reduce this and eliminate the remaining derivatives
of the Torsion tensor and the reader is invited to play a bit around and consider
different sum operations in order to extract those. Finally, we return to the case
without torsion, which is considerably easier and we now turn the prescription
into our novel language; the reader may verify that to third order in ε our
definition of E(S, V,W, ε) coincides with

E(x, p, q, r) := [((x, p)⊕ ((x, q)⊕ (x, r)))	 ((x, q)⊕ ((x, p)⊕ (x, r)))]	[(
(x, p)⊕ ((x, q)⊕ P̃ (x, r))

)
	
(

(x, q)⊕ ((x, p)⊕ P̃ (x, r))
)]

and we have applied the same limiting procedure as we did tor the torsion tensor
previously. The reader may repeat that exercise and define E(x, p, q, r)(s) with
s ∈ R+ and show that

d(E(x, p, q, r)(s)) ∼ 2s3||R̂(S, V )W ||.
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Considering the angle with a reference direction, the entire Riemann tensor may
be retrieved in a coordinate independent way. Note also that we have a very
nice “arithmetic” interpretation of torsion and curvature; that is, they express
the failure of ⊕ to be commutative and perhaps associative to some extend. In
the next section, we shall abandon the case with torsion and give an entirely
different prescription for the Riemann tensor. This treatment shall be more ba-
sic and rough, which may not be a bad thing given the connections constructed
so far are extremely subtle. We now finish this section by some comments upon
differentiability and how the usual bundle apparatus of differential geometry
may be generalized to our setting.

Given that we dispose of a local notion of a (non-commutative) sum whos in-
finitesimal version may very well become commutative and associative as ex-
plained previously and moreover, we have a natural notion of scalar multiplica-
tion by means of our generalized exponential map which associates to a vector
(x, y) a unique geodesic γ in arclength parametrization such that γ(0) = x and
γ(s) = y, then we define for any sufficiently small positive real number λ,

λ(x, y) = (x, γ(λs))

and in case λ is negative we suggest

λ(x, y) := (−λ)P̃ (x, y)

and the reader immediately verifies that these definitions induce the usual ones
on the tangent bundle of a manifold. The reader should understand therefore,
that it is natural to speak of directions at x defined by means of the geodesics
(with respect tot the connection, so they don’t need to be the geodesics of the
metric) and that also in our general context of a non-commutative and non-
linear sum meaning that

λ((x, y)⊕ (x, z)) 6= (λ(x, y))⊕ (λ(x, z))

the very concept of a linearly independent and generating set of directions at x
is still a well defined concept albeit I believe this does not imply that each vector
can be written in a unique way by means of ⊕ and scalar multiplication. So,
the concept of a basis is somewhat less restrictive but it is still well defined as a
minimal set of independent and generating directions. The dimension is then an
ordinary integer defined by the number of basis directions; these observations
allow one to transport the entire cnstruction of tangent and cotangent spaces
to our setting. But beware, we work very differently here as in the case of
the ordinary theory; here it are the connections which determine the tangent
bundle as well as its dimension, a much more intrinsic approach as the usual one
where the backbone differential structure defines the connections. So, a linear
functional, or covector, is defined by means of a continuous functional ωX on
the displacements (x, y) satisfying

1

ε
(ωX((x, z)⊕ (x, y))− ωX((x, y))− ω((x, z))) = 0
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and
1

ε
(ωX(λ(x, y))− λωX((x, y))) = 0 ∈ R

in the limit for d(x, z) = εa, d(x, y) = εb for a, b > 0 constant and ε→ 0. Note
that we cannot request ωX((y, z) ⊕ (x, y)) = ωX((x, y)) + ω((y, z)) for finite
displacements given that the sum operation allows for ambiguities non-locally.
Furthermore, if ωX were a field, then we could define it to constant meaning
that

ωX(∇(x,y)(x, z)) = ωX((x, z)).

Just as in ordinary functional analysis, we can define the weaker notions of con-
tinuity and differentiability of functions regarding convergence properties with
respect to linear functions which all define semi-norms when suitably rescaled
in the infinitesimal limit given by

||(x, y)|| := |ωX((x, y))|.

All proceeds now in a fairly trivial way: given our geodesics (with or without
torsion), we have, as mentioned before directions which are endowed with a nat-
ural notion of length and angles between them. You can consider generalizations
of tensors in those directions which upon suitable rescaling in the infinitesimal
limit might become ordinary linear objects. We leave such developments to the
reader.

15.1 Riemannian geometry.

In this section, we shall take a very different point of view as in the previous
one; the latter was delicate and subtle and very much in line with the standard
manifold treatment. Note that we have sidestepped the issue of existence of
connections something which seems not totally obvious to prove and might be
too delicate for practical purposes. For example, regarding hyperbolic spaces
with conical singularities, it is rather obvious that no connection exists at the
singular points. To give away the detail, take a couple of equilateral flat triangles
(all angles having 60 degrees) and glue them together along their edges such
that one has the situation where an interior vertex meets n > 6 triangles; in
either the internal angle meaure exceeds 360 degrees. Take now any half line
starting from the vertex, then it will have an angle of π with all other half
lines in a range of (n − 6)2π. Obviously, it is impossible for any mapping to
preserve angles when it returns to a normal region where the measure of the
circle equals 2π. The situation is the reverse for conical spherical spaces where
no mapping towards such points exist. Nevertheless, our coarse grained notion
of curvature is still able to capture the curvature around such vertex whereas
local curvature fails. I invite the reader to think about this; after all, the
integrability condition was together with preservation of distances by far the
most important criterion. But it is not sufficient either, so maybe we should
be clever enough to find a weaker condition as the preservation of angles which
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amounts in the manifold case to precisely that. For example, a weaker criterion
would be that the angles with the direction of propagation need to be preserved
as well as the angles amongst themselves as long as both angles with respect to
the direction of propagation are less than π. This definition would certainly fit
all path metrical spaces and coincide with the usual lore of differential geometry.
This does not change anything to what we have said in the previous section,
but merely generalizes the setting to which it be applied. Nevertheless, the
downside of the connection theory is that in general it is impossible to give
a concrete prescription something which made the Christoffel connection so
powerful. There are people who think you should give an easy prescription to
calculate curvature even without constructing geodesics which might be a very
daunting if not impossible task for a general path metric. Now, I am someone
who is very found of geodesics, which are barely manageable in a general curved
Riemannian space but I also sympathize with such an idea. The least you should
know, I believe are distances and the work done in this section does precisely
that. The price to pay is that we cannot speak any longer of vectors, but we
have to directly calculate the scalar invariants.

With this in mind, we work now on general path metric spaces (X, d). We have
the following definitions:

• Alexandrov curvature: in flat Euclidean geometry, the midpoint r of a line
segment [ab] satisfies

~xr =
1

2
( ~xa+ ~xb)

for any x. Hence, one arrives at

d(x, r)2 =
1

4
(d(x, a)2 + d(x, b)2 + 2d(x, a)d(x, b) cos(θx(a, b))).

We define the nonlocal Alexandrov curvature as

R(x, y, z) =
−2d(x, y)2 − 2d(x, z)2 + d(y, z)2 + 4d(x, r)2

d(x, y)2d(x, z)2 sin2(θx(y, z))
.

Taking again geodesic segments between (x, y) and (x, z) parametrized by
ε and corresponding to the vectors V,W respectively then, as before

y = x+εV − ε
2

2
Γ(V, V )− ε

3

6
((V Γ)(V, V )− Γ(Γ(V, V ), V )− Γ(V,Γ(V, V )))

and
d(x, y)2 = ε2h(V, V )

by the very property of the exponential map. To find the midpoint between
y and z we solve for

x+ εV − ε2

2
Γ(V, V )− ε3

6
((V Γ)(V, V )− Γ(Γ(V, V ), V )− Γ(V,Γ(V, V )))
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+εZ−ε
2

2
Γy(Z,Z)−ε

3

6
((ZΓy)(Z,Z)− Γy(Γy(Z,Z), Z) + Γy(Z,Γy(Z,Z))) =

x+εW−ε
2

2
Γ(W,W )−ε

3

6
((WΓ)(W,W )− Γ(Γ(W,W ),W )− Γ(W,Γ(W,W )))

leading to
Z := W − V + ε (Γ(V, V )− Γ(W,V )) +

ε2
(

1

2
(V Γ)(V, V )− 2

3
(V Γ)(W,V ) +

1

3
(V Γ)(W,W ) +

1

6
(WΓ)(V, V )− 1

3
(WΓ)(W,V )

)
+ε2

(
2

3
Γ(W,Γ(V, V ))− 1

3
Γ(W,Γ(W,V ))− Γ(V,Γ(V, V )) +

1

3
Γ(V,Γ(W,W )) +

1

3
Γ(V,Γ(V,W ))

)
.

This implies that the midpoint has coordinates, up to third order in ε
given by

r = x+ε

(
V +W

2

)
−ε

2

2
Γ

(
V +W

2
,
V +W

2

)
−ε

3

6

(
V +W

2
Γ

)(
V +W

2
,
V +W

2

)

−ε
3

6

(
1

2
R(V,W )V +

1

2
R(W,V )W

)
−ε

3

6

(
−2Γ

(
Γ

(
V +W

2
,
V +W

2

)
,
V +W

2

))
This shows that

d(x, r)2 =
ε2

4
(h(V, V ) + h(W,W ) + 2h(V,W ))−ε

4

6
h(R(V,W )V,W )+O(ε)6

and because

d(y, z)2 = ε2 (h(V, V ) + h(W,W )− 2h(V,W )) +
ε4

3
h(R(V,W )V,W )

the Alexandrov curvature equals

− h(R(V,W )V,W )ε4 + . . .

3ε4(h(V, V )h(W,W )− h(V,W )2) + . . .

which in the limit for ε to zero provides for 1
3 times the sectional curvature.

The reader might have guessed this result apart from the front factor based
upon the symmetries of the Alexandrov curvature and the Riemann tensor.

• We now arrive to the notion of Riemann curvature; here, we shall ahve to
take midpoints of midpoints. To understand why this is the case, consider
the following expression

h

(
R

(
V +X

2
,
W + Y

2

)
V +X

2
,
W + Y

2

)
=
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− 1

16
(h(R(V,W )V,W ) + h(R(V, Y )V, Y ) + h(R(X,W )X,W ) + h(R(X,Y )X,Y )) +

1

4

(
h

(
R

(
V +X

2
,W

)
V +X

2
,W

)
+ h

(
R

(
V,
W + Y

2

)
V,
W + Y

2

))
+

1

4

(
h

(
R

(
X,

W + Y

2

)
X,

W + Y

2

)
+ h

(
R

(
V +X

2
, Y

)
V +X

2
, Y

))
+

1

8
h(R(V, Y )X,W ) +

1

8
h(R(X,Y )V,W )

Now, to undo the symmetrization in the curvature terms

1

8
h(R(V, Y )X,W ) +

1

8
h(R(X,Y )V,W )

note that by means of the Bianchi identity, this can be rewritten as

−1

4
h(R(Y,X)V,W ) +

1

8
h(R(V,X)Y,W )

so that we have broken the coefficient symmetry. Considering therefore
the expression

h

(
R

(
V +X

2
,
W + Y

2

)
V +X

2
,
W + Y

2

)
−h
(
R

(
V + Y

2
,
W +X

2

)
V + Y

2
,
W +X

2

)
=

− 1

16
(h(R(V, Y )V, Y ) + h(R(X,W )X,W )− h(R(V,X)V,X)− h(R(Y,W )Y,W )) +

1

4

(
h

(
R

(
V +X

2
,W

)
V +X

2
,W

)
+ h

(
R

(
V,
W + Y

2

)
V,
W + Y

2

))
−1

4

(
h

(
R

(
V + Y

2
,W

)
V + Y

2
,W

)
+ h

(
R

(
V,
W +X

2

)
V,
W +X

2

))
+

1

4

(
h

(
R

(
X,

W + Y

2

)
X,

W + Y

2

)
+ h

(
R

(
V +X

2
, Y

)
V +X

2
, Y

))
−1

4

(
h

(
R

(
Y,
W +X

2

)
Y,
W +X

2

)
+ h

(
R

(
V + Y

2
, X

)
V + Y

2
, X

))
+

3

8
h(R(X,Y )V,W )

which is the result we needed. Denoting by (̂y, z) the midpoint between
y, z, we arrive at the following prescription for the curvature

S(x, y, z, p, q) = −8
(
S(x, (̂y, p), (̂z, q))− S(x, (̂p, z), (̂y, q))

)
−1

2
(S(x, p, z) + S(x, y, q)− S(x, p, y)− S(x, z, q))
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+2
(
S(x, (̂p, y), q) + S(x, (̂q, z), p)− S(x, (̂p, z), q)− S(x, (̂y, q), p)

)
+2
(
S(x, (̂z, q), y) + S(x, (̂p, y), z)− S(x, (̂q, y), z)− S(x, (̂p, z), y)

)
where

S(x, y, z) = −2d(x, y)2 − 2d(x, z)2 + d(y, z)2 + 4d(x, (̂y, z))2.

The reader verifies that all symmetries of the Riemann tensor hold, mean-
ing

S(x, y, z, p, q) = −S(x, z, y, p, q) = −S(x, y, z, q, p) = S(x, p, q, y, z)

and
S(x, y, z, p, q) + S(x, p, y, z, q) + S(x, z, p, y, q) = 0.

This concludes our definition of the Riemann tensor.

• We shall now first define a notion of measure attached to any metric very
much like the canonical volume element attached to a Riemannian metric
tensor; there are several ways to proceed here. Define for any subset
S ⊂ X, the outer measure of scale δ > 0 and dimension d as

µdδ(S) = inf{
∑
i

rdi |B(xi, ri) is a countable cover of open balls of radius ri < δ around xi of S}.

Obviously, the µdδ(S) increase as δ decreases so we define

µd(S) = lim
δ→0

µdδ(S).

The reader verifies that this defines a measure on the Borel sets of X and
morover µd(S) is a decreasing function of d which is infinity for d = 0, in
case X does not consist out of a finite number of points, and 0 for d =∞.
Upon defining α as

α = inf{d|µd(X) = 0} = sup{d|µd(X) =∞}

an equality which holds as the reader should prove and it is µα(S) which
is of interest. α is called the Hausdorff dimension of X. I invite the reader
to “localize” this concept such that one can speak of the local dimension
of a space at a point and not just a global one.

• We define now a one parameter family of “scalar products” by means of

gε(x, a, b) =
d(x, a)d(x, b) cos(θx(a, b))

ε2
.

The reader notices the scaling here as we shall be interested in taking
the limit for ε to zero in a well defined way. Note that we could replace
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the metric compatibility of our connections in the previous section by the
single demand that gε(x, a, b) is preseved under transport meaning that

gε(y, π2(∇(x,y)(x, a)), π2(∇(x,y)(x, a))) = gε(x, a, b).

We want now, in full analogy with the standard treatment in differential
geometry define contractions of the Riemann “tensor” in order to construct
the Ricci and Einstein tensor. Note that we do not necessarily dispose
of a connection here and therefore we have no addition of vectors, seen
as defining a direction. Therefore, we cannot rely upon the notion of a
dual tensor associated to our functionals defind in the previous section.
Nevertheless, we want to construct a notion of inverse which coincides in
the latter cases with the more advanced linear concept. To set the ground
for this discussion, note that there exists a natural generalization of the
Dirac delta function regarding the Hausdorff measure. That is, there exists
a symmetric δ(a, b) such that for all continuous functions f on X, it holds
that ∫

X

dµα(a)δ(a, b)f(a) = f(b).

Defining now the nonlinear dual â of a as

b̂(a) = δ(a, b)

we define inverses gε(x, â, b̂) as∫
B(x,ε)

dµα(b)gε(x, â, b̂)gε(x, b, c)

µα(B(x, ε))
= δ(a, c).

The existence of a uniqueness of the inverse follows from the fact that the
former defines a Toeplitz operator with trivial kernel. It is to say, gε(x, â, b̂)
is the standard Green’s function of the metric regarding the Hausdorff
measure. This holds of course only if the measure is well behaved and we
leave such details to the reader.

Prior to defining contractions with the metric tensor, remark that∫
B(x,ε)

∫
B(x,ε)

dµα(b)dµα(a)gε(x, â, b̂)gε(x, b, a)

is ill defined and requires “a point splitting” procedure to obtain a well
defined answer. Concretely, we consider

α

∫
B(x,ε)

∫
B(x,ε)

dµα(b)dµα(a)
∫
B(a,δ)

dµα(c)gε(x, ĉ, b̂)gε(x, b, a)

µα(B(x, ε))2

an expression which is independent of δ > 0. Note that the dimension α
has been added here to restore for the correct trace.
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• The reader may now define the rescaled Riemann curvature tensors S(x, y, z, p, q, ε) :=
S(x,y,z,p,q)

ε4 and consider contractions with gε(ŷ, q̂) to define the Ricci ten-
sor S(x, z, p, ε) and from thereon the Ricci scalar. We leave this as an
exercise to the reader.

15.2 The Lorentzian theory.

The matter now is how to generalize the above theory towards spaces with a
Lorentz metric. We henceforth consider spaces (X, d) with a compact topology
such that d : X ×X → R+ is continuous and obeys

• d(x, y) ≥ 0 and d(x, x) = 0

• d(x, y) > 0 implies that d(y, x) = 0

• d(x, y) > 0 and d(y, z) > 0 implies that d(x, z) > 0.

From d, we construct a chronology relation y ∈ I+(x) if and only if d(x, y) > 0
where I+(x) constitutes the set of all happenings in the chronological future of
x. Likewise, one defines the chronological past I−(x) consisting out of events
y such that d(y, x) > 0. Associated to this is a partial order ≺ defined by
means of x ≺ y if and only if d(x, y) > 0. We suppose that for ope O around
x one finds points y, z such that y ≺ x ≺ z and I−(z) ∩ I+(y) ≡ A(y, z) ⊂ O.
The sets A(x, y) called the Alexandrov sets define a basis for the space time
topology. Regarding the Riemann tensor, it is required that a, b ∈ I−(c)∩I−(d)∩
I+(x) where timelike geodesics are defined by means of a maximization instead
of minimization procedure. Likewise, it may be that c, d ∈ I−(a) ∩ I−(b) ∩
I+(x) or two similar options with a, b, c, d in the past of x. Because Lorentzian
geometries define no canonical local compact neighborhoods, it is impossible
to define a Hausdorff measure starting from Alexandrov neighborhoods. For
example, on a piecewise linear Lorentzian manifold with conical singularitirs
the volume of an Alexandrov set is direction dependent. Consequently, it is
better to define an additional metric d̃ as well as a Lorentzian metric tensor
g±ε (a, b) on pairs of points (a, b) ∈ I±(x) for which holds that d(a, b) > 0 or
d(b, a) > 0 such that hyperbolic angles are well defined (replace cosine and sine
by cosinehyperbolic and sinehyperbolic). Call these regions Z±(x), then we

define an inverse g±,ε(â, b̂) by means of integration over (B(x, ε) × B(x, ε)) ∩
Z±(x).

15.3 Fuzzy logic.

In spoken language, one has reasons of reasons and the latter are sometimes
infinite and circular. Let us give an example: “an apple falls down on the earth”
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WHY? “because of the gravitational field” WHY? “Because the laws of physics
are background independent and involve a (pre) geometry” WHY? “because you
need to be able to say what a straight line is and because nothing is static in this
world” WHY? “If you could not, then you cannot tell the difference between a
free object and one which is acted upon and because the notion of freedom isn’t
absolute” WHY? . . . Obviously, this sequence is either never ending or ends
with a dogmatic statement we suppose to be true. In mathematics, we have
allowed for such argumentation by means of the logical operator “implies” of
the words “if A then B” and every situation of this kind can be written as a
sequence of such sentences. Also, we have in spoken language the words “by
means of” for example: a chemical substance A changes into B by means of the
catalyst C. Here, a mathematician would try to say that there is an equivalence
with the statement “if A and C react then B and some leftover D remain”.
However, sometimes it is just not known what the leftovers are and neither is
the mechanism by which C serves as a catalyst for A to change. The attitude of
the mathematician is that this imperfect knowledge is just due to a limitation
of our knowledge and is not intrinsic by any means and he would still write

A+ C → B +D.

But what if nature would be such that no precise statements can be made, not
even probabilistically? Then we could not write it down in this way and we
would have to invent a new logical operator in order to accomodate for the
meaning of this sentence; the latter is noted down as

A
C→ B

where we ignore the leftovers. This operation is intended to mean “A evolves
into B by means of the catalyst C” or “A implies B if C amongst others holds”
where we just don’t know the others or perhaps don’t know if others are needed
in the first place. This is the principle of incomplete knowledge which I think
one needs to import into mathematics because as far as I know nature operates
in this way by means of our free will. The reader automatically notices that it
is possible for

A
C→ B andA

C→ ¬B

to hold where ¬ can be interpreted in the classical or intuitionistic sense. A
mistake which is commonly made in science is that A → B is interpreted to
mean that A is a cause for B, or that A is a reason for B to hold. Such
interpretations however are wrong since it is not (experimentally) possible to
verify a reason for something to occur; the only thing we can measure are
coincidences. For example, it is equally possible for angels to move the planets
the way they do than it is for gravity to do the job; the laws of gravity merely
establish the way in which the motion of the earth around the sun occurs but
it provides no reason or cause for it. One expects the following rule to hold(

A
C,D→ B

)
→
(
A

C→ B
)
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in either further specification narrows down the implication. One does not have
that

(A→ B)→
(
A

C→ B
)

is true since for C = ¬B, the right hand side is always false. We call C compatible
or of no influence if this sentence is true. In case also the reverse implication
holds (

A
C→ B

)
→ (A→ B)

we call C redundant or unnecessary. For example, A is H2O and B liquid water
and C is 50 degrees centigrade; since the molecule H2O is always liquid water
at this temperature, this information is redundant. In case C is an influence,
we call the latter maximal or complete if(

A
C→ B

)
→ (A ∧ C → B)

is true while the implication

(A ∧ C → B)→
(
A

C→ B
)

is true by definition. While the sentence

(A ∧ C → B)→ (A ∧ ¬C → B)

is not always true, it can be that(
A

C→ B
)
→
(
A
¬C→ B

)
is true and the reader should give an example of this (for example when C and
¬C are redundant).
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Chapter 16

Afterword.

The author of this book may be consulted by email on johan.noldus@gmail.com
and is permanently prepared to revise as to expand the material. Suggestions of
readers as to include new topics are gratefully considered and further discussed.
I hope that in this work, which contains many new results of top level, the
critical mind of the youngster is enthused. A reference work, written in English
about fundamental physics is in production and published soon.

Postal address:
Dr. J. Noldus
Tel: 0032485338384
Email: johan.noldus@gmail.com

134


