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1 Introduction:

The Natario warp drive appeared for the first time in 2001.([1]).Although the idea of the warp dive as a
spacetime distortion that allows a spaceship to travel faster than light predated the Natario work by 7
years Natario introduced in 2001 the new concept of a propulsion vector to define or to generate a warp
drive spacetime.

This propulsion vector nX uses the form nX = Xiei where Xi are the shift vectors responsible for the
spaceship propulsion or speed and ei are the Canonical Basis of the Coordinates System where the shift
vectors are based or placed.

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed
of the warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1]).(see Appendix A for the complete mathematical demonstration of the Natario calculations for
the Hodge Star).The final form of the original Natario warp drive vector nX is given by nX = vs∗d(r cos θ)
or better:

nX = −2vsf cos θer + vs(2f + rf ′) sin θeθ (1)

or

nX = 2vsf cos θer − vs(2f + rf ′) sin θeθ (2)

We prefer the latter expression above:

In this work we present a new warp drive vector nY = vs ∗ (dy) where vs is the constant speed of
the warp bubble and ∗(dy) is the Hodge Star taken over the y-axis of motion in Polar Coordinates.(see
Appendix B for the complete mathematical demonstration of the calculations for the Hodge Star).The
final form of the new Natario warp drive vector nY is given by nY = vs ∗ d(r sin θ) or better:

nY = 2vsf sin θer + vs(2f + rf ′) cos θeθ (3)

Compare the above expression with the original Natario warp drive vector.

We adopted in this work a pedagogical language and a presentation style that perhaps will be consid-
ered as tedious,monotonous, exhaustive or extensive by experienced or seasoned readers and we designated
this work for novices,newcomers,beginners or intermediate students providing in our work all the mathe-
matical background needed to understand the process used to generate these Natario warp drive vectors
nX and nY from the Hodge Star and retaining all the Natario physical features and properties.

We hope our paper is suitable to fill this proposed task.

This work was designed as a companion work to our work in [3].
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2 The equation of the original Natario warp drive vector nX in 2D
polar coordinates over the x-axis with a constant speed vs

The equation of the original Natario warp drive vector nX is given by:

nX = Xrer + Xθeθ (4)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [1])(see also Appendix
A for details )

Xrs = 2vsf(rs) cos θ (5)

Xθ = −vs(2f(rs) + (rs)f ′(rs)) sin θ (6)

Considering a valid f(rs) as a shape function being f(rs) = 1
2 for large rs(outside the warp bubble)

and f(rs) = 0 for small rs(inside the warp bubble) while being 0 < f(rs) < 1
2 in the walls of the warp

bubble also known as the Natario warped region(see pg 5 in [1]):

We must demonstrate that the original Natario warp drive vector given above satisfies the Natario re-
quirements for a warp bubble defined by:

any Natario vector nX generates a Natario warp drive spacetime if nX = 0 and X = vs = 0 for a
small value of rs defined by Natario as the interior of the warp bubble and nX = vs(t) with X = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(see pg 4 in [1])(see also Appendices C and D).

Natario in its warp drive uses the polar coordinates rs and θ.In order to simplify our analysis we con-
sider motion in the x − axis only or the horizontal plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see
pgs 4,5 and 6 in [1]).

In a 1 + 1 spacetime the horizontal plane we get¿:

nX = Xrer (7)

The contravariant shift vector component Xrs is then:

Xrs = 2vsf(rs) (8)

Remember that Natario(see pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble
f(rs) = 0 resulting in a Xrs = 0 and outside the bubble f(rs) = 1

2 resulting in a Xrs = vs and this
illustrates the Natario definition for a warp drive spacetime.(see pg 4 in [1])(see also Appendices C and
D).(see Appendix E about Polar Coordinates).
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3 The equation of the new Natario warp drive vector nY in 2D polar
coordinates over the y-axis with a constant speed vs

The equation of the new Natario warp drive vector nY is given by:

nY = Y rer + Y θeθ (9)

With the contravariant shift vector components Y rs and Y θ given by:(see Appendix B for details)

Y rs = 2vsf(rs) sin θ (10)

Y θ = vs(2f(rs) + (rs)f ′(rs)) cos θ (11)

Considering a valid f(rs) as a shape function being f(rs) = 1
2 for large rs(outside the warp bubble)

and f(rs) = 0 for small rs(inside the warp bubble) while being 0 < f(rs) < 1
2 in the walls of the warp

bubble also known as the Natario warped region(see pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nY generates a Natario warp drive spacetime if nY = 0 and Y = vs = 0 for a
small value of rs defined by Natario as the interior of the warp bubble and nY = vs(t) with Y = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(see pg 4 in [1])(see also Appendices C and D).

Natario in its warp drive uses the polar coordinates rs and θ.In order to simplify our analysis we con-
sider motion in the y − axis only or the vertical plane rs where θ = 90 sin(θ) = 1 and cos(θ) = 0.(see pgs
4,5 and 6 in [1]).

In a 1 + 1 spacetime the vertical plane we get¿:

nY = Y rer (12)

The contravariant shift vector component Y rs is then:

Y rs = 2vsf(rs) (13)

Remember that we now defines the y axis as the axis of motion.Inside the bubble f(rs) = 0 resulting
in a Y rs = 0 and outside the bubble f(rs) = 1

2 resulting in a Y rs = vs and this illustrates the Natario
definition for a warp drive spacetime.(see pg 4 in [1])(see also Appendices C and D).(see Appendix E about
Polar Coordinates).
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4 Composed Natario warp drive vectors:multi-layered warp fields or
perhaps a possible future transwarp drive??

In the science fiction movies of Star Trek1 namely the Star Trek III The Search for Spock or the Star
Trek V I The Undiscovered Country the starship NCC−1701 USS Enterprise is often described as a single
warp drive starship possessing a single warp drive bubble while the starship NX − 2000 USS Excelsior is
described as a transwarp drive starship possessing multi-layered warp bubbles.According with the movies
a transwarp drive with multi-layered warp bubbles allows faster speeds when compared to the speeds
achieved by a single warp drive.

Now leaving the science fiction behind and concentrating ourselves in the mathematics of the warp drive
vectors lets us conjecture the following possibility:multi-layered warp fields or perhaps a possible future
transwarp drive:

Consider a vector A defined as A = (A1)i + (A2)j + (A3)k with A1,A2 and A3 being the contravari-
ant components of the vector and i, j, k being the Canonical Basis of the R3.Consider now another vector
B defined as B = (B1)i + (B2)j + (B3)k with B1,B2 and B3 being the contravariant components of the
vector and i, j, k being the same Canonical Basis of the R3.

If we add the vectors A and B giving a new vector C = A + B then C is defined as being C =
(C1)i + (C2)j + (C3)k with C1,C2 and C3 being the contravariant components of the vector and i, j, k
being the same Canonical Basis of the R3.

According with the laws of vectorial addition the vector C is equal to C = (A1+B1)i+(A2+B2)j+(A3+B3)k

Applying the same procedures of vectorial addition to the Natario warp drive vectors nX and nY defining
a new composed Natario warp drive vector nT = nX + nY as being:2

nX ∼ 2vsf cos θer − vs(2f + rf ′) sin θeθ (14)

nY ∼ 2vsf sin θer + vs(2f + rf ′) cos θeθ (15)

nT ∼ 2vsf sin θer + 2vsf cos θer + vs(2f + rf ′) cos θeθ − vs(2f + rf ′) sin θeθ (16)

nT ∼ 2vsf(sin θer + cos θer) + vs(2f + rf ′)(cos θeθ − sin θeθ) (17)

nT ∼ 2vsf(sin θ + cos θ)er + vs(2f + rf ′)(cos θ − sin θ)eθ (18)

Above is depicted the Natario transwarp drive vector as an addition nT = nX + nY or superposition
of the Natario warp drive vectors nX and nY .A complete study of this new vector will appear in a future
work.At first sight interesting results are obtained when θ = 45 degrees.

1Paramount Pictures
2we chooses T for the Transwarp
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5 Conclusion

In this work we introduced the new Natario warp drive vector nY using the y-axis as the main axis of
motion or better:the ∗(dy) as being the Hodge Star taken over the y-axis in Polar Coordinates.We focused
ourselves in the 2D polar coordinates for constant speeds.

But remember that a real spaceship is a tridimensional 3D object inserted inside a tridimensional 3D
warp bubble that must uses all the tridimensional 3D Canonical Basis er,eθ and eφ so there is still a work
to be done:a real tridimensional 3D warp drive vector nY also based over the y-axis but resembling the
work in [3].

The Natario warp drive is probably the best candidate(known until now) for an interstellar space travel
considering the fact that a spaceship in a real superluminal spaceflight will encounter(or collide against)
hazardous objects(asteroids,comets,interstellar dust and debris etc) and the Natario spacetime offers an
excellent protection to the crew members as depicted in the works [8],[9],[10] and [11].

Remember also that a real warp drive must accelerate or de-accelerate in order to be accepted as a
physical valid model so our Natario warp drive vector nY with constant speeds will have a future version
encompassing variable speeds resembling the work in [3].

The application of the new Natario warp drive vector nY wether in constant or variable speeds to
the ADM(Arnowitt-Dresner-Misner) formalism equations in General Relativity using the approach of
MTW (Misner-Thorne-Wheeler)resembling the works [4],[5],[6] and [7] will appear in a future work.
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6 Appendix A:differential forms,Hodge star and the mathematical demon-
stration of the Natario vectors nX = −vs ∗ dx and nX = vs ∗ dx for a
constant speed vs over the x-axis in Polar Coordinates in a R3 space
basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eq 3.72 pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (19)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (20)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (21)

From above we get the following results

dr ∼ r2 sin θ(dθ ∧ dϕ) (22)

rdθ ∼ r sin θ(dϕ ∧ dr) (23)

r sin θdϕ ∼ r(dr ∧ dθ) (24)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.72 pg 69(a)(b) in [2]):

∗dr = r2 sin θ(dθ ∧ dϕ) (25)

∗rdθ = r sin θ(dϕ ∧ dr) (26)

∗r sin θdϕ = r(dr ∧ dθ) (27)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [1]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdθ∧dϕ+r sin2 θdr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(28)
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Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (29)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (30)

Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (31)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dθ ∧ dϕ)]− sin θ[r sin θ(dϕ ∧ dr)] (32)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)]− [r sin2 θ(dϕ ∧ dr)] (33)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2]):

dϕ ∧ dr = −dr ∧ dϕ (34)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)] + [r sin2 θ(dr ∧ dϕ)] (35)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [1]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(36)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(37)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (38)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (39)

8



1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (40)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (41)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (42)

∗d(dx) = d(dy) = d(dz) = 0 (43)

From above we can see for example that

∗d[(sin2 θ)dϕ] = d(sin2 θ) ∧ dϕ + sin2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (44)

∗[d(r2)dϕ] = 2rdr ∧ dϕ + r2 ∧ ddϕ = 2r(dr ∧ dϕ) (45)

And then we derived again the Natario result of pg 5 in [1]

r2 sin θ cos θ(dθ ∧ dϕ) + r sin2 θ(dr ∧ dϕ) (46)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [1] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (47)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (48)

f(r)r22sinθ cos θ(dθ ∧ dϕ) + f(r) sin2 θ2r(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (49)

2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (50)
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2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (51)

Comparing the above expressions with the Natario definitions of pg 4 in [1]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (52)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) ∼ −r sin θ(dr ∧ dϕ) (53)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (54)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dθ ∧ dϕ)] + 2f(r) sinθ[r sin θ(dr ∧ dϕ)] + f ′(r)r sin θ[r sin θ(dr ∧ dϕ)] (55)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (56)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (57)

Defining the original Natario Vector as in pg 5 in [1] with the Hodge Star operator * explicitly written
:

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(58)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(59)

We can get finally the latest expressions for the original Natario Vector nX also shown in pg 5 in [1]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (60)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (61)

nX = −2vsf cos θer + vs(2f + rf ′) sin θeθ (62)

or

nX = 2vsf cos θer − vs(2f + rf ′) sin θeθ (63)
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nX = Xrer + Xθeθ (64)

Xrs = −2vsf(rs) cos θ (65)

Xθ = +vs(2f(rs) + (rs)f ′(rs)) sin θ (66)

or

Xrs = 2vsf(rs) cos θ (67)

Xθ = −vs(2f(rs) + (rs)f ′(rs)) sin θ (68)
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7 Appendix B:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nY = vs ∗ dy for a constant speed vs

over the y-axis in Polar Coordinates in a R3 space basis

This appendix is also being written for novice or newcomer students on Warp Drive theory still not ac-
quainted with the methods we used to arrive at the final expression of the Natario Vector nY

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eq 3.72 pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (69)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (70)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (71)

From above we get the following results

dr ∼ r2 sin θ(dθ ∧ dϕ) (72)

rdθ ∼ r sin θ(dϕ ∧ dr) (73)

r sin θdϕ ∼ r(dr ∧ dθ) (74)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.72 pg 69(a)(b) in [2]):

∗dr = r2 sin θ(dθ ∧ dϕ) (75)

∗rdθ = r sin θ(dϕ ∧ dr) (76)

∗r sin θdϕ = r(dr ∧ dθ) (77)
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Look that

dy = d(r sin θ) = sin θdr + r cos θdθ (78)

Or

dy = d(r sin θ) = sin θdr + cos θrdθ (79)

Applying the Hodge Star operator * to the above expression:

∗dy = ∗d(r sin θ) = sin θ(∗dr) + cos θ(∗rdθ) (80)

From

∗dr = r2 sin θ(dθ ∧ dϕ) (81)

∗rdθ = r sin θ(dϕ ∧ dr) (82)

We have:

∗dy = ∗d(r sin θ) = sin θ[r2 sin θ(dθ ∧ dϕ)] + cos θ[r sin θ(dϕ ∧ dr)] (83)

∗dy = ∗d(r sin θ) = [r2 sin2 θ(dθ ∧ dϕ)] + [r sin θ cos θ(dϕ ∧ dr)] (84)

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (85)

Now examining the expression:

d

(
1
2

sin2 θdϕ

)
(86)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2

sin2 θdϕ

)
(87)

∗d
(

1
2

sin2 θdϕ

)
∼ 1

2
∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [ddϕ] (88)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
∗ d[(sin2 θ)dϕ] ∼ 1

2
2 sin θ cos θ(dθ ∧ dϕ) (89)
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1
2
∗ d[(sin2 θ)dϕ] ∼ 1

2
2 sin θ cos θ(dθ ∧ dϕ) (90)

1
2
∗ d[(sin2 θ)dϕ] ∼ sin θ cos θ(dθ ∧ dϕ) (91)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (92)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (93)

∗d(dx) = d(dy) = d(dz) = 0 (94)

From above we can see for example that

∗d[(sin2 θ)dϕ] = d(sin2 θ) ∧ dϕ + sin2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (95)

Now examining the expression:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] (96)

[(r2)(tan θ)][sin θ cos θ(dθ ∧ dϕ)] = [(r2)(
sin θ

cos θ
)][sin θ cos θ(dθ ∧ dϕ)] (97)

[(r2)(
sin θ

cos θ
)][sin θ cos θ(dθ ∧ dϕ)] = [(r2)][sin2 θ(dθ ∧ dϕ)] = sin θer (98)

Now examining the expression:

d

(
1
2
r2dϕ

)
(99)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2dϕ

)
(100)

∗d
(

1
2
r2dϕ

)
∼ 1

2
∗ [d(r2)dϕ] +

1
2
r2 ∗ d[(dϕ)] (101)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2r2 ∗ d[(dϕ)] = 0

This leaves us with:

1
2
∗ [d(r2)dϕ] ∼ 1

2
2r(dr ∧ dϕ) (102)
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Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (103)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (104)

∗d(dx) = d(dy) = d(dz) = 0 (105)

From above we can see for example that

∗[d(r2)dϕ] = 2rdr ∧ dϕ + r2 ∧ ddϕ = 2r(dr ∧ dϕ) (106)

1
2
∗ [d(r2)dϕ] ∼ 1

2
2r(dr ∧ dϕ) ∼ r(dr ∧ dϕ) = r(dr ∧ dϕ) = −r(dϕ ∧ dr) (107)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2]):

dϕ ∧ dr = −dr ∧ dϕ (108)

1
2
∗ [d(r2)dϕ] ∼ −r(dϕ ∧ dr) (109)

Now examining the expression:

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = (−1)(sin θ)(cos θ)[−r(dϕ ∧ dr)] (110)

(−1)(sin θ)(cos θ)[−r(dϕ ∧ dr)] = [r sin θ cos θ(dϕ ∧ dr)] = cos θeθ (111)

Combining the expressions:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] = sin θer (112)

and

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = cos θeθ (113)

As being

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + (−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (114)

We obtain the same result of the Hodge Star for the y-axis

∗dy = ∗d(r sin θ) = [r2 sin2 θ(dθ ∧ dϕ)] + [r sin θ cos θ(dϕ ∧ dr)] (115)

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (116)
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Then we have:

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (117)

∗dy = [(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + (−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (118)

Now using the following expression:

[2f(r)][(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + [2f(r) + rf ′(r)](−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (119)

With these ones:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] = sin θer (120)

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = cos θeθ (121)

We have finally

[2f(r)][(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + [2f(r) + rf ′(r)](−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (122)

[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ (123)

Defining the new Natario Vector nY with the Hodge Star operator * explicitly resolved :

nY = vs(t)[2f(r)] sin θer + vs[2f(r) + rf ′(r)] cos θeθ (124)

nY = 2vs(t)f(r) sinθer + vs(t)[2f(r) + rf ′(r)] cos θeθ (125)

compare the new Natario Vector nY with the original Natario Vector nX

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (126)

nY = 2vs(t)f(r) sinθer + vs(t)[2f(r) + rf ′(r)] cos θeθ (127)

Do they look familiar ?

nY = Y rer + Y θeθ (128)

Y rs = 2vsf(rs) sin θ (129)

Y θ = +vs(2f(rs) + (rs)f ′(rs)) cos θ (130)
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Figure 1: Artistic Presentation of a Warp Bubble.(Source:Internet)

8 Appendix C:Artistic Presentation of a Warp Bubble

In 2001 the Natario warp drive appeared.([1]).This warp drive deals with the spacetime as a ”strain” tensor
of Fluid Mechanics(pg 5 in [1]). Imagine a fish inside an aquarium and the aquarium is floating in the
surface of a river but carried out by the river stream.The warp bubble in this case is the aquarium.An
observer at the rest in the margin of the river would see the aquarium passing by him at a large speed but
inside the aquarium the fish is at the rest with respect to his local neighborhoods.Since the fish is at the
rest inside the aquarium the fish would see the observer in the margin passing by him with a large relative
speed since for the fish is the margin that moves with a large relative velocity

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Lets explain better this statement:Natario considered in this case a coordinates reference frame placed
inside the bubble where the fish inside the aquarium or the astronaut in a spaceship inside the bubble

17



depicted above are at the rest with respect to their local neighborhoods.Then any Natario vector must be
zero inside the bubble or the aquarium or the spaceship.

On the other hand since the fish sees the margin passing by him with a large relative velocity or the
astronaut would see a stationary observer in outer space outside the bubble passing by him with a large
relative velocity then any Natario vector outside the bubble must have a value equal to the relative velocity
seen by both the fish and the astronaut.

Considering a valid f as a Natario shape function being f = 1
2 for large r(outside the warp bubble)

and f = 0 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble

also known as the Natario warped region(pg 5 in [1]):The walls of the bubble the Natario warped region
corresponds to the distorted region in the picture depicted in this Appendix.

18



Figure 2: Another Artistic Presentation of a Warp Bubble.(Source:Internet)

9 Appendix D:Another Artistic Presentation of a Warp Bubble

Natario considered a coordinates reference frame placed inside the bubble.Now we must consider a coordi-
nates reference frame placed outside the bubble:In this case the observer at the rest in the margin of the
river would see the aquarium passing by him with a large velocity with the fish inside.Also a stationary
observer at the rest in outer space would see the spaceship depicted in the picture above passing by him
with a large velocity with the astronaut inside.

Now the rules originally defined by Natario are interchanged:

Since the observer in the margin and the observer in outer space are at the rest any Natario vector in
this case must be zero outside the bubble.

But since the fish and the spaceship are being seen by the observer at the rest in the margin and the
observer at the rest in outer space both fish and spaceship with a large velocity then the Natario vector
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inside the bubble must have a value equal to the velocity seen by both observers.

Considering a valid f as a Natario shape function being f = 0 for large r(outside the warp bubble)
and f = 1

2 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble also

known as the Natario warped region:The walls of the bubble the Natario warped region corresponds to the
distorted region the ”blue circle” in the picture depicted in this Appendix.

For an introductory explanation about remote frames outside the bubble or ship frames inside the bubble
or comoving coordinates frames see pg 8 in [12].
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Figure 3: Polar Coordinates.(Source:Internet)

10 Appendix E:Polar Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed of the
warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates giving
nX = vs ∗ d(r cos θ)(See pg 4 in [1].(See also Appendix A for the detailed calculations).

Consequently if we set exactly what Natario did in pg 5 in [1]:

X ∼ −2vsf cos θer + vs(2f + rf ′) sin θeθ (131)

X ∼ 2vsf cos θer − vs(2f + rf ′) sin θeθ (132)

We prefer the latter expression:

nX = Xrer + Xθeθ (133)

Xrs = 2vsf cos θ (134)

Xθ = −vs(2f + rf ′) sin θ (135)
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Considering a valid f as a Natario shape function being f = 1
2 for large r(outside the warp bubble)

and f = 0 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble also

known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(see
pg 4 in [1])(see also Appendices C and D)..

Inside the bubble f = 0 and the Natario vector components are zero too.Outside the bubble f = 1
2 ,Xrs =

vs cos θ and Xθ = −vs sin θ.In motion over the x-axis only in the horizontal plane Xrs = vs because
cos θ = 1 and Xθ = 0 because sin θ = 0.

We defined a new warp drive vector nY = vs ∗ (dy) where vs is the constant speed of the warp
bubble and ∗(dy) is the Hodge Star taken over the y-axis of motion in Polar Coordinates giving
nY = vs ∗ d(r sin θ).(See Appendix B for the detailed calculations).

Consequently if we set:

Y ∼ 2vsf sin θer + vs(2f + rf ′) cos θeθ (136)

nY = Y rer + Y θeθ (137)

Y rs = 2vsf sin θ (138)

Y θ = vs(2f + rf ′) cos θ (139)

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nY = vs(t)dy with Y = vs for a large value of rs
defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(see
pg 4 in [1])(see also Appendices C and D)..

Inside the bubble f = 0 and the Natario vector components are zero too.Outside the bubble f = 1
2 ,Y rs =

vs sin θ and Y θ = vs cos θ.In motion over the y-axis only in the vertical plane Y rs = vs because sin θ = 1
and Y θ = 0 because cos θ = 0.Compare both Natario warp drive vectors given below:

X ∼ 2vsf cos θer − vs(2f + rf ′) sin θeθ (140)

Y ∼ 2vsf sin θer + vs(2f + rf ′) cos θeθ (141)
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