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Abstract

Starting with a brief review of Born Reciprocal (Non-inertial) Relativ-
ity Theory (BRRT), it is shown how massless photons in one frame of ref-
erence can appear massive, even tachyonic, in an acccelerated frame. An
immediate application can be found in the behavior of in-falling/outgoing
photons propagating in a black hole gravitational background. When the
in-falling photon gains energy one learns that (dτ ′)2 > 0 such that the
blue-shifted photon from the point of view of an accelerated frame of ref-
erence (with respect to a static spherically symmetric Schwarzschild black
hole, for example) will appear massive and subluminal. However, when
the outgoing photon loses energy one has (dτ ′)2 < 0 and the red-shifted
photon from the point of view of an accelerated frame will appear tachy-
onic and superluminal. This is an interesting physical feature because no
particle (inside the horizon) can escape the interior of black hole unless it
moves faster than light; i.e. it is tachyonic (superluminal). These effects
may have important consequences in cosmology (dark energy, dark matter
problem).

Keywords : Born Reciprocal Relativity; Phase Spaces; Maximal Force;
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1 Brief Review of Born Reciprocal (Non-inertial)
Relativity

The principle behind the concept of “Born reciprocal relativity theory”, or non-
inertial relativity to be more precise1, was advocated by [2], [3], [4] and it
was based on the idea proposed long ago by [1] that coordinates and momenta
should be unified on the same footing. Consequently, if there is a limiting speed
(temporal derivative of the position coordinates) in Nature there should be a
maximal force as well, since force is the temporal derivative of the momentum.
Hence, a maximal speed limit (speed of light) must be accompanied with a
maximal proper force (which is also compatible with a maximal and minimal
length duality) [4]. The principle of maximal acceleration was advocated earlier
on by [5].

We explored in [4] some novel consequences of Born Reciprocal Relativity
Theory (BRRT) in flat phase-space and generalized the theory to the curved
spacetime scenario. We provided, in particular, some specific results resulting
from Born reciprocal Relativity and which are not present in Special Relativity.
These are : momentum-dependent time delay in the emission and detection of
photons; relativity of chronology; energy-dependent notion of locality; superlu-
minal behavior; relative rotation of photon trajectories due to the aberration of
light; invariance of areas-cells in phase-space and modified dispersion relations.
Further results in BRRT can be found in [7], [8].

The generalized velocity and force (acceleration) boosts (rotations) transfor-
mations of the flat 8D Phase space coordinates , where Xi, t, E, P i; i = 1, 2, 3
are c -valued (classical) variables which are all boosted (rotated) into each-other,
were given by [2] based on the group U(1, 3) and which is the Born version of the
Lorentz group SO(1, 3). The U(1, 3) = SU(1, 3)× U(1) group transformations
leave invariant the symplectic 2-form Ω = − dt∧dE+δijdX

i∧dP j ; i, j = 1, 2, 3
and also the following Born-Green line interval in the flat 8D phase-space

(dω)2 = c2(dt)2 − (dX)2 − (dY )2 − (dZ)2 +

1

b2
(
(dE)2 − c2(dPx)

2 − c2(dPy)
2 − c2(dPz)

2
)

(1.1)

The maximal proper force is set to be given by b. The symplectic group is
relevant because U(1, 3) = Sp(8, R) ∩O(2, 6); U(3, 1) = Sp(8, R) ∩O(6, 2), and
U(2, 2) = Sp(8, R) ∩O(4, 4).

The 16 generators Zab of the U(1, 3) algebra can be decomposed into the
6 Hermitian Lorentz sub-algebra generators L[ab], and the 10 anti-Hermitian
”shear”-like generators iM(ab) (note the i factor that converts the Hermitian
generators M(ab) into anti-Hermitian ones iM(ab) ) as follows

Zab ≡
1

2
(iM(ab) + L[ab]) ⇒ L[ab] = (Zab − Zba)

1We thank one of the referees of a previous article for highlighting this fact in order to
clarify the point that Born did not propose a reciprocal relativity theory

2



M(ab) = −i (Zab + Zba), a, b = 0, 1, 2, 3 (1.2)

The Weyl unitary trick allows to relate the unitary group U(p + q) and the
pseudo-unitary group U(p, q), and explains why one needs to decompose the
matrix generators of the non-compact pseudo-unitary group U(1, 3) in terms of
Hermitian and anti-Hermitian matrices. The Weyl unitary trick explains the
factor of i before the Mab in the definition of the Zab generators in eq-(1.2).

Given the U(1, 3) invariant metric ηab = diag(+1,−1,−1,−1), the explicit
commutation relations of the Mab, Lab generators are given by

[Lab, Lcd] = i (ηbcLad − ηacLbd − ηbdLac + ηadLbc). (1.3a)

[Mab, Mcd] = −i (ηbcLad + ηacLbd + ηbdLac + ηadLbc). (1.3b)

[Lab, Mcd] = i (ηbcMad − ηacMbd + ηbdMac − ηadMbc). (1.3c)

Therefore, given Zab =
1
2 (iMab + Lab), Zcd = 1

2 (iMcd + Lcd) after straight-
forward algebra it leads to the U(1, 3) commutators

[ Zab, Zcd ] = −i ( ηbc Zad − ηad Zcb ). (1.3d)

as expected. The commutators of the Lorentz boosts generators Lab and Xc, Pc

are of the form

[Lab, Xc] = i ( ηbc Xa − ηac Xb ); [Lab, Pc] = i ( ηbc Pa − ηac Pb ) (1.4)

The Hermitian Mab generators are the “reciprocal” boosts/rotation transforma-
tions which exchange X for P , in addition to boosting (rotating) those variables,
and one ends up with the commutators of Mab and Xc, Pc given by

[Mab,
Xc

λl
] = − i

λp
( ηbc Pa + ηac Pb ); [Mab,

Pc

λp
] = − i

λl
( ηbc Xa + ηac Xb )

(1.5)
where λl, λp are suitable length and momentum scales which are chosen to be
the Planck length and momentum, respectively.

The rotations, velocity and force (acceleration) boosts leaving invariant the
symplectic 2-form and the line interval in the 8D phase-space are rather elabo-
rate. In four spacetime dimensions the velocity-boosts generators along the xi

spatial directions (i = 1, 2, 3) are given by Ki = L0i. The force-boots (acceler-
ation boosts) generators along the xi spatial directions are given by Ni = M0i.

The rotation generators are Ji = ϵjki Ljk. The shear generators are Mij ,M00.
In general, given the U(1, 3) generator Z = 1

2θ
ABZAB , the transformations of

the four-vectors X = (T,Xi);P = (E,Pi) are given by

X′ = e
1
2 θ

ABZAB X e−
1
2 θ

ABZAB , P′ = e
1
2 θ

ABZAB P e−
1
2 θ

ABZAB (1.6)

leading to
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X′ = X + [Z, X] +
1

2!
[Z, [Z, X]] +

1

3!
[Z, [Z, [Z, X]]] + . . . (1.7)

and a similar relation for P′ in terms of the nested commutators.
By recurring to the commutation relations (1.5) and the nested commutators

in eq-(1.7), one finds that the group transformations of the 8-dim phase space
coordinates involving both velocity and force boosts are given by [2] (page 18)

t′ = t coshξ + (
ξiv Xi

c
+

ξia Pi

b
)
sinhξ

ξ
(1.8a)

E′ = E coshξ + (−b ξia Xi + c ξiv Pi)
sinhξ

ξ
(1.8b)

X ′i = Xi + (coshξ −1)
(ξiv ξjv + ξia ξja) Xj

ξ2
+ (c ξiv t − ξia E

b
)
sinhξ

ξ
(1.8c)

P ′i = P i + (coshξ −1)
(ξiv ξjv + ξia ξja) Pj

ξ2
+ (b ξia t +

ξiv E

c
)
sinhξ

ξ
(1.8d)

where ξiv are the velocity-boost rapidity parameters along the ei directions; ξ
i
a

are the force (acceleration) boost rapidity parameters along the ei directions,
i = 1, 2, 3, and ξ is the net effective rapidity parameter of the primed-reference
frame given by

ξ =
√

(ξiv)
2 + (ξia)

2, i = 1, 2, 3 (1.9)

A straightforward way of understanding how one obtains the above transfor-
mations of eqs-(1.8) can be found by simply recalling the most general (Lorentz)
velocity boosts transformations of the spacetime coordinates after splitting the
three-vectors X⃗, P⃗ into the parallel X⃗∥ and transverse X⃗⊥ components with
respect to the velocity boost rapidity parameter
ξ⃗ = (ξ1, ξ2, ξ3); ξ =

√
(ξ1)2 + (ξ2)2 + (ξ3)2. Such decomposition is of the form

X⃗∥ = (X⃗ · ξ⃗) ξ⃗

ξ2
, X⃗⊥ = X⃗ − X⃗∥ = X⃗ − (X⃗ · ξ⃗) ξ⃗

ξ2
(1.10)

P⃗∥ = (P⃗ · ξ⃗) ξ⃗

ξ2
, P⃗⊥ = P⃗ − P⃗∥ = P⃗ − (P⃗ · ξ⃗) ξ⃗

ξ2
(1.11)

so that the Lorentz transformations of X⃗, P⃗ can be written in vector form as

X⃗ ′ =

(
X⃗ − (X⃗ · ξ⃗) ξ⃗

ξ2

)
+ (X⃗ · ξ⃗) ξ⃗

ξ2
coshξ +

c t sinhξ

ξ
ξ⃗ (1.12)
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P⃗ ′ =

(
P⃗ − (P⃗ · ξ⃗) ξ⃗

ξ2

)
+ (P⃗ · ξ⃗) ξ⃗

ξ2
coshξ +

E sinhξ

c ξ
ξ⃗ (1.13)

where the modulus ξ = |ξ⃗| of the velocity-boost rapidity parameters, and the
modulus |v⃗| of the velocity v⃗ of the moving frame of reference are related by

tanh(ξ) = β =

√
v2
1+v2

2+v2
3

c . One then finds that the transverse directions to the
velocity remain unaffected by the Lorentz transformations, while the parallel
directions are. One can see by simple inspection that by setting the force-
boost parameters to zero ξia = 0 in eqs-(1.8), one recovers the standard Lorentz
transformations.

These transformations can be simplified drastically when the velocity and
force (acceleration) boosts are both parallel to the x-direction and leave the
transverse directions Y, Z, Py, Pz intact. There is now a subgroup U(1, 1) =
SU(1, 1)× U(1) ⊂ U(1, 3) which leaves invariant the following line interval

(dω)2 = c2(dt)2 − (dX)2 +
(dE)2 − c2(dP )2

b2
=

(dτ)2
(

1 +
(dE/dτ)2 − c2(dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
, Fmax = b

(1.14)
where one has factored out the non-vanishing proper time infinitesimal (dτ)2 =
c2dt2 − dX2 ̸= 0 in (1.14). The numerical quantity F 2 is positive by definition.
The proper force on a massive particle is given by F = ma, where a is the proper
acceleration and m is the rest mass. The case when (dτ)2 = 0 is discussed
below. We refrained from factoring out (dt)2 in (1.14) because it is not Lorentz
invariant, whereas (dτ)2 is Lorentz invariant.

It is very important to emphasize that there are no factors of (1 + F 2/b2)
appearing in the above factorization process because in the superluminal case
(dτ)2 < 0 (spacelike spacetime interval) one still has m2a2 < 0 despite that
a2 > 0 (timelike proper acceleration), because m2 < 0 due to the imaginary
mass of tachyons. Hence we shall always have the factor (1−F 2/b2) as expected.
This is a consequence of the fact that if (dτ)2 > 0, then (dE)2− (dP )2 < 0, and
vice versa, if (dτ)2 < 0, then (dE)2 − (dP )2 > 0.

Consequently, the negative sign appearing inside the parenthesis in the last
term of eq-(1.14) furnishes the analog of the Lorentz relativistic factor in special
relativity and it involves the ratio of the square of two proper forces. The
result (1.14) in the 4-dim phase space can be generalized to the 8D-dim phase
space (and to higher dimensions) whose coordinates are (Xµ, Pµ), µ = 0, 1, 2, 3,
where now one has (for a subluminal particle) c2(dt/dτ)2− (dXi/dτ)

2 > 0, with
i = 1, 2, 3, and (dE/dτ)2 − c2(dPi/dτ)

2 = −F 2 < 0.
The null case (dω)2 = 0 in eq-(1.14) occurs naturally when (dτ)2 = 0,

corresponding to a massless particle (like a photon) moving at the speed of light,
and which in turn, implies also that (dE)2−c2(dP )2 = 0 because in the massless
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case one has E2 − c2P 2 = 0 ⇒ E = cP ⇒ dE = cdP . Therefore, the first line
of eq-(1.14) yields (dω)2 = 0 automatically. However, when m ̸= 0 ⇒ (dτ) ̸= 0,
the factorization of (dτ) ̸= 0 is allowed in eq-(1.14), and one can still have
(dω)2 = 0 when the massive particle experiences the maximal proper force
F = b. Therefore, one attains (dω)2 = 0 when one has a massless particle, or a
massive one experiencing the maximal proper force Fmax = b. A thorough study
of the spacelike (dω)2 < 0, null (dω)2 = 0, and timelike (dω)2 > 0 intervals in
phase space, and their relation to the intervals in space time, can be found in
the next section.

Caution must be taken in not confusing the proper force associated to a four-
vector Fµ =

dPµ

dτ , µ = 0, 1, 2, 3 with the spatial force associated to a three-vector

f⃗ = dPi

dτ , i = 1, 2, 3. The four-force has for components Fµ = (dEdτ , cf⃗) where
dE
dτ

is the proper power. By maximal proper force one means that the magnitude-
squared |(dE/dτ)2 − c2(dPi/dτ)

2| = | − F 2| = F 2 ≤ b2 is bounded. However,
this does not mean that the individual values of (dE/dτ)2 (square of the proper
power) and c2(dPi/dτ)

2 (magnitude-squared of the spatial force) are bounded.
What is bounded is their difference |(dE/dτ)2 − c2(dPi/dτ)

2| = F 2 ≤ b2.
For example, given the on-shell relation involving the energy-momentum E2 −
c2P 2

i = m2c4, this does not mean that each of the values of E2, P 2
i are bounded

(they blow up when v = c). What is bounded is their difference (for a finite
mass m).

Adopting the units h̄ = c = kB = 1, one may postulate that the maximal
proper-force acting on a fundamental particle in four-spacetime dimensions is
given by Fmax = b ≡ κm2

P = κL−2
P = κ/G, where κ is a numerical coefficient.

mP is the Planck mass and LP is the postulated minimal Planck length. A way
to estimate the numerical coefficient κ is by looking at the Hawking temperature
TH associated to a black hole of Planck mass TH = 1

8πGmP
= mP

8π . Equating TH

with the Unruh temperature TU = a
2π yields a proper acceleration of a = mP

4 ,

so that the corresponding proper force is F = mPa =
m2

P

4 ⇒ κ = 1
4 , and one

recovers precisely the value of the maximum force conjecture proposed by [9].
Another route one may take is by setting the Unruh temperature to be equal

to the Planck temperature TU = TP = mP = a
2π ⇒ a = 2πmP , so that the

corresponding proper force is now F = mPa = 2πm2
P leading to a value of κ =

2π. Invoking a minimal/maximal length duality one can also set b = κMU/RH ,
where RH is the Hubble scale and MU is the observable mass of the universe.
Equating both expressions for b leads to MU/mP = RH/LP ∼ 1060. The value
of b = κm2

P may also be interpreted as the maximal string tension. Since
physics is an experimental science the choice of κ will have to be determined
by experiment or observations, if the Born Reciprocal Relativity postulate is
obeyed in nature.

The U(1, 1) group transformations involving the velocity and force boosts
along the X direction of the phase-space coordinates X, t, P,E which leave the
interval (1.14) invariant are obtained directly from eqs-(1.8) in this special case
as follows
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t′ = t coshξ + (
ξv x

c
+

ξa P

b
)
sinhξ

ξ
(1.15a)

E′ = E coshξ + (−b ξa X + c ξvP )
sinhξ

ξ
(1.15b)

X ′ = X coshξ + (c ξv t − ξa E

b
)
sinhξ

ξ
(1.15c)

P ′ = P coshξ + (
ξv E

c
+ b ξa t)

sinhξ

ξ
(1.15db)

ξv is the velocity-boost rapidity parameter; ξa is the force (acceleration) boost
rapidity parameter, and ξ is the net effective rapidity parameter of the primed-
reference frame. The rapidity parameters ξa, ξv, ξ are defined, respectively, in
terms of the spatial velocity v = dx/dt, and proper force F = ma, as follows

tanh(ξv) =
v

c
; tanh(ξa) =

F

Fmax
, Fmax = b, ξ =

√
(ξv)2 + (ξa)2 (1.16)

When ξv → ∞ ⇒ v → c. And ξa → ∞ ⇒ F → Fmax = b.
It is straight-forward to verify that the transformations (1.15) leave invariant

the phase space interval c2(dt)2 − (dX)2 + ((dE)2 − c2(dP )2)/b2 but do not
leave separately invariant the proper time interval (dτ)2 = c2dt2−dX2, nor the
interval in energy-momentum space 1

b2 [(dE)2 − (dP )2]. Only the combination

(dω)2 = (dτ)2
(

1 − F 2

F 2
max

)
(1.17)

is truly left invariant under force (acceleration) boosts. They also leave invariant
the symplectic 2-form (phase space areas) Ω = − dt ∧ dE + dX ∧ dP . Having
displayed the basics of BRRT (non-inertial relativity) in the next section we
present our novel findings.

2 Spacelike, Timelike, Null intervals in Phase
space and the notion of a U(1, d)-invariant Mass

An inspection of eqs-(1.15) in the text reveals that pure force/acceleration boosts
involve setting the velocity rapidity parameter to zero ξv = 0, such that ξ = ξa,
and leading to (c = 1)

(dt′)2 − (dX ′)2 = [(dt)2 − (dX)2] cosh2ξ +
1

b2
[(dP )2 − (dE)2] sinh2ξ +
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1

b
(dtdP + dXdE) sinh(2ξ) (2.1)

1

b2
[(dE′)2 − (dP ′)2] =

1

b2
[(dE)2− (dP )2] cosh2ξ + [(dX)2− (dt)2] sinh2ξ −

1

b
(dtdP + dXdE) sinh(2ξ) (2.2)

where (dτ)2 ≡ (dt)2 − (dX)2, and (dµ)2 ≡ (dE)2 − (dP )2, are the spacetime
and energy-momentum infinitesimal displacement intervals, respectively. As
expected, eqs-(2.1,2.2) furnish the U(1, 1) quadratic invariant in phase space

(dt′)2 − (dX ′)2 +
1

b2
[(dE′)2 − (dP ′)2] = (dt)2 − (dX)2 +

1

b2
[(dE)2 − (dP )2]

(2.3)
resulting from the identity cosh2(ξ)− sinh2(ξ) = 1.

A timelike interval in spacetime (dτ)2 = (dt)2 − (dX)2 > 0 is associated to
a subluminal particle moving at speeds less than light. It is known that a non-
inertial observer (in an accelerated frame of reference) assigns a pseudo-force
acting on the particle. The centrifugal force is an example of a pseudo-force
pointing in the opposite direction to the centripetal force. Hence a free particle
from the point of view of a non-inertial observer will experience a pseudo-force.
One could then envision that when the force/acceleration boost rapidity param-
eter tends to infinity ξ → ∞ the particle’s velocity relative to the accelerated
frame of reference may reach the speed of light, and even surpass it. Namely,
there could be a transition from a subluminal (dτ)2 > 0 to a superluminal
regime (dτ ′)2 < 0. When ξ → ∞ one has that cosh2(ξ) ≃ sinh2(ξ), and
sinh(2ξ) = 2sinh(ξ)cosh(ξ) ≃ 2cosh2(ξ), and eq-(2.1) becomes

(dτ ′)2 ≃
(

(dτ)2 − 1

b2
(dµ)2 +

2

b
(dtdP + dXdE)

)
cosh2ξ (2.4)

At first glance, if one wishes to exclude the possibility that there is a crossover
from the subluminal (dτ)2 > 0 to superluminal regime (dτ ′)2 < 0 , and to a null
regime (dτ ′)2 = 0, then one must have that b >> 1 in Planck units such that
the leading term in eq-(2.4) becomes

(dτ ′)2 ≃
(
(dτ)2 + O(

1

b
)

)
cosh2ξ > 0, with (dτ)2 > 0, (dµ)2 < 0 (2.5)

However, a more rigorous study reveals that one should factor out the (dτ)2 in
eq-(2.4) leading to

(dτ ′)2 ≃ (dτ)2
(

1 +
F 2

b2
+

2

b
(
dt

dτ

dP

dτ
+

dX

dτ

dE

dτ
)

)
cosh2ξ (2.5)
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Eq-(2.5) results after invoking the relations : when (dτ)2 > 0 ⇒ (dµ)2 < 0; and

when (dτ)2 < 0 ⇒ (dµ)2 > 0 such that 1 − 1
b2

(dµ)2

(dτ)2 = 1 + F 2

b2 . The first two

terms inside the parenthesis in eq-(2.5) are positive. This leaves the analysis
of the last term inside the parenthesis. Let us evaluate this last term in the
case of hyperbolic (Rindler) trajectories associated with a particle moving with
a uniform proper acceleration g and proper force F = mg. The equations of
motion in c = 1 units lead to

t =
1

g
sinh(gτ); X =

1

g
cosh(gτ); P = γm

dx

dt
= m cosh(gτ) tanh(gτ) =

m sinh(gτ); (2.6a)

E = mγ = m cosh(gτ);
dt

dτ
= cosh(gτ);

dX

dτ
= sinh(gτ);

dP

dτ
= mg cosh(gτ);

dE

dτ
= mg sinh(gτ) (2.6b)

γ above is the Lorentz dilation factor (1− v2)−1/2 = cosh(gτ). Hence, the last
term inside the parenthesis in eq-(2.5) turns out to be positive for all values of
τ ,

2

b
(
dt

dτ

dP

dτ
+

dX

dτ

dE

dτ
) =

2mg

b
[cosh2(gτ) + sinh2(gτ)] > 0 (2.7)

Therefore, all the terms inside the parenthesis in eq-(2.5) are positive, so that
if (dτ)2 > 0 ⇒ (dτ ′)2 > 0; and if (dτ)2 < 0 ⇒ (dτ ′)2 < 0, consequently there is
no crossover in the spacetime intervals.

The pending question is what happens when ξ → −∞ ? In that case there
is a crucial sign change due sinh(ξ) < 0 when ξ < 0, and the terms inside the
parenthesis become

(
1 +

F 2

b2
− 2mg

b
[cosh2(gτ) + sinh2(gτ)]

)
, F = mg (2.8a)

Due to the minus sign of the third term in eq-(2.8a), there will be a point in
proper time τ when the parenthesis flips sign from positive to negative, and
there will be a crossover in the spacetime intervals. In the particular instance
when the proper force reaches its maximum value F = mg = b, and when τ = 0,
eq-(2.8) turns out to be 1 + 1 − 2 = 0, and such (dτ ′)2 = 0, and the crossover
occurs at τ = 0.

What went wrong ?? We have to go back to eq-(1.16), with ξv = 0, ξa = ξ
and tanh(ξa) = tanh(ξ) = F

b . When ξ = −∞ ⇒ tanh(−∞) = −1 = F
b ⇒ F =

−b. And one learns that one has to choose a minus sign F = −mg after replacing
g → −g. This is consistent with taking the negative sign under the square root
in the definition of the proper acceleration −g = −

√
|(d2t/dτ2)2 − (d2X/dτ2)2|.
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Therefore, one must replace g for −g in eq-(A8a), and in doing so, one arrives
correctly at (

1 +
F 2

b2
+

2mg

b
[cosh2(gτ) + sinh2(gτ)]

)
> 0 (2.8b)

and there will not be a crossover of the spacetime intervals when ξ → −∞ for
all values of τ . Similar results are found for all values of the rapidity parameter
ξ.

It is important to remark that a free particle will not experience a crossover.
This can be verified by rewriting the third term inside the parenthesis of eq-(2.5),
after some straightforward algebra, as

2

b
γ

dP

dτ
(1 + v2) → 0 (2.9)

This is due to dP
dτ = 0 for a free particle. It stays at rest or it moves with uniform

velocity. In the most general case there is no crossover in the spacetime intervals
under acceleration boosts, in the asymptotic limit ξ → ∞, if the following
condition is satisfied for all values of proper time τ during the motion of a
particle

1 +
F 2(τ)

b2
+

2

b
γ(τ)

dP (τ)

dτ
( 1 + v2(τ) ) ≥ 0, f(τ) ≡ dP (τ)

dτ
(2.10)

Eq-(2.10) restricts the dynamics of the particle, namely one is looking for tra-
jectories with (dP (τ)/dτ) ≥ 0. We have studied above two examples where
eq-(2.10) is obeyed. Naturally, setting b → ∞ yields (dω)2 ≃ (dτ)2 and the in-
variance U(1, 3) group effectively “contracts” to the SO(1, 3) group and BRRT
“reduces” to special relativity and no crossover will occur.

Finally, if one wants to preserve the null like conditions (dτ)2 = 0, (dµ)2 = 0
in eqs-(2.1,2.2) one must have dtdP + dXdE = 02 which is only satisfied in two
cases out of four branches resulting from the relations dt = ±dX; dP = ±dE,
and which in turn, are a consequence of the null like conditions (dt)2− (dX)2 =
0; (dE)2− (dP )2 = 0. One finds that there are two cases where dtdP +dXdE ̸=
0, namely when dt = dX, dP = dE, and dt = −dX, dP = −dE. And two
cases where dtdP + dXdE = 0, namely when dt = dX, dP = −dE, and dt =
−dX, dP = dE. The former two branches do not lead to (dτ ′)2 = 0 in eq-(2.1),
while the latter two branches do lead to (dτ ′)2 = 0 in eq-(2.1).

Consequently, if one wishes, one could discard those two branches which
do not retain the null conditions. However this is not necessary because the
condition (dω)2 = (dτ)2 + 1

b2 (dµ)
2 = 0 is still valid : (dτ ′)2 + 1

b2 (dµ
′)2 = 0

despite that each individual piece (dτ ′)2, 1
b2 (dµ

′)2 may cease to be null. If one

2Once can verify that dtdP + dXdE is Lorentz invariant under the transformations
dt′ = dt cosh(ξv) + dX sinh(ξv); dE′ = dE cosh(ξv) − dP sinh(ξv); dX′ = dX cosh(ξv) +
dt sinh(ξv); dP ′ = dP cosh(ξv)− dE sinh(ξv)
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is positive, the other is negative, and vice versa, they cancel each other. See the
cases 3b, 3c studied below.

In addition to these four cases above, there is the trivial solution dP =
0, dE = 0 which retains always the null like conditions. Its physical interpreta-
tion in terms of a massless photon is that the photon’s frequency does not change
as it propagates : there is no blue-shift nor red-shift. An expanding universe
leads to a photon redshift; an in-falling photon into a black hole is blue-shifted;
while an outgoing photon is red-shifted, then in these cases the situation changes
because when dtdP + dXdE ̸= 0 one finds that (dτ ′)2 = − 1

b2 (dµ
′)2 ̸= 0 and

leading to important physical implications : a massless photon in one frame of
reference is no longer massless in an accelerated frame. This is reminiscent of
the Fulling-Davies-Unruh effect when an accelerated observer no longer expe-
riences a vacuum but a thermal bath of photons at an absolute temperature
proportional to the proper acceleration T = a

2π .
To sum up, when dP ̸= 0, dE ̸= 0, and dtdP+dXdE = 2dtdP = 2dXdE ̸= 0,

one finds in eq-(2.2) for any value of ξ that

(dE′)2 − (dP ′)2 ̸= 0 ⇒ dE′ ̸= ±dP ′ ⇒ E′ ̸= ±P ′ ⇒

(E′)2 − (P ′)2 = (m′)2 ̸= 0 (2.11)

therefore, one arrives at m′ ̸= 0 (the photon no longer appears massless in the
accelerated frame) despite that m = 0. This is not surprising because m2 is
Lorentz invariant but is not U(1, 1)-invariant.

What are now the novel physical implications of in-falling/outgoing photons
in a black hole gravitational background ? Given dt > 0, when the in-falling
photon gains energy one learns from eq-(2.1) that if dP > 0 ⇒ (dτ ′)2 > 0 and
the blue-shifted photon from the point of view of an accelerated frame (with
respect to a static spherically symmetric Schwarzschild black hole, for exam-
ple) will appear massive and subluminal. However, when the outgoing photon
loses energy one has dP < 0 ⇒ (dτ ′)2 < 0 and the red-shifted photon from the
point of view of an accelerated frame will appear tachyonic and superluminal.
This is an interesting physical feature because no particle (inside the horizon)
can escape the interior of black hole unless it moves faster than light; i.e. it is
tachyonic (superluminal). One must not confuse these findings with the Hawk-
ing evaporation process of black holes due to quantum effects. For a recent
study of the astrophysical implications of a photon mass see [11].

Defining the generalized momentum Π in the 4-dim cotangent space (phase
space) associated with the 2-dim space time by

Π = M (
dt

dω
,
dX

dω
,
1

b

dE

dω
,
1

b

dP

dω
) ⇒ Π2 = M2 (2.12)

leads in phase space to the analog of the mass-shell condition in Minkowski
spacetime. M is the U(1, 1) invariant version of mass, and is also SO(1, 1)
invariant; whereas m is SO(1, 1) invariant but is not U(1, 1) invariant. These
results can be extended to higher-dimensional phase space of dimension 2D =

11



2(d+1) and associated with a spacetime of dimension D = d+1. The invariance
group is U(1, d) and its Lorentz subgroup is SO(1, d).

The analog of the Klein-Gordon equation corresponding to the on-shell con-
dition in phase space (2.12) is [2]

(Π2 − M2)Ψ(t,X,E, P ) = 0 ⇒(
∂2

∂t2
− ∂2

∂X2
+ b2

∂2

∂E2
− b2

∂2

∂P 2
+M2

)
Ψ(t,X,E, P ) = 0 (2.13)

When Ψ only depends on t,X one recovers a Klein-Gordon equation with m
replaced by M. A rigorous study of the world-line quantization of a reciprocally
invariant system can be found in [10]. One may note that a b = ∞ limit in eq-

(2.13) would require ∂2Ψ
∂E2 = ∂2Ψ

∂P 2 = 0 in order to avoid divergences, and in turn,
it would lead to a field Ψ(t,X) depending on t,X only. This would be consistent
with the special relativistic regime of BRRT when b → ∞. The reciprocal limit
is b → 0 which is the analog of the Carrollian limit c → 0 : the “reciprocal’ of
the Galilean c → ∞ limit.

Let us proceed now with the study of spacelike, timelike and null intervals
in phase space taking into account the above findings under force/acceleration
boosts transformations. It would be interesting to find, if possible, if there is
a particular subgroup of U(1, 1) involving both velocity and force/acceleration
boosts preserving (dτ)2 > 0, for example. An analogous situation occurs with
the Lorentz group which is not compact, nor connected. The subgroup of all
Lorentz transformations in four dimensions preserving both orientation and di-
rection of time is called the proper, orthochronous Lorentz group or restricted
Lorentz group, and is denoted by SO+(1, 3).

Given the U(1, 1) invariant interval in phase space (dω)2 = (dτ)2 + 1
b2 (dµ)

2,

when (dτ)2 ̸= 0, it allows the factorization (dω)2 = (dτ)2[1 + 1
b2

(dµ)2

(dτ)2 ]. Before

proceeding it is very important to emphasize once again that there are no factors
of (1+F 2/b2) appearing in the factorization process because in the superluminal
case one has m2a2 < 0, despite that a2 > 0, because m2 < 0 due to the
imaginary mass of tachyons. Hence we always have the factor (1 − F 2/b2) as
expected. This is a consequence of the fact that if (dτ)2 > 0, then (dµ)2 < 0,
and vice versa, if (dτ)2 < 0, then (dµ)2 > 0.

The above factorization leads to the following 2 cases to explore :
Case 1 : The timelike interval (dω)2 > 0 (in phase space) leads to the

following two sub-cases

1a : (dτ)2 > 0, 1− F 2

b2
> 0 (2.14a)

and

1b : (dτ)2 < 0, 1− F 2

b2
< 0 (2.14b)

The case 1b must be disregarded because it implies that F is larger than
b violating the maximal force postulate, in addition to having a superluminal
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particle (tachyon). Therefore, this leaves the case 1a where the timelike interval
(dω)2 > 0 has also a correspondence with the special relativistic timelike interval
(dτ)2 > 0 (subluminal velocities) and with the maximal force condition F 2 <
b2. As we have shown above, one can assure that force/acceleration boosts
transformations will not lead to a crossover from case 1a to the unphysical case
1b in the case of hyperbolic trajectories; for free particles and when f(τ) =
(dP (τ)/dτ) ≥ 0.

Case 2 : The spacelike interval (dω)2 < 0 (in phase space) leads to the
following two sub-cases

2a : (dτ)2 < 0, 1− F 2

b2
> 0 (2.15a)

and

2b : (dτ)2 > 0, 1− F 2

b2
< 0 (2.15b)

The case 2a involves the (spacetime) spacelike interval (dτ)2 < 0 corresponding
to superluminal velocities, and to F 2 < b2 obeying the maximal force postulate.
Whereas, one finds in case 2b that despite that (dτ)2 > 0 involving sublumi-
nal speeds, F 2 is larger than b2 leading to a violation of the maximal force
postulate.

Case 3a : The null case (dω)2 = (dτ)2 + 1
b2 (dµ)

2 = 0 with (dτ)2 = 0, and
(dµ)2 = 0 corresponds to the null lines of a massless particle.

Case 3b : The null case (dω)2 = 0 with (dτ)2 > 0 ⇒ (dω)2 = (dτ)2(1 −
F 2

b2 ) = 0 ⇒ F = b involves a subluminal particle experiencing the maximal
proper force F = Fmax = b.

Case 3c : The null case (dω)2 = 0 with (dτ)2 < 0 ⇒ (dω)2 = (dτ)2(1 −
F 2

b2 ) = 0 ⇒ F 2 = b2, involves a superluminal particle (tachyon) experiencing
the maximal proper force.

Concluding, out of all these cases, only three cases 1a, 3a , 3b are physi-
cally viable under force (acceleration) boosts and also trivially so under Lorentz
transformations. So far we have studied the flat Born geometry. A curved
geometry of the phase space (cotangent space) requires the tools of Finsler ge-
ometry. The Born interval in an 8-dim curved phase space (cotangent space) is
given by

(dω)2 = gµν(x, p) dx
µ dxν + hab(x, p) (dp

a + Aa
µ(x, p) dx

µ) (dpb+Ab
ν(x, p) dx

ν)
(2.16)

gµν(x, p) is the horizontal base spacetime metric; µ, ν = 0, 1, 2, 3. hab(x, p)
is the vertical space (fiber) metric; a, b = 0, 1, 2, 3. Aa

µ(x, p) is the nonlinear

connection. The flat space limit occurs when gµν = ηµν ;hab = 1
b2 ηab; A

a
µ = 0.

See [6] and references therein. To finalize, we believe that these effects may have
important consequences in cosmology (dark energy, dark matter problem).
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