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The experiment shows that in the superfluid 4He, 4He atoms are not an ideal Bose gas, and
there is a strong correlation between the 4He atoms in the superfluid state. The famous Tisza and
Landau’s two-fluid model does not provide an answer to the physical mechanism behind this cor-
relation. This paper proposes a hypothesis—Physicalized Temperature (PT), a specific mechanism
for the correlation between 4He atoms. Based on this model, new explanations are given for critical
opalescence and the quantization of circulation; it is also predicted that, similar to superconductors,
magnetic flux quantization will occur in a rotating torus container filled with superfluid 4He. The
phonon-roton dispersion curve (P-R curve) of the superfluid 4He quasiparticles, which was conjec-
tured by Landau, as well as the specific heat curve with singularities across the entire temperature
range, are calculated and found to match the experimental data very well.

I. INTRODUCTION

Since the discovery of superfluidity in helium, a large
number of theoretical studies have emerged to explore
its microscopic mechanisms. Among them is the famous
Tisza[1] and Landau’s[2] two-fluid model. Although this
theory can explain some experimental phenomena, it also
presents many unresolved mysteries. For example, at the
λ point, numerous experiments have confirmed the sin-
gularity of the specific heat, yet according to Landau’s
theory, the specific heat should be finite. Although he
speculated about the phonon-roton dispersion curve (P-R
curve)[3] in superfluid 4He quasiparticles, unfortunately,
it has still not been possible to calculate this curve based
on Landau’s theory. Furthermore, the physical picture of
the so-called rotons is also unclear. Experiments have re-
peatedly shown that in the superfluid 4He, 4He atoms are
no longer an ideal Bose gas, and there is a strong correla-
tion between the 4He atoms in the superfluid state. The
most regrettable aspect is that Landau’s two-fluid model
does not answer why, when the temperature drops to Tλ,
a sudden strong long-range correlation appears between
the 4He atoms, let alone provide a physical mechanism
for this correlation.

Additionally, a phenomenon that is strikingly similar
to the behavior of 4He at the λ point is the critical phe-
nomenon. The currently considered most successful the-
ory for this phenomenon is the renormalization group
(RG)[4, 5] framework. It includes three pillars: scaling,
universality, and renormalization. However, this theory
cannot explain, from a physical mechanism perspective,
why long-range correlations suddenly appear in the sys-
tem when the temperature drops to Tc[6]. At the λ point
and critical point, the behavior of 4He atoms shares both
similarities and distinct characteristics. For example,
both show long-range order and specific heat divergence,
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but one is superfluid and the other is not; one exhibits
opalescence, while the other does not. As a result, people
believe that the physical mechanisms at the λ point and
the critical point are different and require two distinct
theories to describe them. However, in this paper, we
propose a single hypothesis—Physicalized Temperature
(PT)—as a specific mechanism for the correlation be-
tween 4He atoms. It successfully describes the physical
phenomena occurring at both of these phase transition
points.
The structure of this paper is as follows. First, we as-

sume that the annihilation of a photon in an ℏkλ and
energy ℏωλ mode leads to the creation of a derivative
phonon (DP) with the same momentum and energy; Sec-
ond, this DP couples with photons of other wavelengths
at this temperature, and we derive the corresponding
Hamiltonian. Fortunately, we have found the exact solu-
tion to this Hamiltonian, thus avoiding the need for the
Green’s function technique. A new concept, the phys-
icalized photon (PP), is introduced. Third, we discuss
various features of the exact solution and introduce the
concept of physicalized temperature (PT); Fourth, based
on this model, new explanations are given for critical
opalescence and the quantization of circulation; it is also
predicted that, similar to superconductors, magnetic flux
quantization will occur in a rotating torus container filled
with superfluid 4He. The phonon-roton dispersion curve
of the superfluid 4He quasiparticles, as well as the spe-
cific heat curve with singularities across the entire tem-
perature range, are calculated; Finally, we conclude the
paper.

II. A HYPOTHESIS ON DERIVATIVE
PHONONS AND THE EXACT SOLUTION OF

THE HAMILTONIAN

Let us start from the cradle of quantum theory —
blackbody radiation (BBR) with a cavity. To study the
photon gas in the cavity, the vector potential A and
its canonically conjugate momentum P = mp Ȧ, (where
mp ≡ 1/4πc2 is the formal mass of photons, c is the speed
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of light in vacuum) are chosen as the variables. The pho-
ton Hamiltonian Hp, expressed in terms of the creation

operator ( a†kσ ) and the destruction operator ( akσ ) of
the A(r) and P (r) , is given by [7, 8]:

Hp =
∑
kσ

[
1

2mp
ΠA(k, σ)ΠA(−k, σ)

+
1

2
mpω

2
kA(k, σ)A(−k, σ)]

=
∑
kσ

ℏωk(a
†
kσakσ +

1

2
) (1)

where

A(k, σ) =

(
ℏ

2mpωk

)1/2

(akσ + a†−kσ)

ΠA(k, σ) = −i

(
ℏmpωk

2

)1/2

(akσ − a†−kσ)

A(r) =
1√
V

∑
kσ

ekσA(k, σ)eik·r

P (r) =
1√
V

∑
kσ

ekσΠA(k, σ)e
ik·r

Where ωk = c |k| = c k, the V is the volume of the cav-
ity. The ekσ is the unit vector and e∗−kσ = ekσ. The
σ = (1, 2) denotes possible polarization directions of the
photons. The commutation relations of the operators

are [A(k, σ),ΠA(−k′, σ′)] = iℏδkk′δσσ′ , [akσ, a
†
k′σ′ ] =

δkk′δσσ′ .
Suppose we inject N0 helium atoms into the cavity.

We know that interactions occur both between the 4He
atoms within the cavity and between these atoms and
the blackbody radiation, leading to changes in the ther-
mal wavelength of 4He and the speed of photons. At a
density of ρλ and a temperature of Tλ, what physical pro-
cesses within the system drive the superfluid transition
of 4He? We hypothesize that, at the lambda point, in
the Planck distribution of bare photons at temperature
Tλ, a photon with momentum ℏkλ and energy ℏωλ sud-
denly annihilates upon interacting with 4He, resulting
in the creation of a phonon with the same momentum
and energy. Since this special phonon is derived from
the photon, we refer to it as a derivative phonon (DP),
which is composed of Nλ of the N0 helium atoms. The
corresponding Hamiltonian, Hdp, is given by:

Hdp =

Nλ∑
j

(
P 2

j

2m
+

1

2
mω2

λB
2
j

)
(2)

Where m is the mass of 4He, Pj and Bj are momen-
tum and amplitude of j-th 4He in DP, respectively. Al-
though it is a DP, unlike Hp, which only includes trans-
verse waves, Hdp includes both transverse and longitudi-
nal waves. Compared with regular phonons, DP has two
special features. First, it is clear that DP represents a

long-range order, a perfect crystal. However, since DP
is uniformly intermingled with non-DP 4He atoms, the
system as a whole still appears disordered. The nearest
neighbor 4He atom of a 4He atom in DP does not nec-
essarily belong to DP, and the interaction between these
two types of 4He atoms causes the motion of 4He atoms
in DP to change from a harmonic oscillator to a damped
harmonic oscillator. If this damping force is not very
large, we can temporarily ignore it and discuss it later.
Second, due to the appearance of a hole (ℏωλ) in the
spectrum of Tλ, photons of other frequencies in the spec-
trum of Tλ will interact with DP, and we set the coupling
constant between them as η. Since photons only couple
to the transverse mode of DP, by hiding the longitudinal
mode in Equation (2), Hdp becomes H1:

H1 =

Nλ∑
j

[
1

2m
(Pj − ηAj)

2
+

1

2
mω2

λB
2
j

]
(3)

Using the following normal modes of the fields and
their conjugate momenta,

B(k, σ) =

(
ℏ

2mωλ

)1/2

(bkσ + b†−kσ)

ΠB(k, σ) = −i

(
ℏmωλ

2

)1/2

(bkσ − b†−kσ)

Bj =
1√
Nλ

∑
kσ

ekσB(k, σ)eik·Rj

Pj =
1√
Nλ

∑
kσ

ekσΠB(k, σ)e
ik·Rj

Where Rj is the Cartesian coordinate of j-th lat-
tice point, the commutation relations of the operators

are [B(k, σ),ΠB(−k′, σ′)] = iℏδkk′δσσ′ , [bkσ, b
†
k′σ′ ] =

δkk′δσσ′ , (σ = 1, 2). The final Hamiltonian of the sys-
tem combining Equation (1) and (3), H = Hp + H1, is
therefore

H =
∑
kσ

[ ℏωk(a
†
kσakσ +

1

2
) + ℏωλ(b

†
kσbkσ +

1

2
)

+
i

2
ℏωp

(
ωλ

ωk

)1/2

(bkσ − b†−kσ)(a−kσ + a†kσ)

+
1

4
ℏωp

ωp

ωk
(akσ + a†−kσ)(a−kσ + a†kσ) ] (4)

The quantity ωp ≡ c η
√
4πNλ/mV . We will directly di-

agonalize H in four steps to obtain the eigenvectors and
eigenvalues.
Step 1: We transform H into H2 using the following

scale transformations:

(akσ + a†−kσ) = ω
1/2
k (Ξkσ +Ξ†

−kσ)

(akσ − a†−kσ) = ω
−1/2
k (Ξkσ −Ξ†

−kσ)

(bkσ + b†−kσ) = ω
1/2
λ (Θkσ +Θ†

−kσ)

(bkσ − b†−kσ) = ω
−1/2
λ (Θkσ −Θ†

−kσ)
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Since the commutation relations of Ξ ′s are identical to
those of a′s, and similarly for Θ′s and b′s, we can simplify
notation by substituting Ξkσ → akσ and Θkσ → bkσ.
Thus,

H2 =
ℏ
4

∑
kσ

[−(b−kσ − b†kσ)(bkσ − b†−kσ)

+ ω2
λ (bkσ + b†−kσ)(b−kσ + b†kσ)

− (a−kσ − a†kσ)(akσ − a†−kσ)

+ (ω2
p + ω2

k)(akσ + a†−kσ)(a−kσ + a†kσ)

+ i2ωp(bkσ − b†−kσ)(a−kσ + a†kσ) ] (5)

In Step 2, we aim to find a canonical transformation to
H3 using the formula H3 = eSH2 e

−S . We will determine
S by

S = − i

2

∑
kσ

ωλ ωp

ωλ − ωk
(bkσa−kσ + b†−kσa−kσ

+ b†−kσa
†
kσ + bkσa

†
kσ)

H3 = eSH2 e
−S

=
ℏ
4

∑
kσ

[−(b−kσ − b†kσ)(bkσ − b†−kσ)

+ ω2
B (bkσ + b†−kσ)(b−kσ + b†kσ)

− (a−kσ − a†kσ)(akσ − a†−kσ)

+ ω2
A(akσ + a†−kσ)(a−kσ + a†kσ)

− i
2ωk ωp

ωλ − ωk
(bkσ − b†−kσ)(a−kσ + a†kσ)

− i
2ωλ ωp

ωλ − ωk
(b−kσ + b†kσ)(akσ − a†−kσ) ] (6)

As mentioned in the previous section, the photon with
mode ℏkλ and ℏωλ has already been annihilated, There-
fore, in the above equations, the summation over k should
exclude kλ, as it would lead to ωk = ωλ, causing the de-
nominator to be zero and resulting in a singularity. This
rule also applies to similar situations throughout this pa-
per. Where

ω2
A = ω2

k[1 +
ω2
p

(ωλ − ωk)2
], ω2

B = ω2
λ[1 +

ω2
p

(ωλ − ωk)2
]

In the third step, we apply the scale transformation de-
scribed in Step 1 to the Hamiltonian H3, resulting in H4.
A scale transformation, analogous to the one performed
earlier, is then applied to H3

(akσ + a†−kσ) = ω
−1/2
A (Ξkσ +Ξ†

−kσ)

(akσ − a†−kσ) = ω
1/2
A (Ξkσ −Ξ†

−kσ)

(bkσ + b†−kσ) = ω
−1/2
B (Θkσ +Θ†

−kσ)

(bkσ − b†−kσ) = ω
1/2
B (Θkσ −Θ†

−kσ)

therefore

H4 =
ℏ
4

∑
kσ

{ωB [−(b−kσ − b†kσ)(bkσ − b†−kσ)

+ (bkσ + b†−kσ)(b−kσ + b†kσ)]

+ ωA[−(a−kσ − a†kσ)(akσ − a†−kσ)

+ (akσ + a†−kσ)(a−kσ + a†kσ)]

− i
2ωp

√
ωλ ωk

ωλ − ωk
[(bkσ − b†−kσ)(a−kσ + a†kσ)

+ (b−kσ + b†kσ)(akσ − a†−kσ)]}

=
∑
kσ

[ℏωB(b
†
kσbkσ +

1

2
) + ℏωA(a

†
kσakσ +

1

2
)

− i
ℏωp

√
ωλ ωk

ωλ − ωk
(bkσa−kσ − b†−kσa

†
kσ)] (7)

In the fourth step, Bogoliubov transformations are ap-
plied to the Hamiltonian H4. We introduce two new
complex bosonic operators αkσ and βkσ , representing the
new α and β elementary excitations, respectively. These
operators are defined as:

αkσ ≡ c1bkσ + ic2a
†
−kσ, (8)

βkσ ≡ c1akσ + ic2b
†
−kσ, (9)

c21 =
1

2

[
1 +

(ωλ + ωk)I1
|ωλ − ωk|I2

]
,

c22 =
1

2

[
−1 +

(ωλ + ωk)I1
|ωλ − ωk|I2

]
,

I1 =
√
(ωλ − ωk)

2
+ ω2

p =
√

(ωλ − vk)
2
+ ω2

p,

I2 =
√

(ωλ + ωk)
2
+ ω2

p =
√

(ωλ + vk)
2
+ ω2

p

where v denotes the speed of the bare photons that con-
stitute the α and β elementary excitations. The com-
mutation relations satisfied by the operators αkσ and

βkσ are given by: [αkσ,α
†
k′σ′ ] = δkk′δσσ′ , [βkσ,β

†
k′σ′ ] =

δkk′δσσ′ , [αkσ,αk′σ′ ] = [αkσ,βk′σ′ ] = [αkσ,β
†
k′σ′ ] =

[βkσ,βk′σ′ ] = 0. Hance, the final diagonlized Hamil-
tonian Hf is

Hf =
∑
kσ

[
ℏωα(α

†
kσαkσ + 1/2) + ℏωβ(β

†
kσβkσ + 1/2)

]
(10)

ℏωα = (ℏ/2)(I2 + I1) (11)

ℏωβ = (ℏ/2)(I2 − I1) (12)

Therefore, the exact eigenvalues Enαkσ
nβkσ

and Fock

states |nαkσ
nβkσ

⟩ for Hf are as follows:

Enαkσ
nβkσ

= ℏωα(nαkσ
+ 1/2) + ℏωβ(nβkσ

+ 1/2) (13)

|nαkσ
⟩ =

(α†
kσ)

nαkσ√
nαkσ

!
|0⟩ , |nβkσ

⟩ =
(β†

kσ)
nβkσ√

nβkσ
!

|0⟩ (14)

|nαkσ
nβkσ

⟩ = |nαkσ
⟩ ⊗ |nβkσ

⟩ , nαkσ
, nβkσ

= 0, 1, 2, ...
(15)
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Mathematically, H is identical to Hopfield’s
Hamiltonian[9]. However, the eigenfunctions we
obtained, as shown in Equation (15), are a new set of α
and β elementary excitations formed by the coupling of
a DP and bare photons, which are completely different
from his.

From Equations (11) or (12), it can be seen that the
α and β elementary excitations have their respective
spectral ranges: 0 ⩽ ωβ(k) < ωλ, ωα(k) ⩾ ωd, where
ω2
d ≡ ω2

λ + ω2
p. Therefore, does ωλ < ω < ωd correspond

to the energy gap? If not, what is the relationship be-
tween these energy states and the α and β elementary
excitations?

To address this, we first determine the wave vector of
an elementary excitation based on Equations (11) or (12):

k2 =
ω2(ω2 − ω2

d)

v2(ω2 − ω2
λ)

(16)

When ωλ < ω < ωd, the wave vector k becomes imag-
inary. This indicates that the energy states within this
spectral range are unstable. Substituting an imaginary
wave vector ik into Equations (11) and (12), we find that
ℏωβ(ik) is imaginary and can be neglected. The remain-
ing term, ℏωα(ik), is real, and it is defined as ℏωγ(k),
i.e., ℏωγ(k) ≡ ℏωα(ik), and is given by:

ℏωγ(k)

=
ℏ
2

(√
(ωλ + ivγk)

2
+ ω2

p +
√
(ωλ − ivγk)

2
+ ω2

p

)
=

ℏ√
2

(
ω2
d − v2γk

2 +

√(
ω2
d − v2γk

2
)2

+ 4v2γk
2ω2

λ

)1/2

(17)

The corresponding energy states are referred to as γ el-
ementary excitations. Alternatively, the γ elementary
excitation can be seen as the α elementary excitation
with an imaginary wave vector. Here, vγ denotes the
speed of the bare photon that contributes to the forma-
tion of the γ elementary excitation. In summary, ωβ(k),
ωγ(k) and ωα(k) have their respective spectral ranges:
0 ⩽ ωβ(k) < ωλ, ωλ < ωγ(k) ⩽ ωd and ωα(k) ⩾ ωd.
Additionally, not only will we observe from Fig. 3 that

the dispersion relations ωβ(k) and ωα(k) are very similar
to the dispersion relation of a bare photon. Therefore, we
uniformly refer to these elementary excitations as phys-
icalized photons (PP), which can be considered photons
with nonzero rest mass. To highlight their connection to
the λ transition point, the α, β and γ elementary exci-
tations are respectively referred to as α(λ) PP, β(λ) PP,
and γ(λ) PP. The abbreviation is λ-PP.

III. KEY CHARACTERISTICS OF THE α, β
AND γ PP

The definitions of αkσ and βkσ PPs in Equations (8)
and (9) provide a formal mathematical description, but

their physical interpretation remains elusive. To gain
a clearer understanding of their nature and their con-
nection to DP and BBR, the corresponding canonical
coordinates Qα(k, σ), Qβ(k, σ) and momenta Πα(k, σ),
Πβ(k, σ) are given by

Qα(k, σ) =

(
ℏ

2mωα

)1/2

(αkσ +α†
−kσ)

= c1

√
ωλ

ωα
B(k, σ) +

c2√
mmpωαωk

ΠA(k, σ)

Πα(k, σ) = − i

(
ℏmωα

2

)1/2

(αkσ −α†
−kσ)

= c1

√
ωα

ωλ
ΠB(k, σ) + c2

√
mmpωαωk A(k, σ)

Qβ(k, σ) =

(
ℏ

2mωβ

)1/2

(βkσ + β†
−kσ)

= c1

√
mpωk

mωβ
A(k, σ) +

c2√
m2ωβωλ

ΠB(k, σ)

Πβ(k, σ) = − i

(
ℏmωβ

2

)1/2

(βkσ − β†
−kσ)

= c1

√
mωβ

mpωk
ΠA(k, σ) + c2

√
m2ωβωλ B(k, σ)

(18)

And we have [Qα(k, σ),Πα(−k′, σ′)] = iℏδkk′δσσ′ ,
[Qβ(k, σ),Πβ(−k′, σ′)] = iℏδkk′δσσ′ . Interestingly, the
canonical coordinates and momenta of α(λ) and β(λ)
PPs exhibit a chimeric nature, being crossed linear com-
binations of DP and BBR components. It is precisely
the photon components contained in the PPs that pro-
vide the physical reason for the possible superfluidity of
the PPs.

We note that the spectrum of bare photons ωk (ex-
cluding ωλ) corresponding to Tλ was used when deriving
ωα(k), ωβ(k) and ωγ(k), which are implicitly temper-
ature dependent. To explicitly show this dependence,
we use the notation ωα(Tλ, k), ωβ(Tλ, k), and ωγ(Tλ, k).
How do these frequencies change when the temperature
changes from Tλ to T? For the Planck distribution of
bare photons, we have a scaling relation between T1 and
its spectrum ω(T1, k), and T2 and its spectrum ω(T2, k):
ω(T1, k)/T1 = ω(T2, k)/T2. Assuming a similar scaling
relations for PPs, we obtain:

ωβ(T, k) = (T/Tλ)ωβ(Tλ, k)

ωγ(T, k) = (T/Tλ)ωγ(Tλ, k) (19)

ωα(T, k) = (T/Tλ)ωα(Tλ, k)

For β(λ) PPs, since the variation of the wavevector k ∈
[0,∞) does not change the range of the spectrum, i.e.,
0 ⩽ ωβ(T, k) < ωλ and 0 ⩽ ωβ(Tλ, k) < ωλ, combined
with equation (19), this implies that the β(λ) PPs have
their own temperature range: β(λ) PPs: 0 ⩽ T < Tλ.
Similarly, α(λ) PPs: Imaginary wave vector part(γ(λ)
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PPs): Tλ < T ⩽ Tλ d, where Tλ d ≡ (ωd/ωλ)Tλ; Real
wave vector part: T ⩾ Tλ d.

Using Equations (16) and (19), the density of state of
λ-PPs g(k) is

g(k) =
2V

h3
4πℏ3k2 =

V ω2(T, k)

π2v2
ω2(T, k)− ω2

d

ω2(T, k)− ω2
λ

=
V b2ω2(Tλ, k)

π2v2
b2ω2(Tλ, k)− ω2

d

b2ω2(Tλ, k)− ω2
λ

(20)

where h is Planck constant, ℏ = h/2π, b ≡ T/Tλ. De-
pending on the temperature range, ω(Tλ, k) can be ex-
pressed as ωβ(Tλ, k), ωγ(Tλ, k) or ωα(Tλ, k). In the case
of λ-PPs, the density of states g(k) tends to infinity only
when T → Tλ.
A long-standing question is: Why does 4He exhibit

singular specific heat at both the lambda point and the
critical point, yet superfluidity only occurs at the lambda
point? This question can be traced back to Landau4

“critical velocity” criterion for superfluidity. The disper-
sion relations of transverse modes α(λ), γ(λ), and β(λ)
of PPs are shown in Fig. 3. γ(λ) and α(λ) PPs are for-
mally the first and second excited bands of β(λ) PP, re-
spectively. According to Landau’s criterion, Fig. 3 shows
that only ∂ ωβ(T, k)/∂ k > 0 in the long-wavelength limit.
This implies that only β(λ) PPs might exhibit superflu-
idity. Our research indicates that Landau’s condition is
merely a necessary condition and needs further supple-
mentation. As mentioned earlier in this paper, the in-
teraction between 4He atoms in DP and those outside
DP leads to two consequences: 1. It makes each of the
4He atoms in DP an isotropic harmonic oscillator, and
the transverse sound velocity of PPs coincides with their
longitudinal sound velocity, resulting in superfluidity, as
observed in the superfluid transition at the lambda point;
2. It makes each of the 4He atoms in DP an anisotropic
harmonic oscillator, where the vibration frequency and
sound velocity of the longitudinal mode differ from those
of the transverse mode. If the interaction is not strong
enough and only perturbs the 4He atoms in λ-PPs, then
λ-PPs cannot be in the eigenstates as described in Equa-
tion (15), but rather in a superposition of eigenstates,
which is called a damped PP and no superfluidity is ob-
served. Is there any relationship between the magnitude
of the damping force and the formation of DP? We pro-
vide the corresponding classical scenario as a reference.
Let c1 be the damping coefficient, and ζ ≡ c1/2mωλ be
the damping ratio. Then the resonant frequency is given

by ωr = ωλ

√
1− 2ζ2. The resonant frequency ωr has a

critical point at ζ = 1/
√
2. When ζ > 1/

√
2, DP should

not appear, and neither should PP, and naturally, super-
fluidity will not appear. The non-superfluid transition at
the critical point should belong to the second category
with ζ < 1/

√
2. Therefore, overall, there are two classes

of PPs: lambda (λ) and critical (c). Each class has three
types: α, β, and γ. Thus, there are six types of PPs:
α(λ), β(λ), γ(λ), α(c), β(c), and γ(c). According to the
superfluidity criterion mentioned above, β(λ) is the only

type of PP with superfluidity.
It’s important to note that when heating or cooling

liquid helium across the lambda point, Tλ, the micro-
scopic structures on either side of Tλ are asymmetric.
This asymmetry leads to a difference between the transi-
tion temperatures during heating, Tλ(heating), and cool-
ing, Tλ(cooling). This difference is known as thermal
hysteresis. Generally, the transition temperature Tλ is
higher during heating than during cooling. This hystere-
sis is also observed at the critical point.
At this point, we can fully describe the physical process

of 4He at T ⩽ Tλ (here, we only consider the cooling pro-
cess through Tλ). When the density of 4He is ρλ and the
temperature drops to Tλ, the DP composed of Nλ

4He
atoms and bare photons form three possible λ-PPs ac-
cording to Equation (18): β(λ)-PPs, γ(λ)-PPs, and α(λ)-
PPs. They each have their respective spectral ranges:
0 ⩽ ωβ(k) < ωλ, ωλ < ωγ(k) ⩽ ωd and ωα(k) ⩾ ωd.
Since k ∈ [0,∞), this implies that all wavelengths of bare
photons corresponding to Tλ are physicalized into λ-PPs,
so we say that the temperature Tλ is physicalized. λ-PPs
are referred to as physicalized temperature (PT), which
is a subsystem with long-range periodic structure. The
energy spectrum of this subsystem varies with tempera-
ture according to Equation (19), but its structure only
changes at two temperatures, Tλ and Tλd, according to
Equation (18). Among these, only β(λ)-PPs may exhibit
superfluidity. Similarly, at the critical point, Tc will also
be physicalized, with the difference being the value of the
parameters, and all three types of c-PPs do not exhibit
superfluidity.

The following table lists the various components of the
system at different temperature ranges. Tc, Tb, and Tλ

represent the critical, boiling, and lambda temperatures,
respectively, with values of 5.18 K, 4.22 K, and 2.17 K.
Nc and NL denote the number of 4He atoms in the c-PP
and normal liquid state, respectively. As the tempera-
ture decreases, Nc and NL gradually decrease, while the
number of atoms in the λ-PP, Nλ, increases. This trend
is due to the energy hierarchy: c-PP > λ-PP. The prop-
erties of α-PP are very similar to those of bare photons
and, therefore, are not listed separately in Table I.

IV. THE APPLICATIONS OF THE PT MODEL
TO 4He

A. On the Critical Opalescence

Based on Equations (16) and (19), the transverse di-
electric function, εt( or equivalently, the index of refrac-
tion, n) can be determined.

n2 = εt(ω) ≡
k2

ω2
=

1

v2
b2ω2(Tλ, k)− ω2

d

b2ω2(Tλ, k)− ω2
λ

(21)

When Tλ < T ⩽ Tλ d or Tc < T ⩽ Tc d, n
2 < 0, which in-

dicates strong light scattering by γ(λ) PP or damped γ(c)
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TABLE I. The composition of 4He as a function of temperature.

Temperature range Components Notes
[Tc,∞) classical ideal gas 4He (Tc, Tc d] γ(c) PPs while heating across Tc

[Tb, Tc) β(c) PPs, gas 4He
(Tλ, Tb] β(c) PPs, normal liquid 4He (Tλ, Tλ d] γ(λ) PPs while heating across Tλ

[0, Tλ) β(c) and β(λ) PPs, normal liquid 4He

PP and leading to a phenomenon known as opalescence.
However, when Tλ < T ⩽ Tλ d, the γ(λ) PP coexists
with the damped β(c) PP, which does not scatter light
strongly. As a result, λ opalescence is nearly absent, and
only critical opalescence is observed.

B. On the Specific Heat Across All Temperatures

One of the most important physical quantities for su-
perfluid 4He is a sharp, narrow, and singular peak in the
specific heat at the so-called lambda point and critical
point, Tλ and Tc. Based on the RG approach, the specific
heat can be calculated closely near the transition point.
However, far from Tc, the RG approach does not agree
well with experimental data[6]. Moreover, the RG ap-
proach does not provide a physical mechanism to explain
why the system fluctuates so strongly near the lambda
and critical points. As for Landau’s two-fluid model[2, 3],
it does not predict any singularity in the specific heat.
Based on the PT model, we will find that below Tλ, the
specific heat is mainly contributed by β(λ) PPs, while
above Tλ, it is mainly contributed by γ(λ) PPs. Simi-
larly, below Tc, the specific heat is mainly contributed
by β(c) PPs, while above Tc, it is mainly contributed by
γ(c) PPs. This means that the physical mechanisms un-
derlying the specific heat on either side of the singularity
are different. It is therefore inappropriate to fit the data
with a single logarithmic or power-law function, which
exhibits a singularity.

The specific heat of the PPs at constant volume can
be described by the following equation:

Cv = kB

∫ ∞

0

(
ℏω

2kBT

)2

csch2
(

ℏω
2kBT

)
g(k)dk (22)

Where kB is the Boltzmann constant. Using Equation
(20) and temperature as the energy unit, the specific heat
of λ PPs can be calculated with three temperature inter-

vals:

Cvβ(T ) =
Cλ

v2T 2

∫ ∞

0

S(b ωβ) dk, T ∈ [0, Tλ)

Cvγ(T ) =
Cλ

v2γT
2

∫ 0

∞
S(b ωγ) dk, T ∈ (Tλ, Tλ d]

Cvα(T ) =
Cλ

v2T 2

∫ ∞

0

S(b ωα) dk, T ∈ [Tλ d,∞)

S(ω) ≡ ω2(T, k)− ω2
d

ω2(T, k)− ω2
λ

ω4(T, k) csch2(ω(T, k)/2T ).

(23)

where Cλ ≡ R/(4π2ρsλ), R = kBNA is the molar gas
constant, where NA is the Avogadro constant. ρsλ ≡
Nλ/V is the density of superfluid, which should vary with
temperature but is not predicted by the PT model and
must be obtained experimentally. Here, it is treated as a
constant because the experimental data for specific heat
includes contributions from both the superfluid and non-
superfluid components, so this constant represents the
portion contributed by the superfluid component. For
the damped c PPs, one can substitute the parameters
for Tc into Equation (23) to obtain a different set of Cv

values. There are six types of PPs that contribute to the
specific heat: α(λ), β(λ), γ(λ), α(c), β(c) and γ(c) PP.
Since each PP is independent of one another, the specific
heat for any given temperature is the superposition of the
two where the temperatures overlap as shown in Fig. 1.
According to the Dulong-Petit law, Cv = 3R/2 when
T > Tc.

C. On Landau’s Phonon-Roton Dispersion Relation

When calculating Cv values, we used six dispersion re-
lations from two types of PPs: λ-PP and c-PP. None
of these dispersion relations match the P-R curve pre-
dicted by Landau[3]. Since then, numerous complex the-
oretical models, such as Feynman’s model[12, 13], have
been proposed to calculate it, but they show significant
discrepancies with experimental results. Moreover, hun-
dreds of papers have been referenced in Glyde[14] and
Godfrin’s[15] survey of superfluid 4He papers. Despite
these efforts, the physical picture of the roton remains
ambiguous. Since the P-R curve is obtained from neu-
tron inelastic scattering experiments, we will analyze the
experimental processes and data using the PT model.
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FIG. 1. Temperature dependence of the specific heat of 4He. Circles[10] represent experimental data of the specific heat at
saturated vapor pressure; triangles[11] represent data at constant volume; the solid line is the calculated result from this work.
ρsλ, ρsc and the parameters of the spectra used in the calculations are as follows: for the λ point, ρsλ = 0.00736 g/cm3 (as a
reference, the experimental value[10] of the density of superfluid 4He at 2.17 K is 0.00729 g/cm3), ℏωλ = 39K , ℏωp = 44K

, v = 61.5KÅ = 805.2 m/s , vγ = 120KÅ= 1571.1 m/s; for the critical point, ρsc = 0.00364 g/cm3 (no experimental data is

available for reference), ℏωc = 100K , ℏωp = 18K , v = 61.5KÅ = 805.2 m/s , vγ = 90KÅ= 1178.3 m/s.

β(λ) PP
(Q, ℏωβ(Q))

ingoing neutron
(k0, E0)

a

γ(λ) PP
(iQ,∆Eγ(iQ))

upscattering
neutron

(k0, E0 + ∆Eγ(iQ))

b
downscattering

outgoing neutron
(k0 − Q,E0 − ∆ϵ(Q))

FIG. 2. Schematic diagram of inelastic scattering processes
between a neutron and γ(λ), β(λ) PPs.

The kinematics of neutron scattering are illustrated
in Fig. 2. Initially, an incident neutron has initial en-
ergy E0 and momentum k0. Before exiting, it under-
goes two scatterings. At (a) in Fig. 2, it upscatters with
an unstable γ(λ) PP. The γ(λ) PP has excitation en-
ergy ∆Eγ(iQ) = ℏωγ(Q0 − Q) − ℏωλ, where ℏωλ is the
ground state energy of the γ PP, and Q0 is determined by
ℏωγ(Q0) = ℏωλ. After (a), the incident neutron energy
becomes E0+∆Eγ(iQ), with no change in its momentum
due to the imaginary momentum of the γ PP. Following
this, at (b) in Fig. 2, the neutron downscatters with a
stable β(λ) PP. The β(λ) PP gains momentum Q with
energy ℏωβ(Q). Therefore, the final transferred energy
of the outgoing neutron ∆ε(Q) = E0 − [E0 +∆Eγ(iQ)−

ℏωβ(Q)] = ℏωβ(Q) − [ℏωγ(Q0 − Q) − ℏωλ]. The final
momentum of the outgoing neutron is k0− (k0−Q) = Q.
When we substitute parameters from the caption of
Fig. 1, we obtain Fig. 3. The curve ∆ε(Q) ∼ Q is pre-
cisely the P-R curve. Hence, we can conclude that there
is no such thing as a roton[3], and the P-R curve cannot
even be called a dispersion relation because it does not
correspond to the spectrum of a single quasiparticle. The
P-R curve is merely a spurious effect caused by neutron
inelastic scattering.
For the damped c-PPs, there is also a P-R curve-

like feature. However, the damped c-PP is in a non-
eigenstate, so many P-R curve-like features with different
energies coexist. As the energy of the c-PPs is greater
than that of the λ PPs, it leads to the formation of a
broad diffuse background above the P-R curve in Fig. 3.
These are simply the results of experiments[16–18].

D. On the Quantization of Circulation and
Magnetic Fluxes

Similar to Vinen’s experiment [19], an experiment
based on the PT model for measuring superfluid 4He cir-
culation is shown in the schematic in Fig. 4. When a
cylindrical container of He II is rotated about its axis at
an angular velocity exceeding a small critical value, Ωc1,
we propose a departure from conventional understanding:
the liquid helium separates into three distinct phases.
The non-superfluid components (normal fluid + β(c) PPs
) migrate to the container walls and bottom or to the wire
surface, forming a uniformly porous parabolic liquid sur-
face. These components arrange themselves into an array
of vortex-annulated columns parallel to the rotation axis.
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FIG. 3. Shows the dispersion curves of b α(λ), b γ(λ), b β(λ) PPs, the P-R curve b∆ε(Q) along with experimental data[10, 16]
obtained from inelastic neutron scattering at a temperature of Texp=1.1 K. The parameters used here are the same as those

in Fig. 1. The wavevector Q0 is determined by the condition ℏωγ(Q0) = ℏωλ, yielding a value of Q0 ≈ 1.91Å−1. The reduced
temperature b is defined as the ratio of the experimental temperature to the lambda temperature, i.e., b = Texp/Tλ = 1.1/2.17.

normal

β(c)

β(λ)

vnj

vnj

Ω > Ωc1

a

b

B

FIG. 4. Schematic diagram of an experiment similar to Vinen’s experiment[19]. A constant magnetic field, B, is applied. (a)
Cross-sectional view of the annulus transition region. (b) Cross-sectional view of the cylindrical wire and transition region.
The exaggerated dimensions of this cross-section are used to clearly show the details of the composition and structure of the
gray region: near the surface of the wire is normal fluid 4He, and the thickness of a thin layer near the outer surface of the
gray region represents the penetration depth of the superfluid component, β(λ) PPs. The middle layer is mainly composed of
damped β(c) PPs. The two inner layers are both non-superfluid. Other gray regions in this figure can be understood similarly.
The microstructures of the transition region closely resemble the response of a Type-II superconductor to a magnetic field,
known as the mixed state. In Vinen’s experiment[19], there are only two components: normal fluid and superfluid, and no
phase separation occurs, so there are no gray regions.

The non-superfluid helium is thus enclosed by the super-
fluid component. Transition regions exist where the su-
perfluid penetrates into the non-superfluid, leading to a
solid-body-like rotation of He II. At sufficiently high an-
gular velocities, Ωc2, the superfluid reverts to the normal
state[20].

The wire would experience a Magnus force, which is
a function of the entire transition region, rather than
being solely dependent on the normal fluid immediately
adjacent to the wire surface. Let vnj and vsj denote
the velocity of jth 4He atom of the normal fluid and

superfluid, respectively. Since the the mechanical mo-
mentum mvnj equals the canonical momentum Pnj , ap-
plying the Bohr-Sommerfeld quantization condition, the
circulation of the normal fluid 4He around any circuit in
the transition region is:

∮
ℓ
vnj · drj = 1

m

∮
ℓ
Pnj · drj =

n(h/m), n = 0,±1,±2, · · · . It implies that the circula-
tion of normal fluid 4He is quantized in units of h/m. In
the special case of Fig. 4(a), due to the limitation im-
posed by the Heisenberg uncertainty principle, the case
where n = 0 in nh/m should be excluded. This is why
the cross-sectional diagram is hollow. Experimental ob-
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servations have confirmed this phenomenon at the lev-
els of one, two, and three quantum units[21]. However,
when considering the contributions of the transition re-
gion, the quantization of the circulation’s average value
easily breaks down. This finding aligns with Vinen’s ex-
perimental observations[19]. Another point worth not-
ing is that the Bohr-Sommerfeld quantization condition
arises from the wave nature of particles; therefore, the
quantization of the circulation of normal fluid 4He arises
from the wave nature of 4He rather than its superfluidity.
According to Equation (3), the mechanical momentum

mvsj includes both the canonical momentum Psj and the
electromagnetic momentum ηAj . Landau[2] postulated
that the vsj satisfies the condition ∇× vsj = 0. There-
fore, the circulation of the superfluid is:

∮
ℓ
vsj · drj =

1
m

∮
ℓ
(Psj−ηAj)·drj . Using Landau’s postulation and the

Bohr-Sommerfeld quantization condition
∮
ℓ
vsj · drj =∫∫

s
(∇×vsj)·ds = 0.

∮
ℓ
Psj ·drj = nh, n = 0,±1,±2, · · · .

and
∮
ℓ
ηAj ·drj = η

∫∫
s
(∇×Aj)·ds = ηΦ. where Φ is the

magnetic flux passing through curl surface S. Combining
these equations, we obtain Φ = nΦ0, which is quantiza-
tion of magnetic flux. Φ0 is the quantum of flux, given by
h/η. We propose an experiment to test this result. A con-
stant magnetic field is applied parallel to the rotational
axis of a rotating torus container filled with superfluid
4He. The experiment aims to observe whether the mag-
netic flux, as a function of angular velocity, is quantized.
Additionally, the coupling constant η can be measured
through this experiment. In summary, according to our
PT model, there are two types of quantization: the cir-
culation of normal fluid 4He is quantized in units of h/m,
while the circulation of superfluid 4He is identically zero.
However, this latter condition leads to quantization of
the magnetic flux in units of h/η.
For comparison, the Landau two-fluid model[2, 3] nei-

ther includes the phase separation between the super-
fluid and normal fluid nor the quantization of mag-
netic flux. It merely states that when the integration
circuit in

∮
ℓ
vsj · drj encloses the axis of the vortex,∮

ℓ
vsj · drj = nh/m, otherwise

∮
ℓ
vsj · drj = 0. As for

the reason why this same integral gives different results
in these cases, the theory attributes it to the singularity
at the center of the vortex line. However, the theory does
not explain the physical mechanism behind this singular-
ity. These conclusions do not account for two important
physical facts: 1. the mechanical momenta of superfluid
and normal fluid 4He atoms are inherently different; 2.
in normal fluid 4He, the motion of 4He atoms reflects
single-particle behavior, whereas the quasiparticle β(λ)
PP reflects the coherent behavior of Nλ

4He atoms.

V. CONCLUSIONS

We propose the following unique assumption: when
photons interact with atoms (or matter), under cer-
tain conditions, not only can phonons generate pho-
tons through energy changes, but the reverse pro-
cess is also possible, meaning that derivative phonons
(DP) can appear. Through the coupling between DP
and bare photons, a new Bose-type elementary excita-
tion—Physicalized photon (PP)—is formed. When all
bare photons of wavelength at a temperature Tλ become
quasiparticle PPs, we say that the temperature Tλ has
been Physicalized. The so-called physical picture of Nλ

superfluid 4He atoms is as follows: Nλ
4He atoms with

dressed photons (i.e., PT), although subjected to the
damped effects of non-superfluid helium atoms, still move
like photons as long as the damping ratio ζ < 1/

√
2,

meaning they exhibit superfluidity.
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