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Abstract

The main idea of this article lies in the fact that Goldbach's strong conjecture is associated with the progression of
natural integers from 0 to infinity, which results in precise gaps between prime numbers. The gap of 6 is the most
regular between primes 6x + 1 on the one hand and primes 6x – 1 on the other. In this article, using the equations 3x ± 5
and analyzing the 6-based gaps between primes while determining the initial conditions that make a prime appear after
or before an integer, this article argues for the truth of Goldbach's strong conjecture. Two new concepts are introduced
for the first time : Goldbach's gap and Goldbach's transposition. By analyzing its key digits (units and tens), a prime
number itself can lead to the conversion of an even number into two primes. A new algorithm is deduced from these
results,  enabling  us  to  locate  prime  numbers  located  at  equal  distance  from any integer,  even  or  odd,  prime  or
composite. This constitutes a decisive proof of Goldbach's strong conjecture, since it means that any even number can
be converted into the sum of two prime numbers.

Keywords.  Goldbach.  Conjecture.  Even.  Primes.  Gaps.  Transposition.  Algorithm.  Conversion.  Prime  digits.
Equidistance.

1



Introduction

One of the best-known unsolved problems in number theory is Goldbach’s conjecture, which appeared in a 
correspondence between Christian Goldbach and Leonhard Euler in 1742 (Golabach, 1742). The Goldbach’s strong 
conjecture states that every even number larger then 2 can be expressed as the sum of two primes. As the Goldbach's 
conjecture lies in the eld of number theory and its very core is prime numbers, the distribution of such numbers may be 
an integral part of any attempted solution to the conjecture.  The prime number theorem gives an asymptotic form for 
the prime counting function, which counts the number of primes less than some integer n. The set of numbers primes    
< an integer n are denoted π(n) while the asymptotic law for the distribution of prime numbers asserts that π(n) = n/ln(n)
(Atle, 1950).  
As the proof of Goldbach conjecture is still out of reach, the conjecture has been extensively verified computationally,
with the most recent efforts pushing the boundaries of numerical verification to unprecedented levels (Daniel, 2023;
Oliveira e Silva, 2014; Sinisalo, 2013). Despite this, the formal proof of the Goldbach Conjecture remains elusive.
Apart from empirical verification, countless reports of research provide pure mathematical verification of Goldbach's
strong conjecture by different logical propositions (Daniel, 2024; Farkas, 2017; Hardy and Littlewood, 1923). Websites
such https://www.dcode.fr/conjecture-goldbach allow conversion of evens in sums of two primes to a given limit.
This article is a continuation of efforts to understand the mathematical rules governing Goldbach's strong conjecture. It
is essentially based on the analysis of the gaps between primes and the proposal of a new algorithm for the conversion
of any even number > 4 into the sum of two primes.
It introduces two new concepts for the understanding of Goldbach's strong conjecture including the Goldbach's gap and
Goldbach's transposition. The article also shows that the digits of prime numbers and the primes numbers themselves
can be used to prove Goldbach's strong conjecture by using elementary rules of calculation. In addition, it provides a
logical and infinitely reproducible line of reasoning that argues for the truth of Goldbach's strong conjecture.
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1. Logical propositions on Goldbach strong conjecture and gaps between primes

1a. Meaning of Goldbach's transposition.

Lemma a. « If we calculate the Goldbach gaps for a given integer, then the same gaps will give prime numbers with 
another integer of the same kind (for  even or ; odd multiple of 3 or not). This is what is called here the Goldbach 
transposition ».

Tables 1A+1B show examples of the Goldbach transposition (a concept used in this article). If E is any even > 4 and
p and p' two equidistant primes such that p < E/2 and p' > E/2 then E/2 – p = p' – E/2. Note that E/2 is any integer n
located between the two equidistant primes p and p' such that p ▬ E/2 or n  ▬  p' ↔ 2 x E/2 = E = 2n = p + p'. The
Goldbach gap is any value of t = E/2 – p = p' – E/2. Do not confuse the Goldbach gap with the classical gap between
two consecutive prime numbers, it represents the gap between two prime numbers p and p' equidistant at E/2 whose
sum is E. Remember that equidistant primes are located at equal distance from an integer before and after. They are
essential for Goldbach's strong conjecture to be true. The question is, how far apart are they from an integer? Tables 1
and 2 show that their location depends on the number: is it even or odd ? 3n or not ?   

E/2 represents any integer > 2 and is either even or odd. To obtain a prime number from an even E/2, we add odd values
of  t,  i.e. either values corresponding to primes in ascending order, or odd values of 3n (O3n). For an odd E/2, we
obviously add 2n values in ascending order. Table 1A+1B shows the case of an even E/2 to which we add values t =
primes or t = 3n (O3n). We can see that an even number 3n always gives equidistant prime numbers when t values of
prime numbers are added to it, whereas a non-3n even number needs t = O3n (odd 3n) values to give prime numbers.
This is the Goldbach transposition. Let us recall that Goldbach's transposition is symmetrical and that an addition is
accompanied by a subtraction of the same quantity. For two equidistant primes result from the subtraction and addition
of the same value to or from E/2.

Indeed, if the t gaps between E/2 and the equidistant primes have prime values in increasing order, all 3n numbers give
equidistant primes and therefore verify the strong Goldbach conjecture (Tables 1A+1B). On the other hand, for numbers
that are not multiples of 3 (or non-3n), gaps t that have 3n values are needed to obtain equidistant primes. This fact is
true  for  all  numbers  that  can  be  tested,  even  those  with  up  to  500  equidistant  primes  or  more.  The  Goldbach
transposition means that even numbers of the same type (3n or not) give equidistant primes with the same spacings t .
This means that the strong Goldbach conjecture is a function of the spacings between E/2 and p or p' for every even
number at infinity. Given that all primes numbers are 6x ± 1 and 6n is the most frequent gap between primes that follow
each other, Goldbach's transposition is occurring to infinity so that the same distribution of primes takes place with the
same kind of numbers.

Table 1A. T-values of gaps between E/2 and equidistant primes. If E is any even > 4 and p and p' two equidistant primes such that p < E/2 and p' >
E/2 then E/2 – p = p' – E/2 with p = E/2 – t and p' = E/2 + t. We add to an even integer either t = prime (p) or t = odd3n (O3n) to get a prime number.
Equidistant primes are in bold-italic. Note that the sum of two equidistant primes = 2 x E/2 (2 x 40  ; 2 x 36 ; 2 x 50). Note E = 80 and E/2 = 40 does
not give equidistant primes with t = primes except with 3 but rather it generates them with t = 3n. if t-gaps = odd 3n values, the non-3n numbers 80
and 100 do give equidistant primes. 

80 72 80 
 

100 

t = p - ← 40 → + - ← 36 → + t = 03n - ← 40 → + - ← 50 → +

3 37

 

43 33

 

39 3 37   

 

43 47  

  
  

53

7 33 47 29 43 9 31 49 41 59

11 29 51 25 47 21 19 61 29 71

13 27 53 23 49 27 13 67 23 77

17 23 57 19 53 33 7 73 17 83

19 21 59 17 55 39 1 79 11 89

23 17 63 13 59

29 11 69 7 65

31 9 71 5 77

37 3 77
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Table 1B. Comparison between a 3n number (E = 240) and a non-3 (E = 188). We can clearly see that the 3n only give equidistant  prime numbers if
the t gaps have prime number values while the non-3n give them with t which have odd 3n values. Equidistant primes are in bold italic.

188 240 188
 

t = p - ← 94 → + - ← 120 → + t = O3N - ← 94 → +

3 91 97  117

 

123 3 91   

 

97

7 87 101 113 127 9 85 103

11 83 105 109 131 15 79 109

13 81 107 107 133 21 73 115

17 77 111 103 137 27 67 121

19 75 113 101 139 33 61 127

23 71 117 97 143 39 55 133

29 65 123 91 149 45 49 139

31 63 125 89 151 51 43 145

37 57 131 83 157 57 37  151

41 53 135 79 161 63 31  157

43 51 137 77 163 69 25 163

47 47 141 73 167 75 19 169

51 43 145 69 171 81 13 175

53 41 147 67 173 87 7 181

59 35 153 61 179 93

The Table 2 shows the different ways to obtain Goldbach gaps and equidistant primes depending on the type of the
number. Primes < E (E any even > 4) within π(E) will always give at least one couple of equidistant primes when added
to or substracted of an even E that is 3n; odd 3n numbers will give them as well with non-3n numbers; while 2n are
required to obtain them with odd primes or composite numbers. 
These  rules  apply  to  all  integers  to  infinity  and  are  therefore  responsible  for  what  is  called  here  the  Goldbach
transposition. Goldbach gaps are therefore produced in the same ways even if in an irregular and non-linear way. We
can see that  the larger the number,  the more equidistant  prime numbers it  will  generate.  If  we assume an infinite
number, then there will be an infinity of possible gaps with prime numbers < E/2 and it only takes a few prime numbers
> E/2 for Goldbach gaps to appear. Table 2 shows that each integer has its own configuration of equidistant primes as a
kind of specific trace or pattern. If we move by one unit, the distribution of equidistant primes varies. For example,
35 - 6 = 29 and 35 + 6 = 41 while 36 - 5 = 31 and 36 + 5 = 41. This shows that the Goldbach's gaps vary infinitely with
each integer.
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Table 2. The transposition ways to get Goldbach's gaps and equidistant primes relatively to an integer n of different 
types. Either using p of π(n)to substract p from n or using odd 3n numbers with evens non-3n and 2n with odd numbers 
of all kinds. This shows that Goldbach's gaps are natural gaps between primes but always occur at least one for any 
integer. The data shown can be reproduced for whatever number > 4. Be E an even, and p and p' (p' > p) two equidistant
primes at E/2 then t = E/2 – p = p' – E/2, the table shows t values to get equidistant primes from diferent types of 
numbers. O3n means odds numbers 3n.  Equidistant primes are highlighted.

t Way 1 : adding or substracting p from π(E)
to or of E/2 

t Way 2 : adding or
substractig O3n to

or of E/2

t Way 3 : adding or substractig 2n to or of E/2

p 48 - p 48 + p 76 - p 76 + p O3n 76 - 3n 76 + 3n 2n 45 - 2n 45 + 2n 39 - 2n 39 + 2n

3 45 51 73 79 3 73 79 2 43 47 37 41

5 43 53 71 81 9 67 85 4 41 49 35 43

7 41 55 69 83 15 61 91 6 39 51 33 45

11 37 59 65 87 21 55 97 8 37 53 31 47

13 35 61 63 89 27 49 103 10 35 55 29 49

17 31 65 59 93 33 43 109 12 33 57 27 51

19 29 67 57 95 39 37 115 14 31 59 25 53

23 25 71 53 99 45 31 121 16 29 61 23 55

29 19 77 47 105 51 25 127 18 27 63 21 57

31 17 79 45 107 57 19 133 20 25 65 19 59

37 13 73 39 113 63 13 139 22 23 67 17 61

41 7 89 35 117 69 7 145 24 21 69 15 63

43 5 91 33 119 75 26 19 71 13 65

47 29 123 81 28 17 73 11 67

53 23 129 87 30 15 75 9 69

59 17 135 32 13 77 7 71

61 15 137 34 11 79 5 73

67 9 143 36 9 81 3 75

71 5 147 38 7 83

73 3 149 40 5 85

79 42 3 87

89 44

97 46

101 48

1b. A reasoned example of proposition b (lemma b).

 Lemma b. « E is any even > 4 et E/2 is any integer > 2. Let us consider π(E) and let us denote P1, P2,...Pn any
prime of π(E) < E/2 and Q1, Q2,...Qm any prime of π(E) > E/2. Then there is at least one value of P and one 
value of Q such that E - P = Q and E - Q = P which is a Goldbach's gap. This proposition must be verified for 
Goldbach's strong conjecture to be true.».

Here we see (Table 3) that if we subtract a prime number < E/2 from E we get a prime number > E/2 in some cases. 
This means E/2 – t and E/2 + t are primes or p + 2t = q. This means that a minus gap that generates a prime number can
generate it too if it is added. This antisymmetry is common in natural numbers. All prime numbers have an integer n = 
E/2 in the middle separated from them by the same distance. For any integer n, there exists at least one Goldbach's gap t
such that   n – t and n + t are primes. In Table 3 two numbers are shown. For example, 11 + 109 = 120 and therefore       
60 – 11 = 109 – 60. And so 11 = 60 – 49 and 109 = 60 + 49. The difference 49 allows us to obtain two prime numbers 
equidistant from 60 which are 11 and 109. Otherwise, 11 + 98 gives 109 and 98: 2 = 49 and thus 11 + 49 = 60 which is 
therefore the integer in the middle between 11 and 109. Other differences in Table 3 generate other equidistant prime 
numbers according to the same rule. All these gaps are called here Goldbac's gaps. These rules are true to infinity. 
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Let us take another example such 31 + 157 = 188. The integer in the middle is (31 + 157)/ 2 = 94 and thus  31 + (63 x 2)
= 157 and so 31 = 94 – 63  and 157 = 94 + 63. Again E/2 – t and E/2 + t must be primes for the Goldbach's conjecture 
to hold true and that what happens in the set of integers. In fact, there is always any integer n between any two primes p 
and p' such that n – t = p and n + t = p'. 
To find Goldbach's gaps it is needed to determine π(E) (E any even > 4) containing primes p < E. Then determine the 
gaps t such that E/2 – t and E/2 + t are primes and equidistant to E/2. This also represents a method that can be 
programmed to verify the strong Goldbach conjecture and generate all possible sums of equidistant prime numbers.

Table 3. Goldbach's gaps. Table show π(120) (first column) and π(188) (third column). Any prime of π(120) or π(188)
is denoted p. We see that 120 – p or 188 – p give equidistant prime numbers > E/2 with Goldbach's gaps. These gaps are
the distance between p and 120/2 = 60 or 188/2 = 94. This shows that for any even E > 4 there exists a Goldbach's gap
denoted t such that E/2 – t and E/2 + t are primes. Equidistant primes are highlighted in bold.

p 120 - p p 188 - p

3 117 7 181

7 113 11 177

11 109 13 175

13 107 17 171

17 103 19 169

19 101 23 165

23 97 29 159

29 91 31 157

31 89 37 151

37 83 41 147

41 79 43 145

43 77 47 141

47 73 53 135

53 67 59 129

59 61 61 127

61 59 67 121

67 43 71 117

71 49 73 115

73 47 79 109

79 41 83 105

89 31 89 99

97 23 97 91

101 19 101 87

103 17 103 85

107 13 107 81

109 11 109 79

113 7 113 71

127 61

133 55

137 47

139 49

149 39

151 37

157 31

163 25

167 21

173 15

179 9

181 7
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Let us suppose an even number denoted E and determine π(E). Then π(E) will contain the prime numbers which are all
< E (prime number theorem). Let us take E/2 and then we will have the prime numbers of π(E) which are < E/2 and
those greater than E/2. We will then subdivide π(E) into P1, P2, P3, ...PN which are < E/2 on the one hand, and on the
other hand Q1, Q2, Q3,...Qm which are > E/2. Then E/2 – P1 = t1; E/2 – P2 = t2; E/2 – P3 = t3;...E/2 – Pn = tn are
calculated. Then there is a least one value of t (t1 to tn) such that E/2 + t = Q1 or Q2...or Qm (Table 4). Since Q – P = 2n
and given Q > P then (Q + P)/2 = E/2 which means that there is always an integer E/2 at equal distance from P and Q. If
(Q + P)/2 = E/2 then Q + P = E and Q and P are equidistant relative to E/2. This proposition postulates that Goldbach
gaps before E/2 repeat at least once after E/2 because prime numbers are formed in a symmetrical manner from 0 to
infinity and from infinity to 0. For example, if n – t is prime then it is likely that n + t is also prime.
Similarly and symmetrically, the gaps Q1 – E/2 = z1; Q2 – E/2 = z2; Q3 – E/2 = z3;...Qm – E/2 = zm are opposite gaps.
And so there exists at least one value of z (z1 to zm) such that E/2 – z = P1 or P2 or P3 or Pn (Table 4). Any even
number E > 4 has both types of sets of Goldbach gaps on either side of E/2. 
 
Table 4 : Goldbach's gaps with E/2 + t and E/2 – t numbers with E = 120 (3n) and E/2 = 60 and t = prime value in an 
increasing order.  This can be reproduced for any number but it must be taken into account whether the number is even 
or odd, 3n or not (see above). If it is odd, then it is necessary to subtract and add 2n numbers in ascending order. 
Equidistant primes are highlighted in italic and there are 10 Goldbach's gaps. The table show that there is at least one 
value of t such that  E/2 + t and E/2 – t numbers are both primes which represents an initial condition essential for 
Goldbach's strong conjecture to be true. The Table shows that there are 10 goldbach's gaps and 10 couples of  E/2 + t 
and E/2 – t  prime numbers obtained with the number E = 120  (E/2 =60). This will happen with any even E > 4 of same
type (3n), only the values and positions of primes changes between 0 and E/2 and between E/2 and E.

t 60 – t 60 + t  Goldbach gap

3 57 63

5 55 65

7 53 67 1

11 49 71

13 47 73 2

17 43 77

19 41 79 3

23 37 83 4

29 31 89 5

31 29 91

37 23 97 6

41 19 101 7

43 17 103 8

47 13 107 9

53 7 113 10

59 1 119

1c. Specific case of an even number denoted E which tends to infinity

If E tends to infinity, the Goldbach'gaps tend to infinity. π(E) will contain an infinity of prime numbers P < E/2 and Q > 
E/2. And so for a prime number Q > E/2, there must exist a Goldbach gap such that Q – E/2 = E/2 – P. Even if there is a 
long empty gap of prime numbers after E/2 and the number of prime numbers Q > E/2 are rarer and more dispersed, 
there will still exist a Goldbach gap such that Q – E/2 = E/2 – P because all possible Goldbach gaps exist before E/2 for 
a number E that tends to infinity. For example, there are infinitely many gaps between 3 and all other primes (7 – 3; 11 
– 3; 17 – 3;...to infinity) and this is true for every prime number and therefore all possible Goldbach gaps exist at 
infinity to the point that any prime number Q > E/2 will find a number P < E/2 which is symmetric to it such that          
Q – E/2 = E/2 – P. Goldbach's conjecture is true because there are infinitely many possible gaps between known or 
possibly known prime numbers at infinity and any prime E/2 + t whatever its value and > E/2 would find a symmetric 
prime E/2 – t < E/2. This rule of symmetry can be more easily seen with twin prime numbers to infinity.
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Let us suppose an even number E such that E/2 tends to infinity, so [E/2 → E] is in infinity. On the other hand, from 0 
to E/2 we have all the prime numbers that we could discover by the means available to date or which are known at the 
maximum limit. So if we take any prime number p and any prime number q that we know such that q > p, then q – p 
can take any possible value 2n and all possible 2n gaps between any two prime numbers (not just twins but distant from 
each other by any gap) exist from 0 to E/2. We know well today that prime numbers are infinite and probably at a much 
higher density than we imagine. Let us then suppose that between E/2 and E we have two prime numbers among others 
s and t such that s – t = 2n'. Then, there must exist two other prime numbers u and v < E/2 such that u – v = 2n'. 
Therefore s – t = u – v and s + v = t + u and therefore if  u and t are equidistant at E/2 then s and v are also equidistant. 
Since s and t > E/2 and u and v < E/2  with u et t, and s and v, equidistant from E/2, then 2 x E/2 = s + v = t + u and 
therefore E = s + v = t + u. Thus Goldbach's conjecture can be verified at infinity knowing that any even number that we
know or can imagine will be the sum of two prime numbers. Indeed for a number which tends to infinity, all possible 
gaps 2n between any two primes are limitless.
Let us remember that if P1 ← E/2 →P2  means P1 and P2 are equidistant to E/2 then E/2 – t = P1 ad E/2 + t = P2 ( t any
integer < E/2). Therefore E = E/2 + E/2 = (E/2 – t) + (E/2 + t) = P1 + P2. Any time there are two equidistant primes 
relatively to E/2 the strong Goldbach conjetcure is verified and holds true. The t is the Goldbach's gap and is also 
limitless as the number tends to infinity which means all primes at any t gap are possible. Note here that two initial 
conditions are necessary s – t = u – v and s, v on one hand and t, u on the other are equidistant to E/2. This means that 
all equidistant primes to E/2 are related to each other by 2n gaps and related to E/2 by t Goldbach's gaps. The two gaps 
overlap in all possible ratios. If E and E/2 extend to infinity, and even if the density of  primes > E/2 is lower or there 
are long sequences devoid of primes, the distances between primes close to E/2 and 0 would be as infinite as the 
distances between these distant primes and E/2. Moreover, given their higher density, more possible gaps occur before 
E/2. It is therefore quite possible that these distant primes are equidistant to primes < E/2.
To illustrate this with an example, we limit ourselves to a small number like 100 knowing that what is shown applies to 
infinity (Table 5A+B). These tables show the large number of possibilities for a small number and a fortiori for a 
number which extends to infinity.
Table 5A. E is any even and be E = 100. Let us calculate π(100) and calculate u – v such that u is any prime > v  in 
primes π(100) < E/2 = 50.

v →
3 5 7 11 13 17 19 23 29 31 37 41 43 47

u↓

47 44 42 40 36 34 30 28 24 18 16 10 6 4

43 40 38 36 32 30 26 24 20 14 12 6 2

41 38 36 34 30 28 24 22 18 12 10 4

37 34 32 30 26 24 20 18 14 8 6

31 28 26 24 20 18 14 12 8 2

29 26 24 22 18 16 12 10 6

23 20 18 16 12 10 6 4

19 16 14 12 8 6 2

17 14 12 10 6 4

13 10 8 6 2

11 8 6 4

7 4 2

Table 5B. Let us calculate π(100) and calculate s – t such that s is any prime > t  in primes > E/2 = 50.
      t→

53 59 61 67 71 73 79 83 89 97
s↓

97 44 38 36 30 26 24 18 14 8

89 36 30 28 22 18 16 10 6

83 30 24 22 16 12 10 4

79 26 20 18 12 8 6

73 20 14 12 6 2

71 18 12 10 4

67 14 8 6

61 8 2

59 6
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Let determine any u – v = s – t such that u + t or s + v = 100.
Examples :
47 – 41 = 59 – 53 → 47 + 53 = 59 + 41 =  100 
47 – 31 = 69 – 53 → 47 + 53 = 69 + 31 =  100
47 – 3 =  97 – 53 → 47 + 53 = 97 + 3  =   100
47 – 17 = 83 – 53 → 47 + 53 = 17 + 83 =  100 
41 – 17 = 83 – 59 →  41 + 59 = 17 + 83 = 100  
 41 – 11 = 89 – 59 →  41 + 59 = 89 + 11 = 100
17 – 3 =  97 – 83 → 17 + 83  =  97 + 3  = 100

2. Demonstrate and prove the correctness of the Goldbach's strong conjecture by a table using 3x + 5 and 3x – 5
equations while following the remainders of Euclidean divisions

2a. Goldbach's strong conjecture and the gaps that separate prime numbers using 3x ± 5 equations

Prime numbers and their multiples except multiples of 2 and 3 are all 6x  ±  1 (Bahbouhi1, 2024). Here the equations
3x ± 5 reconstruct all prime numbers and their multiples in their natural order (Table 6A+B). However, using Euclidean
division, one can know why a number is prime or not by examining the remainders of the Euclidean division of 3x by
the prime numbers below it.  This is possible with the equations 3x ± 5. Let's take an example, the number 35 has 5 as a
factor and therefore cannot be prime because 35 = 3 x 10 + 5. But if we take 77, we have 77 = 3 x 24 + 5 and in fact 77
– 5 = 72 and 72 : 11 = 6 and the remainder (denoted r in the table) = 6 and therefore if we add 5, we will have a new
factor  11  =  5  +  6  or  5  =  11  –  6  and  therefore  77  is  not  prime.  In  general  for  the  equation  3x  +  5  if
5 = prime factor –  remainder (the factor is denoted q in the table) then the number obtained is not prime. This could
be used as a factorization method by examining each time the remainder of the division of the number 3x by the prime
factors q which are less than its square root, if 5 = q – r then the number obtained with the equation 3x + 5 is composite.
Here are the steps, take the number 3x + 5 and substract 5, you get 3x, then divide it by primes q < its square root. See
the remainders and determine if 5 = q – r. If it is the case, then the number is composite. You get the prime factor by
adding 5 to the remainder. This method can work well to decompose a number in product of prime factors . If 5 ≠ q – r,
then the number is prime. Factoring an integer into a product of prime factors is still a topic of primary importance in
mathematics (Bahbouhi2, 2024).
Let us take another example, 119 = 3 x 38 + 5. We have 3 x 38 = 114 and 114 : 17 = 6 and r = 12. Therefore 5 = 17 – 12
and thus 119 is composite. By contrast, if the number is prime,  5 ≠ q – r in all euclidean divisions.
On the other hand, for 3x – 5 equation, if 5 = r of the euclidean divisions then the number is composite.
For the rest, let us denote any prime number P and any composite number C. The prime numbers obtained by 3x + 5 are
the P+ and those of the equation 3x – 5 are P-. Similarly, we have the C+ and C-. Note that multiples of 3 are excluded
from the tables. We see that there are gaps of 6n between the P+ primes on the one hand and between the P- on the other
hand. Each line break = gap of 6 by going down or up. If we go up, we have gaps of -6n and if we go down we have
+6n. On the other hand, we have variable gaps of 2n between the P+ and the P- primes. We have the same pattern of
gaps between the C+ and the C-. Let us note that 3 x + 5 corresponds to 6x – 1 primes and 3x – 5 to the 6x + 1 equation.
In fact, there are two types of primes of which the former are 6x – 1 and the latter 6x + 1. Not only primes, but all their
multiples except those of 2 and 3 can be written as 6x + 1 or 6x – 1.
Since all composite or prime numbers can be written as the equation 3x ± 5, we can then develop a method for their
factorization by applying the rules 5 = q – r or 5 = r for the equations 3x + 5 and 3x – 5, respectively. We can clearly see
that the integers, during their progression to infinity, give prime or composite numbers, depending on the remainders of
their  Euclidean divisions by the prime numbers that  are less than their square roots.  Conversely and by the same
process, a number P or C comes from a natural integer P or C which precedes it. 
This progression of integers in tables-6 by 3x  ±  5 equations can be used to demonstrate and prove the Goldbach's
strong conjecture. In fact, it appears clear that this conjecture is a result of the progression of natural numbers into
primes or composite numbers. The proof of this conjecture lies in this progression itself.
Here are the key arguments to prove Goldbach's strong conjecture:

 Any odd number P or C is preceded and followed by prime numbers at regular intervals of 6n. Therefore        
P' (+6n) ▬ P ▬ P'' (-6n) ↔ 2 x P = 2n = P' + P''.  
P''' (+6n) ▬ C ▬ P'''' (-6n) ↔ 2 x C = 2n = P''' + P''''. Take any umber P or C in the tables-6 using the equation 
3x + 5 or 3x – 5, go up and down till you get the two equidistant primes then Goldbach's strong conjecture is 
demonstrated this way. 
For example 7(+6 x 5) ▬ 37 ▬  67 (-6 x 5) ↔ 2 x 37 = 7 + 67 = 74.

 71 (+6 x 1) ▬ 77 ▬  83 (-6 x 1) ↔ 2 x 77 = 71 + 83 = 154.
This table shows that since all numbers P and C are equidistant from prime numbers preceding and 
following them, even numbers are sums of two prime numbers because if a number n is equidistant from two 
prime numbers P1 and P2 then 2n = P1 + P2. Goldbach's strong conjecture can thus be demostrated by 6n gaps.

9

bahbo
Texte surligné 



• However, we are missing the even numbers in the tables-6 (multiples of 3 or not) and the odd multiples of 3.
We just need to convert them first to P or C of the table and then move in gaps of 6. The numbers P and C in
tables-6 are converters because they are used to transform any number > 4 into the sum of two prime numbers.

•  Note that we,can also use the gaps between the prime numbers 3x + 5 and 3x  – 5 but they are = 2n and are
variable  and  just  require  more  attention  and  calculation  but  the  table  demonstrates  Goldbach's  strong
conjecture in all directions and cases. 

• For example :
23(+6)▬ 29 (+1)▬ 30 ▬ 31(-1) ▬37(-6) ↔ 2 x 30 = 60 = 31 + 29 = 23 + 37
37 (+6 x 5)▬ 67 (+2)▬ 69 ▬ 71(-2) ▬101(-6x 5)↔ 2 x 69 = 138 = 67 + 71 = 37 + 101.
37 (+6 x 5)▬ 67 (+3)▬ 70 ▬ 73(-3) ▬103(-6x 5)↔ 2 x 70 = 140 = 67 + 73 = 37 + 103.

• It is important to note that if we start with a non-3n even number like 56 or 88, we should not convert it to a 3n
number because we will no longer be able to find prime numbers with steps of 6.
Example if we do 56 – 2 = 54, we cannot have prime numbers below or above 54. Rather 56 – 3 = 53 or even 
56 – 1 = 55 because 55 – 6 = 49 – 6 = 43 or 55 + 6 = 61 + 6 = 67 and so on.

• According to this table here is the demonstration of Goldbach's strong conjecture: Be E any even >4, C is 
composite and P is prime.
E = C 1 + C2 = (C1 + 6n) + (C2 – 6n) = P1 + P2.
E = C1 + P = (C1 + 6n) + (P – 6n) = P3 + P4.
E = P' + P'' = (P'+ 6n) + (P'' – 6n) = P5 + P6

• Because there is always a 2n gap between any two prime p and q such that q > p, then there is always an 
integer in the middle. Be q > p and q = p + 2t ↔  ∃ n such that p + t = n and q – t = n ↔ 2n = p + q. All prime 
numbers taken to infinity will generate all possible evens 2n and therefore 2n would always be the sum of two 
primes.

• Conversely, be 2n ↔ n is in the middle of two primes p and q ↔ 2n = p + q.

• 2n ↔ 2n/2 = n ↔ n= 3x + 5 or n = 3x – 5 ↔ n is P or C ↔ n – 6n and n + 6n ↔ p + q.

• There are four possible equalities or Goldbach equations to complete to convert any even number into the sum 
of two prime numbers P and P' using tables-6 and 3x ± 5 to infinity :
P' (+6n) ▬ P ▬ P'' (-6n) (Even = 2n = 2 x P = P + P').
P' (+6n) ▬ C ▬ P'' (-6n) (Even = 2n = 2 x C = P + P').
P' (+6n) ▬C or P▬ 2n + x ▬ 2n ▬ 2n – x ▬ C or P▬ P'' (-6n) (Even = 2n = 2 x 2n = P + P').
P' (+6n)▬ C or P ▬ 3n + x ▬ O3n ▬ 3n – x ▬ C or P▬ P'' (-6n) (Even = 2n = 2 x O3n = P + P'). 
Note 2n might be 3n or not while O3n is odd 3n in the last equation.
Note that x is used to preconvert the even or O3n into the converters P or C before searching for the P by the 
jumps of 6n (see examples above). Or we can use any gap between primes to complete these equations but 6n 
is the most regular.
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Table 6A+B : The equations 3x ± 5 reconstruct all the prime numbers and odd multiples of prime numbers except those
of 2 and 3. Depending on the remainders (r) of the Euclidean division of a number 3x by the primes < its square root

denoted q, the number is prime (P) or composite (C). The table shows that all natural numbers (primes, odd multiples of
primes, evens and multiples of 3) can be in the middle of two primes by making 6n jumps in two opposite directions (up

down ↓N↑) or left-right by 2n gaps. In the table P is prime and C is composite while r is the remainder of euclidean
division of  numbers 3x in 3x + 5 or 3x – 5 by q which is any prime less than their square roots. If 5 = q – r in the case

of 3x + 5 or 5 = r in the case of 3x – 5, the number is not prime (C).

6A
x = 2n 3x + 5  P or 

C (5 = q – r)
x = 2n 3x – 5  P or 

C (r = 5)

2 11 P 4 7 P

4 17 P 6 13 P

6 23 P 8 19 P

8 29 P 10 ↓25↑ q = 5

10 ↓35↑ q = 5 12 31 P

12 41 P 14 37 P

14 47 P 16 43 P

16 53 P 18 ↓49↑ r = 5  

18 59 P 20 ↓55↑ q = 5

20 ↓65↑ q = 5 22 61 P

22 71 P 24 67 P

24 ↓77↑ 5 = 11 – 6 
5 = 11 –  6

26 73 P

26 83 P 28 79 P

28 89 P 30 ↓85↑ q = 5 

30 ↓95↑ q = 5 32 ↓91↑ r = 5  

32 101 P 34 97 P

34 107 P 36 103 P

36 113 P 38 109 P

38 ↓119↑ 5 = 17 – 2
5 = 7 – 2 

40 ↓115↑ q = 5 

40 ↓125↑ q = 5 42 ↓121↑ r = 5

42 131 P 44 127 P

44 137 P 46 133 r = 5

46 ↓143↑ 5 = 11 – 6
5 = 13 – 8

48 139 P

48 149 P 50 ↓145↑ q = 5 

50 ↓155↑ q = 5 52 151 P

52 ↓161↑ 5 = 7 – 2  
5 = 23 – 18 

54 157 P

54 167 P 56 163 P

56 173 P 58 ↓169↑ r = 5

58 179 P 60 ↓175↑ q = 5 

60 ↓185↑ q = 5 62 181 P

62 191 P 64 ↓187↑ r = 5

64 197 P 66 193 P

66 ↓203↑ 5 = 29 – 24
5 = 11 –  6

68 199 P

68 ↓209↑ 5 = 19 – 14
5 = 11 –  6

70 ↑205↑ q = 5 

70  ↓215↑ P 72 211 P
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6B
x = 2n 3x + 5  P or 

C (5 = q – r)
x = 2n 3x - 5  P or 

C (r = 5)

72 ↓221↑ 5 = 13 – 8
5 = 17 – 12

74 ↓217↑ r = 5

74 227 P 76 223 P

76  233 P 78 229 P

78 239 P 80 ↓235↑ q = 5

80 ↓245↑ q = 5 82 241 P

82  251 P 84 ↓247↑ r = 5

84  257 P 86 ↓253↑ r = 5

86  263  P 88 ↓259↑ r = 5

88 269 P 90 ↓265↑ q = 5

90 275 q = 5 92 271 P

92 281 P 94 277 P

94 ↓287↑ 5 = 41 – 36
5 = 7 –  2

96 283 P

96  293 98 ↓289↑ r = 5

98 ↓299↑ 5 = 23 –  18
5 = 13 – 8 

100 ↓295↑  q = 5

100 ↓305↑ q = 5 102 ↓301↑ r = 5

102 311 P 104 307 P

104 317 P 106 313 P

106 ↓323↑ 5 = 17 –  12
5 = 19 – 14

108 ↓319↑ r = 5

108 ↓329↑ 5 = 7 –  2
5 = 47 – 42

110 ↓325↑  q = 5

110 ↓335↑ q = 5 112 331 P

112 ↓341↑ 5 = 31 –  26
5 = 11 – 6

114 337 P

114 347 P 116 ↓343↑ r = 5

116 353 P 118 349 P

118 359 P 120 ↓355↑  q = 5

120 ↓365↑ q = 5 122 ↓361↑ r = 5

122 ↓371↑ 5 = 7 –  2
5 = 53 – 48

124 367 P

124 ↓377↑ 5 = 13 – 8
5 = 29 – 24

126 373 P

126 383 P 138 379 P

138 389 P 140 ↓385↑  q = 5

140 ↓395↑ q = 5 142 ↓391↑ r = 5

142 401 P 144 397 P

144 ↓407↑ 5 = 11 – 3
5 = 37 – 32

146 ↓403↑ r = 5

146 ↓413↑ 5 = 7 – 2
5 = 59 – 54

148 409 P

148 419 P 150 ↓415↑ r = 5

150 ↓425↑ q = 5 152 421 P
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2b. A new algorithm-I to convert an even in sum of two primes

Be E an even. Calculate E/2.
If E/2 is P or C 
Follow table-6 lines (to infinity).
Perform conversion 
P'(+6n) ▬P or C ▬P''(-6n)  
if P or C = P' + 6n ad P'' = P or C + 6n  
 E = 2x P or 2 x 2C = P' + P''.
If E/2 is even (2n) non-3n 
Covert it to P or C. Calculate E/2 – 1 and E/2 + 1 
E/2 – 1 and E/2 + 1  should be ≠ odd 3n (O3n)
If O3n calculate O3n – 2 and O3n + 2
If the result is C or P proceed as above 
P'(+6n)▬P or C ▬2n ▬P or C ▬P''(-6n)  
if 2n = P' + 6n and P'' = 2n + 6n  
 E = 2 x 2n = P' + P''.
If E/2 is even 3n
Covert it to P or C
E/2 – 1 and E/2 + 1 
If the result is C or P proceed as above 
P'(+6n) ▬P or C▬2n ▬P or C ▬P''(-6n)  
if 2n = P' + 6n and P'' = 2n + 6n  
 E = 2 x 2n = P' + P''.

If E/2 is odd 3n
calculate E/2 – 2 and E/2 + 2
If the result is C or P proceed as above 
P'(+6n) ▬P or C▬O3n ▬P or C ▬P''(-6n)  
if O3n = P' + 6n ad P'' = O3n + 6n   
 E = 2 x O3n = P' + P''.

Note the method works with other gaps = 2n or any gap N (N any integer >0)
From 3x + 5  to 3x – 5 primes or vice versa
P'(+N) ▬P or C ▬P''(-N)
 E = 2 x P or C = P' + P''.

2c. Corresponding examples of the algorithm-I application

E = 170 E/2 = 85
E/2 is C
67(+18) ▬ 85 ▬103(-18)  
170 = 2 x 85 = 67 + 103.

E = 194 and E/2 = 97
E/2 is P
67(+30) ▬ 97 ▬127(-30)  
194 = 2 x 97 = 67 + 127.

E = 320 E/2 = 160
E/2 is even non-3n
160 – 1= 159 and 160 + 1 = 161
159 is odd 3n to discard 
160 – 3 = 157 and 160 + 3 = 163
157 ▬160 ▬163 or
139 (+6x3)▬157 ▬160 ▬163▬181(-6x3) or 
139 (+21) ▬160 ▬181(-21)
320 = 2 x 160 = 157 + 163
320 = 2 x 160 = 139 + 181
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E = 660 and E/2 = 330
E/2 is even 3n
330 – 1 = 329 and 330 + 1 = 331
329 ▬330 ▬331
311(+18) ▬329▬330 ▬331▬349(-18)
or 313(+17) ▬330 ▬347(-17)
660 = 2 x 330 = 311 + 349 or 660 = 2 x 330 = 313 + 347

E = 3006 and E/2 = 1503
E/2 is O3n
1503 – 2 = 1501 and 1503 + 2 = 1505
1501 ▬1503 ▬1505
1483(+18)▬1501▬1503 ▬1505▬1523(-18)
 3006 = 2 x 1503 = 1483 + 1523

3. Key Digits of primes numbers and equidistance to verify Goldbach's Strong Conjecture

3a. The goal behind the use of prime digits 

Between two primes there is an integer in the middle the double of which is the even equal to the sum of the two
primes.

q > p → q – p = 2n → p ← E/2 → q → 2 x E/2 = 2n = p + q. 
p = E/2 – t and q = E/2 + t and p + 2t = q.

The integer in the middle is the mean = (p +q)/2. The unit digit of this average value always depends on the units or
other key digits of the prime numbers p and q. Here we demonstrate that starting from these digits, we can convert an

even into the sum of two prime numbers.

First, formulas are given following this article that are based on the location of the digits of prime numbers. Secondly,
how to apply them to convert an even number into a sum of two prime numbers. Note that these formulas do not cover
all the rules that we could know but only a part and the purpose of this paper is mainly to show that they exist. Here
examples of calculation are given for illustration purposes.

3b. Unit Digits in case q – p = 6 or q – p = 10 or q – p = 42 and therefore t = 3 or t = 5 or t = 21.   
There are very common gaps between prime numbers that can be deduced from their unit  digits in case of all primes 
(see below). There is always a 2n gap betwee two primes and a integer in the middle between them. Hence 
Omnipresence of the equidistance between primes in all natural numbers.
Here gaps of 3, 10 and 21 are used. The gap used is indicated in parentheses (see below). In case of gap = 6 and t = 3, 
the difference between the unit digits is 6 example 11 and 17 (7 – 1). However if the unit of the larger prime is < that of 
the smaller prime we have to add 10 to see the gap. For example 17 and 23, we do not do 3 – 7 but 13 – 7 = 6. See in 
those having three digits we can see the difference of 6 between the last two digits example 103 and 109 (9 – 3 = 6) or 
131 and 137 ( 37 – 31 = 6). Here are other examples not shown. The primes numbers 1187 and 1193 such that 193 – 
187 = 6 or 1117 and 1123 such that 123 – 117 = 6. In case of gap = 10 the larger and smaller primes have the same unit 
digit. In case of gap = 42 = 2x 21, the unit digit of the larger is = that of the smaller + 2. For example 11 and 53 (3 = 1 +
2). Again we add 10 if the unit digit of the larger prime < that of the smaller example 19 and 61 such that 1 of 61 + 10 – 
9 = 2. All this show that digits of primes are the result of the gaps that are in betwee them. In addition, the digits of the 
evens that are sum of two primes are also the result of those gaps. In case of gap = 6, t= 3, we see that the difference 
between the unit digit of the average value (the integer in the middle) and that of the smaller prime = 3. Again we add 
10 in case it is smaller example in case 5-8-11 we have 8 – 5 = 3 or 11-14-17 we have 4 – 1 = 3 but in case of 37-40-43 
we do 10 (0 of 40) – 7 (of 37) = 3. We see that the same difference can be deduced from the unit digit of the larger 
prime and that of the integer in between example 11-14-17 (7 – 4 = 3) ; 47-50-53 (3 – 0 = 3).
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5 → 8 → 11 (+ 6) 
7 → 10 → 13
11 → 14 → 17
13 → 16 → 19
17 → 20 → 23 
23 → 26 → 29
31 → 34 → 37
37 → 40 → 43  
41 → 44 → 47 
47 → 50 → 53 
53 → 56 → 59
61 → 64 → 67

3 → 8   → 13 (+10) 
7 → 12   → 17              
13 → 18   → 23
19 → 24   → 29
31 → 36   → 41  
37 → 42   → 47  
43 → 48   → 53  
61 → 66   → 71
73 → 78   → 83
79 → 84   → 89
97 → 102                →107
127 → 132                →137
139 → 144               →149

67 → 70               → 73               11            → 32                             → 53 (+ 42) 
73 → 76               → 79                   17            → 38                             → 59
97               → 100               → 103               19            → 40                             → 61
103               → 106                             → 109               29            → 50                             → 71
107              → 110                                → 113               31            → 52                             → 73
131              → 134                                → 137               37            → 58                             → 79

3c. Algorithm-II for the conversion of an even number into the sum of two prime numbers by their units digits.

Even numbers have 0, 2, 4, 6, and 8 as unit digits and so if an even number is the sum of two prime numbers, the unit
digits of the latter count to deduce that of the even number of which they are the sum. The partitions of 0, 2, 4, 6, and 8
are therefore determinant in Goldbach's conjecture excluding the number 5 because we know that there is no prime
number ending with this digit. For example evens ending with 8 are sums of two primes having units digits such 1 and 7
or 9 twice and those with 4 are sums of primes with 1 and 3 or 7 twice while 6 is either sum of two primes having both
3 as units digits or 7 and 9.
This counts for converting an even number into the sum of two primes. Let E be an even number and calculate π(E). We
separate the primes < E/2 and those > E/2. Knowing that the even number is the sum of a prime < E/2 and another >
E/2, we will then sort the prime numbers of π(E) < E/2 and > E/2 according to their unit digits. Note that this process is
symmetrical for example if we take prime numbers < E/2 ending with a digit like 1 and those >E/2 ending with a digit
like 7, we must also do the inverse or the reciprocal i.e. those < E/2 having 7 as the unit digit and those >E/2 having 1 as
the unit digit. In all cases and each time we convert an even > 4 into a sum of two prime numbers, we apply these rules
whether we realize it or not. This article seeks, however, to state them.  
This selection of primes by their unit digits therefore results in a method or a new algorithm-II that is simple to execute
in computer science and which eliminates all other useless prime numbers. For example, an even number ending in 4
will not be affected by all the prime numbers ending in 9 since there are no prime numbers ending in 5. This is also the
case for evens with unit digit = 8 with primes ending in 3. This exclusion accelerates the process of converting an even
number into the sum of two prime numbers. There is also the total number of digits. For example, an even number of 4
digits will be the sum of a prime number of 2 digits and another of not less than 3 digits. A three-digit prime number
depending on its value relative to the even number of 4 digits to be converted will add either another three-digit prime
or a 2-digit prime or even primes of one digit. The two selections can be superimposed, those based on the unit digit and
those based on the total number of digits, which will further speed up the process of converting an even number into the
sum of two prime numbers. In this article, we restrict ourselves to safer and simpler rules that go in one direction only.
For example, eliminate prime numbers with 9 as the unit digit as soon as we convert an even number ending in 4 or
those with 3 with even numbers ending in 8. The algorithm-II is more robust with only one paramater which is the unit
digits.

Here we give a single example of E = 580 and E/2 = 290 by using unit digit only and the rule applies in the same way in
the case of other unit digits and for any even number. Indeed, a prime number has 1, 3, 7 and 9 as unit digits. Therefore,
an even number that ends in 0 is either the sum of two prime numbers having 3 and 7 as unit digits or 9 and 1. We will
then look for them before E/2 and after E/2 and identify those that are equidistant. We can do it in a reciprocal manner,
that is to say, look for those having 1 before E/2 and 9 after E/2 and vice versa (same for 3 and 7).  Only those prime
numbers that satisfy the partition rule of the unit digit of the even number count to convert it into a sum of two
prime numbers (Tables 7A+7B). 
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Table 7. Algorithm-II application. Conversion of an even (E = 580 and E/2 = 290) following the partition in sum of 0, 
let there be prime numbers with digits 1 and 9 (table 7A) or 3 and 7 (Table 7B). The equidistant prime numbers P and P'
make a sum = 2 x E/2 = 2 x 290 = 580. Note that this method based on digits operates in the two directions (1,9) and 
(9,1) (table 7A) or (3,7) and (7,3) in table 7B.

Table 7A

Table 7B

3d.  Digits in case XX and X0X or XX and X00X.

The remainder of this article focuses on  the relationship that exists between numbers which have in common digits 
placed in key positions. When applied to prime numbers, we find the average or integer that is equally distant from two 
prime numbers, therefore confirming again that prime equidistance is omnipresent among integers. Finally, these rules 
will be used to convert any even into prime numbers with some examples.

• Let note digits by X except the key digit. Example XX and X0X. Here 0 is a key digit and so X0X – XX = 90.
11 and 101 → 101 – 11 = 90 → 11 + 45 = 56 and 101 + 45 = 146 → 56 + 146 = 202 = 101 x 2.
Hence 11 ← 56 → 101 so that 56 – 11 = 101 – 56 = 45.
17 ad 107 → 107 – 17 = 90 → 17 + 45 = 62 and 107 + 45 = 152 → 62 + 152 = 214 = 107 x 2. 
Hence 17 ← 62 → 107 so that 62 – 17 = 107 – 62 = 45.
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< E/2 = 290 > E/2 = 290 P P' < E/2 = 290 > E/2 = 290 P P'

7 293 17 563 3 307 3 577

17 313 137 443 13 317 23 557

37 353 197 383 23 337 113 467

47 373 227 353 43 347 233 347

67 383 53 367 263 317

97 433 73 397

107 443 83 457

127 463 103 467

137 503 113 487

157 523 163 557

167 563 173 577

197 193

227 223

257 233

277 263

283

< E/2 = 290 > E/2 = 290 P P' < E/2 = 290 > E/2 = 290 P P'

11 269 11 569 19 311 59 521

31 349 71 509 29 331 89 491

41 359 101 479 59 401 149 431

61 379 131 449 79 421 179 401

71 389 191 389 89 431 269 311

101 409  109 461

131 419 139 491

151 439 149 521

181 449 179 541

191 479 199 571

211 499 229

241 509 239

251 569 269

271

281



 X00X – XX = 990.
13 and 1003 →  1003 – 13 and → 1000 – 10 = 990. Then, 990 : 2 = 495 → 13 + 495 = 508 and  1003 + 495 = 1498 → 
508 + 1498 = 2006 = 2 x 1003. Hence  13 ← 508 → 1003.

X000n...X – XX  = 9999n...0. Example 1000003 – 13 = 999990. 

 3d.  Digits in case XXY and XX. 
XXY – XX = XX ( 10 – 1) + Y. 

139 – 13. Given that (139) – 13 = (13 x 10 + 9) – 13 = 13 x (10 – 1) + 9 = 13 x 9 + 9 =  126.
126 : 2 = 63 → 13 + 63 = 76 and 139 + 63 = 202 → 76 + 202 = 278 : 2 = 139. Therefore
13 ← 76 →139.
173 – 17 = 17 x 9 + 3 = 156 → 156 : 2 = 78. Therefore 17 + 78 = 95. And 95 + 78 = 173.
17 ← 95 →173.

3e.  Digits in case YXX and XX → YXX – XX = Y00 or Yn...XX – XX = Yn...00.

661 – 61 = 600. Given 600 : 2 = 300 we have 61 + 300 = 361 and 361 + 300 = 661.
61 ← 361 → 661 → 361 x 2 = 61 + 661 → 722 = 61 + 661.  
 
673 – 73 = 600. Given 600 : 2 = 300 we have 73 + 300 = 373 and 373 + 300 = 673.
73 ← 373 → 673 → 373 x 2 = 73 + 673 → 746 = 73 + 673. 

3f. Common digits in primes XX...ZZ (ZZ are digits of primes p such that 3 ≤  p ≤  97)

The digits of primes ≤ 97 are often at the end of prime numbers of three digits and more to infinity.

Examples : 

101 103 107 109 113 127 131 137 139 149

151 157 163 167 173 179 181 191 193 197

199 211 223 227 229 233 239 241 251 257

263 269 271 277 281 283 293 307 311 313

317 331 337 347 349 353 359 367 373 379

383 389 397

Note this is not limited to numbers with three digits but to infinity as show below with numbers of 9 digits.

85412401 785412409 785412449 785412469 785412479 785412491 785412503 785412517

785412553 785412569 785412571 785412581 785412583 785412601 785412613 785412619

785412697 785412701 785412731 785412737 785412751 785412781 785412791 785412811

785412853 785412877 785412893 785412919 785413021 785413037 785413049 785413081

785413151 785413207 785413217 785413229 785413249 785413273 785413297 785413309

785413423 785413459 785413477 785413483 785413493 785413543 785413553 785413609

785413679 785413691 785413703 785413721 785413751 785413771 785413781 785413793

785413829 785413883 785413901 785413907 785413921 785413927 785413949 785413961

785414083 785414107 785414111 785414159 785414177 785414209 785414213 785414237

In all cases XXXn...YY – YY = XXXn... x 102 (n is the total number of the digits of the number reduced by 1).
Example 107 has three digits and so n = 2 and therefore 107 – 07 = 01 x 102 = 100. Given that 100 : 2 = 50 we have      
7 + 50 = 57 and 57 + 50 = 107. Therefore 7 ← 57 → 107 and so 57 x 2 = 114 = 7 + 107. Note here that we use this rule 
of digits to find the even which makes the sum of the two primes XnYY and YY.
785412613 – 13 = 785412600 : 2 = 392706300. And we have 13 +  392706300 = 392706313 and  392706313 +  
392706300 = 785412613. Therefore, 13 ← 392706313 →  785412613.
If we do not have a prime at YY such the case of the prime number 785412791, we can still perform the calculation.
  785412791 + 6 →  785412797 – 97 =  785412700 and 785412700 : 2 = 392706350 then  392706350 + 97 = 
392706447 and 392706447 + 392706350 = 785412797. We have  97 ←   392706447 →  785412797 and therefore         
(97 + 6) ←   392706447 →  (785412797  –  6). Then (103) ←   392706447 → (785412791).
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3g. Convert an even in sum of two primes by starting with close or neighboring prime numbers :

These rules will now be used to put Goldbach's strong conjecture into practice and thus convert an even number into the
sum of two prime numbers. Although some specific numbers are used here, the method applies to any even > 4 as 
described.
The method is to look for two prime numbers around the even to convert into the sum of two prime numbers and put 
them in the form Xn...YY – YY and from there convert it. Here is a detailed example but we will limit ourselves to a 
single coversion afterwards.
83 – 3 = 80 : 2 = 40 then 3 + 40 = 43 and 43 + 40 = 83.
3 ← 43 → 83 ↔ 3(+2) ← 43 (-1) → 83(- 4) ↔ (- 5) + (- 2) =  -3. If subtracting x from the terms of the equation on the 
right or left is the same as subtracting x/2 of the center. However the center remains unchanged if substracting and 
adding a same quantity from the two terms. In this example, we added 2 to 3 and substracted 4 from 83 which means 
substraction of 2 then we substract 1 from the center such that 3(+2) ← 43(-1) → 83(- 4) ↔ 5 ← 42 → 79. We continue
by the addition and substraction of equal 6n gaps on terms on left and right.
3(+2) ← 43(-1) → 83(- 4) ↔ 5 ← 42 → 79 ↔ 11 ← 42 → 73 ↔  17 ← 42 → 67 ↔   
23(+24) ← 42 → 61(-24) ↔ 47 ← 42 → 37 ↔ 53(+8) ← 42 → 31(-8) ↔ 61 ← 42 → 23
42 x 2 = 84 = 5 + 79 = 11 + 73 = 17 + 67 = 23 + 61 = 47 + 37 = 53 + 31 = 61 + 23.

Let us convert 240 in sum of two primes following the same method. First we put 240 in the form of YXX and XX so 
we can apply one of the rules shown above such like 240 = 70 + 170. The sum chosen must give numbers close to 
primes such that 67 and 73 for 70 or 173 for 170.  The numbers 173 and 73 are in the form YXX and XX and can be 
used in a substraction like seen above.
173 – 73 = 100 : 2 = 50 and so we have 73 + 50 = 123 and 123 + 50 = 173. Therefore 73 ← 123 → 173 but                
123 x 2 = 246 = 73 + 173. We therefore make  (73 – 6) ← 123(-3) → 173(-0) →  (67) ← 120 → 173 →                     
240 = 67 + 173. Or 73 ← 123(-0) → (173 – 6) → 240 = 73 + 167. 
In both (73 – 6) ← 123 → 173 and 73 ← 123 → (173 – 6) it is needed to equilibrate this way :                                     
(73 – 6) ← 123 - 3 → 173 and 73 ← 123 - 3 → (173 – 6).
Let us convert a number like 1268. Then using the same calculation as above let us pose
1268 = 38 + 1230. We take 1268 + 6 = 1274 = 37 + 1237.
Then let take a close prime 1237. Then 1237 – 37 = 1200 : 2 = 600.
We have 37 + 600 = 637 and 637 + 600 = 1237. We then have 37 ← 637  → 1237. But 
637 x 2 = 1274 = 37 + 1237 = 1274 and 1274 – 1268 = 6. Therefore  (37 – 6) ← 637(-3)  → 1237 ↔ 31 ← 634  → 
1237 and then 31 + 1237 = 1268. Otherwise  37 ← 637  → (1237 – 6) → 37 + 1231 = 1268. Or
37 (– 18) ← 637  → (1237 + 12) → 19 + 1249 = 1268. In all these cases we have to substract 3 from the middle namely
637 – 3 = 634.

1) Note that in both two examples cited above the conversion of 240 and 1268 we have a difference = 6n (n = 1) which
is the best way to find out new primes and increase the combinations of primes in sums. In the case of 340 we start with
346 = 73 + 173 and in the latter we start with  1274 = 37 + 1237.
2) N1 ← M  → N2 is an equation or a balance that we can modify by adding and subtracting the same quantity from
both sides (N1 and N2). If we add and subtract a quantity x for  from N1 and N2, we must add or subtract x/2 to or of
M.

Let convert 18985474. We add 6n to it like  18985474 + 6 = 18985480. Then examine the list of prime numbers so that 
we have  18985480 = 29 + 18985451. We then have 18985451 – 51 =  18985400 : 2 = 9492700 + 51 = 9492751 and 
then  9492751 + 9492700 = 18985451. Therefore 51 ←  9492751 →  18985451. 
But 9492751 x 2 = 18985502 –  18985474 = 28. We then have to search in primes list to find out how to add them by 
standing close to  18985451. Then we have  51 (- 28)  ←  9492751 (– 14) →  18985451  and finally  23 ←  9492737 →
18985451. Therefore, 9492737 x 2 = 18985474 = 23 +  18985451.

We will do the same method again but this time by drawing up a table and thus writing the step-by-step instructions to 
follow to apply this method. Let us see this with a number like 489776. First 489776 + 6 = 489782 which is converted 
into the sum of two terms, the larger of which is prime such that for example 489782 = 15 + 489761.  We then establish 
the balance equation between the two terms of the addition and the average at the center as shown above.
489761 – 61 = 489760 : 2 = 244880 + 61 = 244941, and then  244941 + 244880 = 489821.
Then 61 ←  244941 →  489821 (not prime). However, 244941 x 2 = 489882 as expected. We have                       
489882 – 489776 = 106. We will have to remove 106 units from this number to find our initial number 489776 while 
converting it into sums of two prime numbers.  
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 - n 489821↓ Prime or not + n 61↑ Prime or not

106 489715 not 0 61  prime

6 489709 not 6 67  prime

6 489703 not 6 73 prime

6 489697 not 6 79 prime

6 489691 prime 6 85 not

12 489679 prime 12 97 prime

6 489673 prime 6 103 prime

60 489613 prime 60 163 prime

60 489553 prime 60 223 prime

Therefore we get 4 conversion of the number  489776 = 489679 + 97 ;  489776 = 489673 + 103 ; 
489776 = 489613 + 163 ; and 489776 = 489553 + 223. This can be continued further.

Let take a number like 890 and then convert it in sum of two primes by manipulation of digits. We have 890 = 880 + 10 
→ 10 is either 7 + 3 or 9 + 1 to get a prime. We then pose the possible combinations either 883 + 7 or 881 + 9. 
Therefore 880 = 883 + 7 but in the second case 9 is not prime, but we can transfer units from 881 to 9 and so :
881 – 4 = 877 and 9 + 4 = 13 → 890 = 13 + 877
881 – 22 = 859 and 9 + 22 = 31 → 890 = 31 + 859
Note we can not use a number with unit digit = 6 to add to 9 because we will get 5 ad thus not prime.
881 –  853 = 28 and 9 + 28 = 37  → 890 = 37 + 853
881 – 52 = 829 and 9 + 52 = 61  → 890 = 61 + 829
and so on.
Let us take another example. An even number has a unit digit = 0, 2, 4, 6, 8. The number 78956. Here we start with
78956 = 78950 + 6 with 6 = 1 + 5 or 6 = 3 + 3. Then we make 78956 = 7895 3 + 3 or  78956 = 78951 + 5. However
neither 78953 nor 78951 is prime. We can this time pose  78956 = 78940 + 16 with 16 = 15 + 1 ; 13 + 3 ; 11 + 5 ; and 9
+ 7. Then  78956 = 78941 +  15 (not primes) ;  78956 = 78943 +  13 ;   78956 = 78949 + 7 but none are primes.
However, all those sums give us chances to find out two primes that sum up. For instance, 78956 = 78953 + 3 =
(78919 + 34) + 3 = 78919 + 37 (both primes).
78956 = 78953 + 3 = ( 78889 + 64) + 3 = 78889 + 67 (both primes).
78956 = 78953 + 3 = ( 78877 + 76) + 3 = 78877 + 79 (both primes) and so on.

Let E be an even number such that E = (A↓) + (1↑) or E = (A↓) + (7↑). A is an odd number that can be prime or 
composite but not 3n. So E = (A↓ – 6n) + (1↑ + 6n) or E = (A↓ – 6n) + (7↑ + 6n) such that A - 6n and 1 + 6n or 7 + 6n  
( 1 ≤ n ≤ +∞) will produce other odd numbers that are either composite or prime. Let us assume this time that A is in 
infinity and therefore (A - 6n↓) will tend to 0. Conversely, (1 + 6n↑) or (7 + 6n↑) will tend to infinity. We will therefore 
admit that A - 6n↓ or 1 + 6n↑ or 7 + 6n↑ will produce all the prime numbers that we know or that exist. Whether we 
start from infinity to 0 or from 0 to infinity, we will see the same prime numbers with the same gaps in opposite 
directions. Since every prime number occupies a position, we can predict with certainty that at times both A - 6n↓ and   
1 + 6n↑ or 7 + 6n↑ are primes.
During this process, the equidistant prime numbers continue to add up, however large they may be. The gaps devoid of 
primes are compensated by the infinite inter-prime gaps that exist between the prime numbers taken two by two to 
infinity (Figure 1).

Figure 1 : It shows that while P4 – P3 might be relatively large because of the empty sequence of primes, the difference
between P3 and P2 or P1 (which are close to 0) would be as large or even larger. Let us call P0 all primes close to 0.
The very higher density of primes P0 increases the chances that a difference P3  – P0 = P4  – P3 which is a correct
verification of the strong Goldbach conjecture.
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Discussion

The main idea of this article lies in the fact that Goldbach's strong conjecture is associated with the progression of
natural integers from 0 to infinity, which results in precise gaps between prime numbers. The gap of 6 is the most
regular between primes 6x + 1 on the one hand and primes 6x – 1 on the other.  This progression means that any integer
is preceded and followed by a prime number. Since all 2n distances are possible between the primes 6x + 1 and 6x – 1,
it follows that a natural number is always located at an equal distance from two primes of which one precedes it and the
other follows it. This paper shows that prime equidistance is omnipresent among integers.
Two new concepts are introduced in this article for the first time. The first is the Goldbach gap, noted here as t, which
for any even number noted E > 4 means the gap separating its half E/2 from two symmetrically equidistant primes p and
p' such that p' > p and such that E/2 - t = p and E/2 + t = p'. E/2 represents any natural number > 2 and since p ─E/2─p'
then 2 x E/2 = E = p + p'. Without Goldbach's gaps, an even number would not be the sum of two primes. The second
concept is the Goldbach transposition, which means that adding a given quantity to a number will result in a prime
number, not necessarily in the same position, but somewhere between 0 and E, or in π(E). If an integer is an even 3n, we
should add to it values of prime numbers in an increasing order like for example (E = 120, E/2 = 60, to get primes we
do 60 + 7 ; 60 + 11 ; 60 + 13 ; 60 + 17 ; 60 + 19 ; 60 + 23 ;...). If it is non-3n, then odd 3 values should be added to it
(like for example 80 + 3 ; 80 + 9 ; 80 + 15 ; 80 + 21 ; 80 + 27,...). Even numbers obviously differ in their values, but
Goldbach's transposition means that there are common rules governing the appearance of equidistant primes.
Using 3x + 5 and 3x– 5 equations ad by examining the remainders (r) of euclidean divisions of 3x by prime factors
q < its square root, if 5 = q – r, we can understand why a number 3x + 5 is prime or composite and in a similar way if
5 = r the 3x – 5 number is composite. Both equations show that any integer > 4 is bounded by two equidistant primes.
This led to the development of a new algorithm for converting even numbers into the sum of two primes, whatever the
even number  in  question.  Given  the  equality or  balance  X─E/2─Y,  we do  (X +6n)-E/2─(Y -6n)  until  we obtain
p'─E/2─p, which means 2 x E/2 = E = p' + p. This article is the first to offer this conversion algorithm. Others have used
the equation 6x ± 1 to prove Goldbach's strong conjecture (M arkaris, 2013)  or to locate the equidistant primes around
composite numbers (Guiaso, 2019). However, the present article is original in that it uses a different equation 3x ± 5 by
examining  the  remainders  of  Euclidean  divisions,  and  furthermore  shows  that  any  integer  >  4  is  surrounded  by
equidistant primes and not just composites. In addition, this article is of practical interest, as it proposes two algorithms
that could be easily programmed and links the key digits of the prime numbers to the gaps that separate them and thus
to Goldbach's strong conjecture. Prime numbers digits can also be used to predict gaps between primes, and even to use
a near or neighboring prime to convert a even into the sum of two primes. This approach is also original in this article.
Using unit digits of primes, the proposed algorithm of even conversion in sum of two primes can be greatly improved
by only focusing on primes whose unit digits are suitable to form the even.
All the data in this article argue strongly in favor of the truth of Goldbach's strong conjecture at infinity.

The other idea that  prevails in mathematics is the following question: if  we start  from evens (and not with prime
numbers as usually done), how many prime numbers will they be the sum of? However let's be precise, Goldbach did
not rule that every even is only the sum of two prime numbers, but he just said that every even is the sum of two prime
numbers. In mathematics, we sometimes emphasize propositions or conjectures with words like only or if only if  to set
the context, but Goldbach used no such emphasis. An even number can therefore be the sum of more than two prime
numbers; the larger it is, the more it is the sum of several prime numbers, or even an infinity. An infinite even number is
the sum of an infinity of even numbers, each of which is the sum of two prime numbers or even much more. But what
Goldbach's conjecture means is that the sum of two prime numbers is the most common and invariable form of all
evens. While two evens of different values can be sums of variable numbers of primes, Goldbach's conjecture tries to
find a common and invariant and minimalist property, i.e. every even is the sum of TWO prime numbers.  
Goldbach wanted an invariable law for all evens which unites them all and any law is defined in minimal conditions
otherwise it would be subject to exceptions. Therefore the sum of two prime numbers would be this law common and
true to all the even numbers (which nevertheless continue to vary by the possible number of prime numbers of which
they can be the sum). This is undoubtedly the most decisive point and the deepest meaning of this conjecture. It would
rather be wise to know if all the even numbers are the sum of two prime numbers at the same time as they are the sum
of several prime numbers. However, this article shows that an integer can only be surrounded by two equidistant prime
numbers at a time and therefore Goldbach's conjecture is correct. This article  sets  up an algorithm that  starts  with an
even to convert in sums of two primes.
What this article shows is that any integer (E/2 or n) > 2 is in the middle of two or more equidistant prime numbers
whose sum always gives the same even number (E or 2n) > 4. This configuration of numbers is natural, it is in this way
that the natural numbers progress unit by unit to infinity. The natural numbers form a single set and therefore equidistant
prime numbers will go to infinity.  
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