
Artificial Prime Numbers: A Relative Perspective on Primality 
José Acevedo Jiménez 

joseacvdojimenez@gmail.com 
October 12, 2024 

 

 
 
 

Abstract 
 
This article explores the notion of artificial prime numbers in the context of specific sets of integers. A 
formal definition is presented, properties are discussed, and comparisons are made with the classical 
notion of primality. Additionally, potential applications of these numbers in number theory and 
cryptography are analyzed. 
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1.  Introduction 

 

Prime numbers have fascinated mathematicians throughout history due to their fundamental 

role in number theory. They are defined as the integers greater than 1 that have exactly two 

divisors: 1 and the number itself. This property makes them the "building blocks" of the 

integers, as any positive integer can be expressed uniquely as a product of primes, known as 

prime factorization. This characteristic is not only crucial in arithmetic but also has applications 

in various fields, including cryptography, where the difficulty of factoring large composite 

numbers into their underlying primes ensures the security of many systems. 

However, the concept of primality does not have to be limited to prime numbers in the general 

context. It can be explored in more restricted contexts, such as specific sets of numbers. This is 

where the notion of artificial prime numbers arises. 

Artificial prime numbers are defined in relation to a given set of positive integers, where a 

number is considered prime if it cannot be divided by any other element of the set, except by 

itself. This idea allows for a deeper analysis of the relationships between numbers in a particular 

context and offers a new perspective on primality, opening the door to the exploration of more 

complex numerical structures. 

In the next section, we will examine the formal definition of artificial prime numbers, their 

properties, and examples that illustrate their behavior in comparison to the classical notion of 

primality. This approach will not only enrich our understanding of numbers but also provide 

tools to investigate number theory in broader and more varied contexts. 
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2. Definition of Artificial Prime Number 

 

Let 𝑆 be a non-empty set of positive integers such that 𝑆 ⊆ ℤ+ y ∀𝑥 ∈ 𝑆, 𝑥 > 1. A number 𝑞 ∈

𝑆 is called an artificial prime number if and only if the following condition holds: 

 

 

 

 

Where             means that 𝑑 does not divide 𝑞. In other words, 𝑞 is an artificial prime number if 

there is no element 𝑑 in the set 𝑆 that divides 𝑞, excluding 𝑞 itself. 

 

2.1.  Justification of the definition 

 Division in the set: By considering only the elements of a set 𝑆, the condition that 𝑞 
cannot be divided by any other number 𝑑 in 𝑆 (other than 𝑞 itself) establishes a form of 
“primality” within that context. This means that, although 𝑞 may be divisible by other 
numbers in general (outside of set 𝑆), within 𝑆 it is “prime” because it has no divisors 
in 𝑆 other than itself 

 Restriction to the set: The key lies in the restriction to the elements of 𝑆. In this sense, 
the definition is useful and valid, as it allows us to identify a type of “prime number” 
that is relevant to the specific set we are considering. 

  Analogy with classical primality: In number theory, a prime number has no positive 
divisors other than 1 and itself. Here, instead of 1, we are using the restriction to the 
elements of the set 𝑆. This maintains the structure of the definition of primality, 
adapting it to a more limited context. 

 

 2.2.  Relative Primality: The definition introduces a concept of “primality” relative to the set 𝑆. 

This means that the “primality” of 𝑞 is evaluated in relation to the numbers present in 𝑆. A 

number may not be prime in the classical sense, but it can be considered prime within the 

context of the set 𝑆. 

 

 2.3. Properties of Artificial Prime Numbers 

 

1. Relative Indivisibility: 

 A number 𝑞 is an artificial prime if there is no other number 𝑑 ∈  𝑆 (different 

from 𝑞) that divides 𝑞. This implies that 𝑞 is “indivisible” within the context of 

the set 𝑆. 



2. Set Dependency: 

 Artificial primality is dependent on the set 𝑆. A number that may be artificially 

prime in one set may not be in another. 

3. Possibility of Composite Numbers: 

 Unlike classical prime numbers, artificial primes can be composite numbers. 

That is, a composite number can be considered an artificial prime if it has no 

divisors in the set 𝑆 other than itself. 

4. Sieve of Eratosthenes for Artificial Primes in 𝑺: 

 In a set 𝑆 that contains an artificial prime number 𝑞, any number 𝑏 >  𝑞 that is 

a multiple of this number cannot be an artificial prime in that same set. This 

establishes a hierarchical relationship among the numbers. 

5. Order Relations: 

 If we consider an ordered set of integers, artificial primes can be identified 

based on their position relative to other elements. However, their distribution 

does not necessarily follow the distribution of prime numbers among the 

integers. 

6. Difficulty of Identification: 

 In large sets or those without an obvious pattern, identifying artificial primes 

can be computationally difficult, similar to identifying prime numbers in 

general. 

 

2.4.    Definition of Artificial Coprimes 

 Given a set 𝑆 of positive integers, two numbers 𝑎 and 𝑏 in 𝑆 are said to be artificial coprimes if 

and only if there is no number 𝑑 ≠  1 in 𝑆 such that 𝑑 divides both 𝑎 and 𝑏. 

 Any number that is coprime in the traditional sense is also considered an artificial coprime 
within the context of a set 𝑆 of positive integers. This property highlights the connection 
between classical coprimality and artificial coprimality, with the latter being defined more 
specifically within a set context. 

On the other hand, artificial coprimality supports and complements the definition of artificial 
prime numbers by providing a broader framework for understanding divisibility relations within 
a set 𝑆. Both concepts allow for the exploration of interesting and useful properties in 
mathematics, illustrating how they interact with each other in the context of divisibility. 

 

3.  Potential Emerging Lines of Research Using Artificial Prime Numbers  

 

The relationship between artificial prime numbers and classical prime numbers, through 

theorems and conjectures, offers a fertile ground for research in number theory. While many 



conjectures focus on classical primes, exploring how these ideas can be extended or adapted to 

the context of artificial primes may lead to new perspectives and mathematical discoveries. 

Below are some conjectures related to classical prime numbers and their generalization within 

the framework of artificial prime numbers. 

 

3.1. 1.     Bertrand's Postulate 

 

For every integer 𝑛 >  1, there exists at least one prime number (𝑝) such that: 
 

𝑛 < 𝑝 < 2𝑛 

3.1. 2.     Generalization  

 

Given a set 𝑆𝐴 = {𝑎𝑛 ∈ ℤ+: 𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑘, 𝑛 ∈ ℕ}. For every 𝑎1 > 1, , there exists at 
least one artificial prime number (𝑞) such that: 
 

         𝑎𝑛 < 𝑞 < 2(𝑎𝑛 + 𝑘 − 1) 
 

 
Note that when 𝑘 =  1, we obtain Bertrand's Postulate. 
 
 

3.1.3.    Goldbach's Conjecture 
 
 
Every even number greater than 2 can be expressed as the sum of two prime numbers. 
 
 

3.1.4. Generalization 
 

 
Given a set 𝑆𝐵 = {𝑎𝑛 ∈ ℤ+: 𝑎𝑛 = 2 + (𝑛 − 1)𝑘, 𝑛 ∈ ℕ}. If 𝑘 is odd, then every even number 
greater than 2 can be expressed as the sum of at most (𝑘 +  1) artificial prime numbers (𝑞). 
 
Note that when 𝑘 =  1, we obtain the well-known Goldbach Conjecture. 
 
 

3.1.5. Legendre's Conjecture 
 

 
For every 𝑛 ∈ ℕ, there always exists a prime number (𝑝) such that: 
 
                                                            𝑛2 < 𝑝 < (𝑛 + 1)2 
 
 
 
 



3.1.6.  Generalization  
 

 
Given a set 𝑆𝐴 = {𝑎𝑛 ∈ ℤ+: 𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑘, 𝑛 ∈ ℕ}. Si  𝑎1 > 1}, then: 
 
 

𝑎𝑛(𝑎𝑛 + 𝑘 − 1) < 𝑞 < (𝑎𝑛 + 𝑘)(𝑎𝑛 + 2𝑘 − 1) 
 

 
Note that when 𝑘 =  1, we obtain Legendre's Conjecture. 
 
 

3.1.7. Andrica's Conjecture 
 

 
If 𝑝𝑛 is the n-th prime number, then the inequality 
 
 

                                                             √𝑝𝑛+1 − √𝑝𝑛 < 1 

holds for every 𝑛. 
 
 

3.1.8. Generalization 
 

 
Given a set 𝑆𝐴 = {𝑎𝑛 ∈ ℤ+: 𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑘, 𝑛 ∈ ℕ ≥ 1}. If 𝑞𝑛 is the 𝑛-th artificial prime 
number in the set 𝑆, then the inequality: 
 
 

     √𝑞𝑛+1 − √𝑞𝑛 < √𝑘 

holds for every 𝑛. 
 
Note that when 𝑎1 = 𝑘 =  1 we obtain the Andrica conjecture. 
 
 
3.1.9 Polignac's Conjecture 
 
 
For every natural number 𝑛, there are infinitely many pairs of prime numbers (𝑝) whose 
difference is 2𝑛. If 𝑛 = 1, we obtain the twin prime conjecture. 
 
 

3.1.10. Generalization 
 
 
Given a set 𝑆𝐴 = {𝑎𝑛 ∈ ℤ+: 𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑘, 𝑛 ∈ ℕ}. For every natural number 𝑛, there are 
infinitely many pairs of artificial prime numbers (𝑞) whose difference is 2𝑘𝑛. 
 
 
 
 



3.1.11. Gilbreath's Conjecture 
 

 
Let {𝑝𝑛}, for 𝑛 ≥ 1, Let the ordered sequence of prime numbers, and let: 
 

𝑘𝑛 = 𝑝𝑛+1 − 𝑝𝑛 
 
For every 𝑎 ≥ 1, let 
 

                                       𝑘𝑛
𝑎 = |𝑘𝑛+1

𝑎−1 − 𝑘𝑛
𝑎−1| 

 
 
For every 𝑎, it holds that:                                                        
 
                                                     𝑘1

𝑎 = 1 
 
 

3.1.12. Generalization 
 
 
Given a set 𝑆𝐵 = {𝑎𝑛 ∈ ℤ+: 𝑎𝑛 = 2 + (𝑛 − 1)𝑘, 𝑛 ∈ ℕ}, for cases where 𝑘 is odd. 
 
 
Let {𝑞𝑛}, for 𝑛 ≥ 1, Let the ordered sequence of artificial prime numbers in the set 𝑆𝐵, and let 

𝑘𝑛 = 𝑞𝑛+1 − 𝑞𝑛 
 
For every 𝑎 ≥ 1, let 
 

                                       𝑘𝑛
𝑎 = |𝑘𝑛+1

𝑎−1 − 𝑘𝑛
𝑎−1| 

 
 
For every 𝑎 it holds that: 
                                                        𝑘1

𝑎 = 𝑘 
 
 
 
4. Some Elementary Results Related to Artificial Prime Numbers 

 

4.1. Lemma 1: If a set 𝑆𝑃 is composed of prime numbers, then the set 

 

𝑃𝐴(𝑆𝑃) = 𝑆𝑃 

 

Let 𝑆𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑘} be a set of prime numbers, that is, each 𝑝𝑘 is a prime number. Then, 

the set of artificial prime numbers associated with 𝑆𝑃, 𝑃𝐴(𝑆𝑃), is equal to 𝑆𝑝. That is: 

                                                                                   𝑃𝐴(𝑆𝑃) = 𝑆𝑃 

 



Justification: Since prime numbers are only divisible by 1 and themselves, there is no number 

𝑝𝑖 ∈ 𝑆𝑃 that is divisible by another 𝑝𝑗 ∈ 𝑆𝑃  with 𝑖 ≠ 𝑗. Therefore, each prime number in 𝑆𝑃 

satisfies the condition of being an artificial prime number within the set. 

 

4.2. Lemma 2: If a set 𝑆𝑅 is composed only of coprime numbers, then the set:   

 

                                                             𝑃𝐴(𝑆𝑅 ) = 𝑆𝑅 . 

 

Let 𝑆𝑅  = {𝑎1, 𝑎2, … , 𝑎𝑛} be a set of positive integers greater than 1, and suppose that 

gcd(𝑎𝑖, 𝑎𝑗) = 1, for all 𝑖 ≠ 𝑗. Then, the set of artificial prime numbers associated with 𝑆𝑅 , 

𝒫𝐴(𝑆𝑅 ), is equal to 𝑆𝑅 . that is: 

                                                                                           𝑃𝐴(𝑆𝑅 ) = 𝑆𝑅  

 

Justification: Since all the elements of 𝑆𝑅  are coprime to each other, there is no number 𝑎𝑖 ∈ 𝑆𝑅  

that is divisible by another number𝑎𝑗 ∈ 𝑆𝑅  with 𝑖 ≠ 𝑗, thus fulfilling the definition of artificial 

prime numbers for each element of 𝑆𝑅 .  

4.3. Lemma 3: Let 𝑆𝑁 be a set of positive integers greater than 1. If for every composite 

number 𝑐 ∈ 𝑆𝑁, there exists at least one prime number 𝑝 ∈ 𝑆𝑁 such that 𝑝 divides 𝑐, 

hen the set of artificial prime numbers associated with 𝑆𝑁 contains only the prime 

numbers from 𝑆𝑁. That is: 

𝑃𝐴(𝑆𝑁) = {𝑝 ∈ 𝑆𝑁} 

 

4.4. Lemma 4: In any non-empty set 𝑆𝑁 of positive integers greater than 1, there exists a 

smallest number in 𝑆𝑁 that has no divisors (artificial prime) within the set 𝑆𝑁  other 

than itself. 

 

4.5. Lemma 5: If 𝑆𝑁 is the set of all positive integers greater than 1, then all artificial prime 

numbers in this set are prime numbers. 

 

 

5. Artificial Primes: Proof of the Infinitude of Prime Numbers 

 

Proof: 

 

1. Let 𝑆𝑁 be the set of all positive integers greater than 1. 

2. By Lemma 4, there exists a number 𝑝1 in 𝑆𝑁 that is the smallest and has no divisors 

(artificial prime number) in 𝑆𝑁  other than itself. This implies that 𝑝1 is a prime number.  

3. We construct a new set 𝑆𝑁
′ that contains all the numbers in 𝑆 except 𝑝1 and its 

multiples.. 



4. Applying Lemma 4 again to  𝑆𝑁
′ , we find a new smallest number 𝑝2 hat also has no 

divisors (artificial prime number) in 𝑆𝑁
′ and by Lemma 5, we can conclude that 𝑝2 is 

prime. 

5. We repeat this process, constructing sets𝑆𝑁
′′ y 𝑆𝑁

′′′that exclude 𝑝1, 𝑝2, and their 

multiples. In each of these sets, we will always find a new prime number 𝑝𝑛. 

6. Since the process can be repeated indefinitely, each time obtaining a new prime 

number that is greater than all the previous ones, we conclude that there is no finite 

limit to the prime numbers. 

 

6. Set Representation 

 

Some examples are: 

 

6.1. The set 𝑺𝑵 of Positive Integers Greater than 1 

 

𝑆𝑁 = {𝑛 ∈ ℤ+: 𝑛 > 1}, that is: 

                                                        𝑆𝑁 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . } 

 

In this particular case, the set of artificial prime numbers associated with 𝑆𝑁, 𝑃𝐴(𝑆𝑁), is the set 

of prime numbers. That is: 

𝑃𝐴(𝑆𝑁) = 𝑃, where 𝑃 is the set of prime number. This is true because in the set 𝑆𝑁 of integers 

greater than 1, the only numbers that have as a divisor only themselves (remember that 1 has 

been excluded) are the prime numbers. Any composite number in this set will have at least one 

prime factor in 𝑆𝑁  that divides it. 

 

6.2. The set 𝑺𝑭 of Fibonacci Numbers 

 

𝑆𝐹  = {𝐹𝑛: 𝑛 ∈ ℤ+, 𝑛 ≥ 2} 

 

6.3. The set  𝑺𝑿  of a Function 

𝑆𝑋 = {𝑓(𝑛): 𝑛 ∈ ℕ} 

 

6.4. The set 𝑺𝒁 of a Sequence of Positive Integers 

 

𝑆𝑍 = {𝑎1, 𝑎2, 𝑎3, . . , 𝑎𝑛: 𝑎1 > 1} 



6.5. The set 𝑺𝑨 of a Sequence of a Positive Integer Arithmetic Progression 

 

𝑆𝐴 = {𝑎𝑛 ∈ ℤ+: 𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑘, 𝑛 ∈ ℕ} 

 

As we can observe, the sets 𝑆 that can be created to explore artificial prime numbers are infinite 

and can encompass a variety of criteria, ranging from numerical properties to specific patterns 

and restrictions. By analyzing these sets, solutions regarding divisibility relationships and the 

internal structure of numbers can be obtained. The classification of a number as an artificial 

prime depends on the set 𝑆 in which it is being considered. A number can be an artificial prime 

in one set and not in another. 

 

7. Possible Applications 

 

The concept of artificial prime numbers has implications in several areas of mathematics, 

including: 

 

7.1. Number Theory: Assists in the study of divisibility and factorization properties. 

 

7.2. Cryptography: Provides a framework for generating keys based on the indivisibility of 

certain numbers in a set. 

 

7.3. Algorithms: They can be used to optimize computing algorithms that depend on 

divisibility properties. 

 

7.4. Random Number Generation: Pseudo-randomness algorithms: In some algorithms, 

numbers with properties similar to primes are used to generate pseudo-random 

sequences. 

 

 

 

 

 

 

 

 

 

 



Conclusion 

 

Artificial prime numbers offer us a new way to understand primality in a restricted context, 

broadening our horizon in number theory. This notion invites mathematicians and scientists to 

explore more deeply the interactions between numbers and to discover new properties and 

patterns that may not be evident in a broader framework. 

Although artificial prime numbers do not replace the classical definition of primality, they 

provide a complementary perspective that can enrich our understanding of number theory and 

the relationships between numbers in specific contexts. Such explorations can lead to new ideas 

and approaches in mathematics. They can be useful for studying divisibility and factorization 

properties within a specific set, allowing for deeper analysis in number theory. 

The concept can be applied in areas such as number theory, cryptography, and random number 

generation, where the property of divisibility plays a crucial role. 
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