
De Broglie’s Phase Waves of Electrons in Hydrogen-Like Atoms

as Parts of Steady-State Forced Vibrations

Martin Kraus (kraus.martin@gmail.com)

March 2, 2025

Abstract

One of the consequences of de Broglie’s hypothetical internal clock of an electron is the existence
of an associated phase wave that is locally in phase with the electron’s internal clock. For a
classical electron that is moving on a closed Bohr-Sommerfeld orbit in the electric potential of a
positively charged nucleus, de Broglie showed that the requirement of a continuous phase wave on
the closed orbit is in agreement with Einstein’s quantization condition. The present work explores
the hypothesis that this phase wave is part of a forced vibration in the space around the nucleus,
which is driven by the electron’s internal clock. Results of this work include new quantization
conditions for closed orbits that are consistent with Einstein’s quantization condition but include
additional (yet unexplored) conditions. Furthermore, a method is presented for computing phase
waves on closed orbits of electrons, which could help visualizing several important features of de
Broglie’s phase waves.

1 Introduction

Atomic orbitals are sometimes described as three-dimensional analogs to Chladni figures, which are
generated by forced vibrations of metal plates [JPM+20]. However, such comparisons usually do not
include a discussion of any mechanism driving the vibration of an electronic wave function. One possible
mechanism might be provided by de Broglie’s hypothetical concept of a phase wave that is in phase
with the internal clock of an electron. In his doctoral thesis, de Broglie compared a bound electron’s
phase wave on a closed orbit in a hydrogen-like atom to “a liquid wave in a channel closed on itself but
of variable depth” where “the length of the channel must be resonant with the wave” [dB25, page 28].
This comparison with a vibrating macroscopic system does not clarify what drives the vibration, but
since the electron’s internal clock is always in phase with the associated phase wave, it is an obvious
candidate. The objective of the present work is, therefore, to explore the scenario of a bound electron
with de Broglie’s internal clock and an associated phase wave on a closed Bohr-Sommerfeld orbit in a
hydrogen-like atom [Som23], where the electron drives a vibrating field in the space around the nucleus
[Kra24b, Section 4.2]. Of particular interest is the resulting uniform frequency of this forced vibration.
The results include a method for computing phase waves on electronic orbits and new quantization
conditions, which imply Einstein’s quantization condition [Ein17] and additional conditions, which
have not been explored yet.

2 Phase Waves on Closed Bohr-Sommerfeld Orbits

This section presents the physical scenario that the present work is concerned with and analyzes a few
of its most interesting features. The notation resembles the notation employed in de Broglie’s doctoral
thesis [dB25] with a few exceptions, e.g., the use of “|v|” instead of “v” for an electron’s speed in order
to distinguish the symbol more clearly from “ν,” which denotes various frequencies.

2.1 Scenario and Assumptions

In part, this work is based on the Bohr-Sommerfeld model of hydrogen-like atoms [Som23], specifically
on the scenario of a single relativistic spinless electron of invariant mass m0 and (negative) charge e
moving with velocity |v| = βc in the electric Coulomb field of a nucleus with positive charge −Ze at
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a fixed position, which is the origin of a fixed observer’s coordinate system. Effects of spin, magnetic
moments, and magnetic fields are being ignored since they are not essential for the concepts presented
in this work. In this scenario, Bohr-Sommerfeld orbits of classical electrons are closed except for a
small rotation of elliptical orbits due to relativistic effects, which is ignored in this work. Thus, all
Bohr-Sommerfeld orbits are assumed to be closed.

Additionally, it is assumed that the electron features an internal clock of the Compton frequency

ν0
def
= h−1m0c

2 in its rest frame as proposed by de Broglie [dB25], where h is Planck’s constant
and c is the speed of light. Based on this assumption, de Broglie concluded that the internal clock
“appears constantly in phase with a wave” [dB25, page 9], which “is spread out over an extended
space” [dB25, page 8]. While de Broglie did not specify which physical field is carrying the phase
wave, his comparison with “a liquid wave in a channel closed on itself” [dB25, page 28] suggests that
he imagined a continuous wave in a field, which is spread out over at least several Compton wave
lengths around the internal clock’s position.

The present work further assumes that the electron’s internal clock is causing this phase wave by
means of some form of interaction between the internal clock and the vibrating field. One possibility is
that the vibrating field is a non-linear generalization of the classical electromagnetic field as provided,
for example, by Born-Infeld field theory [BIF34]. However, the physical nature of the vibrating field
and the details of the interaction with the internal clock are beyond the scope of the present work.

The concept of a forced vibration driven by an electron’s internal clock on a closed orbit leads to
the assumption that a steady state of this forced vibration is characterized by a uniform frequency

that depends on the frequency ν0
def
= h−1m0c

2 of the electron’s internal clock. In the case of a free
electron at constant velocity v and constant speed |v| = βc, the constant (time-dilated) frequency

of the electron’s internal clock in the rest frame of a fixed observer is ν1
def
= h−1m0c

2
√

1− β2, which

leads to a constant frequency of the associated phase wave of ν
def
= h−1m0c

2/
√

1− β2 [dB25]. In the
present work, it is assumed that the uniform frequency of the forced vibration of the field around the
free electron is also given by ν.

In the case of a bound electron on a circular Bohr orbit, the electron’s speed |v| = βc is still
constant, and, therefore, the frequency of the electron’s internal clock in the rest frame of a fixed
observer is still ν1, and the uniform frequency of the phase wave and vibrating field is still ν. It should
be noted that this conclusion disagrees with de Broglie’s conception of this case [dB25, pages 23-25].

For elliptical Bohr-Sommerfeld orbits, the electron’s speed is not constant. However, the time-
dependent frequency of the electron’s internal clock in the rest frame of a fixed observer is still given

by ν1
def
= h−1m0c

2
√
1− β2. Since the uniform frequency of the forced vibration must not depend on

time, it cannot be given by the time-dependent value ν. A suitable generalization for a time-dependent
speed of the electron on closed orbits appears to be the time average ν over one period τ of the orbit,
i.e.,

ν
def
=

1

τ

∫ τ

0

νdt =
1

τ

∫ τ

0

m0c
2

h
· 1√

1− β2
dt. (1)

In the present work, it is assumed that ν is in fact the correct uniform frequency of the forced vibration
in the case of elliptical Bohr-Sommerfeld orbits; again in contradiction to de Broglie’s conception [dB25,
pages 25-26].

2.2 Computation of Phase Waves on Closed Orbits

Based on the assumptions of the previous section, this section shows how to compute the phase ϕ(t,x)
of the vibrating field at any point x of a closed Bohr-Sommerfeld orbit for any time t in the rest frame
of a fixed observer.

First, let y(t) denote the known positions of the electron and its internal clock on a closed Bohr-
Sommerfeld orbit at time t. (y(t) could be computed numerically or based on a closed form of an
orbit [Som23].) For ϕ(0,y(0)) = ϕ0, the phase ϕ(t,y(t)) can be computed with the help of a numerical
integration of the time-dilated frequency ν1 of the moving internal clock as:

ϕ(t,y(t)) = ϕ0 + 2π

∫ t

0

ν1dt
′ = ϕ0 + 2π

∫ t

0

m0c
2

h

√
1− β2dt′, (2)

where β depends on the time-dependent velocity of the internal clock, i.e., β = β(t′) = |v(t′)|/c.
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Second, consider a point x that is part of the orbit. There exists a time tx such that x = y(tx),
i.e., tx denotes the time when the electron’s internal clock passes through the point x. (One way of
computing tx is to store t with each point y(t) when computing the orbit such that tx may be looked up
for each computed point of the orbit.) For given tx, Equation 2 allows us to compute the phase at time
tx as ϕ(tx,x) = ϕ(tx,y(tx). For a time t ̸= tx, the phase ϕ(t,x) is different since the field at position
x vibrates with constant frequency ν, which allows us to compute the resulting phase difference as
2πν · (t− tx). Thus, the phase ϕ(t,x) may be computed as

ϕ(t,x) = 2πν · (t− tx) + ϕ(tx,x) (3)

= 2πν · (t− tx) + ϕ(tx,y(tx)) (4)

= 2πν · (t− tx) + ϕ0 + 2π

∫ tx

0

m0c
2

h

√
1− β2dt′. (5)

Some examples of ϕ(t,x) (for a fixed time t) on various Bohr-Sommerfeld orbits are visualized
in Figure 1. The effects of the non-constant speed of electrons on elliptic orbits are visible as local
shortenings of the wave length, which occur even for non-relativistic speed. (On the other hand, a
visible rotation of the elliptic orbit occurs only if the electron reaches relativistic speed.) Also note
that none of these phase waves are standing waves. In fact, their phase velocity is always faster than
the speed of light. An animated visualization of ϕ(t,x) would be preferable to convey this feature.

nθ = 1 nθ = 2 nθ = 3

n = 1

n = 2

n = 3

Figure 1: Bohr-Sommerfeld orbits (black lines) with helices around them (gray lines) representing
snapshots of phases on each orbit at a specific time. See Section 2.3 for the definitions of n and nθ.

2.3 Quantization Conditions

For a steady-state forced vibration, the electron’s internal clock has to be moving on a closed orbit. If
the phase of the vibrating field and the phase of the internal clock are part of the state of the system,
the assumption of a periodic orbit implies that both have to return to exactly the same values after
each period τ of the closed orbit.

First, consider the case of the internal clock’s phase in the rest frame of a fixed observer. The phase
difference after period τ of the closed orbit has to be an integer multiple of 2π, say 2πnic, where nic

denotes the integer number of cycles that the internal clock goes through during period τ . Since the
(time-dependent and time-dilated) frequency of the internal clock is given by ν1, this number of cycles
nic is given by

nic
def
=

∫ τ

0

ν1dt =

∫ τ

0

m0c
2

h

√
1− β2dt. (6)

Second, consider the case of the oscillating field’s phase at a single point of the orbit fixed in the
rest frame of a fixed observer. The phase difference after period τ has to be an integer multiple of 2π,
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say 2πnof , where nof denotes the integer number of cycles that the oscillating field at a fixed point
goes through during period τ . Since the uniform frequency of the vibrating field is assumed to be ν,
this number of cycles nof is given by

nof
def
= τν = τ

1

τ

∫ τ

0

νdt =

∫ τ

0

m0c
2

h
· 1√

1− β2
dt. (7)

In this form, the conditions on nof and nic appear to be two new quantization conditions. For the
ground state of hydrogen, nof and nic are close to α−2 ≈ 1372; thus, the conditions that nof and nic

must be integers can be satisfied by a relatively small “correction” of the electron’s orbit. Presumably,
this “correction” is only relevant for the fine-structure of an atom’s spectral lines; thus, a quantitative
analysis might reveal that these quantization conditions are, in fact, disguised correction terms of the
atomic fine-structure. Unfortunately, this analysis is beyond the scope of the present work.

However, the difference n
def
= nof − nic is of particular interest and deserves a brief analysis. Ob-

viously, a difference of integers must be an integer. Furthermore, nof > nic due to the way the term√
1− β2 < 1 (for |v| > 0) appears in the definitions of nof and nic. Therefore, n ≥ 1. For more

insights, we can just evaluate n by inserting the definitions of nof and nic:

n
def
= nof − nic (8)

=

∫ τ

0

m0c
2

h
· 1√

1− β2
dt−

∫ τ

0

m0c
2

h

√
1− β2dt (9)

=

∫ τ

0

m0c
2

h
· 1√

1− β2

(
1−

(
1− β2

))
dt (10)

=

∫ τ

0

m0c
2

h
· β2√

1− β2
dt (11)

=
1

h

∫ τ

0

m0|v|2√
1− β2

dt (12)

With the internal clock’s time-dependent position y in Cartesian coordinates (y1, y2, y3), the velocity

is v = ẏ = (ẏ1, ẏ2, ẏ3). Combined with the relativistic momentum P
def
= (P1, P2, P3)

def
= m0ẏ/

√
1− β2,

the expression for n becomes:

n =
1

h

∫ τ

0

m0|v|2√
1− β2

dt (13)

=
1

h

∫ τ

0

m0√
1− β2

(
3∑

i=1

ẏ2i

)
dt (14)

=
1

h

∫ τ

0

3∑
i=1

m0ẏi√
1− β2

dyi
dt

dt (15)

=
1

h

∮ 3∑
i=1

Pidyi. (16)

Thus, for this choice of coordinates, the condition on n
def
= nof − nic is just Einstein’s condition

[Ein17][dB25, pages 27-29].
Bohr-Sommerfeld orbits may also be described by polar coordinates r and θ with the corresponding

relativistic momenta pr
def
= m0ṙ/

√
1− β2 and pθ

def
= m0r

2θ̇/
√

1− β2 [Som23, page 608]. Using these

4



polar coordinates, the expression for n becomes:

n =
1

h

∫ τ

0

m0|v|2√
1− β2

dt (17)

=
1

h

∫ τ

0

m0√
1− β2

(
ṙ2 + r2θ̇2

)
dt (18)

=
1

h

∫ τ

0

(
m0ṙ√
1− β2

· dr
dt

+
m0r

2θ̇√
1− β2

· dθ
dt

)
dt (19)

=
1

h

∮
(prdr + pθdθ) , (20)

which is equivalent to Einstein’s condition for polar coordinates. The relation between Einstein’s
quantization condition and Sommerfeld’s quantization conditions [Som23] have been discussed, for
example, by Einstein [Ein17] and de Broglie [dB25, pages 29-31].

Note that the principal quantum number n may be written as a sum of other quantum numbers
based on the employed coordinates:

n =
1

h

∮
prdr︸ ︷︷ ︸

nr

+
1

h

∮
pθdθ︸ ︷︷ ︸

nθ

(21)

= nr + nθ. (22)

Here, pθ is the orbital angular momentum, and the associated quantum number nθ (or nθ − 1; see
the discussion by Bucher [Buc08]) is usually denoted by l or L. (Sommerfeld [Som23] uses the symbol
n instead of nθ and writes the principal quantum number as the “quantum sum” n + n′ where n′

corresponds to nr.)
The main observation, however, is that the conditions on nof and nic imply (for suitable coordinates)

a condition on the difference n
def
= nof −nic that is equivalent to Einstein’s condition with the principal

quantum number n.

3 Discussion and Future Work

One of the contributions of the present work is a method for computing de Broglie’s phase waves on
closed orbits. Even static visualizations of these phase waves show de Broglie’s quantization condition,
which states that “the points of a wave located at whole multiples of the wave length l, must be in
phase” [dB25, page 28]. In fact, such visualizations even show how this condition is fulfilled on elliptic
orbits where wave length (and phase velocity) is not constant. Animated visualizations of these phase
waves show that they are not standing waves; in fact, such visualizations can convey that the phase
velocity of these waves is greater than the speed of light. Furthermore, animated visualizations may
be used to explain the new quantization condition on the vibrating field introduced in Section 2.3.

If a visualization of the internal clock’s phase is included, de Broglie’s “theorem of phase harmony”
[dB25, page 9] may be visualized. Additionally, the new quantization condition on the internal clock
presented in Section 2.3 could be explained with the help of this kind of visualization.

One specific way of visually representing the internal clock’s phase is by means of a point-like
electron that “spins” on a bent helix around the trajectory of a “spin center” with the (time-dilated)
frequency ν1. (Note that many models of spinning electrons [Bec23] are based on the frequency of
Zitterbewegung, which is twice the Compton frequency ν0. However, at least one recent model [Kra24a]
spins with the Compton frequency ν0 in the rest frame of the internal clock and ν1 in the rest frame
of a fixed observer.) In many models, the point-like electron moves with the speed of light. This
movement can provide a visual comparison to show that the phase velocity is faster than the speed of
light. Furthermore, the helical trajectory of spinning electrons visually supports concepts that include
orbits with zero orbital angular momentum [Buc08] while such orbits were regarded as impossible by
Sommerfeld [Som23, page 238].

The other main contribution of the present work might be the new quantization conditions on nof

and nic that are presented in Section 2.3 and the role that ν plays in those conditions. At the time of
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writing, however, these conditions and the role of ν are only hypothetical assumptions. Fortunately,
quantitative comparisons with existing experimental data appear to be possible even though they are
beyond the scope of the present work. Thus, instead of engaging in further speculation, this section
is closing with the proposal to test the assumptions of Section 2 against experimental data in future
work.

4 Conclusion

This work presents a method for computing phase waves on closed Bohr-Sommerfeld orbits and dis-
cusses how (animated) visualizations of the results could help conveying various features of phase
waves.

The method is based on the concept of phase waves on closed orbits as part of a larger field that
vibrates with a uniform frequency ν. This and other assumptions lead to new quantization conditions
that are shown to imply Einstein’s quantization condition [Ein17] and, therefore, are closely related to
Sommerfeld’s and de Broglie’s quantization conditions [Som23, dB25]. Whether the assumptions are
justified is an open question, which hopefully will be answered by future comparisons with existing
experimental data.

This work started as part of numerical simulations of trajectories formed by a specific classical
model of spinning electrons [Kra24a], which were developed to understand how this model might
be related to single-electron wave functions [Kra24b]. From this point of view, the appearance of ν
(instead of the electron’s energy divided by Planck’s constant) raised more questions than it answered;
but at least these new questions are as intriguing as the original ones.
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A Revisions

• Original version submitted to vixra.org on March 2, 2025.
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