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Abstract

This article proposes a revolutionary theoretical model that introduces a fifth spatial dimension—”space density”—as

a fundamental property governing gravitational, electromagnetic, strong, and weak interactions. The model is based on

the hypothesis that changes in space density can lead to phenomena analogous to known fundamental forces. Through a

series of mathematical derivations, it is shown how the distribution of space density around spherical objects influences

classical field theories. The main results include:

1. Theoretical Proof of Bohr’s Postulate: For the first time, a theoretical justification for Bohr’s postulate on

the quantization of the electron’s angular momentum in a hydrogen atom is proposed, which is key to quantum

mechanics.

2. Relationship Between Charge andMass: Anovel relationship between charge and mass is established, allowing

mass to be interpreted as the energy required to compress a clump of space density.

3. Complex Solution and Imaginary Energy: It is shown that the interaction of two clumps of space density has

only a complex solution, where the imaginary part determines the resonant frequency of the system.

4. Strong and Weak Interactions: The model offers an explanation for strong and weak interactions through the

properties of space density, opening new possibilities for understanding nuclear forces.

This work not only reproduces known physical patterns but also provides a new perspective on the nature of

fundamental interactions, linking them to the intrinsic properties of space.

I Introduction

Electromagnetic and gravitational forces are among the most fundamental interactions

known in physics. These forces govern the behavior of matter and energy at scales

ranging from subatomic particles to the cosmos. Despite extensive empirical data and

theoretical models describing the behavior of these forces, their true nature and the

material essence from which they arise remain subjects of deep investigation.

From a physical standpoint, we understand how these forces act and can predict

their effects with high accuracy. However, questions remain: What exactly are these

forces? How are they interconnected? And most importantly, what is the protomatter,

the fundamental substance from which these forces emerge? These questions touch

not only on physical principles but also on philosophical reflections on the nature of

reality.

In this article, we propose a theoretical model that introduces a fifth spatial dimen

sion called ”space density.” We suggest that this dimension plays a critical role in

the formation of gravitational and electric fields. Our model posits that traditional

threedimensional space combined with time is insufficient to fully explain the origin
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of these forces. Instead, space itself may possess intrinsic properties that contribute to

the formation of these fields. By expanding our understanding of space to include an

additional dimension, we explore the potential for new interpretations of gravitational

and electromagnetic interactions.

II Hypothesis

We propose that electromagnetic and gravitational fields are manifestations of a more

fundamental property of space, which we call ”space density.” This property is defined

in a fivedimensional system, where the fifth dimension is orthogonal to the traditional

three spatial and one temporal dimensions.

In this model, ”space density” represents a measure of how space itself can be

compressed or expanded independently of its metric. This density is not analogous to

the density of matter as we know it in threedimensional space but rather reflects a

fundamental characteristic of space that influences the formation of gravitational and

electric fields.

Our hypothesis is based on several key postulates:

• Space Density: In fivedimensional space, the density ρ(r) characterizes the
state of space and can change, thereby allowing us to speak of the curvature of

space without curving its metric. Let us call this phenomenon firstorder space

curvature. A similar term is used in the Theory of Relativity, but within this

theory, it will have a slightly different context.

• Spherical Symmetry of Perturbations: The distribution of space density upon

perturbation assumes spherical symmetry. The distribution of space density

ρ(r) is assumed to be symmetric relative to the point that is the center of the

perturbation.

• Conservation of Space Density Quantity: When a region of space is perturbed,

the surrounding space can change its density such that the total density of the

entire space remains unchanged. In other words, in a certain approximation, it

can be said that the total ”density” of space over an infinite volume must remain

constant.

• Postulate of Maximum Entropy in Space Density Distribution: Space tends

toward states of maximum entropy, striving for a uniform distribution of space

density. This principle defines the natural tendency of space to return to a uniform

density distribution after perturbations, analogous to thermodynamic principles

governing physical systems.

By exploring these postulates within a fivedimensional space, we aim to provide a

deeper understanding of the origin of gravitational and electromagnetic fields. This

model challenges the traditional view that these fields are independent and instead

suggests that they are interconnected through the intrinsic properties of space itself.

In the course of our research, we obtain entirely unexpected results: Coulomb’s

law in logarithmic form, containing an expression accounting for the correction of
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elementary charge interactions at distances comparable to their ”classical” physical

sizes (this phenomenon is wellstudied in QED—screening). And the most unexpected

result is the connection of this mathematical model to the foundation of Quantum

Mechanics—Bohr’s Postulate on the quantization of electron states in a hydrogen

atom. The solution for the interaction quantity of two clumps of space density in

logarithmic form has only a complex solution, and as it turns out, the complex part

of the solution determines the resonant frequency of the interaction quantity of the

two clumps. Using the complex part of the solution as an expression for the resonant

frequency of the two clumps of space density, we obtained the resonance condition

for one clump orbiting another, which fully corresponds to the quantization condition

of orbits derived from Bohr’s Postulate on the quantization of the electron’s angular

momentum in a hydrogen atom. When analyzing the obtained formulas, we attempt

to explain the physical meaning of such an empirically obtained quantity as Planck’s

constant, which has two values within the presented mathematical model: the size of

the electron and the ratio of the total energy of the electron in the atom to its imaginary

energy. If you are interested in how all this follows from simple ideas about space

density and its tendency toward maximum entropy, I will begin to outline the main

approaches that form the basis of my theory presented in this article.

III Methodology

3.1 Distribution of Space Density Around a Single Compressed Spherical

Region of Space

We have two states of the universe: in the first state, the density throughout space is

ρ0 and is a constant. In the second state of the system, we have a certain region of

space bounded by a sphere S(R1), which we compress to S(R′
1). We need to find

the distribution of space density inside the sphere and outside it, based on the laws

established in our hypothetical universe.

3.1.1 Density Distribution After Compression

The density after compression inside the sphere is defined as ρinside = ρ0 + ρ1,
where ρ1 is the added density, determined from the ratio of volumes before and after

compression:

ρ0V (R1) = ρinsideV (R′
1)

Substituting the volumes of the spheres:

ρ0
4

3
πR3

1 = (ρ0 + ρ1)
4

3
πR′3

1

Simplifying:

ρ0R
3
1 = (ρ0 + ρ1)R

′3
1
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ρ1 = ρ0

(
R3

1

R′3
1

− 1

)
3.1.2 Density Distribution Outside the Sphere

We assume that outside the sphere, the amount of removed space density must equal

the amount added inside it, ρ1 · V (R′
1). Therefore, when integrating the perturbation

from the surface of the compressed sphere to infinity, the integral must yield a finite

number, i.e., converge, and accordingly, the integrand must be convergent. In three

dimensional space, such a function is 1/r4. Suppose the distribution of reduced density
outside the compressed region of space satisfies this dependence on the distance from

the center of the perturbation. Then we obtain the following dependence for the

distribution of space density outside the compressed sphere:

∆ρdecrease(r) =
A

r4

3.1.3 Normalization Coefficient A

To satisfy the law of conservation of space density, the integral of∆ρdecrease(r) over
the volume from R′

1 to infinity must equal the added density inside the sphere:

ρ1V (R′
1) =

∫ ∞

R′
1

∆ρdecrease(r) · dV

Or, considering the law of spherical symmetry, in spherical coordinates, the integral

simplifies to:

ρ1V (R′
1) =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr

Substituting:

ρ1
4

3
πR′3

1 = 4π

∫ ∞

R′
1

A

r4
r2 dr

Solving the integral:

4πA

∫ ∞

R′
1

1

r2
dr = 4πA

[
−1

r

]∞
R′

1

= 4πA

(
1

R′
1

− 0

)
=

4πA

R′
1

Equating the quantities of density:

ρ1
4

3
πR′3

1 =
4πA

R′
1

Finding A:
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A = ρ1
R′4

1

3
The final formula for∆ρdecrease(r):

∆ρdecrease(r) =
A

r4
=

ρ1
R′4

1

3

r4

Now multiplying the numerator and denominator by 4π:

∆ρdecrease(r) =
4πρ1

R′4
1

3

4πr4
=

ρ1
4
3πR

′4
1

4πr4
=

ρ1 ·R′
1 · V (R′

1)

4πr4

Thus, we obtain the following formula for the distribution of density outside the

sphere∆ρdecrease(r):

∆ρdecrease(r) =
ρ1 ·R′

1 · V (R′
1)

4πr4
(1)

Also, considering that the amount of added density in the volume of the compressed

sphere is expressed by the formula:

Q = (V (R1)− V (R′
1)) · ρ0

where V (R1) and V (R′
1) are the volumes of spheres with radii R1 and R

′
1, respec

tively. And also considering the formula for ρ1—the density of the added density

inside the sphere:

ρ1 =
Q

V (R′
1)

where V (R′
1) is the volume of the sphere after compression.

We can express the obtained formula for the distribution of space density

∆ρdecrease(r) as:

∆ρdecrease(r) =
Q ·R′

1

4πr4
(2)

Where Q is the amount of density added to the volume of the sphere S(R1′), R1′

is the radius of the compressed sphere, and r is the distance from the center of the

sphere to a point in space in spherical coordinates.
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3.1.4 Verification of Conservation of Space Density Quantity

To satisfy the third law established in our system, the following equality must hold:

∫ ∞

R′
1

∆ρdecrease(r) · dV =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr = ρ1V (R′
1)

Substituting the expression for∆ρdecrease(r):

∫ ∞

R′
1

ρ1 ·R′
1 · V (R′

1)

4πr4
· 4πr2 dr = ρ1 ·R′

1 · V (R′
1)

∫ ∞

R′
1

1

r2
dr

Integrating and substituting the limits of integration:

ρ1 ·R′
1 · V (R′

1)

[
−1

r

]∞
R′

1

= ρ1 ·R′
1 · V (R′

1)

(
1

R′
1

− 0

)
=

ρ1 ·R′
1 · V (R′

1)

R′
1

We obtain: ∫ ∞

R′
1

∆ρdecrease(r) · dV = ρ1V (R′
1) = ρ1

4

3
πR′3

1

Thus, we have verified that our distribution of space density outside the compressed

sphere, proportional to 1/r4, is consistent with our third law of conservation of space

density in the system, taking into account the normalization coefficient A.

6



IV Expression for the Total Distribution of Space Density for a Single Com

pressed Sphere.

Let us write our distribution taking into account boundary conditions using the Heavi

side function. This representation of space density distribution will be needed to find

the total interaction quantity of two clumps, taking into account the space density

added to the first clump, as well as the gradient at the transition boundary—the sphere

limiting the first clump. Why this is important will become clear in the next section

of my article.

Figure 1: Graphs of space density distribution along a line passing through the center of the compressed sphere.

4.1 Representation of Space Density Distribution Using the Heaviside Func

tion

The space density distribution, ρ(r), for a single sphere can be expressed using the
Heaviside function H(x) to accurately describe the density inside and outside the

compressed sphere. The main density distribution is defined as:

ρ(r) =

{
ρ0 + ρ1, if r ≤ R′

1

ρ0 − R′
1·ρ1·V (R′

1)
4πr4 , if r > R′

1
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The increase in density∆ρincrease(r) inside the compressed region can be expressed

as:

∆ρincrease(r) =

{
ρ1, if r ≤ R′

1

0, if r > R′
1

Similarly, the decrease in density∆ρdecrease(r) outside the sphere:

∆ρdecrease(r) =

{
0, if r ≤ R′

1
R′

1·ρ1·V (R′
1)

4πr4 , if r > R′
1

Now we can rewrite these expressions in terms of the Heaviside function H(x):

∆ρincrease(r) = ρ1H(R′
1 − r)

∆ρdecrease(r) =
R′

1 · ρ1 · V (R′
1)

4πr4
H(r −R′

1)

Thus, the total change in density∆ρ(r):

∆ρ(r) = ρ1H(R′
1 − r)− R′

1 · ρ1 · V (R′
1)

4πr4
H(r −R′

1)

4.1.1 Verification of Boundary Conditions

Now let us verify the boundary conditions:

1. For r ≤ R′
1:

∆ρ(r) = ρ1H(R′
1 − r)− R′

1 · ρ1 · VR1′

4πr4
H(r −R′

1)

SinceH(R′
1 − r) = 1 andH(r −R′

1) = 0:

∆ρ(r) = ρ1 − 0 = ρ1

2. For r > R′
1:

∆ρ(r) = ρ1H(R′
1 − r)− R′

1 · ρ1 · VR1′

4πr4
H(r −R′

1)

SinceH(R′
1 − r) = 0 andH(r −R′

1) = 1:

∆ρ(r) = 0− R′
1 · ρ1 · VR1′

4πr4

Now substitute VR1′ =
4
3π(R

′
1)

3:

∆ρ(r) = −
R′

1 · ρ1 · 4
3π(R

′
1)

3

4πr4
= −ρ1 ·R′4

1

3r4

8



Thus, we arrive at the following expression for∆ρ(r) in terms of the Heaviside

function:

∆ρ(r) = ρ1H(R′
1 − r)− ρ1 ·R′4

1

3r4
H(r −R′

1) (3)

4.2 Verification of Compliance with the Space Density Conservation Condi

tion

To verify, let us take the integral of ∆ρ(r). Let us integrate ∆ρ(r) over the entire
volume. Recall that∆ρ(r) is represented as:

∆ρ(r) = ρ1

[
H(R′

1 − r)− R′4
1

3r4
H(r −R′

1)

]
Compute the integral: ∫ ∞

0
∆ρ(r) · 4πr2 dr

Split the integral into two parts corresponding to∆ρincrease(r) and∆ρdecrease(r):∫ ∞

0
∆ρ(r) · 4πr2 dr =

∫ ∞

0

[
ρ1H(R′

1 − r)− ρ1 ·R′4
1

3r4
H(r −R′

1)

]
· 4πr2 dr

Split into two separate integrals:∫ ∞

0
ρ1H(R′

1 − r) · 4πr2 dr −
∫ ∞

0

ρ1 ·R′4
1

3r4
H(r −R′

1) · 4πr2 dr

Consider the first integral:∫ R′
1

0
ρ1 · 4πr2 dr = 4πρ1

∫ R′
1

0
r2 dr = 4πρ1

[
r3

3

]R′
1

0

= 4πρ1 ·
(R′

1)
3

3
=

4πρ1(R
′
1)

3

3

Now consider the second integral:∫ ∞

R′
1

ρ1 ·R′4
1

3r4
· 4πr2 dr = 4πρ1R

′4
1

3

∫ ∞

R′
1

1

r2
dr =

4πρ1R
′4
1

3

[
−1

r

]∞
R′

1

Compute the limits:

4πρ1R
′4
1

3

(
− 1

∞
+

1

R′
1

)
=

4πρ1R
′4
1

3
· 1

R′
1

=
4πρ1R

′3
1

3

Now add both results:∫ ∞

0
∆ρ(r) · 4πr2 dr = 4πρ1(R

′
1)

3

3
− 4πρ1(R

′
1)

3

3
= 0
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Thus, the integral of∆ρ(r) over the entire volume equals zero:∫ ∞

0
∆ρ(r) · 4πr2 dr = 0

We obtained the expected result, but this was necessary for verification.
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V Quantity of Space Density Perturbation Created by Two Compressed

Spheres at Distance D. Interaction Quantity. Coulomb’s Law for Two

Charges in Logarithmic Form

In this section, we investigate the interaction between two compressed spherical

regions of space. By analyzing the space density distribution around these spheres,

we derive the influence of one sphere on the density distribution of the other. This

analysis is important for understanding the nature of their interaction arising from

variations in space density.

5.1 Illustration of Space Density Distribution

Before proceeding to the mathematical derivation of the influence of space density

distribution created by two spheres on each other, I present a graphical representation

of the space density distribution around two compressed spheres, constructed based

on the mathematical model using the formula for ∆ρdecrease(r) (formula (2)). This

figure allows us to visually understand how the density distribution created by each

sphere changes depending on the distance between them.

Figure 2: Space density distribution around two compressed spheres. The graph illustrates how space density changes

along the line connecting the centers of the spheres as they approach each other.
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5.2 Problem Formulation, Integral Expression for the Total Perturbation

Created by Two Clumps of Space Density

To solve the problem, we start by writing the initial expression for the total perturbation

Wtotal, using Fubini’s theorem and gradient properties. We write the expression for

the gradient of the product of functions:

∆ρ1(r1) and ∆ρ2(r
′
1 −D).

5.2.1 Initial Expression for Total Perturbation

The total perturbation Wtotal is defined as the integral over the entire space of the

modulus of the gradient of the product of functions ∆ρ1(r1) and ∆ρ2(r
′
1 − D).

According to the assumption, the total quantity of space density perturbation created

by two clumps relative to the reference system associated with the center of the first

clump is determined by the formula:

Wtotal =

∫
V1

∫
V ′
1

dV1 dV
′
1

∣∣∇r1∇r′1
(∆ρ1(r1) ·∆ρ2(r

′
1 −D))

∣∣ .
5.2.2 Substitution of Function Expressions

Substitute the expressions for∆ρ1(r1) and∆ρ2(r
′
1 −D):

∆ρ1(r1) = ρ1

[
H(R′

1 − r1)−
R′4

1

3r41
H(r1 −R′

1)

]
,

∆ρ2(r
′
1 −D) =

R′
2 ρ2 V (R′

2)

4π (r′1 −D)4
.

Now substitute these expressions under the gradient sign:

Wtotal =

∫
V1

∫
V ′
1

dV1 dV
′
1

∣∣∇r1∇r′1
(ρ1 [H(R′

1 − r1)

−R′4
1

3r41
H(r1 −R′

1)

]
· R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)∣∣∣∣ .
Note that the gradient must be taken with respect to both V1 (variable r1) and V

′
1

(variable r′1). Rewrite the expression taking into account gradients in both spaces.

5.2.3 Simplification of the Expression

For convenience, represent the expression in the following form:

Wtotal = ∇r1∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4
·H(R′

1 − r1)

)
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−∇r1∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4 r41
·H(r1 −R′

1)

)
.

5.2.4 Simplification Considering Function Independence

Note that:

1. ∆ρ1(r1) = ρ1
[
H(R′

1 − r1)− R′4
1

3r41
H(r1 −R′

1)
]
does not depend on r′1.

2. ∆ρ2(r
′
1 −D) = R′

2 ρ2 V (R′
2)

4π (r′1−D)4 does not depend on r1.

Thus, the gradients can be separated:

• ∇r1 acts only on∆ρ1(r1).

• ∇r′1
acts only on∆ρ2(r

′
1 −D).

5.2.5 Separation of Gradients

Now the expression can be rewritten as the product of gradients:

∇r1 (∆ρ1(r1)) · ∇r′1
(∆ρ2(r

′
1 −D)) .

Substitute the expressions for∆ρ1(r1) and∆ρ2(r
′
1 −D):

∇r1

(
ρ1

[
H(R′

1 − r1)−
R′4

1

3r41
H(r1 −R′

1)

])
· ∇r′1

(
R′

2 ρ2 V (R′
2)

4π (r′1 −D)4

)
.

5.2.6 Final Expression

Now the expression takes the form:

∇r1 (H(R′
1 − r1)) · ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)
−

−∇r1

(
1

r41
·H(r1 −R′

1)

)
· ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4

)
. (4)

5.2.7 Justification of the Approach

Here the question arises as to why the Leibniz rule is not applied when taking the

gradient of the function. The reason is that we utilize the fact that the functions

∆ρ1(r1) and∆ρ2(r
′
1 −D) are completely independent of each other. To ensure this

complete independence, we place them in different spaces V1 and V ′
1 . We need to

determine the total amount of perturbation, which is equal to the product of the density

perturbation created by each of the clusters. For this purpose, in each space, for its
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corresponding function, we construct a continuous matrix of the absolute values of

the gradient of each function and then compute the integral of each function over

its respective space. In doing so, we must take into account that since the desired

function is the product of two continuous sets of values (each corresponding to the

integrals of the modulus of the gradient in the regions where one of the functions is

nonzero), it does not make sense to integrate the second function in regions where the

first is zero (and vice versa) because, when multiplying, a region where either function

is zero will yield zero. In other words, the limits of integration, when representing

the integral as a sum of products of several integrals with different limits for the first

and second functions, must coincide. This is very important for constructing the total

perturbation produced by the second cluster relative to the total perturbation of the

first cluster.

5.2.8 Analogy with a ThreeDimensional Array

This approach can be compared to the methodology used when working with arrays of

values obtained as the product of two functions. We can construct a threedimensional

array of values separately for each function with the same metric (i.e. the same array

dimensions along all coordinates), and then multiply the cells of each array with

matching indices to obtain the desired array of the product of the two functions. This

is a kind of sublimation of a sixdimensional space, but it is not a sixdimensional

space in the full sense of the word. We are seeking the projection onto our three

dimensional space of the product of the values of the two functions in two other

independent spaces.

5.2.9 Justification for the Impossibility of the Solution in aThreeDimensional

Space

Next, I will explain why this problem cannot be solved in the usual threedimensional

space. The gradient of the function 1/r4 is given by 1/r5. For such a function, Gauss’s
theorem holds only in a space with L = 6, because in spaces of lower dimensionality

the vector field in the form of the gradient of 1/r4 does not have a source.

5.3 Calculation of the Gradient and the Integral of the Gradient for the Total

Perturbation Distribution of the TwoCluster System Relative to the Reference

Frame Associated with the Origin of the First Cluster

At this stage, we bring the gradient operators outside the parentheses for each expres

sion, taking into account that:

1. ∇r1 acts only on functions that depend on r1.

2. ∇r′1
acts only on functions that depend on r′1.

5.3.1 Original Expression

The original expression is:
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∇r1∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4
·H(R′

1 − r1)

)
−∇r1∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4 r41
·H(r1 −R′

1)

)
.

5.3.2 Bringing the Gradient Operators Outside the Parentheses

First Term:

∇r1∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4
·H(R′

1 − r1)

)
.

Here:

• ∇r1 acts only onH(R′
1 − r1) since

ρ1 R
′
2 ρ2 V (R′

2)
4π (r′1−D)4 does not depend on r1.

• ∇r′1
acts only on

ρ1 R
′
2 ρ2 V (R′

2)
4π (r′1−D)4 sinceH(R′

1 − r1) does not depend on r
′
1.

Thus, we can write:

∇r1 (H(R′
1 − r1)) · ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)
.

Second Term:

∇r1∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4 r41
·H(r1 −R′

1)

)
.

Here:

• ∇r1 acts only on
1
r41
·H(r1 −R′

1) since
ρ1 R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1−D)4 does not depend on r1.

• ∇r′1
acts only on

ρ1 R
′
2 ρ2 V (R′

2)R
′4
1

12π (r′1−D)4 sinceH(r1 −R′
1) does not depend on r

′
1.

Thus, we have:

∇r1

(
1

r41
·H(r1 −R′

1)

)
· ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4

)
.

5.3.3 Final Expression after Bringing the Gradients Outside the Parentheses

Now the expression becomes:

∇r1 (H(R′
1 − r1)) · ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)
−∇r1

(
1

r41
·H(r1 −R′

1)

)
· ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4

)
.
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5.3.4 Calculation of the Gradients

1. Calculation of∇r1 (H(R′
1 − r1)): The functionH(R′

1− r1) is the Heaviside step
function. Its gradient can be expressed in terms of the Dirac delta function:

∇r1 (H(R′
1 − r1)) = −δ(R′

1 − r1) · r̂1,

where:

• δ(R′
1 − r1) is the Dirac delta function,

• r̂1 is the unit vector in the direction of r1.

2. Calculation of ∇r′1

(
ρ1 R

′
2 ρ2 V (R′

2)
4π (r′1−D)4

)
: We compute the gradient of the function

1
(r′1−D)4 . The gradient of the scalar function f(r) =

1
r4 is given by:

∇
(
1

r4

)
= − 4

r5
r̂.

Applying this to our function:

∇r′1

(
1

(r′1 −D)4

)
= − 4

(r′1 −D)5
r̂′1.

Thus:

∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)
=

ρ1R
′
2 ρ2 V (R′

2)

4π
·
(
− 4

(r′1 −D)5
r̂′1

)
= −ρ1R

′
2 ρ2 V (R′

2)

π (r′1 −D)5
r̂′1.

3. Calculation of∇r1

(
1
r41
·H(r1 −R′

1)
)
: Here we apply the product rule:

∇r1

(
1

r41
·H(r1 −R′

1)

)
= ∇r1

(
1

r41

)
·H(r1 −R′

1)

+
1

r41
· ∇r1 (H(r1 −R′

1)) .

We compute each term:

1. The gradient of 1
r41
:

∇r1

(
1

r41

)
= − 4

r51
r̂1.

2. The gradient of the Heaviside function:

∇r1 (H(r1 −R′
1)) = δ(r1 −R′

1) · r̂1.

Thus:

∇r1

(
1

r41
·H(r1 −R′

1)

)
= − 4

r51
r̂1 ·H(r1 −R′

1) +
1

r41
· δ(r1 −R′

1) · r̂1.

16



4. Calculation of∇r′1

(
ρ1 R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1−D)4

)
: This gradient is analogous to the second

case:

∇r′1

(
1

(r′1 −D)4

)
= − 4

(r′1 −D)5
r̂′1.

Thus:

∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4

)
=

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

12π

·
(
− 4

(r′1 −D)5
r̂′1

)
= −ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
r̂′1.

5.3.5 Final Integrand Expression

Now substitute the computed gradients back into the original expression:

∇r1 (H(R′
1 − r1)) · ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)

4π (r′1 −D)4

)
−∇r1

(
1

r41
·H(r1 −R′

1)

)
· ∇r′1

(
ρ1R

′
2 ρ2 V (R′

2)R
′4
1

12π (r′1 −D)4

)
.

Substituting the results:

(−δ(R′
1 − r1) · r̂1) ·

(
−ρ1R

′
2 ρ2 V (R′

2)

π (r′1 −D)5
r̂′1

)
−
(
− 4

r51
r̂1 ·H(r1 −R′

1) +
1

r41
· δ(r1 −R′

1) · r̂1
)
·
(
−ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
r̂′1

)
.

5.3.6 Simplification of the Expression

We simplify the expression, taking into account that r̂1 · r̂′1 = 1 (if the directions

coincide):

δ(R′
1 − r1) ·

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5

−
(
− 4

r51
H(r1 −R′

1) +
1

r41
δ(r1 −R′

1)

)
· ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
.
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5.3.7 Final Integrand Expression

Now we substitute this expression into the integral:

Wtotal =

∫
V1

∫
V ′
1

dV1 dV
′
1

∣∣∣∣δ(R′
1 − r1) ·

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
−

−
(
− 4

r51
H(r1 −R′

1) +
1

r41
δ(r1 −R′

1)

)
· ρ1R

′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5

∣∣∣∣ . (5)

5.3.8 Consideration of the Regions Where the Functions are NonZero

a) The Heaviside FunctionH(R′
1 − r1):

• H(R′
1 − r1) = 1 for r1 ≤ R′

1,

• H(R′
1 − r1) = 0 for r1 > R′

1.

b) The Heaviside FunctionH(r1 −R′
1):

• H(r1 −R′
1) = 1 for r1 ≥ R′

1,

• H(r1 −R′
1) = 0 for r1 < R′

1.

c) The Dirac Delta Function δ(R′
1 − r1):

• δ(R′
1 − r1) ”selects” the value r1 = R′

1.

d) The Dirac Delta Function δ(r1 −R′
1):

• δ(r1 −R′
1) also ”selects” the value r1 = R′

1.

5.3.9 Matching the Limits of Integration

To ensure that the domains of the functions coincide, the integration limits for r1 and
r′1 must be identical. This means that:

1. The integration limits for r1 and r
′
1 are set the same.

2. The regions where the Heaviside and Delta functions are nonzero are taken into

account.

5.3.10 Adjustment of the Integration Limits

Now we rewrite the integrals, specifying **identical integration limits** for r1 and
r′1:
First Integral:∫ R′

1

r1=0

∫ R′
1

r′1=0

∣∣∣∣δ(R′
1 − r1) ·

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

Here:
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• r1 ranges from 0 to R′
1 (whereH(R′

1 − r1) = 1),

• r′1 ranges from 0 to R′
1 (to ensure matching limits).

Second Integral:∫ ∞

r1=R′
1

∫ ∞

r′1=R′
1

∣∣∣∣ 4r51 · ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

Here:

• r1 ranges from R′
1 to∞ (whereH(r1 −R′

1) = 1),

• r′1 ranges from R′
1 to∞ (to ensure matching limits).

Third Integral:∫ ∞

r1=R′
1

∫ ∞

r′1=R′
1

∣∣∣∣ 1r41 δ(r1 −R′
1) ·

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

Here:

• r1 ranges from R′
1 to∞ (where δ(r1 −R′

1) ”selects” r1 = R′
1),

• r′1 ranges from R′
1 to∞ (to ensure matching limits).

5.4 Transition to Surface Integrals Using the Properties of the Dirac Delta

Function

5.4.1 Properties of the Dirac Delta Function

The Dirac delta function δ(R′
1 − r1) has the following property:∫

V1

f(r1) δ(R
′
1 − r1) dV1 = f(R′

1),

where f(r1) is an arbitrary function, and the integral is taken over the volume V1.

This means that the delta function ”selects” the value of the function f(r1) on the

surface of the sphere with radius R′
1.

5.4.2 Transition to Surface Integrals

a) First Integral: The original integral:∫
V1

∫
V ′
1

∣∣∣∣δ(R′
1 − r1) ·

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

The delta function δ(R′
1 − r1) ”selects” the value on the surface of the sphere with

radius R′
1. Thus, the integral over dV1 reduces to a surface integral over the sphere of

radius R′
1: ∫

V1

f(r1) δ(R
′
1 − r1) dV1 = f(R′

1),
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where S1 denotes the surface of the sphere with radius R
′
1.

Similarly, the integral over dV ′
1 also reduces to a surface integral over the sphere

with radius R′
1:∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dV ′

1 =

∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1.

Thus, the first integral takes the form:∫
S1

∫
S′
1

∣∣∣∣ρ1R′
2 ρ2 V (R′

2)

π (r′1 −D)5

∣∣∣∣ dS1 dS
′
1.

b) Third Integral: The original integral:∫
V1

∫
V ′
1

∣∣∣∣ 1r41 δ(r1 −R′
1) ·

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

The delta function δ(r1 − R′
1) also ”selects” the value on the surface of the sphere

with radius R′
1. Thus, the integral over dV1 reduces to a surface integral over the

sphere with radius R′
1: ∫

V1

1

r41
δ(r1 −R′

1) dV1 =

∫
S1

1

R′4
1

dS1.

Similarly, the integral over dV ′
1 reduces to a surface integral over the sphere with

radius R′
1: ∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 =

∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dS ′

1.

Thus, after applying the delta function δ(r1−R′
1) and transitioning to surface integrals,

the third integral takes the form:∫
S1

∫
S′
1

∣∣∣∣ρ1R′
2 ρ2 V (R′

2)R
′4
1

3π R′4
1 (r′1 −D)5

∣∣∣∣ dS1 dS
′
1.

Here, the R′4
1 factors in the numerator and denominator cancel:∫

S1

∫
S′
1

∣∣∣∣ρ1R′
2 ρ2 V (R′

2)

3π (r′1 −D)5

∣∣∣∣ dS1 dS
′
1.

5.4.3 Application of Fubini’s Theorem

Fubini’s theorem allows us to separate double integrals into a product of integrals.

We apply it to the first and third integrals.

a) First Integral: ∫
S1

∫
S′
1

∣∣∣∣ρ1R′
2 ρ2 V (R′

2)

π (r′1 −D)5

∣∣∣∣ dS1 dS
′
1.
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This integral can be represented as the product:(∫
S1

dS1

)
·
(∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1

)
.

b) Third Integral: ∫
S1

∫
S′
1

∣∣∣∣ρ1R′
2 ρ2 V (R′

2)

3π (r′1 −D)5

∣∣∣∣ dS1 dS
′
1.

This integral can similarly be written as:(∫
S1

dS1

)
·
(∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1

)
.

5.4.4 Calculation of the Integrals over dS1

The integral over the surface of a sphere S1 with radius R
′
1 is equal to the surface area

of the sphere: ∫
S1

dS1 = 4πR′2
1 .

Thus, the first and third integrals become:

a) First Integral:

4πR′2
1 ·
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1.

b) Third Integral:

4πR′2
1 ·
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

5.4.5 Final Expressions

Thus, after applying Fubini’s theorem and computing the integrals over dS1, we obtain

the following expressions for the first and third integrals:

a) First Integral:

4πR′2
1 ·
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1.

b) Third Integral:

4πR′2
1 ·
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Thus, we have transitioned from volume integrals to surface integrals using the

properties of the Dirac delta function and Fubini’s theorem. This simplifies the

calculations and allows us to focus on integrating over the surfaces of the spheres.
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5.5 Calculation of the Second Integral

The original second integral is:∫ ∞

r1=R′
1

∫ ∞

r′1=R′
1

∣∣∣∣ 4r51 · ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5

∣∣∣∣ dV1 dV
′
1 .

We apply Fubini’s theorem to separate the integral into the product:(∫ ∞

r1=R′
1

4

r51
dV1

)
·
(∫ ∞

r′1=R′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1

)
.

5.5.1 Calculation of the Integral over dV1

The integral over dV1 is given by: ∫ ∞

r1=R′
1

4

r51
dV1.

In spherical coordinates, dV1 = 4πr21 dr1, so:∫ ∞

r1=R′
1

4

r51
· 4πr21 dr1 = 16π

∫ ∞

r1=R′
1

1

r31
dr1.

Evaluating this integral:

16π

∫ ∞

r1=R′
1

1

r31
dr1 = 16π

[
− 1

2r21

]∞
R′

1

= 16π

(
0 +

1

2R′2
1

)
=

8π

R′2
1

.

5.5.2 Final Formula for the Second Integral

Thus, the final formula for the second integral becomes:

8π

R′2
1

·
∫ ∞

r′1=R′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 .
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5.6 Final Expression for the Total Perturbation

The original expression for the total perturbation integral was:

Wtotal =

(∫
V1

δ(R′
1 − r1) dV1

)
·
(∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dV ′

1

)

+

(∫
V1

4

r51
H(r1 −R′

1) dV1

)
·
(∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1

)

−
(∫

V1

1

r41
δ(r1 −R′

1) dV1

)
·
(∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1

)
. (6)

5.6.1 Calculation of the Integrals with Respect to the Coordinate r1

First Integral: ∫
V1

δ(R′
1 − r1) dV1 = 4πR′2

1 .

The second integral in the first term is taken over the surface S ′
1:∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1.

Substituting into the first term:

4πR′2
1 ·
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1.

Second Integral: ∫
V1

4

r51
H(r1 −R′

1) dV1 =
8π

R′2
1

.

The second integral in the second term is taken over the volume V ′
1 :∫

V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 .

Substituting into the second term:

8π

R′2
1

·
∫
V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 .

Third Integral: ∫
V1

1

r41
δ(r1 −R′

1) dV1 = 4πR′2
1 .
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The second integral in the third term is taken over the surface S ′
1:∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Substituting into the third term:

4πR′2
1 ·
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Final Expression for the Total Perturbation

Now, substituting the calculated integrals into the original expression:

Wtotal = 4πR′2
1 ·
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1

+
8π

R′2
1

·
∫
V ′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1

− 4πR′2
1 ·
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1. (7)

5.6.2 Simplification of the First and Third Terms

The first and third integrals share a common factor 4πR′2
1 . We factor this out:

4πR′2
1 ·
(∫

S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1 −
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1

)
.

Simplify the expression inside the parentheses:∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

π (r′1 −D)5
dS ′

1 −
∫
S′
1

ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1 =

∫
S′
1

2ρ1R
′
2 ρ2 V (R′

2)

3π (r′1 −D)5
dS ′

1.

Now, recall that

ρ1 =
Q1

4
3πR

′3
1

,

and also ρ2 V (R′
2) = Q2. Thus, we obtain:

4πR′2
1 ·
∫
S′
1

2 · Q1
4
3πR

′3
1
·R′

2 ·Q2

3π (r′1 −D)5
dS ′

1.

Simplifying the coefficients:

4πR′2
1 · 2Q1Q2R

′
2

3π · 4
3πR

′3
1

∫
S′
1

dS ′
1

(r′1 −D)5
=

8Q1Q2R
′
2

πR′
1

∫
S′
1

dS ′
1

(r′1 −D)5
.

24



5.6.3 Simplification of the Second Term

The second integral is

8π

R′2
1

·
∫ ∞

r′1=R′
1

ρ1R
′
2 ρ2 V (R′

2)R
′4
1

3π (r′1 −D)5
dV ′

1 .

Substitute ρ1 =
Q1

4
3πR

′3
1
and ρ2 V (R′

2) = Q2:

8π

R′2
1

·
∫ ∞

r′1=R′
1

Q1
4
3πR

′3
1
·R′

2 ·Q2 ·R′4
1

3π (r′1 −D)5
dV ′

1 .

Simplify the coefficients:

8π

R′2
1

· Q1Q2R
′
2R

′
1

4
3π · 3π

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
=

2Q1Q2R
′
2

πR′
1

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
.

5.6.4 Final Expression

Now, combining all the terms we obtain:

Wtotal =
8Q1Q2R

′
2

πR′
1

∫
S′
1

dS ′
1

(r′1 −D)5
+

2Q1Q2R
′
2

πR′
1

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
. (8)

5.7 Let Us Now Compute the First Integral:

8Q1Q2R
′
2

πR′
1

∫
S′
1

dS ′
1

|r′1 − D|5
.

Where:

• S ′
1 is the sphere centered at the origin with radius R

′
1, i.e. for any point on the

sphere its position vector r′1 satisfies |r′1| = R′
1;

• D is a fixed vector, whose modulus we denote byD = |D|;
• The notation |r′1 − D| denotes the distance between the point r′1 and the point

specified by the vector D.

5.7.1 Calculation of the Surface Integral

Choose the coordinate system such that the zaxis is directed along D. Then a point
on the sphere can be written in spherical coordinates as:

r′1 = R′
1 (sin θ cosφ, sin θ sinφ, cos θ),
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and the surface element is

dS ′
1 = R′2

1 sin θ dθ dφ .

The modulus of the difference of the vectors is:

|r′1 − D| =
√
R′2

1 +D2 − 2R′
1D cos θ .

Then the integral becomes

I =

∫
S′
1

dS ′
1

|r′1 − D|5
=

∫ 2π

0

∫ π

0

R′2
1 sin θ dθ dφ(

R′2
1 +D2 − 2R′

1D cos θ
)5/2 .

Integration over φ gives a factor of 2π:

I = 2πR′2
1

∫ π

0

sin θ dθ(
R′2

1 +D2 − 2R′
1D cos θ

)5/2 .
5.7.2 Change of Variable u = cos θ

Let u = cos θ, then du = − sin θ dθ. When θ = 0, we have u = 1, and when θ = π,
u = −1. Thus, we obtain:

I = 2πR′2
1

∫ −1

u=1

−du(
R′2

1 +D2 − 2R′
1Du

)5/2 = 2πR′2
1

∫ 1

−1

du(
R′2

1 +D2 − 2R′
1Du

)5/2 .
Let us denote:

A = R′2
1 +D2, B = 2R′

1D .

Then the integral takes the form

I = 2πR′2
1

∫ 1

−1

du(
A−Bu

)5/2 .
5.7.3 Evaluation of the Integral with Respect to u

Perform the substitution: v = A − Bu so that dv = −B du or du = −dv
B . When

u = −1 we get v = A+B, and when u = 1 we have v = A−B. Then:∫ 1

−1

du

(A−Bu)5/2
=

1

B

∫ A+B

v=A−B

dv

v5/2
= − 1

B

∫ A−B

v=A+B

dv

v5/2

= − 2

3B

[
v−3/2

]A−B

v=A+B
=

2

3B

[
(A−B)−3/2 − (A+B)−3/2

]
.

Thus,
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I = 2πR′2
1 · 1

B
· 2
3

[
(A−B)−3/2 − (A+B)−3/2

]
=

4πR′2
1

3B

[
(A−B)−3/2 − (A+B)−3/2

]
.

Returning to the original notations:

A±B = R′2
1 +D2 ∓ 2R′

1D = (R′
1 ∓D)2 .

Therefore,

(A∓B)−3/2 =
1[

(R′
1 ∓D)2

]3/2 =
1

(R′
1 ∓D)3

.

Also, B = 2R′
1D. Then,

I =
4πR′2

1

3 · 2R′
1D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
=

2πR′
1

3D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
.

5.7.4 Final Result

Substituting the obtained I into the original expression, we have:

8Q1Q2R
′
2

πR′
1

I =
8Q1Q2R

′
2

πR′
1

· 2πR
′
1

3D
·
[

1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
.

Canceling π and R′
1, we finally obtain:

16Q1Q2R
′
2

3D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
.

8Q1Q2R
′
2

πR′
1

∫
S′
1

dS ′
1

|r′1 − D|5
=

16Q1Q2R
′
2

3D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
(9)

5.8 Calculation of the Second Integral in the Expression for the Total Pertur

bation of the TwoCluster Spatial Density System Relative to the Reference

Frame r′1 Associated with the Center of the First Cluster’s Sphere

In the obtained solution for the total perturbation, the second integral has the form:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′1=R′
1

dV ′
1

|r′1 − D|5
,

where:
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• r′1 is the position vector in the r
′
1 system,

• D is a vector lying along the Zaxis, directed from the origin of the r′1 system to

the origin of the r′2 system,

• dV ′
1 is the volume element in the r′1 system.

5.8.1 Transition to the r′2 System

The transformation to the r′2 system is performed via the relation:

r′2 = r′1 − D.

In this case,

r′2 = |r′2| = |r′1 − D|.
Since D lies along the Zaxis, theX and Y axes coincide, and the angle between the

vector r′1 and D is the same as the angle θ in the r′2 system.

5.8.2 Writing the Integral in the Spherical Coordinate System r′1

In the r′1 system, the volume element in spherical coordinates is given by:

dV ′
1 = (r′1)

2 sin θ dr′1 dθ dφ.

Thus, the integral is written as:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′1=R′
1

∫ π

θ=0

∫ 2π

φ=0

(r′1)
2 sin θ

|r′1 − D|5
dφ dθ dr′1.

5.8.3 Transition to the Spherical Coordinate System r′2

Consider the integral in the original spherical coordinate system r′1:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′1=R′
1

∫ π

θ=0

∫ 2π

φ=0

(r′1)
2 sin θ

|r′1 − D|5
dφ dθ dr′1.

Weneed to change to another spherical coordinate system r′2, recalculate the integration
limits and the volume element, and write the integral in the new coordinate system.

5.8.4 Calculate the Jacobian of the Transformation and Compare the Volume

Elements in the r′1 and r
′
2 Systems, Bearing in Mind that r′2 = r′1 − D.

Relationship Between the Coordinate Systems Transformation Conditions:

Given:

r′2 = |r′1 − D|,
where:

• r′1 = (r′1, θ
′
1, φ

′
1) is the position vector in the first coordinate system,

• D = (0, 0, D) is a fixed vector lying along the Zaxis,
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• θ′2 = θ′1 and φ
′
2 = φ′

1 (the angular coordinates coincide).

The norm of the difference of the vectors is expressed as:

r′2 =
√
r′21 sin2 θ′1 + (r′1 cos θ

′
1 −D)2.

The Jacobian of the transformation is determined solely by the partial derivative
∂r′2
∂r′1

, since the angular coordinates remain the same:

J =
∂r′2
∂r′1

.

Differentiating r′2 with Respect to r
′
1 We compute the derivative:

∂r′2
∂r′1

=
1

2
√
r′21 sin2 θ′1 + (r′1 cos θ

′
1 −D)2

· ∂

∂r′1

(
r′21 sin2 θ′1 + (r′1 cos θ

′
1 −D)2

)
.

First Part:
∂

∂r′1
(r′21 sin2 θ′1) = 2r′1 sin

2 θ′1.

Second Part:

∂

∂r′1
(r′1 cos θ

′
1 −D)2 = 2(r′1 cos θ

′
1 −D) cos θ′1.

Combining the Parts Now, the full derivative is:

∂r′2
∂r′1

=
2r′1 sin

2 θ′1 + 2(r′1 cos θ
′
1 −D) cos θ′1

2
√
r′21 sin2 θ′1 + (r′1 cos θ

′
1 −D)2

.

We can write:

∂r′2
∂r′1

=
r′1 sin

2 θ′1 + (r′1 cos
2 θ′1 −D cos θ′1)√

r′21 sin2 θ′1 + r′21 cos2 θ′1 − 2Dr′1 cos θ
′
1 +D2

.

Using the identity sin2 θ′1 + cos2 θ′1 = 1:

∂r′2
∂r′1

=
r′1 −D cos θ′1√

r′21 − 2Dr′1 cos θ
′
1 +D2

.

Note that:

r′21 − 2Dr′1 cos θ
′
1 +D2 = (r′1 −D cos θ′1)

2.

Thus, we have:
∂r′2
∂r′1

=
r′1 −D cos θ′1
r′1 −D cos θ′1

= 1.

Since the Jacobian of the Transformation is 1, the Following Holds in Our

System:

dV ′
1 = dV ′

2 .
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5.8.5 Recalculation of the Integration Limits

The Original Integral

In the original r′1 coordinate system, the integral is defined by:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′1=R′
1

∫ π

θ=0

∫ 2π

φ=0

(r′1)
2 sin θ

|r′1 − D|5
dφ dθ dr′1.

The Lower Limit of Integration

In the new r′2 coordinate system, the lower limit for r′2 is determined by the condition

r′1 = R′
1:

r′2 =
√
(R′

1)
2 +D2 − 2R′

1D cos θ.

Thus, the lower limit for r′2 is:

r′2 ≥
√
(R′

1)
2 +D2 − 2R′

1D cos θ.

The Transformed Integral

After changing to the r′2 coordinate system, the integral becomes:

I =
2Q1Q2R

′
2

πR′
1

∫ ∞

r′2=
√
(R′

1)
2+D2−2R′

1D cos θ

∫ π

θ=0

∫ 2π

φ=0

(r′2)
2 sin θ

(r′2)
5

dφ dθ dr′2.

5.8.6 Integration with Respect to r′2

We compute the inner integral with respect to r′2:∫ ∞

r′2=
√
(R′

1)
2+D2−2R′

1D cos θ

dr′2
(r′2)

3
=

[
− 1

2(r′2)
2

]∞
r′2=

√
(R′

1)
2+D2−2R′

1D cos θ

=
1

2 ((R′
1)

2 +D2 − 2R′
1D cos θ)

.

Thus, we have:

I =
2Q1Q2R

′
2

πR′
1

∫ π

0

∫ 2π

0

sin θ

2 ((R′
1)

2 +D2 − 2R′
1D cos θ)

dφ dθ.

5.8.7 Integration with Respect to φ

The integral over φ is: ∫ 2π

0
dφ = 2π.

Thus,

I =
2Q1Q2R

′
2

πR′
1

· 2π · 1
2

∫ π

0

sin θ

(R′
1)

2 +D2 − 2R′
1D cos θ

dθ.

Simplifying:

I =
2Q1Q2R

′
2

R′
1

∫ π

0

sin θ

(R′
1)

2 +D2 − 2R′
1D cos θ

dθ.
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5.8.8 Integration with Respect to θ

Make the substitution:

u = cos θ, du = − sin θ dθ.

The integration limits become:

• When θ = 0: u = 1.

• When θ = π: u = −1.

Thus, we obtain:

I =
2Q1Q2R

′
2

R′
1

∫ −1

u=1

−du

(R′
1)

2 +D2 − 2R′
1Du

=
2Q1Q2R

′
2

R′
1

∫ 1

−1

du

(R′
1)

2 +D2 − 2R′
1Du

.

5.8.9 Evaluation of the Integral with Respect to u

We use the standard integral:∫ 1

−1

du

A−Bu
=

1

B
ln

∣∣∣∣A+B

A−B

∣∣∣∣ ,
where:

A = (R′
1)

2 +D2, B = 2R′
1D.

Thus:

I =
2Q1Q2R

′
2

R′
1

· 1

2R′
1D

ln

∣∣∣∣(R′
1)

2 +D2 + 2R′
1D

(R′
1)

2 +D2 − 2R′
1D

∣∣∣∣ .
5.8.10 Simplification of the Expression Inside the Logarithm

The expression inside the logarithm is:

(R′
1)

2 +D2 + 2R′
1D

(R′
1)

2 +D2 − 2R′
1D

.

Notice that:

(R′
1)

2 +D2 + 2R′
1D = (R′

1 +D)2,

(R′
1)

2 +D2 − 2R′
1D = (R′

1 −D)2.

Thus:
(R′

1)
2 +D2 + 2R′

1D

(R′
1)

2 +D2 − 2R′
1D

=
(R′

1 +D)2

(R′
1 −D)2

.

Since both (R′
1 +D)2 and (R′

1 −D)2 are positive, we can drop the absolute value:

ln

∣∣∣∣(R′
1 +D)2

(R′
1 −D)2

∣∣∣∣ = ln

(
(R′

1 +D)2

(R′
1 −D)2

)
= 2 ln

(
R′

1 +D

R′
1 −D

)
.
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5.8.11 Final Result

Substitute the simplified expression into the integral:

I =
2Q1Q2R

′
2

R′
1

· 1

2R′
1D

· 2 ln
(
R′

1 +D

R′
1 −D

)
.

Simplifying, we obtain:

I =
2Q1Q2R

′
2

(R′
1)

2D
ln

(
R′

1 +D

R′
1 −D

)
(10)

5.9 Consider the Case When D > R′
1

In this case the expression inside the logarithm,(
R′

1 +D

R′
1 −D

)
,

becomes negative because R′
1 − D < 0 while R′

1 + D > 0. To work with the

logarithm of a negative number, we use the formula for the logarithm of a complex

number.

5.9.1 Formula for the Logarithm of a Complex Number

The logarithm of a complex number z = x+ iy (where x and y are real numbers) is

defined as:

ln(z) = ln |z|+ i arg(z),

where:

• |z| =
√
x2 + y2 is the modulus of the complex number,

• arg(z) is the argument of the complex number (the angle in the complex plane).

For a negative real number z = −a (with a > 0):

ln(−a) = ln(a) + iπ,

since the modulus |z| = a and the argument arg(z) = π (because a negative number

lies on the negative real axis).

5.9.2 Application to Our Case

Consider the expression inside the logarithm:

R′
1 +D

R′
1 −D

.
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WhenD > R′
1, the denominator R′

1 −D is negative while the numerator R′
1 +D is

positive. Thus, the expression inside the logarithm is negative:

R′
1 +D

R′
1 −D

= −R′
1 +D

D −R′
1

.

Now applying the formula for the logarithm of a negative number:

ln

(
R′

1 +D

R′
1 −D

)
= ln

(
−R′

1 +D

D −R′
1

)
= ln

(
R′

1 +D

D −R′
1

)
+ iπ.

5.9.3 Substitution into the Integral

Now substitute this expression into our integral:

I =
2Q1Q2R

′
2

R′2
1 D

ln

(
R′

1 +D

R′
1 −D

)
.

ForD > R′
1, we have:

I =
2Q1Q2R

′
2

R′2
1 D

(
ln

(
R′

1 +D

D −R′
1

)
+ iπ

)
.

Thus, the integral takes a complex value:

I =
2Q1Q2R

′
2

R′2
1 D

ln

(
R′

1 +D

D −R′
1

)
+ i

2Q1Q2R
′
2π

R′2
1 D

.

5.9.4 Final Result forD > R′
1

For the regionD > R′
1, the solution of the integral in its complex form is:

I =
2Q1Q2R

′
2

R′2
1 D

ln

(
R′

1 +D

D −R′
1

)
+ i

2Q1Q2R
′
2π

R′2
1 D

. (11)

5.9.5 Physical Interpretation

• Real Part:

Re(I) =
2Q1Q2R

′
2

R′2
1 D

ln

(
R′

1 +D

D −R′
1

)
(12)

describes the physical quantity related to the interaction between the systems.

• Imaginary Part:
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Im(I) =
2Q1Q2R

′
2π

R′2
1 D

(13)

arises due to the sign change inside the logarithm and can be interpreted as a

phase or additional energy associated with the geometry of the problem.

Thus, for D > R′
1, the solution becomes complex, reflecting a change in the

physical nature of the problem in this region.

5.10 Taylor Series Expansion forD > R′
1

For the case D > R′
1, we can expand the logarithm in a Taylor series. Consider the

expression inside the logarithm:

ln

(
R′

1 +D

D −R′
1

)
.

Let x = R′
1

D . Then the expression inside the logarithm can be rewritten as:

R′
1 +D

D −R′
1

=
1 + x

1− x
.

Now expand ln
(
1+x
1−x

)
in a Taylor series. Note that:

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x).

The Taylor series for ln(1 + x) and ln(1− x) are wellknown:

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . . ,

ln(1− x) = −x− x2

2
− x3

3
− x4

4
− . . . .

Subtracting the second series from the first, we obtain:

ln

(
1 + x

1− x

)
= 2x+

2x3

3
+

2x5

5
+ . . . .

Keeping only the first two terms, we have:

ln

(
1 + x

1− x

)
≈ 2x+

2x3

3
.

Now substitute x = R′
1

D :

ln

(
R′

1 +D

D −R′
1

)
≈ 2

(
R′

1

D

)
+

2

3

(
R′

1

D

)3

.
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5.10.1 Substitution into the Formula for I

Now substitute this approximation into our formula for I:

I =
2Q1Q2R

′
2

R′2
1 D

(
ln

(
R′

1 +D

D −R′
1

)
+ iπ

)
.

Using the logarithm approximation, we get:

I ≈ 2Q1Q2R
′
2

R′2
1 D

(
2

(
R′

1

D

)
+

2

3

(
R′

1

D

)3

+ iπ

)
.

Simplify the expression:

• Real Part:
2Q1Q2R

′
2

R′2
1 D

· 2
(
R′

1

D

)
=

4Q1Q2R
′
2

R′
1D

2
,

2Q1Q2R
′
2

R′2
1 D

· 2
3

(
R′

1

D

)3

=
4Q1Q2R

′
2

3R′
1D

4
.

• Imaginary Part:
2Q1Q2R

′
2

R′2
1 D

· iπ = i
2Q1Q2R

′
2π

R′2
1 D

.

5.10.2 Final Result

For D > R′
1, expanding the logarithm in a Taylor series up to the second term, we

obtain:

I ≈ 4Q1Q2R
′
2

R′
1D

2
+

4Q1Q2R
′
2

3R′
1D

4
+ i

2Q1Q2R
′
2π

R′2
1 D

. (14)

5.10.3 Physical Interpretation

• Real Part:

Re(I) ≈ 4Q1Q2R
′
2

R′
1D

2
+

4Q1Q2R
′
2

3R′
1D

4
(15)

describes the physical quantity related to the interaction between the systems,

including higherorder corrections.

• Imaginary Part:
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Im(I) =
2Q1Q2R

′
2π

R′2
1 D

(16)

remains unchanged and is associated with the phase or additional energy arising

from the geometry of the problem.

Thus, the Taylor series expansion allows us to obtain an approximate expression

for I in the region D > R′
1, which simplifies the analysis and interpretation of the

result.
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VI Graph of the Total Perturbation Based on the Obtained Approximation

Formulas for the Real Part of the Integral Solution

Substitute the solutions for each of the integrals into the original expression for the

total perturbationWtotal. Recall that:

Wtotal =
8Q1Q2R

′
2

πR′
1

∫
S′
1

dS ′
1

(r′1 −D)5
+

2Q1Q2R
′
2

πR′
1

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
.

6.1 Solution for the First Integral

The first integral equals:

8Q1Q2R
′
2

πR′
1

∫
S′
1

dS ′
1

(r′1 −D)5
=

16Q1Q2R
′
2

3D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
.

6.2 Solution for the Second Integral

The second integral in complex form equals:

2Q1Q2R
′
2

πR′
1

∫ ∞

r′1=R′
1

dV ′
1

(r′1 −D)5
≈ 4Q1Q2R

′
2

R′
1D

2
+

4Q1Q2R
′
2

3R′
1D

4
+ i

2Q1Q2R
′
2π

R′2
1 D

.

6.3 Substitution into the Expression forWtotal

Now substitute the solutions for each integral into the original expression for

Wtotal:

Wtotal =
16Q1Q2R

′
2

3D

[
1

(R′
1 −D)3

− 1

(R′
1 +D)3

]
+

+

(
4Q1Q2R

′
2

R′
1D

2
+

4Q1Q2R
′
2

3R′
1D

4
+ i

2Q1Q2R
′
2π

R′2
1 D

)
. (17)

6.4 Graph of the Real Part of the Obtained Expression for the Total Spatial

Density PerturbationWtotal and of Each Term for Detailed Analysis

Let us plot four graphs for each term of the real part of the total perturbation in

logarithmic scale for the function values and in a linear scale for the variableD.

Breaking Down the Expression

The full real part is given by:

Re(Wtotal) = A1 + A2 + A3 + A4,
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where

A1 =
16Q1Q2R

′
2

3D
· 1

(R′
1 −D)3

, A2 = −16Q1Q2R
′
2

3D
· 1

(R′
1 +D)3

,

A3 =
4Q1Q2R

′
2

R′
1D

2
, A4 =

4Q1Q2R
′
2

3R′
1D

4
.

Parameters Adopted

We set:

Q1 = Q2 = R′
1 = R′

2 = 5,

and the variableD varies in the interval:

D ∈ [0.1, 5].

Figure 3: Graph of the Real Part of the Obtained Expression for the Total Spatial Density PerturbationWtotal

6.5 Analysis of the Result of the Interaction Quantity Wtotal Based on the

Representation of the Spatial Density

The obtained result, based on the analysis of the graph of the total interactionWtotal,

is very interesting and allows several important conclusions about the behavior of

the spatial density cluster system. Let us examine in detail what is happening on the

graph and how it is related to the physical interactions.
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6.5.1 Graph Analysis

a) RegionD > 2.5
In this region, Wtotal is positive, indicating **repulsion** between the spatial

density clusters.

• The dependence Wtotal(D) ∼ 1
D2 resembles **Coulomb repulsion** of like

charges.

• As the distanceD increases, the magnitude of the repulsion decreases, which is

consistent with classical electrostatic interaction.

b) Region 1 < D < 2.5
In this range of distances, the function Wtotal becomes negative, indicating **at

traction**.

• The attraction in this range is significantly stronger than the repulsion at larger

distances.

• The behavior of the function resembles the **strong interaction** in nuclear

physics.

• The maximum attraction is reached at some value Dmin ≈ 1.5.

c) RegionD < 1
In this region, the function becomes positive again, indicating **repulsion** at

very short distances.

• The repulsion may be related to the overlapping of spatial density clusters.

• AtD = R′
1 = 1 a **singularity** is observed, which may be associated with a

transition of the system between two interaction regimes.

—

6.5.2 Comparison with Known Physical Interactions

a) Coulomb Repulsion (D > 2.5)
At large distances, the interaction resembles classical Coulomb repulsion between

like charges:

Wtotal(D) ∼ 1

D2
.

This is consistent with the hypothesis that spatial density clusters create a field analo

gous to the electric field of charges.

b) Strong Interaction (1 < D < 2.5)
The strong attraction in the range 1 < D < 2.5 in form resembles nuclear forces:

Wtotal(D) ∼ − 1

Dn
, n ≈ 6.

Such behavior may be associated with resonant effects in the spatial density model,

where a stable interaction arises at a certain distance.
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c) Repulsion at Short Distances (D < 1)
At very short distances, rapidly increasing repulsion arises:

Wtotal(D) ∼ 1

D4
.

This interaction may be related to the overlapping of spatial density and resembles

exchange interactions arising from the Pauli exclusion principle in quantummechanics.

—

6.5.3 Interpretation of the Point D = 1

The point D = 1 is of particular significance in the model since it corresponds to the

scale of the spatial density cluster:

D = R′
1.

At this point, a singularity occurs, which may indicate a transition of the system from

a state of strong attraction to a state of repulsion.

—

6.5.4 Physical Interpretation

The results obtained allow us to propose the following interpretation of the behavior

of spatial density clusters:

 Repulsion at large distances resembles electrostatic interaction.

 Strong attraction at intermediate distances may be analogous to the strong inter

action between hadrons.

 Repulsion at short distances is associated with the overlapping of spatial density

and may be related to exchange effects.

Maximum Entropy of the System The cluster system tends toward minimal energy and

maximum entropy. This leads to the formation of stable configurations at certain

values ofD.

—

6.5.5 Conclusion

The obtained result shows that the spatial density cluster model exhibits complex

behavior that includes both repulsive and attractive components depending on the

distance.

The main conclusions are:

• At large distances the interaction resembles Coulomb repulsion.

• At intermediate distances strong attraction, similar to nuclear forces, arises.

• At very short distances the interaction becomes repulsive due to the overlapping

of spatial density.
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VII Solution of the Gradient Integral over the Entire Volume for the Spatial

Density Distribution Equation of a Single Sphere

In this section, we solve the gradient integral over the entire volume for the spatial

density distribution equation of a single sphere. The approach utilizes the Heaviside

function, which effectively describes the boundary conditions and sharp transitions in

the spatial density distribution. This detailed derivation ensures that conservation laws

are satisfied and provides insight into the nature of the spatial density perturbations.

In Section IV of our study, we obtained that the formula for the total spatial density

distribution around a sphere in terms of the Heaviside function is given by:

∆ρ(r) = ρ1H(R′
1 − r)− ρ1 ·R′4

1

3r4
H(r −R′

1),

where r = |r|.
Now, we replace r with the norm of the difference of vectors |r− R′

1|:

∆ρ(|r− R′
1|) = ρ1H(R′

1 − |r− R′
1|)−

ρ1 ·R′4
1

3|r− R′
1|4

H(|r− R′
1| −R′

1).

7.1 Calculation of the Gradient

The gradient of the function∆ρ(|r− R′
1|) is calculated as:

∇∆ρ(|r− R′
1|) =

∂∆ρ

∂|r− R′
1|
· ∇|r− R′

1|.

7.1.1 Calculation of
∂∆ρ

∂|r−R′
1|

The function∆ρ(|r− R′
1|) consists of two parts:

1. ρ1H(R′
1 − |r− R′

1|),

2. − ρ1·R′4
1

3|r−R′
1|4
H(|r− R′

1| −R′
1).

The derivative of the Heaviside function H(x) is the Dirac delta function δ(x).
Thus:

∂

∂|r− R′
1|
(ρ1H(R′

1 − |r− R′
1|)) = −ρ1δ(R

′
1 − |r− R′

1|),

∂

∂|r− R′
1|

(
− ρ1 ·R′4

1

3|r− R′
1|4

H(|r− R′
1| −R′

1)

)
=

4ρ1 ·R′4
1

3|r− R′
1|5

H(|r−R′
1|−R′

1)−
ρ1 ·R′4

1

3|r− R′
1|4

δ(|r−R′
1|−R′

1).

7.1.2 Calculation of ∇|r− R′
1|

The gradient of the norm of the vector difference is:

∇|r− R′
1| =

r− R′
1

|r− R′
1|
.
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7.1.3 Final Gradient

Combining the results, we have:

∇∆ρ(|r−R′
1|) =

(
−ρ1δ(R

′
1 − |r− R′

1|) +
4ρ1 ·R′4

1

3|r− R′
1|5

H(|r− R′
1| −R′

1)−
ρ1 ·R′4

1

3|r− R′
1|4

δ(|r− R′
1| −R′

1)

)
· r− R′

1

|r− R′
1|
.

7.2 Modulus of the Gradient

Now, we calculate the modulus of the gradient:

|∇∆ρ(|r−R′
1|)| =

∣∣∣∣−ρ1δ(R
′
1 − |r− R′

1|) +
4ρ1 ·R′4

1

3|r− R′
1|5

H(|r− R′
1| −R′

1)−
ρ1 ·R′4

1

3|r− R′
1|4

δ(|r− R′
1| −R′

1)

∣∣∣∣ .
7.3 Integral of the Modulus of the Gradient

Now, we compute the integral of the modulus of the gradient over the entire volume:∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV.

7.3.1 Separation into Parts

The integral is separated into three parts:

1. The contribution from −ρ1δ(R
′
1 − |r− R′

1|),

2. The contribution from
4ρ1·R′4

1

3|r−R′
1|5
H(|r− R′

1| −R′
1),

3. The contribution from − ρ1·R′4
1

3|r−R′
1|4
δ(|r− R′

1| −R′
1).

7.3.2 Calculation of Each Part

1. Contribution from the delta function −ρ1δ(R
′
1 − |r− R′

1|):∫ ∞

0
−ρ1δ(R

′
1 − |r− R′

1|) dV = −ρ1 · 4πR′2
1 .

2. Contribution from
4ρ1·R′4

1

3|r−R′
1|5
H(|r− R′

1| −R′
1):∫ ∞

R′
1

4ρ1 ·R′4
1

3|r− R′
1|5

dV =
4ρ1 ·R′4

1

3
· 4π

∫ ∞

R′
1

1

s5
· s2 ds = 16πρ1R

′4
1

3

∫ ∞

R′
1

1

s3
ds.

The integral: ∫ ∞

R′
1

1

s3
ds =

[
− 1

2s2

]∞
R′

1

=
1

2R′2
1

.

Therefore:
16πρ1R

′4
1

3
· 1

2R′2
1

=
8πρ1R

′2
1

3
.
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3. Contribution from − ρ1·R′4
1

3|r−R′
1|4
δ(|r− R′

1| −R′
1):∫ ∞

0
− ρ1 ·R′4

1

3|r− R′
1|4

δ(|r− R′
1| −R′

1) dV = −ρ1 ·R′4
1

3R′4
1

· 4πR′2
1 = −4πρ1R

′2
1

3
.

7.3.3 Final Result

Now, combining all parts:∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV = −ρ1 · 4πR′2
1 +

8πρ1R
′2
1

3
− 4πρ1R

′2
1

3
.

Summing up:

−4πρ1R
′2
1 +

8πρ1R
′2
1

3
− 4πρ1R

′2
1

3
= −4πρ1R

′2
1 +

4πρ1R
′2
1

3
= −8πρ1R

′2
1

3
.

7.4 Conclusion

The integral of the modulus of the gradient of the function∆ρ(|r− R′
1|) is:∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV = −8πρ1R
′2
1

3
.

Thus, the final expression for the integral of the modulus of the gradient is:

∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV =

∣∣∣∣−8πρ1R
′2
1

3

∣∣∣∣ = 8πρ1R
′2
1

3
. (18)

Now, we express this in terms of Q1. Recall that:

Q1 = ρ1 ·
4

3
πR′3

1 .

Express ρ1 in terms of Q1:

ρ1 =
Q1

4
3πR

′3
1

.

Substitute ρ1 into the final expression:

8πρ1R
′2
1

3
=

8π
(

Q1
4
3πR

′3
1

)
R′2

1

3
.

Simplify:
8πQ1R

′2
1

4
3πR

′3
1 · 3

=
8πQ1R

′2
1

4πR′3
1

=
2Q1

R′
1

.
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∫ ∞

0
|∇∆ρ(|r− R′

1|)| dV =
2Q1

R′
1

, (19)

where Q1 = ρ1 · 4
3πR

′3
1 .

We obtained the same dimensionality as in the formula for

∆Wtotal(D) ≈ 2
R′

2Q

D2
,

so that, after canceling R′
2 andD

2, we get the same dimensionality as for the amount

of spatial density perturbation between two spheres, which by analogy with Coulomb’s

law has the physical meaning of force. This means that our reasoning is correct—the

integral of the gradient for the spatial density distribution from 0 to infinity shows the

force required to keep the spatial density in a compressed state.

We also see that, although the third postulate of our system—the conservation

of the spatial density quantity—is satisfied, the system is not in equilibrium and

remains perturbed. Thus, for fulfilling the fourth law of our universe—to maximize

the entropy of the spatial density distribution—it is necessary that the total perturbation

of the spatial density (from 0 to infinity) also tends to zero. However, if we make

an additional change in the density distribution outside the sphere and somehow

redistribute the spatial density outside the sphere, it will lead to a violation of the third

law, which is associated with the conservation of spatial density.

In this regard, one may assume that in order to compensate for this perturbation,

space will further curve, but now through the curvature of its metric. Only in this case

will both the third and fourth postulates of our hypothetical universe be satisfied.
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VIII TheRelationship between Spatial Density and theMass of a Compressed

Sphere

In the previous section, we obtained that∫ ∞

0
∇∆ρ(r) · dV = −2Q

R′
1

,

which is nonzero and characterizes the force that holds the spatial density sphere in

its compressed state.

Now, let us calculate the energy required to compress this sphere from S(R1) to
S(R′

1). If the magnitude of the integral of the gradient is a measure of the force,

then by integrating this force along the path we obtain the work required for the

compression of the sphere, i.e. its internal energy.

Next, we will find the relationship between the internal energy of the charge—equal

to the integral of the force necessary to compress the sphere from its initial radius

R1 to the final radius R′
1. This relationship is crucial for understanding how the

energy contained within the compressed sphere determines the curvature of space,

and consequently, the gravitational field created by the compressed region of space in

the form of a sphere, i.e. its mass.

8.1 Energy Required to Compress the Sphere from R1 to R
′
1

8.1.1 Initial Equation

We have: ∫ ∞

0
∇∆ρ(r) · 4πr2 dr = 8πρ1(R

′
1)

2

3
,

where

ρ1 = ρ0

(
R3

1

R′3
1

− 1

)
.

Substituting the value of ρ1, we obtain:∫ ∞

0
∇∆ρ(r) · 4πr2 dr = 8πρ0

3

(
R3

1

R′
1

− (R′
1)

2

)
.

8.1.2 Let Us Perform a Change of the Integration Variable from R′
1 to t, so

that our Expression Becomes:

F (t) =
8πρ0
3

(
R3

1

t
− t2

)
.

45



Here, F (t) has the physical meaning of the force that must be applied to compress

the sphere S(t) from t = R1 to t = R′
1.

8.1.3 Calculation of the Energy Required to Compress the Sphere from R1

to R′
1

Consider the sphere S(t) with radius t, which is to be compressed from radius R1 to

radius R′
1. The force that holds the sphere in its compressed state S(R′

1) is given by
the function:

F (t) =
8πρ0
3

(
R3

1

t
− t2

)
.

We need to find the energy E expended to compress the sphere from R1 to R
′
1. To

this end, we use the formula for work, which in this case is equal to the compression

energy:

E =

∫ R′
1

R1

F (t) dt.

Substituting the expression for F (t):

E =

∫ R′
1

R1

8πρ0
3

(
R3

1

t
− t2

)
dt.

We split the integral into two terms:

E =
8πρ0
3

[∫ R′
1

R1

R3
1

t
dt−

∫ R′
1

R1

t2 dt

]
.

Integrating each term with respect to t, for the first term we obtain:∫
R3

1

t
dt = R3

1 ln t,

and for the second term: ∫
t2 dt =

t3

3
.

Substituting the integration results and the limits, we obtain:

E =
8πρ0
3

[
R3

1 ln

(
R′

1

R1

)
+

1

3

(
(R′

1)
3 −R3

1

)]
. (20)

This expression represents the energy required to compress the sphere from R1 to

R′
1. This energy is equivalent to the energy contained within the compressed sphere,

which causes the curvature of space along with its metric, thereby determining the

mass of the sphere.
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8.2 Mass of the Compressed Sphere

Using Einstein’s famous equationE = mc2, we can find themassm of the compressed

sphere:

m =
E

c2
.

Substituting the expression for E:

m =
8πρ0
3c2

[
R3

1 ln

(
R′

1

R1

)
+

1

3

(
(R′

1)
3 −R3

1

)]
. (21)

This expression determines the mass of the compressed sphere based on the energy

required for its compression, which can also be interpreted as the energy that holds

the sphere in a compressed state. This result illustrates how the energy associated

with the compression of the sphere is converted into an equivalent mass, which (in

order to satisfy our fourth postulate) creates curvature of space with respect to its

metric and gives rise to effects such as mass and the gravitational field.

47



IX The Theoretical Justification of Bohr’s Postulate for the Electron in the

HydrogenAtom Based on the Imaginary Part of the Solution for the Total

Perturbation

When we obtained the expression for the internal energy of the spatial density clus

ter—which we interpret as the charge’s mass—we can proceed to write the equation

for the equilibrium of forces acting on a cluster moving around an opposite charge

and check how this motion can be related to the imaginary solution of the expression

for the total perturbation of the twocharge system. For this purpose, we restrict

ourselves to the quadratic term of our expressionWtotal, since the other corrections

are significant only whenD ∼ R′
1.

9.1 Problem Statement

Consider two clusters that create spatial density perturbations. The first cluster is

in the reference frame r1, and the second is located at a distance D from the first.

The total spatial density perturbation produced by the two clusters, relative to the

coordinate system r1, is expressed as:

Wtotalr1
≈ Q1Q2R

′
2

R′
1D

2
+ i

πQ1Q2R
′
2

2R′2
1 D

, (22)

where:

• Q1 = ρ1 V (R′
1) is the “charge” of the first cluster,

• Q2 = ρ2 V (R′
2) is the “charge” of the second cluster,

• R′
1 and R

′
2 are the radii of the clusters,

• D is the distance between the clusters.

It is necessary to find the distanceD0 and the frequency ω0 at which the centrifugal

force is balanced by the attractive force determined by the real part of the perturbation,

and the orbital frequency ω0 is related to the imaginary part of the perturbation.

9.1.1 Force Balance

The equilibrium condition (balance between the centrifugal force and the attractive

force) for the first cluster of massm1 is given by:

m1ω
2
0D0 = Re(Wtotalr1

).

Substituting the real part ofWtotalr1
:

m1ω
2
0D0 =

Q1Q2R
′
2

R′
1D

2
0

.
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9.1.2 Relation Between the Frequency and the Imaginary Part of the Pertur

bation

The orbital frequencyω0 is related to the imaginary part of the perturbation Im(Wtotalr1
)

through a proportionality constant H:

ω0 = H · Im(Wtotalr1
).

Substituting the imaginary part ofWtotalr1
:

ω0 = H · πQ1Q2R
′
2

2R′2
1 D0

.

9.1.3 Substituting ω0 into the Force Balance Equation

Substitute the expression for ω0 into the force balance condition:

m1

(
H · πQ1Q2R

′
2

2R′2
1 D0

)2

D0 =
Q1Q2R

′
2

R′
1D

2
0

.

Simplify the lefthand side:

m1 ·
H2π2Q2

1Q
2
2R

′2
2

4R′4
1 D

2
0

·D0 =
Q1Q2R

′
2

R′
1D

2
0

.

Cancel the common factors:

m1H
2π2Q1Q2R

′
2

4R′4
1 D0

=
1

R′
1D

2
0

.

Multiply both sides byD2
0:

m1H
2π2Q1Q2R

′
2

4R′4
1

D0 =
1

R′
1

.

Solving forD0:

D0 =
4R′3

1

m1H2π2Q1Q2R′
2

.

9.1.4 Expression for the Frequency ω0

SubstituteD0 into the expression for ω0:

ω0 = H · πQ1Q2R
′
2

2R′2
1 D0

.
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SubstituteD0 =
4R′3

1

m1H2π2Q1Q2R′
2
:

ω0 = H · πQ1Q2R
′
2

2R′2
1

· m1H
2π2Q1Q2R

′
2

4R′3
1

.

Simplify:

ω0 =
m1H

3π3Q2
1Q

2
2R

′2
2

8R′5
1

.

9.1.5 Final Solution

1. **DistanceD0 at Force Balance:**

D0 =
4R′3

1

m1H2π2Q1Q2R′
2

. (23)

2. **Orbital Frequency ω0:**

ω0 =
m1H

3π3Q2
1Q

2
2R

′2
2

8R′5
1

. (24)

9.2 Introducing the Constant h and Finding Dn and ωn for Lower Modes

9.2.1 Introducing the Constant h

For convenience, we introduce a constant h:

h =
2R′

1

Hπ
.

Then the coefficientH can be expressed in terms of h:

H =
2R′

1

hπ
.

9.2.2 Rewriting the Formulas forD0 and ω0 Using h

Formula forD0:

The original formula forD0 is:

D0 =
4R′3

1

m1H2π2Q1Q2R′
2

.

SubstituteH = 2R′
1

hπ :

50



D0 =
4R′3

1

m1

(
2R′

1

hπ

)2
π2Q1Q2R′

2

.

Simplify:

D0 =
4R′3

1 h
2π2

4m1R′2
1 π

2Q1Q2R′
2

=
R′

1h
2

m1Q1Q2R′
2

.

Formula for ω0:

The original formula for ω0 is:

ω0 =
m1H

3π3Q2
1Q

2
2R

′2
2

8R′5
1

.

SubstituteH = 2R′
1

hπ :

ω0 =
m1

(
2R′

1

hπ

)3
π3Q2

1Q
2
2R

′2
2

8R′5
1

.

Simplify:

ω0 =
m1Q

2
1Q

2
2R

′2
2

h3R′2
1

. (25)

9.3 Finding Dn and ωn for Lower Modes

For lower modes n, we assume that the orbital frequency ωn is related to the imaginary

part of the perturbation as follows:

nωn = H · Im(Wtotalr1
(Dn)). (26)

Substitute the imaginary part ofWtotalr1
:

nωn = H · πQ1Q2R
′
2

2R′2
1 Dn

.

Solve for ωn:

ωn =
HπQ1Q2R

′
2

2nR′2
1 Dn

.
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9.3.1 Force Balance Condition for the nth Mode

The force balance condition for the nth mode is:

m1ω
2
nDn = Re(Wtotalr1

(Dn)).

Substitute Re(Wtotalr1
(Dn)):

m1ω
2
nDn =

Q1Q2R
′
2

R′
1D

2
n

.

Substitute ωn = HπQ1Q2R
′
2

2nR′2
1 Dn

:

m1

(
HπQ1Q2R

′
2

2nR′2
1 Dn

)2

Dn =
Q1Q2R

′
2

R′
1D

2
n

.

Simplify the lefthand side:

m1 ·
H2π2Q2

1Q
2
2R

′2
2

4n2R′4
1 D

2
n

·Dn =
Q1Q2R

′
2

R′
1D

2
n

.

Cancel common factors:

m1H
2π2Q1Q2R

′
2

4n2R′4
1 Dn

=
1

R′
1D

2
n

.

Multiply both sides byD2
n:

m1H
2π2Q1Q2R

′
2

4n2R′4
1

Dn =
1

R′
1

.

Solving forDn:

Dn =
4n2R′3

1

m1H2π2Q1Q2R′
2

.

SubstituteH = 2R′
1

hπ :

Dn =
4n2R′3

1 h
2π2

4m1R′2
1 π

2Q1Q2R′
2

=
n2R′

1h
2

m1Q1Q2R′
2

.

9.3.2 Expression for ωn

SubstituteDn into the expression for ωn:

ωn =
HπQ1Q2R

′
2

2nR′2
1 Dn

.

SubstituteDn = n2R′
1h

2

m1Q1Q2R′
2
:
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ωn =
HπQ1Q2R

′
2

2nR′2
1

· m1Q1Q2R
′
2

n2R′
1h

2
.

Simplify:

ωn =
Hπm1Q

2
1Q

2
2R

′2
2

2n3R′3
1 h

2
.

SubstituteH = 2R′
1

hπ :

ωn =

(
2R′

1

hπ

)
πm1Q

2
1Q

2
2R

′2
2

2n3R′3
1 h

2
=

m1Q
2
1Q

2
2R

′2
2

n3R′2
1 h

3
.

9.3.3 Final Solution

1. **DistanceDn for the nth Mode:**

Dn =
n2R′

1h
2

m1Q1Q2R′
2

.

2. **Orbital Frequency ωn for the nth Mode:**

ωn =
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3
.

3. **Relationship betweenD0 andDn:**

Dn = n2D0. (27)

4. **Relationship between ω0 and ωn:**

ωn =
ω0

n3
. (28)
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9.4 Obtaining the Expression of Bohr’s Postulate Based on the Expressions

for theResonantOrbit Radius, the Product Vn·Dn, and theAngularMomentum

Ln of the TwoSpatialDensityCluster System

9.4.1 Orbital Speed Vn

The orbital speed Vn of the first cluster on the nth orbit is defined as:

Vn = ωn ·Dn.

Substitute the expressions for ωn andDn:

ωn =
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3
,

Dn =
n2R′

1h
2

m1Q1Q2R′
2

.

Then:

Vn =

(
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3

)
·
(

n2R′
1h

2

m1Q1Q2R′
2

)
.

Simplifying:

Vn =
m1Q

2
1Q

2
2R

′2
2 · n2R′

1h
2

n3R′2
1 h

3 ·m1Q1Q2R′
2

=
Q1Q2R

′
2 · n2R′

1h
2

n3R′2
1 h

3
.

Canceling common factors:

Vn =
Q1Q2R

′
2

nR′
1h

.

9.4.2 The Product Vn ·Dn

Now, find the product Vn ·Dn:

Vn ·Dn =

(
Q1Q2R

′
2

nR′
1h

)
·
(

n2R′
1h

2

m1Q1Q2R′
2

)
.

Simplify:

Vn ·Dn =
Q1Q2R

′
2 · n2R′

1h
2

nR′
1h ·m1Q1Q2R′

2

=
nh

m1
.

Thus:

Vn ·Dn =
nh

m1
.
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9.4.3 Angular Momentum Ln

The angular momentum Ln of the first cluster on the nth orbit is defined as:

Ln = m1VnDn.

Substitute Vn ·Dn = nh
m1

:

Ln = m1 ·
nh

m1
= nh.

9.4.4 The Relation Between Vn ·Dn and Ln

From the obtained expressions, it is clear that:

Vn ·Dn =
nh

m1
,

so that

Ln = nh = m1 · (Vn ·Dn).

Thus, the angular momentum Ln is directly proportional to the product Vn ·
Dn:

Ln = m1 · (Vn ·Dn) = nh. (29)

9.4.5 Result Summary

• The product Vn ·Dn characterizes the ”torque” of the system, related to the orbital

speed and the orbit radius. It is proportional to the mode number n and the

constant h.

• The angular momentum Ln is directly proportional to nh, which corresponds

to the quantization of angular momentum in the system exactly as postulated

empirically by Bohr for the electron in the hydrogen atom based on the emission

spectrum.

Thus, the obtained expressions confirm that the angular momentum of the system

is quantized and is related to the orbital speed and orbit radius through the constant h.
This provides theoretical proof of Bohr’s postulate based on simple considerations of

the system of spatial density clusters striving for maximum entropy, suggesting that

the approach and the underlying mathematical model deserve at least attention and

discussion.
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9.5 Total Energy En of the TwoSpatialDensityCluster System and Its Rela

tion to the Rotational Frequency ωn

9.5.1 The Total Energy of the First Cluster on the nth Orbit Consists of

Kinetic and Potential Energy:

The total energy En of the first cluster on the nth orbit is the sum of kinetic and

potential energy:

En =
1

2
m1V

2
n −

∫ ∞

Dn

Re(Wtotalr1
) dD.

9.5.2 Kinetic Energy of the First Cluster:

Tn =
1

2
m1V

2
n .

Substitute Vn = nh
m1Dn

:

Tn =
1

2
m1

(
nh

m1Dn

)2

=
1

2
m1 ·

n2h2

m2
1D

2
n

=
n2h2

2m1D2
n

.

9.5.3 Potential Energy

The potential energy is defined by the integral of the real part of the perturbation

Re(Wtotalr1
):

Un = −
∫ ∞

Dn

Re(Wtotalr1
) dD.

Substitute Re(Wtotalr1
) = Q1Q2R

′
2

R′
1D

2 :

Un = −
∫ ∞

Dn

Q1Q2R
′
2

R′
1D

2
dD.

Evaluate the integral:

Un = −Q1Q2R
′
2

R′
1

∫ ∞

Dn

1

D2
dD = −Q1Q2R

′
2

R′
1

[
− 1

D

]∞
Dn

= −Q1Q2R
′
2

R′
1Dn

.

9.5.4 Total Energy En

Substitute Tn and Un into the expression for En:

En =
n2h2

2m1D2
n

− Q1Q2R
′
2

R′
1Dn

.

SubstituteDn = n2R′
1h

2

m1Q1Q2R′
2
:

En =
n2h2

2m1
·
(
m1Q1Q2R

′
2

n2R′
1h

2

)2

− Q1Q2R
′
2

R′
1

· m1Q1Q2R
′
2

n2R′
1h

2
.
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Simplify:

En =
n2h2

2m1
· m

2
1Q

2
1Q

2
2R

′2
2

n4R′2
1 h

4
− m1Q

2
1Q

2
2R

′2
2

n2R′2
1 h

2
.

Cancel common factors:

En =
m1Q

2
1Q

2
2R

′2
2

2n2R′2
1 h

2
− m1Q

2
1Q

2
2R

′2
2

n2R′2
1 h

2
= −m1Q

2
1Q

2
2R

′2
2

2n2R′2
1 h

2
.

9.5.5 Comparison with the Rotational Frequency ωn

The rotational frequency ωn is given by:

ωn =
m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3
.

Express En in terms of ωn:

En = −m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2
.

Substitute ωn:

En = −nh

2
· m1Q

2
1Q

2
2R

′2
2

n3R′2
1 h

3
= −nh

2
· ωn.

Thus:

En = −nh

2
ωn.

9.5.6 Final Solution

1. The total energy En:

En = −m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2
. (30)

2. The relation between En and ωn:

En = −nh

2
ωn. (31)

Thus, we obtain the expected result: the total energy is proportional to the rotational

frequency ωn and the constant h. This relation is analogous to the connection between
energy and frequency in quantum systems, confirming that the total energy of the

system is related to the rotation frequency through the constant h and the mode number

n.
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9.6 Interpreting the Result: The Ratio of En to Im(Wtotalr1
(Dn))

9.6.1 Total Energy En

From the previous solution, the total energy En is given by:

En = −m1Q
2
1Q

2
2R

′2
2

2n2R′2
1 h

2
.

9.6.2 The Imaginary Part of the Perturbation Im(Wtotalr1
(Dn))

The imaginary part of the perturbationWtotalr1
at a distanceDn is given by:

Im(Wtotalr1
(Dn)) =

πQ1Q2R
′
2

2R′2
1 Dn

.

SubstituteDn = n2R′
1h

2

m1Q1Q2R′
2
:

Im(Wtotalr1
(Dn)) =

πQ1Q2R
′
2

2R′2
1

· m1Q1Q2R
′
2

n2R′
1h

2
=

πm1Q
2
1Q

2
2R

′2
2

2n2R′3
1 h

2
.

9.6.3 The Ratio En

Im(Wtotalr1
(Dn))

Now, find the ratio:

En

Im(Wtotalr1
(Dn))

=
−m1Q

2
1Q

2
2R

′2
2

2n2R′2
1 h

2

πm1Q2
1Q

2
2R

′2
2

2n2R′3
1 h

2

.

Simplifying:

En

Im(Wtotalr1
(Dn))

= −
m1Q

2
1Q

2
2R

′2
2

2n2R′2
1 h

2

πm1Q2
1Q

2
2R

′2
2

2n2R′3
1 h

2

= −R′
1

π
.

9.6.4 Final Result

1. The ratio of En to Im(Wtotalr1
(Dn)):

En

Im(Wtotalr1
(Dn))

= −R′
1

π
. (32)

Thus, the ratio of En to Im(Wtotalr1
(Dn)) is expressed in terms of the radius of the

first cluster R′
1 and the constant π, which confirms our hypothesis that the imaginary

part of the solution for the total perturbation represents the energy of the system that

determines the resonant frequency of the two spatialdensity clusters.
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9.7 The Physical Meaning of Planck’s Constant

In our model, we obtained that the constant h (analogous to Planck’s constant) is

expressed as:

h =
2R′

1

Hπ
,

where:

• R′
1 is the radius of the first cluster,

• H is the proportionality coefficient linking the rotational frequency ωn and the

imaginary part of the perturbation Im(Wtotalr1
).

ForH = 1 (i.e. the resonant frequency equals the imaginary part of the perturba

tion), the constant h becomes:

h =
2R′

1

π
.

We also established that the ratio of the total energy En of the system to the

imaginary part of the perturbation Im(Wtotalr1
) is:

En

Im(Wtotalr1
)
= 2h. (33)

This relation allows us to interpret h as the ratio of the total energy of the system

in the resonant state to its ”imaginary energy”. Thus, Planck’s constant h acquires

a deep physical meaning: it characterizes the connection between the energy of the

system and its imaginary (resonant) component.

9.8 Analogy with the Quantization of Angular Momentum

In our model, the angular momentum Ln of the first cluster is quantized according to

the rule:

Ln = nh,

where n is an integer (the mode number). This is directly analogous to Bohr’s postulate

for the quantization of the electron’s angular momentum in the hydrogen atom, where

the electron’s angular momentum is quantized as L = nh̄ (with h̄ = h/2π being the

reduced Planck’s constant).

Thus, our model not only reproduces the wellknown quantummechanical regular

ities but also offers a new perspective on the nature of Planck’s constant, linking it to

the resonant properties of the system.

The obtained result allows us to consider Planck’s constant not as an abstract con

stant, but as a physical quantity that determines the connection between the imaginary

and total energy of the twocluster system.
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Let us also recall that when we first encountered the need to introduce the normal

ization constant
R′

1

4π to satisfy our postulate of the conservation of the spatial density,

as introduced in the third section of our study, it became clear that Planck’s constant

has a very deep physical meaning: it is both the normalization constant to fulfill the

postulate of the spatial density conservation, and the constant in the quantization of

the angular momentum of the twocluster system during the rotation of one around the

other, as well as the ratio of the total energy of the twocluster system to its imaginary

energy, and it also corresponds to the electron’s size divided by 1
2π.

Many might object that the size of the electron does not equal Planck’s constant

based on measurements. I would answer that the electron’s size is beyond the limits

of measurement. Thus, the electron’s size is taken to be equal to the minimal possible

experimental measurement. Theoretical calculations predict that its size is much

smaller than commonly believed. The obtained electron size agrees well with the

formulas for the masses of the electron and proton based on the internal energy formula

derived in this article, if one considers the electron as a spatial density cluster and

the proton, on the contrary, as a depletion (expansion). This indirectly confirms our

assumptions about the nature of the internal energy of the charge, which determines

its mass. In this way, our theory closes upon itself, which, as a researcher, I find

deeply impressive.

My aim at the beginning of this investigation was to understand why the interaction

between two charges falls off as ∼ 1
D2 , and I obtained the completely unexpected

result that it actually has a logarithmic dependence, and the solution is only complex,

the consequence of which is an imaginary energy of the twocluster system that

determines their resonant frequency. At this frequency the system is in resonance

and, therefore, does not radiate energy during uniform circular motion around the first

spatial density cluster.
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X The Ratio of the Energy Required to Create Two Spatial Density Clusters

(the Internal Energy of Two Charges) to the Potential Energy of Their

Interaction. Internal Energy of Space.

Let us find the ratio of the energy expended to create two charges to the interaction

energy that will arise between them if they are placed at a distance of 10R′
1.

Recall that we have:

Q1 =
(
V (R1)− V (R′

1)
)
ρ0,

V (R1) =
4

3
πR3

1,

V (R′
1) =

4

3
π(R′

1)
3,

where:

• ρ0 is the spatial density before perturbation,

• R′
1 andR1 are the radii of the spatial density spheres, respectively after and before

the compression of the spatial density.

10.1 The Initial Expression for the Force F (t) Holding the Cluster in Its

Compressed State, as Derived in Section IV of This Article

Given:

F (t) =
8πρ0
3

(
R3

1

t
− t2

)
.

This force describes the confinement of the spatial density in its compressed state.

10.2 Compression Energy Einside

The energy expended to compress the sphere from radius R1 to R
′
1 is calculated as

the integral of F (t) with respect to t from R1 to R
′
1:

Einside =

∫ R′
1

R1

F (t) dt.

Substituting F (t):

Einside =
8πρ0
3

∫ R′
1

R1

(
R3

1

t
− t2

)
dt.

We split the integral into two terms:

Einside =
8πρ0
3

(
R3

1

∫ R′
1

R1

1

t
dt−

∫ R′
1

R1

t2 dt

)
.
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Evaluating the integrals: ∫
1

t
dt = ln |t|,

∫
t2 dt =

t3

3
.

Substituting the limits:

Einside =
8πρ0
3

(
R3

1

(
ln |R′

1| − ln |R1|
)
− (R′

1)
3 −R3

1

3

)
.

Simplifying:

Einside =
8πρ0
3

(
R3

1 ln

(
R′

1

R1

)
− (R′

1)
3 −R3

1

3

)
.

10.3 The Potential Energy of the Interaction EQ1,Q2(D)

Given:

EQ1,Q2(D) =

∫ 10R′
1

∞
WQ1,Q2 dD,

where

WQ1,Q2 =
Q2

1R
′
1

R′
1D

2
=

Q2
1

D2
.

Thus, the integral is:

EQ1,Q2(D) = Q2
1

∫ 10R′
1

∞

1

D2
dD.

Evaluating the integral: ∫
1

D2
dD = − 1

D
.

Substituting the limits:

EQ1,Q2(D) = Q2
1

(
− 1

10R′
1

−
(
− 1

∞

))
= − Q2

1

10R′
1

.

10.4 Expression for Q1

Given:

Q1 =
(
V (R1)− V (R′

1)
)
ρ0,

with

V (R1) =
4

3
πR3

1, V (R′
1) =

4

3
π(R′

1)
3.

Thus,

Q1 =
4

3
πρ0

(
R3

1 − (R′
1)

3
)
.
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10.5 The Ratio
Einside(R

′
1)

EQ1,Q2(D)

Now substitute the expressions for Einside and EQ1,Q2(D):

Einside(R
′
1)

EQ1,Q2(D)
= −

8πρ0
3

(
R3

1 ln
(
R′

1

R1

)
− (R′

1)
3−R3

1

3

)
Q2

1

10R′
1

.

Substitute Q1:

Q2
1 =

(
4

3
πρ0(R

3
1 − (R′

1)
3)

)2

=
16

9
π2ρ20(R

3
1 − (R′

1)
3)2.

Now substitute Q2
1 in the denominator:

Einside(R
′
1)

EQ1,Q2(D)
= −

8πρ0
3

(
R3

1 ln
(
R′

1

R1

)
− (R′

1)
3−R3

1

3

)
16
9 π

2ρ20(R
3
1 − (R′

1)
3)2/(10R′

1)
.

Simplify:

Einside(R
′
1)

EQ1,Q2(D)
= −8πρ0

3
· 10R′

1 · 9
16π2ρ20(R

3
1 − (R′

1)
3)2

(
R3

1 ln

(
R′

1

R1

)
− (R′

1)
3 −R3

1

3

)
.

10.6 Final Expression

Einside(R
′
1)

EQ1,Q2(D)
= − 15R′

1

2πρ0 (R3
1 − (R′

1)
3)

2

(
R3

1 ln

(
R′

1

R1

)
− (R′

1)
3 −R3

1

3

)
. (34)

10.7 Let Us Plot the Graph of the Function
Einside(R

′
1)

EQ1,Q2(D) Using the Following

Parameters:

• R1 = 10— a fixed value of R1.

• ρ0 = 1— a fixed value of ρ0.

• R′
1 varies from 1 to 20, i.e., R′

1 ∈ [1, 20].

To plot the graph, we use the range:

R′
1 = np.linspace(1, 20, 500).

After the numerical study of the graph of the function
Einside(R

′
1)

EQ1,Q2(D) , we found that there

are two regions where Espace =
∣∣∣E(R′

1)
E(D)

∣∣∣ < 1, meaning that the ratio of the energy

required to create a spatial density cluster to the interaction energy between two spatial
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Figure 4: Graph of the Ratio of the Internal Energy of Two Spatial Density Clusters to Their Interaction Potential Energy
Einside(R

′
1)

EQ1,Q2(D)

density clusters is less than 1. This implies that after their creation, the energy released

from their interaction exceeds the energy spent on their creation. Although this is

difficult to grasp intuitively, our space is structured in such a way that it can generate

energy. We too might be able to do so if we understand how to compress spatial

density and maintain it in a compressed state, as observed in elementary charges.

10.8 How to Compress Spatial Density

If space is a “quasimedium” that has density but does not possess mass, friction, or

viscosity—only a tendency toward maximum entropy—then, assuming Bernoulli’s

law applies, where higher flow speed corresponds to lower pressure, that region will

compress and the density will increase until the pressure equalizes. However, once

we compress the spatial density, it will cause a curvature in the spatial metric, leading

to the emergence of mass. Thus, the compressed region of space will acquire kinetic

energy (inertia) that will keep it in motion, i.e., in a compressed state. If we twist

the spatial density into a torus (such structures can be stable and selfsustaining) that

rotates in all degrees of freedom, we obtain a stable selfsustaining state—something

akin to a negatively charged elementary particle (electron). If this torus is stretched,

i.e., its radius is increased, we get something similar to a positively charged elementary

particle (proton). If, under high pressure, an electron and a proton are combined, a

neutron is formed; however, the mass of the neutron will be greater than the sum of
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the electron’s and proton’s masses, since its mass will also include the energy required

to compress the electron and proton, and according to our model they repel each other

at about 2.5 electron radii. Thus, we obtain the process for the formation of the basic

building blocks of our Universe—electron, neutron, and proton. In their production,

energy will be released that fills our Universe, transforming from one form to another.

Hence, the law of energy conservation for spatial density and its derived clusters does

not hold, as observed, for example, in the electron’s tunneling effect in overcoming a

potential barrier. During the formation of elementary charges, more energy is released

than the energy expended to create them, thereby triggering a selfsustaining chain

reaction for the production of matter and energy directly from space.
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XI Conclusion and Summary

1. Space Density as a Universal Property: This article proposes a hypothesis that

spatial density is a key property determining all fundamental interactions—grav

itational, electromagnetic, strong, and weak. This property is described in a

fivedimensional coordinate system, with the fifth dimension orthogonal to the

conventional spatial and temporal dimensions.

2. Theoretical Proof of Bohr’s Postulate: For the first time, a theoretical justifi

cation of Bohr’s postulate regarding the quantization of the electron’s angular

momentum in the hydrogen atom is presented. The model shows that the angular

momentum of the twospatialdensitycluster system is quantized, in accordance

with Bohr’s postulate. This confirms that the quantization of angular momentum

can be explained through the properties of spatial density—a significant step in

understanding quantum mechanics.

3. The Connection Between Charge and Mass: A novel connection between

charge and its mass is established. It is shown that the mass of a spatial density

cluster is equivalent to the energy required to compress it. This allows mass to

be interpreted as a measure of the energy that holds the cluster in its compressed

state, consistent with Einstein’s equation E = mc2.

4. Complex Solutions and Imaginary Energy: The solution for the interaction of

two spatial density clusters is found to be purely complex, with the imaginary

part determining the system’s resonant frequency. This opens new avenues for

understanding the nature and stability of quantum systems.

5. Strong and Weak Interactions: The model offers an explanation for the strong

and weak interactions through the properties of spatial density. It is shown that

strong interaction at short distances can be associated with resonant effects in the

spatial density model, while the weak interaction is related to the redistribution

of density.

6. The Physical Meaning of Planck’s Constant: In this model, Planck’s constant

h is interpreted as the ratio of the total energy of the system to its imaginary

(resonant) component. This provides a new perspective on the nature of this

fundamental constant, linking it with the resonant properties of the system.

7. Connection with Quantum Mechanics: The results demonstrate that the spatial

density model can reproduce wellknown quantummechanical phenomena such

as angular momentum quantization and the energyfrequency relation. This

confirms that the model can be used for further development of quantum theory.

8. New Research Directions: The model opens new avenues for research, such

as the study of resonant phenomena in quantum systems, explanations for dark

matter and dark energy, and the development of novel approaches to unifying

fundamental interactions.
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