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Abstract

By exploiting the computational potential of quantum computing beyond the

computational power of classical computing, an adaptive quantum algorithm of

generalized evidential combination rule (AQ-QECR) is proposed to reduce the

computational complexity of QECR in the creditability and plausibility levels

with no information loss.
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1. AQ-QECR: Adaptive Quantum Evidencial Combination Rule

The AQ-QECR algorithm consists of the following three steps.

Step 1: Initialization of the quantum states of GQBBA

In a quantum frame of discernment (QFOD) |Φ⟩ = {|ϕ1⟩ , |ϕ2⟩ , · · · , |ϕn⟩},
let QM be the GQBBA. Then the corresponding quantum superposition

state of QMh could be generated by the following rule:

|QMh⟩ =
∑

|ψj⟩∈2|Φ⟩

φh (|ψj⟩) |ψj⟩ , (1)

in which

|ψj⟩ =
n
⊗
i=1

|δia⟩ = |δnj ⟩ · · · |δ2j ⟩ |δ1j ⟩ , (2)

δij =

 1, |ϕi⟩ ∈ |ψj⟩ ,

0, |ϕi⟩ /∈ |ψj⟩ .
(3)
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Step 2: Deployment of the combination quantum circuit

Subsequent to the initialization stage, the GQBBAs will be combined

by a series of specific quantum operators, designated as UC
1 and UC

2 .

After setting up UC
1 , the density operator ρM12

of the mixed state on

the output qubits as follows:

ρM12
=

∑
|ψt⟩∈2|Φ⟩

 ∑
∩|ψj⟩=|ψt⟩
∪|ψj⟩≠|∅⟩

 ∏
1≤h≤2

|φh(|ψj⟩)|2
 |0⟩|ψt⟩⟨ψt|⟨0|


+

∑
∩|ψj⟩=|∅⟩
∪|ψj⟩=|∅⟩

 ∏
1≤h≤2

|φh(|ψj⟩)|2
|1⟩|∅⟩⟨∅|⟨1| .

(4)

The operator UC
2 uses these two inputs to obtain the desired quantum

state. After setting up UC
2 , the density operator ρM1···k of the mixed

state on the output qubits as follows:

ρM1···k =
∑

|ψt⟩∈2|Φ⟩

 ∑
∩|ψj⟩=|ψt⟩
∪|ψj⟩̸=|∅⟩

 ∏
1≤h≤k

|φh(|ψj⟩)|2
 |0⟩|ψt⟩⟨ψt|⟨0|

 (5)

+
∑

∩|ψj⟩=|∅⟩
∪|ψj⟩=|∅⟩

 ∏
1≤h≤k

|φh(|ψj⟩)|2
 |1⟩|∅⟩⟨∅|⟨1| . (6)

Step 3: Measurement of quantum superposition state

In addition, there are two different measurement functions in AQ-QECR

to meet different levels of need, the creditability level and the plausibil-

ity level. In the event that the objective is to generate a full generalized

basic belief amplitude assignment (GBBAA), the measurement opera-

tor UM
C should be deployed. The UM

C operator consists of the following

measurement operators:

UMC = {M|0⟩|∅⟩,M|0⟩|ψ1⟩, · · · ,M|0⟩|ψj⟩,M|1⟩|∅⟩,M|1⟩|ψ1⟩, · · · ,M|1⟩|ψj⟩},

(7)

M|i⟩|ψj⟩ = |i⟩|ψj⟩⟨ψj |⟨i| . (8)

Once the measurement operator UM
C has been applied, the full com-
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bined GBBAA can be generated as follows:

KG =
∑

∩|ψj⟩=|∅⟩
∪|ψj⟩≠|∅⟩

∏
1≤h≤k

|φh(ψj)|2 = Pr(|0⟩|∅⟩), (9)

M(|ψt⟩) =

∑
∩|ψj⟩=|ψt⟩
∪|ψp⟩≠|∅⟩

∏
1≤h≤k

|φh(|ψj⟩)|2

1−KG
=

Pr(|0⟩|ψt⟩)
1− Pr(|0⟩|∅⟩)

, (10)

M(|∅⟩) =

∑
∩|ψj⟩=|∅⟩
∪|ψj⟩=|∅⟩

∏
1≤h≤k

|φh(|ψj⟩)|2

1−KG
=

Pr(|1⟩|∅⟩)
1− Pr(|0⟩|∅⟩)

. (11)

If the objective is to classify directly, another measurement function,

designated UM
Pl , is proposed. The UM

Pl consists of the basic one qubit

measurement operator as follow:

UMPl = {M|0⟩,M|1⟩}, (12)

M|i⟩ = |i⟩⟨i| , (13)

After the measurement operator UM
Pl has been applied, the decision D

could be generated as follow:

D = ϕv , v = argmax
v

{Prv(|1⟩)}, (14)

where ϕn+1 represents ∅, i.e. elements outside the FOD, and Prv(|1⟩)

is the probability of getting |1⟩ when measuring the v-th qubit of the

output qubits.

2. Conclusion

Both levels of the proposed AQ-QECR could exponentially reduce the com-

putational complexity of quantum evidence combination rule [1] with no infor-

mation loss.
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