An Adaptive Quantum Evidential Combination Rule for Open Set Recognition

Yu Zhou^a, Fuyuan Xiao ^{a,*}

^aSchool of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China

Abstract

By exploiting the computational potential of quantum computing beyond the computational power of classical computing, an adaptive quantum algorithm of generalized evidential combination rule (AQ-QECR) is proposed to reduce the computational complexity of QECR in the creditability and plausibility levels with no information loss.

Keywords: Quantum evidence combination rule, Quantum algorithm, Adaptive quantum evidential combination rule, Open set recognition

1. AQ-QECR: Adaptive Quantum Evidencial Combination Rule

The AQ-QECR algorithm consists of the following three steps.

Step 1: Initialization of the quantum states of GQBBA

In a quantum frame of discernment (QFOD) $|\Phi\rangle = \{ |\phi_1\rangle, |\phi_2\rangle, \cdots, |\phi_n\rangle \}$, let $\mathbb{Q}_{\mathbb{M}}$ be the GQBBA. Then the corresponding quantum superposition state of $\mathbb{Q}_{\mathbb{M}h}$ could be generated by the following rule:

$$|\mathbb{Q}_{\mathbf{M}_{h}}\rangle = \sum_{|\psi_{j}\rangle \in 2^{|\Phi\rangle}} \varphi_{h} \left(|\psi_{j}\rangle\right) |\psi_{j}\rangle, \qquad (1)$$

in which

$$|\psi_j\rangle = \bigotimes_{i=1}^n |\delta_a^i\rangle = |\delta_j^n\rangle \cdots |\delta_j^2\rangle |\delta_j^1\rangle, \qquad (2)$$

$$\delta_j^i = \begin{cases} 1, & |\phi_i\rangle \in |\psi_j\rangle, \\ 0, & |\phi_i\rangle \notin |\psi_j\rangle. \end{cases}$$
(3)

Preprint submitted to ***

^{*}Corresponding author: Fuyuan Xiao (e-mail: doctorxiaofy@hotmail.com, xiaofuyuan@cqu.edu.cn).

Step 2: Deployment of the combination quantum circuit

Subsequent to the initialization stage, the GQBBAs will be combined by a series of specific quantum operators, designated as U_1^C and U_2^C . After setting up U_1^C , the density operator $\rho_{M_{12}}$ of the mixed state on the output qubits as follows:

$$\rho_{M_{12}} = \sum_{\substack{|\psi_t\rangle \in 2^{|\Phi\rangle} \\ \cup |\psi_j\rangle = |\psi_t\rangle}} \left(\prod_{\substack{1 \le h \le 2}} |\varphi_h(|\psi_j\rangle)|^2 \right) |0\rangle |\psi_t\rangle \langle \psi_t |\langle 0| \right) \\
+ \sum_{\substack{\cap |\psi_j\rangle = |\emptyset\rangle \\ \cup |\psi_j\rangle = |\emptyset\rangle}} \left(\prod_{\substack{1 \le h \le 2}} |\varphi_h(|\psi_j\rangle)|^2 \right) |1\rangle |\emptyset\rangle \langle \emptyset| \langle 1|.$$
(4)

The operator U_2^C uses these two inputs to obtain the desired quantum state. After setting up U_2^C , the density operator $\rho_{M_1...k}$ of the mixed state on the output qubits as follows:

$$\rho_{M_{1\dots k}} = \sum_{\substack{|\psi_t\rangle \in 2^{|\Phi\rangle} \\ \bigcup |\psi_j\rangle \neq |\psi\rangle}} \left(\prod_{\substack{1 \le h \le k}} |\varphi_h(|\psi_j\rangle)|^2 \right) |0\rangle |\psi_t\rangle \langle \psi_t |\langle 0| \right)$$
(5)

$$+\sum_{\substack{\bigcap|\psi_{j}\rangle=|\emptyset\rangle\\\cup|\psi_{j}\rangle=|\emptyset\rangle}} \left(\prod_{1\leq h\leq k} |\varphi_{h}(|\psi_{j}\rangle)|^{2}\right) |1\rangle|\emptyset\rangle\langle\emptyset|\langle1|.$$
(6)

Step 3: Measurement of quantum superposition state

In addition, there are two different measurement functions in AQ-QECR to meet different levels of need, the creditability level and the plausibility level. In the event that the objective is to generate a full generalized basic belief amplitude assignment (GBBAA), the measurement operator U_C^M should be deployed. The U_C^M operator consists of the following measurement operators:

$$U_C^M = \{\mathcal{M}_{|0\rangle|\emptyset\rangle}, \mathcal{M}_{|0\rangle|\psi_1\rangle}, \cdots, \mathcal{M}_{|0\rangle|\psi_j\rangle}, \mathcal{M}_{|1\rangle|\emptyset\rangle}, \mathcal{M}_{|1\rangle|\psi_1\rangle}, \cdots, \mathcal{M}_{|1\rangle|\psi_j\rangle}\},$$
(7)

$$\mathcal{M}_{|i\rangle|\psi_j\rangle} = |i\rangle|\psi_j\rangle\langle\psi_j|\langle i|\,. \tag{8}$$

Once the measurement operator $U^{\cal M}_C$ has been applied, the full com-

bined GBBAA can be generated as follows:

$$K_{G} = \sum_{\substack{(\mid \psi_{j} \rangle = \mid \emptyset) \\ \cup \mid \psi_{j} \rangle \neq \mid \emptyset \rangle}} \prod_{1 \le h \le k} |\varphi_{h}(\psi_{j})|^{2} = \Pr(\mid 0 \rangle \mid \emptyset \rangle), \tag{9}$$

$$M(\mid \psi_{t} \rangle) = \frac{\sum_{\substack{(\mid \psi_{j} \rangle = \mid \psi_{t} \rangle \\ \cup \mid \psi_{p} \rangle \neq \mid \emptyset \rangle}}{1 - K_{G}} |\varphi_{h}(\mid \psi_{j} \rangle)|^{2}}{1 - \Pr(\mid 0 \rangle \mid \psi_{t} \rangle)}, \tag{10}$$

$$M(|\emptyset\rangle) = \frac{\bigcap_{\substack{i \in \mathcal{J} \\ \cup |\psi_j\rangle = |\emptyset\rangle}}^{\bigcap_{\substack{i \in \mathcal{J} \\ \cup |\psi_j\rangle = |\emptyset\rangle}} 1 \le h \le k} \prod_{\substack{i \in \mathcal{I} \\ i = 1 \ i = 1$$

If the objective is to classify directly, another measurement function, designated U_{Pl}^M , is proposed. The U_{Pl}^M consists of the basic one qubit measurement operator as follow:

$$U_{Pl}^{M} = \{\mathcal{M}_{|0\rangle}, \mathcal{M}_{|1\rangle}\},\tag{12}$$

$$\mathcal{M}_{|i\rangle} = |i\rangle\langle i|\,,\tag{13}$$

After the measurement operator U_{Pl}^{M} has been applied, the decision D could be generated as follow:

$$D = \phi_v, \quad v = \arg \max\{\Pr_v(|1\rangle)\},\tag{14}$$

where ϕ_{n+1} represents \emptyset , i.e. elements outside the FOD, and $\Pr_v(|1\rangle)$ is the probability of getting $|1\rangle$ when measuring the *v*-th qubit of the output qubits.

2. Conclusion

Both levels of the proposed AQ-QECR could exponentially reduce the computational complexity of quantum evidence combination rule [1] with no information loss.

References

 F. Xiao, Quantum X-entropy in generalized quantum evidence theory, Information Sciences 643 (2023) 119177.