Angles Associated with Primes Numbers

(KHAZRI BOUZIDI FETHI)

Abstract

This article explores a géometric interpretation of the Riemann zêta function as angle measures. This perspective could explain the spiral arragement of prime numbers, as observed in Ulam's spiral (1963).

1.Connection with th Prime number Theorem :

$$P(x) = \frac{x}{Ln x} TNP$$

$$x_n = e^{n^s} \quad n \in IN^* \quad s > 1$$

$$P(e^{n^s}) = \frac{e^{n^s}}{Ln(e^{n^s})} = \frac{e^{n^s}}{n^s}.$$

$$\frac{P(e^{n^s})}{e^{n^s}} = \frac{1}{n^s}$$

$$\sum_{1}^{+\infty} \frac{P(e^{n^s})}{n^s} = \sum_{1}^{+\infty} \frac{1}{n^s} = z \hat{e}ta \ (s).$$
Conclusion 1: $z \hat{e}ta \ (s) = \sum_{1}^{+\infty} \frac{P(e^{n^s})}{n^s}.$

2. Geometric in interpetation in terms of angles

In an orthogonal coordinate system, consider the ratio $\frac{P(x)}{x}$ represents the tangente of the angle α formed betwee P(x) and the x- axis :

 $Tan(\alpha_n) = \frac{P(e^{n^s})}{e^{n^s}} = \frac{1}{n^s}$ $Tan(\alpha_n) = \alpha_n \text{ wen } \alpha_n \text{ very small}$

$$\alpha_n \simeq \frac{1}{n^s}$$

Conclusion 2 : $z \hat{e} ta(s) = \sum_{1}^{+\infty} \frac{1}{n^s} = \sum_{1}^{+\infty} \alpha_n$

The terms of zêta function can be interpred as measures of well-regular angles, which may explain why prime numbers are arranged in spiral (stansislaw Ulam, 1963)

Références

- Baranski, K., & Misiurewicz, M. (2010). Omega-limit sets for the Stein-Ulam spiral map. *Top. Proc. 36*, 145-172.