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Abstract 
Mathematical Functions exhibiting compression behavior under exponential transformations hold 
significant theoretical and practical implications. The functions 

 demonstrate a unique form of contraction 𝑠𝑖𝑛(𝑒𝑥),  𝑐𝑜𝑠(𝑒𝑥),  𝑐𝑠𝑐(𝑒𝑥),  𝑠𝑒𝑐(𝑒𝑥),  𝑡𝑎𝑛(𝑒𝑥),  𝑎𝑛𝑑 𝑐𝑜𝑡(𝑒𝑥)
along the cartesian plane, compressing their oscillatory nature as . Through rigorous 𝑥 →  ∞

mathematical analysis (as well as Graphs), it is established that the peak points of  and 𝑠𝑖𝑛(𝑒𝑥)

 remain strictly within the set , while  and  achieve local extrema 𝑐𝑜𝑠(𝑒𝑥) {1, − 1, 0} 𝑐𝑠𝑐(𝑒𝑥) 𝑠𝑒𝑐(𝑒𝑥)

solely at  without ever reaching zero. Additionally,  and  lack local extrema 𝑦 =± 1 𝑡𝑎𝑛(𝑒𝑥) 𝑐𝑜𝑡(𝑒𝑥)
entirely and exhibit vertical compression, approaching the form of asymptotic vertical structures as 

. These findings establish fundamental laws governing the behavior of 𝑥 → ∞
trigonometric-exponential compositions, contributing to a deeper understanding of their 
mathematical properties and potential applications in physics and other potential applications.  

Introduction 
Exponential trigonometric functions exhibit a unique compression effect in their oscillatory 

behavior. The functions  and  do not follow the typical wave patterns of standard sine 𝑠𝑖𝑛(𝑒𝑥) 𝑐𝑜𝑠(𝑒𝑥)
and cosine functions. Instead as x increases, their oscillations become increasingly compressed 
along the positive x-axis. Through careful analysis, I established three fundamental laws that define 

this compression effect and extend to their reciprocal functions, , as well as the 𝑐𝑠𝑐(𝑒𝑥) 𝑎𝑛𝑑 𝑠𝑒𝑐(𝑒𝑥)

tangent-based functions, . These laws describe how the highest and lowest 𝑡𝑎𝑛(𝑒𝑥) 𝑎𝑛𝑑 𝑐𝑜𝑡(𝑒𝑥)
points of these functions behave, their limits, and how their waveforms transform under 
exponential growth. 

 
 
 
 
 
 
 



The Natural Laws of Compressed Euler Wave Equations 
First law: 

“The sine or cosine wave of the function  compresses tighter and tighter as it moves through the 𝑒𝑥

positive x-axis of the Cartesian coordinate system. The highest and lowest peak points of the 
equations state that any value of x at those specific points will always equal to 1, -1 and 0” 
 

- Unlike standard sine and cosine functions, which oscillate with a fixed periodicity, the 

functions  exhibit continuous compression as x increases. Despite this 𝑠𝑖𝑛(𝑒𝑥) 𝑎𝑛𝑑 𝑐𝑜𝑠(𝑒𝑥)
compression, the fundamental peak values remain unchanged. The local maxima and 
minima of these functions will always be constrained within the range [-1,1], and their zero 
crossings remain consistent with traditional sine and cosine behavior.  

Second law: 

“The local maximums and minimums of   will only occur at , but they 𝑐𝑠𝑐(𝑒𝑥) 𝑎𝑛𝑑 𝑠𝑒𝑐(𝑒𝑥) 𝑦 =± 1
will never reach 0.” 
 

- Since Cosecant and secant are the reciprocals of sine and cosine, their maximum and 
minimum behavior depends on when sine and cosine reach their peak values. The 

compression effect of  forces their oscillations to become denser, but their local extrema 𝑒𝑥

remains at 1 and -1. However, these functions will never reach zero, as division by zero is 
undefined. 

Third law: 

“There is no local maximum or minimum in  and any points their graph reaches 𝑡𝑎𝑛(𝑒𝑥) 𝑎𝑛𝑑 𝑐𝑜𝑡(𝑒𝑥),
within the positive x-axis always result in zero. Their graphs compress so much that they approach 
the form of a vertical line as the value of x increases.” 
 

- The functions  exhibit unbounded behavior as they approach their 𝑡𝑎𝑛(𝑒𝑥) 𝑎𝑛𝑑 𝑐𝑜𝑡(𝑒𝑥)
asymptotes. Since their period compresses with increasing x, their oscillations become 
denser, creating an illusion of a near-vertical line in the graph. Unlike sine and cosine, which 
have fixed peaks, tangent and cotangent do not have local extrema because they do not 
oscillate within a bounded range. 

 
 
 
 
 
 
 
 
 
 
 



The Mathematical Proof of the Natural Laws of Compressed 
Euler wave equations 
First law: 

First, take the derivatives of the functions  to determine their 𝑓(𝑥) =  𝑠𝑖𝑛(𝑒𝑥) 𝑎𝑛𝑑 𝑔(𝑥) = 𝑐𝑜𝑠(𝑒𝑥)
critical points (Use the Chain Rule): 

 𝑓'(𝑥) =  𝑐𝑜𝑠(𝑒𝑥) · 𝑑
𝑑𝑥 𝑒𝑥 = 𝑒𝑥 𝑐𝑜𝑠(𝑒𝑥)

 𝑔'(𝑥) =− 𝑠𝑖𝑛(𝑒𝑥) · 𝑑
𝑑𝑥 𝑒𝑥 =− 𝑒𝑥 𝑠𝑖𝑛(𝑒𝑥)

Now we got the derivative of these two functions. We know that Critical points occur when 
.  𝑓'(𝑥) = 0 𝑜𝑟 𝑔'(𝑥) = 0

: 𝑆𝑒𝑡𝑡𝑖𝑛𝑔 𝑓'(𝑥) = 0

 𝑒𝑥𝑐𝑜𝑠(𝑒𝑥) = 0

Since  for all real , we must have: 𝑒𝑥 ≠ 0 𝑥

 𝑐𝑜𝑠(𝑒𝑥) = 0
And the general solutions for  are: 𝑐𝑜𝑠(𝑦) = 0

 𝑒𝑥 = π
2 + 𝑘π,  𝑘 ∈ 𝑍

Take the natural logarithm to get the value of x: 
 𝑥 = 𝑙𝑛( π

2 + 𝑘π)

We will do the same procedure with g’(x)=0: 

 − 𝑒𝑥 𝑠𝑖𝑛(𝑒𝑥) = 0

 𝑠𝑖𝑛(𝑒𝑥) = 0

,  𝑠𝑖𝑛(𝑦) = 0 −>  𝑒𝑥 = 𝑘π 𝑘 ∈ 𝑍
 𝑥 = 𝑙𝑛(𝑘π)

The two values of x are the critical points. Where k is an element of the set of integers Z. 
After that, we can now conduct a second Derivative test for the Maxima and Minima: 

 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑛𝑔 𝑓'(𝑥) 𝑎𝑔𝑎𝑖𝑛:

 𝑓''(𝑥) = 𝑒𝑥𝑐𝑜𝑠(𝑒𝑥) + 𝑒𝑥(− 𝑠𝑖𝑛(𝑒𝑥)𝑒𝑥)

 𝑓''(𝑥) = 𝑒𝑥𝑐𝑜𝑠(𝑒𝑥) − 𝑒2𝑥𝑠𝑖𝑛(𝑒𝑥)

At , we know that , so: 𝑥 = 𝑙𝑛( π
2 + 𝑘π) 𝑐𝑜𝑠(𝑒𝑥) = 0

 𝑓''(𝑥) =− 𝑒2𝑥𝑠𝑖𝑛(𝑒𝑥)

Since  alternates between 1 and -1 at these points, we check: 𝑠𝑖𝑛(𝑒𝑥)

-  𝐼𝑓 𝑠𝑖𝑛(𝑒𝑥) = 1,  𝑡ℎ𝑒𝑛 𝑓''(𝑥) =− 𝑒2𝑥 < 0 −>  𝐿𝑜𝑐𝑎𝑙 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

-  𝐼𝑓 𝑠𝑖𝑛(𝑒𝑥) =− 1,  𝑡ℎ𝑒𝑛 𝑓''(𝑥) = 𝑒2𝑥 > 0 −>  𝐿𝑜𝑐𝑎𝑙 𝑀𝑖𝑛𝑖𝑚𝑢𝑚

Thus, the local extrema of  always occur at . 𝑓(𝑥) = 𝑠𝑖𝑛(𝑒𝑥) 𝑦 =± 1
 
 
 



Doing the same thing with : 𝑔'(𝑥)

 𝑔''(𝑥) =− 𝑒𝑥𝑠𝑖𝑛(𝑒𝑥) − 𝑒2𝑥𝑐𝑜𝑠(𝑒𝑥)

 𝑔''(𝑥) =− 𝑒2𝑥𝑐𝑜𝑠(𝑒𝑥)

-  𝐼𝑓 𝑐𝑜𝑠(𝑒𝑥) = 1,  𝑡ℎ𝑒𝑛 𝑔''(𝑥) =− 𝑒2𝑥 < 0 −>  𝐿𝑜𝑐𝑎𝑙 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

-  𝐼𝑓 𝑐𝑜𝑠(𝑒𝑥) =− 1,  𝑡ℎ𝑒𝑛 𝑔''(𝑥) =  𝑒2𝑥 > 0 −>  𝐿𝑜𝑐𝑎𝑙 𝑀𝑖𝑛𝑖𝑚𝑢𝑚

 𝑇ℎ𝑢𝑠,  𝑇ℎ𝑒 𝐿𝑜𝑐𝑎𝑙 𝑒𝑥𝑡𝑟𝑒𝑚𝑎 𝑜𝑓 𝑔(𝑥) = 𝑐𝑜𝑠(𝑒𝑥) 𝑎𝑙𝑠𝑜 𝑜𝑐𝑐𝑢𝑟 𝑎𝑡 𝑦 =± 1 𝑜𝑛𝑙𝑦
This also means that both functions cross zero at specific logarithmic intervals, Proving the first law. 
 
Second law: 

 𝑓(𝑥) = 𝑐𝑠𝑐(𝑒𝑥) = 1

𝑠𝑖𝑛(𝑒𝑥)

 𝑔(𝑥) = 𝑠𝑒𝑐(𝑒𝑥) = 1

𝑐𝑜𝑠(𝑒𝑥)

 𝑓'(𝑥) =− 𝑐𝑜𝑠(𝑒𝑥)

𝑠𝑖𝑛2(𝑒𝑥)
(𝑒𝑥)

 𝑓'(𝑥) =− 𝑒𝑥 𝑐𝑜𝑠(𝑒𝑥)

𝑠𝑖𝑛2(𝑒𝑥)

 𝑔'(𝑥) = 𝑒𝑥 𝑠𝑖𝑛(𝑒𝑥)

𝑐𝑜𝑠2(𝑒𝑥)

 𝑓'(𝑥) = 0:  − 𝑒𝑥 𝑐𝑜𝑠(𝑒𝑥)

𝑠𝑖𝑛2(𝑒𝑥)
= 0

 𝑒𝑥 ≠ 0,  𝑐𝑜𝑠(𝑒𝑥) = 0
 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑐𝑜𝑠(𝑦) = 0:

 𝑒𝑥 = π
2 + 𝑘π,  𝑘 ∈ 𝑍

 𝑥 = 𝑙𝑛( π
2 + 𝑘π)

 𝑔'(𝑥) = 0:  𝑒𝑥 𝑠𝑖𝑛(𝑒𝑥)

𝑐𝑜𝑠2(𝑒𝑥)
= 0,  𝑒𝑥 ≠ 0,  𝑠𝑖𝑛(𝑒𝑥) = 0.  𝑠𝑖𝑛(𝑦) = 0:

 𝑥 = 𝑙𝑛(𝑘π)
 

- Yet again, the values of x are the critical points of the two functions . 𝑓(𝑥) 𝑎𝑛𝑑 𝑔(𝑥)
 
 
Conducting the second Derivative test for Maxima and Minima: 

 𝑓''(𝑥) =− 𝑒𝑥[ −𝑠𝑖𝑛(𝑒𝑥)𝑠𝑖𝑛2(𝑒𝑥)−2𝑐𝑜𝑠(𝑒𝑥)𝑠𝑖𝑛(𝑒𝑥)𝑐𝑜𝑠(𝑒𝑥)

𝑠𝑖𝑛4(𝑒𝑥)
] + 𝑓'(𝑥)𝑒𝑥



 𝑆𝑖𝑛𝑐𝑒 𝑐𝑜𝑠(𝑒𝑥) = 0 𝑎𝑡 𝑜𝑢𝑟 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠:

 𝑓''(𝑥) =− 𝑒𝑥( −𝑠𝑖𝑛(𝑒𝑥)𝑠𝑖𝑛2(𝑒𝑥)

𝑠𝑖𝑛4(𝑒𝑥)
)

 𝑓''(𝑥) = 𝑒𝑥 𝑠𝑖𝑛(𝑒𝑥)

𝑠𝑖𝑛2(𝑒𝑥)

 𝐴𝑡 𝑥 = 𝑙𝑛(𝑘π),  𝑤𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡 𝑠𝑖𝑛(𝑒𝑥) =± 1:

-  𝐼𝑓 𝑠𝑖𝑛(𝑒𝑥) = 1,  𝑡ℎ𝑒𝑛 𝑓''(𝑥) = 𝑒𝑥 > 0 −>  𝐿𝑜𝑐𝑎𝑙 𝑀𝑖𝑛𝑖𝑚𝑢𝑚

-  𝐼𝑓 𝑠𝑖𝑛(𝑒𝑥) =− 1,  𝑡ℎ𝑒𝑛 𝑓''(𝑥) =− 𝑒𝑥 < 0 −>  𝐿𝑜𝑐𝑎𝑙 𝑀𝑎𝑥𝑖𝑚𝑢𝑚
The Local extrema of f(x)=  always occur at y= 1. 𝑐𝑠𝑐(𝑒𝑥) ±
Same procedure with g’(x): 

 𝑔''(𝑥) = 𝑒𝑥( 𝑐𝑜𝑠(𝑒𝑥)𝑐𝑜𝑠2(𝑒𝑥)−2𝑠𝑖𝑛(𝑒𝑥)𝑐𝑜𝑠(𝑒𝑥)𝑠𝑖𝑛(𝑒𝑥)

𝑐𝑜𝑠4(𝑒𝑥)
) + 𝑔'(𝑥)𝑒𝑥

 𝑠𝑖𝑛(𝑒𝑥) = 0 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠:

 𝑔''(𝑥) = 𝑒𝑥 𝑐𝑜𝑠(𝑒𝑥)

𝑐𝑜𝑠2(𝑒𝑥)

1: 𝐴𝑡 𝑥 = 𝑙𝑛(𝑘π),  𝑐𝑜𝑠(𝑒𝑥) =±

-  𝐼𝑓 𝑐𝑜𝑠(𝑒𝑥) = 1,  𝑡ℎ𝑒𝑛 𝑔''(𝑥) = 𝑒𝑥 > 0 −>  𝐿𝑜𝑐𝑎𝑙 𝑀𝑖𝑛𝑖𝑚𝑢𝑚

-  𝐼𝑓 𝑐𝑜𝑠(𝑒𝑥) =− 1,  𝑡ℎ𝑒𝑛 𝑔''(𝑥) =− 𝑒𝑥 < 0 −>  𝐿𝑜𝑐𝑎𝑙 𝑀𝑎𝑥𝑖𝑚𝑢𝑚
The Local Extrema of g(x) always occur at y= 1. ±
 
Since  and , these functions are undefined at y=0 because division 𝑐𝑠𝑐(𝑦) = 1

𝑠𝑖𝑛 (𝑦) 𝑠𝑒𝑐(𝑦) = 1
𝑐𝑜𝑠(𝑦)

by zero is not possible. Therefore, neither  ever reach zero. Thus, proving the 𝑐𝑠𝑐(𝑒𝑥) 𝑛𝑜𝑟 𝑠𝑒𝑐(𝑒𝑥)
second law. 
Third law: 

 𝑓'(𝑥) = 𝑠𝑒𝑐2(𝑒𝑥)(𝑒𝑥)

 𝑔'(𝑥) =− 𝑐𝑠𝑐2(𝑒𝑥)(𝑒𝑥)

 𝑓'(𝑥) = 0,  𝑒𝑥 ≠ 0:

 𝑠𝑒𝑐2(𝑒𝑥) = 0

However,  is always positive and never zero. So this has no solution. Which 𝑠𝑒𝑐2(𝑦) = 1 + 𝑡𝑎𝑛2(𝑦)
also means the function f(x) has no local extrema. 

 𝑔'(𝑥) = 0 −>  − 𝑐𝑠𝑐2(𝑒𝑥)(𝑒𝑥) = 0 −>  𝑒𝑥 ≠ 0:  𝑐𝑠𝑐2(𝑒𝑥) = 0

But  is always positive and never zero. So it also has no solutions neither a 𝑐𝑠𝑐2(𝑦) = 1 + 𝑐𝑜𝑡2(𝑦)
local extrema.  
 



Since  at y=  (where k is any integer), We solve: 𝑡𝑎𝑛(𝑦) = 0 𝑘π

 𝑒𝑥 = 𝑘π −> 𝑥 = 𝑙𝑛(𝑘π)

This shows that  at infinitely many discrete points on the x-axis. Similarly, since 𝑡𝑎𝑛(𝑒𝑥) = 0
, we solve: 𝑐𝑜𝑡(𝑦) = 0 𝑎𝑡 𝑦 = π

2 = 𝑘π

 𝑒𝑥 = π
2 + 𝑘π −> 𝑥 = 𝑙𝑛( π

2 + 𝑘π)

Thus,  also occurs at infinitely many discrete points.  𝑐𝑜𝑡(𝑒𝑥) = 0
So it is confirmed. The two functions reach zero at specific points but not continuously. 
Finally, let’s prove that the graphs actually compress into a vertical line. 
 

As , the exponential term  grows extremely fast. The periodic functions  and cot(y) 𝑥 → ∞ 𝑒𝑥 𝑡𝑎𝑛(𝑦)

oscillate between  and  with period , but their inputs  are exponentially increasing. − ∞ + ∞ π 𝑒𝑥

This means that within very small changes in x, the function cycles through entire periods of 
oscillation. The frequency of these oscillations increases exponentially, making the graph appear 
compressed into a vertical pattern. Mathematically, the horizontal change required for a full period 
shrinks as x approaches infinity: 

 ∆𝑥 = 𝑙𝑛((𝑘 + 1)π) − 𝑙𝑛(𝑘π) = 𝑙𝑛( (𝑘+1)π
𝑘π ) = 𝑙𝑛(1 + 1

𝑘 )

As  𝑘 → ∞:
 𝑙𝑛(1 + 1

𝑘 ) −> 0

Thus, the change in x required to complete one oscillation vanishes, making the function visually 
collapse into vertical lines. Proving the third law. 

 

Graphical Visualization (Proof) of the Natural Laws of 
Compressed Euler Wave Equations 

 
 

 𝑠𝑖𝑛(𝑒𝑥)
 



 

 𝑐𝑜𝑠(𝑒𝑥)

 

 𝑇𝑎𝑛(𝑒𝑥)



 
 

 𝑠𝑒𝑐(𝑒𝑥)

 

 𝑐𝑠𝑐(𝑒𝑥)



 

 𝑐𝑜𝑡(𝑒𝑥)
 

Conclusion 
The Study of Compressed Euler Wave Equations has revealed fundamental mathematical structures 
that govern the behavior of trigonometric functions when their inputs are transformed 
exponentially. Through rigorous derivation, Three natural Laws have been established, each 
describing a unique and intrinsic property of these compressed waves. Together, these natural laws 
form a comprehensive mathematical framework that explains how exponentiation influences 
trigonometric waveforms. The underlying structure of these equations showcases how standard 
wave behaviors—such as periodicity, extrema, and asymptotes—are modified when subject to an 
exponential input. 
This research confirms that while the fundamental properties of trigonometric functions remain 
intact, their manifestation under exponential transformation follows a strict set of natural 
laws—laws that dictate how they contract, oscillate, and interact within the Cartesian coordinate 
system.  
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