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Abstract 

The common method of defining the stress-energy tensor is confusing and inconsistent. In 

this article, an alternative simple method for definition is presented. The connection 

between the stress-energy tensor used in general relativity and the stress tensor used in 

material mechanics contains errors, as all stresses occurring in the material cause an 

increase in the fields that bind the microscopic parts of the material and affect only the 

material's density. 

 

 

Many students, not just beginners, find it very difficult to understand the meaning and 

significance of the stress-energy tensor. However, I do not believe that the difficulty arises 

from the concept itself. The stress-energy tensor is meant to describe the state of 

spacetime in a small region around a point in terms of the presence and motion of matter 

in that region. This is straightforward if approached correctly. However, due to historical 

reasons related to the emergence and first usage of the tensor concept, a particular way 

of defining the components of the stress-energy tensor became widespread. This 

approach, which is found in most references [1], defines these components in the same 

way as the stress tensor used in the theory of mechanics of materials, known as Cauchy’s 

stress tensor. This method is beautifully illustrated on Wikipedia: 



 

 Unfortunately, this has led to much complexity and inconsistency. 

 

The concept of the stress tensor used in the theory of mechanics of materials is well-

suited for that field. In this context, time is treated separately from the three spatial 

dimensions as an independent variable. Stresses are then analyzed in terms of three 

spatial dimensions rather than four, with each stress component associated with two of 

these dimensions. This results in a 3×3 matrix of components. Each component is defined 

as follows: the component represents the stress calculated by dividing the force applied 

to the material in i direction by the area of the surface where is j dimension constant. 

 

When we try to define another quantity in four dimensions using a similar approach, it 

cannot simply be done by extending the indices and from 3 to 4, as in the common 

definition. This would create significant confusion. For example, defining a plane using a 

single index is meaningless. Consider the component, which is known to represent 

density. If the first index t indicates the direction of momentum, the second index t cannot 



be associated with a specific plane because fixing dimension t corresponds to three 

different planes: xy, xz, and yz. 

 

The correct way to define the stress-energy tensor is by generalizing the concept of 

density. Density is composed of two quantities: mass and volume. In the framework of 

relativity, which does not distinguish between the four dimensions, the mass corresponds 

to the time component of 4-momentum: 

𝒑𝒕,𝒑𝒙,𝒑𝒚,𝒑𝒛. 

 

Similarly, volume corresponds to the time component of a quantity that we may call the 

4-volume: 

𝒗𝒕, 𝒗𝒙, 𝒗𝒚, 𝒗𝒛. 

 In Cartesian coordinate we have.  

𝒗𝒕 ≡ 𝜟𝒙𝜟𝒚𝜟𝒛. 

𝒗𝒙 ≡ 𝜟𝒕𝜟𝒚𝜟𝒛. 

𝒗𝒚 ≡ 𝜟𝒙𝜟𝒕𝜟𝒛. 

𝒗𝒛 ≡ 𝜟𝒙𝜟𝒚𝜟𝒕. 

Or in general: 

𝒗𝒊 = 𝑽/𝜟𝒙𝒊 where 𝑽 ≡ 𝜟𝒕 𝜟𝒙𝜟𝒚𝜟𝒛. 

 

In non-Cartesian coordinates, we multiply the volume by the square root of the 

determinant of the metric tensor in each case. 

Thus, dividing 4-momentum by 4-volume results in a 4×4 matrix representing all 

possibilities. In this definition, the component 𝑻𝒊𝒋 represents the momentum in the i-

direction divided by the volume associated with the j-direction: 

𝑻𝒊𝒋 ≡ 𝒑𝒊/ 𝒗𝒋. 

This means that the stress-energy tensor represents density in its general sense: 

momentum divided by volume in its general sense. 



This clear definition of the stress-energy tensor aligns with the common definition in that 

some components describe the flow of momentum across certain surfaces. However, its 

advantage is that it remains valid and consistent for all components. 

 

Another important point regarding the common definition of the stress-energy tensor is 

how its components are interpreted based on theories from mechanics of materials. The 

component associated with the flow of momentum across surfaces perpendicular to 

momentum is interpreted as pressure stress. Meanwhile, components representing the 

flow of momentum parallel to a given surface are interpreted as shear stress. This is a 

clear mistake. It is true that the rates of momentum flow in perpendicular directions 

correspond to pressure, but stresses are a different matter. The similarity between 

pressure and stress is practical rather than fundamental, and this should not lead to a 

generalization in all cases and all aspects. For instance, the stress-energy tensor does not 

contain any component representing tensile stress. Similarly, shear stress cannot be 

determined solely from momentum quantities and their flow rates parallel to a given 

surface. All stresses are states associated with the fields that bind material parts together 

when exposed to external forces. These fields are represented in the stress-energy tensor 

by the component related to time (density). 

 

Imagine a rod subjected to a torque that causes it to twist around its axis. In this case, the 

rod experiences shear stress at every point. In the theory of mechanics of materials, the 

value of the shear stress appears in the component representing shear stress in the 

Cauchy’s stress tensor. While in stress-energy tensor used in general relativity, in this case, 

the only affected component in the stress-energy tensor would be the density. There 

would be no change in the momentum flowing in directions perpendicular to the rod's 

axis. For this reason, the best name for this quantity is the "material energy tensor"[2]. 

Including the concept of stress in its name only adds confusion. 
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