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Abstract

In this paper, we introduce the Tri-Quarter Theorem, a new mathematical framework for defining
a generalized complex-Cartesian-polar coordinate system on the complex plane C. We discuss the
coordinate system’s construction and prove that the boundary zone T , identified as the unit circle,
exhibits topological duality with the inner zone X− (||x⃗|| < 1) and outer zone X+ (||x⃗|| > 1), with a
trichotomy-defined structured orientation that ensures consistent directional separation. This result
unifies complex, Cartesian, and polar representations while offering new insights into topological
separation and orientation. Its development was originally intended for quark confinement and black
holes, but additional potential applications may include technologies that rely on complex numbers,
boundary behaviors, or spatial partitioning in engineering, computing, and applied sciences. We
discuss the coordinate system’s construction and the theorem’s proof. More work is needed to
further develop and apply this framework via the methods of science and mathematics.

1 Introduction

The complex plane C, viewed as a complex 1D Riemann surface, serves as a foundational structure
in mathematics and its applications, bridging algebraic, geometric, and analytic perspectives. Tra-
ditional coordinate systems, such as Cartesian and polar forms, while powerful, often treat the unit
circle as a mere boundary without fully exploiting its topological role. In this work, we address this
gap by introducing the Tri-Quarter Theorem, which establishes a generalized complex-Cartesian-
polar coordinate system with a new topological property.

Our main result demonstrates that the unit circle T is topologically dual to both the inner
zone X− (||x⃗|| < 1) and outer zone X+ (||x⃗|| > 1), with a structured orientation derived from a
trichotomy that ensures consistent directional separation across C. This framework unifies three
coordinate representations and elevates the unit circle’s role from a passive boundary to an active
separator with intrinsic properties. The significance lies in its potential to refine analyses and
computations in fields requiring complex domain partitioning.

The original ideas behind this theorem were originally intended and developed for quark confine-
ment and black holes, but additional potential applications may include sciences and technologies
that rely on complex numbers and spatial partitioning where precise boundary handling and orien-
tation can enhance modeling and design. In Section 2, we define the coordinate system, followed by
the topological zones in Section 3, and the theorem’s proof in Section 4. In Section 5, we conclude
with a discussion of its origin, strengths, and potential future applications.

2 Generalized Complex-Cartesian-Polar Coordinates

Let X = C be the complex plane and complex 1D Riemann surface with the standard topology. We
define the complex number-vector x⃗ = x⃗R+ x⃗I = xR+xI ∈ X as a position-point and position-vector
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on X, such that

x⃗R ∈ R1 × {0} = {(xR, 0) | xR ∈ R1, 0 ∈ {0}} (1)

x⃗I ∈ I1 × {0} = {(0, xI) | 0 ∈ {0}, xI ∈ I1} (2)

where I denotes imaginary (rather than irrational). It follows that x⃗ ∈ X is a Euclidean vector with
norm-amplitude ||x⃗|| and phase ⟨x⃗⟩, which are analogous tomagnitude and direction in conventional
notation. Furthermore, it follows that the orthogonal components of x⃗, namely x⃗R ∈ R1 × {0} and
x⃗I ∈ {0} × I1 as axis-constrained real and imaginary Euclidean vectors, respectively; they also
have polar coordinates (||x⃗R||, ⟨x⃗R⟩) and (||x⃗I||, ⟨x⃗I⟩), respectively, such that ||x⃗R||, ||x⃗I|| ∈ [0,∞),
⟨x⃗R⟩ ∈ {0, π}, and ⟨x⃗I⟩ ∈ {π

2 ,
3π
2 } where the trichotomy axis-constraints are

⟨x⃗⟩ ∈ (0,
π

2
) ⇐⇒ ⟨x⃗R⟩ = 0 and ⟨x⃗I⟩ =

π

2
and xR > 0 and xI > 0 (3)

⟨x⃗⟩ ∈ (
π

2
, π) ⇐⇒ ⟨x⃗R⟩ = π and ⟨x⃗I⟩ =

π

2
and xR < 0 and xI > 0 (4)

⟨x⃗⟩ ∈ (π,
3π

2
) ⇐⇒ ⟨x⃗R⟩ = π and ⟨x⃗I⟩ =

3π

2
and xR < 0 and xI < 0 (5)

⟨x⃗⟩ ∈ (
3π

2
, 2π) ⇐⇒ ⟨x⃗R⟩ = 0 and ⟨x⃗I⟩ =

3π

2
and xR > 0 and xI < 0 (6)

with the boundary cases

⟨x⃗⟩ = 0 ⇐⇒ ⟨x⃗R⟩ = 0 and ⟨x⃗I⟩ = ∄ and xR > 0 and xI = 0 (7)

⟨x⃗⟩ = π

2
⇐⇒ ⟨x⃗R⟩ = ∄ and ⟨x⃗I⟩ =

π

2
and xR = 0 and xI > 0 (8)

⟨x⃗⟩ = π ⇐⇒ ⟨x⃗R⟩ = π and ⟨x⃗I⟩ = ∄ and xR < 0 and xI = 0 (9)

⟨x⃗⟩ = 3π

2
⇐⇒ ⟨x⃗R⟩ = ∄ and ⟨x⃗I⟩ =

3π

2
and xR = 0 and xI < 0 (10)

where
xR = ||x⃗|| cos⟨x⃗⟩ and xI = ||x⃗|| sin⟨x⃗⟩ (11)

with Pythagorean form

||x⃗||2 = ||x⃗R||2 + ||x⃗I||2 = x2R + x2I , ∀x ∈ X. (12)

Thus, ∀x⃗ ∈ X \ {0} we define the 2D generalized complex-Cartesian-polar coordinate system as

(x⃗) = (x⃗R + x⃗I) = (x⃗R, x⃗I) = (xR, xI) = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩) = (||x⃗||, ⟨x⃗⟩) (13)

unifying complex, Cartesian, and polar representations. The trichotomy ensures a right-triangular
structure via Equation (12). This system forms the foundation for the topological partitioning in
Section 3.

3 Topological Zones
We use trichotomy to partition X into 3 distinct topological zones:

(1) the inner zone X−,

(2) the boundary zone T , and

(3) the outer zone X+.
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∀x⃗ ∈ X we know that precisely one of the following conditions must be satisfied:

||x⃗|| < 1 ⇐⇒ x⃗ ∈ X− (14)

||x⃗|| = 1 ⇐⇒ x⃗ ∈ T (15)

||x⃗|| > 1 ⇐⇒ x⃗ ∈ X+ (16)

where clearly X− ∩ T = T ∩X+ = X− ∩X+ = ∅ and X− ∪ T ∪X+ = X, such that

X− = {x⃗ ∈ X : ||x⃗|| < 1} (17)

T = {x⃗ ∈ X : ||x⃗|| = 1} (18)

X+ = {x⃗ ∈ X : ||x⃗|| > 1} (19)

because the boundary zone T is a unit circle and the multiplicative group of all non-zero complex
unit vectors separating X− and X+.

4 The Tri-Quarter Theorem

Here we prove the main result of this paper.

Theorem 4.1 (Tri-Quarter). In the generalized complex-Cartesian-polar coordinate system,

the boundary zone T is topologically dual to both the inner zone X− and outer zone X+, with

its trichotomy-defined structured orientation ensuring consistent directional separation across

X = C.

Proof. LetX = C be the complex 1D Riemann surface equipped with the 2D generalized complex-
Cartesian-polar coordinate system given by Equation (13). Let X−, T,X+ ⊂ X be given by Equa-
tions (14–17) so the boundary zone T separates X into the two disjoint open sets X− and X+ from
the Jordan Curve Theorem, where

X \ T = X− ∪X+ and X− ∩ T = T ∩X+ = X− ∩X+ = ∅. (20)

The coordinate system assigns phase values per Equations (3–7).
Next, we wish to show structured orientation on T . Now ∀x⃗ ∈ T we have ||x⃗|| = 1 so

x⃗ = (x⃗R + x⃗I) (21)

= (x⃗R, x⃗I) (22)

= (xR, xI) (23)

= (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩) (24)

= (1 · cos⟨x⃗⟩, 1 · sin⟨x⃗⟩) (25)

= (cos⟨x⃗⟩, sin⟨x⃗⟩), (26)

where the trichotomy of Equations (3–7) assigns the following structured orientation:

• ⟨x⃗⟩ ∈ (0, π2 ) ⇒ (0, π2 ): all points in this arc of T have a positive real direction and a positive

imaginary direction (e.g., (
√
2
2 ,

√
2
2 )).

• ⟨x⃗⟩ ∈ (π2 , π) ⇒ (π, π2 ): all points in this arc of T have a negative real direction and a positive

imaginary direction (e.g., (− 1√
2
, 1√

2
)).
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• ⟨x⃗⟩ ∈ (π, 3π2 ) ⇒ (π, 3π2 ): all points in this arc of T have a negative real direction and a

negative imaginary direction (e.g., (− 1√
2
,− 1√

2
)).

• ⟨x⃗⟩ ∈ (3π2 , 2π) ⇒ (0, 3π2 ): all points in this arc of T have a positive real direction and a

negative imaginary direction (e.g., ( 1√
2
,− 1√

2
)).

• Boundaries (e.g., ⟨x⃗⟩ = 0 ⇒ x⃗ = (1, 0), (0,∄)).

Thus, we can take any point on T to obtain a fixed phase pair; this defines a structured orientation
that serves as an additional layer of encoded information.

Having established T ’s structured orientation, we now demonstrate its simultaneous directional
duality with X− and X+. Since T separates X− and X+, we have ∂X− = T = ∂X+, where ∂X−
is the boundary of the inner zone X− and ∂X+ is the boundary of the closure of the outer zone
X+ with X+ = {x⃗ ∈ X : ||x⃗|| ≥ 1}. So we consider the following two cases:

• Case 1: To X−. As the boundary of the inner zone (and open unit disk) X−, T is
approached radially by points in X− along rays defined by ⟨x⃗⟩. So take a point x⃗ ∈
X−. Then ||x⃗|| < 1. Now take ⟨x⃗⟩ ∈ (0, π2 ) as an example, with the trichotomy ensuring
consistency across all ⟨x⃗⟩ ∈ [0, 2π). Then we have x⃗ = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩) where
x⃗R > 0 and x⃗I > 0. Then the system assigns ⟨x⃗R⟩ = 0 and ⟨x⃗I⟩ = π

2 . So from within X− as
||x⃗|| → 1−, approaching T from inside, we have x⃗ → (cos⟨x⃗⟩, sin⟨x⃗⟩) ∈ T , so it follows that
the phase assignment remains constant as ⟨x⃗R⟩ = 0 and ⟨x⃗I⟩ = π

2 . This orientation (with
a positive real direction and a positive imaginary direction) matches the inward approach
from X−.

• Case 2: To X+. As the boundary of the closure of the outer zone X+, T is approached
radially by points in X+ along rays defined by ⟨x⃗⟩. So take a point x⃗ ∈ X+. Then ||x⃗|| > 1.
Now take ⟨x⃗⟩ ∈ (0, π2 ) as an example, with the trichotomy ensuring consistency across all
⟨x⃗⟩ ∈ [0, 2π). Then we have x⃗ = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩) where x⃗R > 0 and x⃗I > 0. Then
(again) the system yields ⟨x⃗R⟩ = 0 and ⟨x⃗I⟩ = π

2 . So from within X+ as ||x⃗|| → 1+,
approaching T from outside, we have x⃗ → (cos⟨x⃗⟩, sin⟨x⃗⟩) ∈ T , so (again) it follows that
the phase assignment remains constant as ⟨x⃗R⟩ = 0 and ⟨x⃗I⟩ = π

2 . This orientation (with
a positive real direction and a positive imaginary direction) matches the outward approach
from X+.

Therefore, ∀x⃗ ∈ T , the assigned phase pair dualizes the approach: inward to X− and outward to
X+; a consistent structured orientation dual to both X− and X+. This holds across all ⟨x⃗⟩ ∈ [0, 2π)
where each point x⃗ ∈ T consistently identifies the transition from X− to X+.

Thus, T is topologically dual to X− and X+ with consistent directional separation across X. □

5 Conclusion
I originally came up with the ideas for the Tri-Quarter Theorem back in 2012 when I was working
on quark confinement [1]. In that work, the tri-quarter ideas are basically there but I never had the
opportunity and realization to fully test, refine, and finalize them into a single consolidated theorem
until now. Just recently, I started discussing these rusty old ideas with Grok v3 and it helped me
“get my quadrant intervals squared away and dialed in” because apparently I was missing a couple
things. Thanks Grok, you’re the man.

This mathematical framework’s strength resides in its unification of complex, Cartesian, and
polar coordinates with a topological twist—duality and orientation across a boundary. This makes
it versatile for:
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• Problems involving separation of domains (inner vs. outer).

• Systems with circular symmetry or boundaries.

• Analyses requiring consistent directional or phase information in the complex plane.

My hypothesis is that this mathematical framework may be further developed and applied to
help decipher great beasts like quark confinement [1] and black holes [2, 3, 4]. It could inspire or
enhance technologies that rely on complex numbers, boundary behaviors, or spatial partitioning in
engineering, computing, and applied sciences. Can it be applied to improve things like quantum
computing hardware, cryptography, machine learning, digital signal processors, medical imaging
devices, or wireless communication networks? Perhaps someday we will find out. Indeed, more work
is needed to further develop and apply this framework via the methods of science and mathematics.
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