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Abstract

In this paper, we introduce the Tri-Quarter Theorem, a new mathematical framework with a gen-
eralized complex-Cartesian-polar coordinate system on the complex plane C and a new topological
property. We discuss the coordinate system’s construction and prove that the boundary zone T ,
defined as the unit circle, separates the inner zone X− (||x⃗|| < 1) and outer zone X+ (||x⃗|| > 1),
where T exhibits topological duality with X− and X+ through a novel phase pair assignment and
structured orientation that ensures consistent directional separation across C. This result unifies
complex, Cartesian, and polar representations while offering new insights into topological separa-
tion and orientation. This framework provides a unified perspective on complex coordinates and a
tool for analyzing systems with circular symmetry or boundary-dependent behaviors, with poten-
tial applications in fields such as black hole physics, signal processing, and other areas reliant on
complex domain partitioning. We also created a software tool to animate the theorem. More work
is needed to further develop and apply this framework via the methods of science and mathematics.

1 Introduction

The complex plane C, viewed as a complex 1D Riemann surface, serves as a foundational structure
in mathematics and its applications, bridging algebraic, geometric, and analytic perspectives [1, 2].
In some contexts, traditional coordinate systems, such as Cartesian and polar forms, while powerful,
treat the unit circle as a mere boundary without fully exploiting its topological role. In this work, we
address this gap by introducing the Tri-Quarter Theorem, which establishes a generalized complex-
Cartesian-polar coordinate system while applying a trichotomy—a three zone partition of C based
on the unit circle—to the four quadrants of C to achieve a new topological property.

Our main result demonstrates that the unit circle T is topologically dual to both the inner zone
X− (||x⃗|| < 1) and outer zone X+ (||x⃗|| > 1), with a structured orientation (through a novel phase
pair assignment) that ensures consistent directional separation across C. This framework unifies
three coordinate representations and elevates the unit circle’s role from a passive boundary to an
active separator with intrinsic properties.

The significance lies in its potential to refine analyses, computations, modeling, and design in
fields that rely on complex numbers and complex domain spatial partitioning, such as offering a
nuanced approach to handling precise boundary conditions and directional properties across C. For
instance, potential applications may include deciphering the quasi-normal modes of black holes and
enhancing the computational efficiency of signal processors.

In Section 2, we define the coordinate system, followed by the structured orientation in Section 3,
the topological zones in Section 4, and the theorem’s proof in Section 5. In Section 6, we conclude
with a discussion of its origin, development, strengths, software animation tool, and potential future
applications.
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2 Generalized Complex-Cartesian-Polar Coordinate System

LetX = C be the complex plane and complex 1D Riemann surface [1, 2] with the standard topology.
For a complex number x = xR + ixI ∈ X, we define the complex vector x⃗ = x⃗R + x⃗I ∈ X as a
position-point and position-vector on X with Cartesian coordinate form

(xR, xI)Cartesian = (xR, xI)C , (1)

where C denotes Cartesian form. Vectors are denoted with arrows (e.g., x⃗) throughout this paper for
consistency. Here x⃗R and x⃗I are axis-aligned orthogonal components that we treat interchangeably
as both vectors and points in specific subsets of X. Specifically, we define

x⃗R ∈ R× {0} = {(xR, 0)C | xR ∈ R}
x⃗I ∈ {0} × I = {(0, xI)C | xI ∈ R}, (2)

where I = iR denotes the imaginary axis. Therefore, x⃗R = (xR, 0)C is a “real Euclidean 2-vector”
aligned with the real axis, and x⃗I = (0, xI)C is an “imaginary Euclidean 2-vector” aligned with the
imaginary axis. Throughout this framework, this dual interpretation allows x⃗R and x⃗I to serve as
both individual vectors and representative points within their respective sets, enabling their use
interchangeably with the complex number x and its vector representation x⃗, which they form as
a linear combination (emphasizing that x⃗ = x⃗R + x⃗I is the direct sum of these vectors). As we
will demonstrate in this paper, by subtly defining the components x⃗R and x⃗I to be orthogonal
axis-aligned vectors—instead of just scalars—we achieve some useful properties.

Throughout this paper, we consider X \{(0, 0)C} to exclude the origin where phase assignments
are undefined. This focuses our framework on regions that are critical to the main results.

Next, x⃗ ∈ X \ {(0, 0)C} is a Euclidean 2-vector with norm ||x⃗|| ∈ [0,∞) and phase arg(x⃗) =
⟨x⃗⟩ ∈ [0, 2π), which are respectively analogous to magnitude and direction in conventional notation
with polar coordinate form

(||x⃗||, ⟨x⃗⟩)Polar = (||x⃗||, ⟨x⃗⟩)P , (3)

where P denotes polar form, to give
xR = ||x⃗|| cos⟨x⃗⟩
xI = ||x⃗|| sin⟨x⃗⟩ (4)

with Pythagorean form
||x⃗||2 = x2R + x2I . (5)

(Note: From this point forward, for the sake of conciseness, for the phase angle notation of a given
x⃗ ∈ X\{(0, 0)C}, we will just say ⟨x⃗⟩ instead of arg x⃗ also.) Thus, similarly to x⃗, for the axis-aligned
orthogonal vectors x⃗R and x⃗I, we also obtain the polar coordinate form

(||x⃗R||,⟨x⃗R⟩)P
(||x⃗I||,⟨x⃗I⟩)P ,

(6)

such that ||x⃗R||, ||x⃗I|| ∈ [0,∞), ⟨x⃗R⟩ ∈ {0, π}, and ⟨x⃗I⟩ ∈ {π
2 ,

3π
2 }.

Henceforth, the Pythagorean form of Equation (5) becomes

||x⃗||2 = ||x⃗R||2 + ||x⃗I||2 = x2R + x2I . (7)

Thus, ∀x⃗ ∈ X we define the 2D generalized complex-Cartesian-polar coordinate system as

(x⃗) = (x⃗R + x⃗I) = (xR, xI)C = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩)C = (||x⃗||, ⟨x⃗⟩)P (8)

unifying complex, Cartesian, and polar representations. This unification is further enriched by the
phase pair assignments and structured orientation defined in Section 3, which provide directional
properties that are critical to our topological analysis.
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3 Structured Orientation
Building on the foundation of the unified coordinate representation in Equation (8), for any x⃗ ∈
X \ {(0, 0)C}, we now assign phase pairs to establish a structured orientation across X \ {(0, 0)C}.
We define the quadrant phase pair assignments as

I: ⟨x⃗⟩ ∈
(
0, π2

)
⇐⇒ (xR > 0)∧ (xI > 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧

(
⟨x⃗I⟩ = π

2

)
⇐⇒ (0, π2 )ϕ

II: ⟨x⃗⟩ ∈
(
π
2 , π

)
⇐⇒ (xR < 0)∧ (xI > 0)⇐⇒ (⟨x⃗R⟩ = π)∧

(
⟨x⃗I⟩ = π

2

)
⇐⇒ (π, π2 )ϕ

III: ⟨x⃗⟩ ∈
(
π, 3π2

)
⇐⇒ (xR < 0)∧ (xI < 0)⇐⇒ (⟨x⃗R⟩ = π)∧

(
⟨x⃗I⟩ = 3π

2

)
⇐⇒ (π, 3π2 )ϕ

IV: ⟨x⃗⟩ ∈
(
3π
2 , 2π

)
⇐⇒ (xR > 0)∧ (xI < 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧

(
⟨x⃗I⟩ = 3π

2

)
⇐⇒ (0, 3π2 )ϕ,

(9)

where (⟨x⃗R, ⟨x⃗I⟩)ϕ denotes the phase pair assigned by the coordinate system. Then to maintain
continuity and ensure that no boundary remains undefined, we define the axis boundary phase pair
assignments as

“East”: ⟨x⃗⟩ = 0⇐⇒ (xR > 0)∧ (xI = 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧ (⟨x⃗I⟩ = 0) ⇐⇒ (0, 0)ϕ

“North”: ⟨x⃗⟩ = π
2 ⇐⇒ (xR = 0)∧ (xI > 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧

(
⟨x⃗I⟩ = π

2

)
⇐⇒ (0, π2 )ϕ

“West”: ⟨x⃗⟩ = π⇐⇒ (xR < 0)∧ (xI = 0)⇐⇒ (⟨x⃗R⟩ = π)∧ (⟨x⃗I⟩ = 0) ⇐⇒ (π, 0)ϕ

“South”: ⟨x⃗⟩ = 3π
2 ⇐⇒ (xR = 0)∧ (xI < 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧

(
⟨x⃗I⟩ = 3π

2

)
⇐⇒ (0, 3π2 )ϕ,

(10)

where each of these assigned phase pairs uniquely corresponds to each axis direction, aligning with
⟨x⃗⟩ and maintaining a structured orientation. To establish a consistent rule for handling the edge
cases when xR = 0 or xI = 0, we can simply set ⟨x⃗R⟩ = 0 or ⟨x⃗I⟩ = 0, respectively. Thus, we derive
the following phase assignment definition rules:

• For the real component x⃗R:

– If xR > 0, then set ⟨x⃗R⟩ = 0.

– If xR = 0, then set ⟨x⃗R⟩ = 0.

– If xR < 0, then set ⟨x⃗R⟩ = π.

• For the imaginary component x⃗I:

– If xI > 0, then set ⟨x⃗I⟩ = π
2 .

– If xI = 0, then set ⟨x⃗I⟩ = 0.

– If xI < 0, then set ⟨x⃗I⟩ = 3π
2 .

The phase assignments establish a convention that aligns with the axis boundary phase pair as-
signments of Equation (10), indicates the absence of direction in a zero-magnitude component, and
maintains consistency across all points, including the axis-bound points.

These phase pair assignments and phase assignments establish a structured orientation that not
only unifies the complex-Cartesian-polar coordinate representations but also upgrades X \{(0, 0)C}
with consistent directional properties. This system forms the foundation for the topological parti-
tioning into three distinct zones in Section 4, where the unit circle’s role as a separator is empowered
by these orientations.

4 Topological Zones
We use trichotomy to partition X into three distinct topological zones:

(1) the inner zone X−,
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(2) the boundary zone T , and

(3) the outer zone X+.

∀x⃗ ∈ X we know that precisely one of the following trichotomy conditions must be satisfied

||x⃗|| < 1 ⇐⇒ x⃗ ∈ X−

||x⃗|| = 1 ⇐⇒ x⃗ ∈ T

||x⃗|| > 1 ⇐⇒ x⃗ ∈ X+,

(11)

where clearly X− ∩ T = T ∩X+ = X− ∩X+ = ∅ and X− ∪ T ∪X+ = X, such that

X− = {x⃗ ∈ X : ||x⃗|| < 1}
T = {x⃗ ∈ X : ||x⃗|| = 1}

X+ = {x⃗ ∈ X : ||x⃗|| > 1}
(12)

because the boundary zone T is a unit circle, which serves as the multiplicative group of all non-zero
complex unit vectors separating X− and X+. So the four quadrants of X are partitioned into three
zones—a “tri-quartering” if you will.

Definition 4.1 (Topological Duality). In the context of a topological space X partitioned

by a boundary zone T into disjoint open sets X− and X+ such that X \ T = X− ∪ X+ and

X− ∩X+ = ∅, we say that T is topologically dual to X− and X+ if:

(1) T = ∂X− is the topological boundary of X−, and T = ∂X+ is the topological boundary

of the closure of X+, where X+ denotes the closure of X+ in X, and

(2) T is equipped with a structured orientation, defined by a consistent assignment of direc-

tional properties (e.g., phase pairs (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ) that distinguishes the approach from

X− and X+ while maintaining separation across X.

For the upcoming theorem and proof in Section 5, this duality captures T ’s role as a separator
with an intrinsic directional structure to unify the topological and geometric properties of the
partition.

5 Tri-Quarter Theorem

Here we prove the main result of this paper.

Theorem (Tri-Quarter). In the generalized complex-Cartesian-polar coordinate system, the

boundary zone T is topologically dual to both the inner zone X− and outer zone X+, with its

structured orientation ensuring consistent directional separation across X = C.

Proof. LetX = C be the complex 1D Riemann surface equipped with the 2D generalized complex-
Cartesian-polar coordinate system given by Equation (8). Let X−, T,X+ ⊂ X be given by Equa-
tions (11–12) so the boundary zone T separates X into the two disjoint open sets X− and X+ from
the Jordan Curve Theorem [3, 4], where

X \ T = X− ∪X+ and X− ∩ T = T ∩X+ = X− ∩X+ = ∅. (13)

The system assigns phase pairs per Equations (9–10).
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First, we wish to show structured orientation on T . Now ∀x⃗ ∈ T we have ||x⃗|| = 1 so Equation
(8) gives

x⃗ = (x⃗R + x⃗I)

= (xR, xI)C

= (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩)C
= (1 · cos⟨x⃗⟩, 1 · sin⟨x⃗⟩)C
= (cos⟨x⃗⟩, sin⟨x⃗⟩)C
= (||x⃗||, ⟨x⃗⟩)P
= (1, ⟨x⃗⟩)P ,

(14)

where as per Equations (9–10) the system assigns the following structured orientation:

• Quadrant Phase Pairs

– I: ⟨x⃗⟩ ∈ (0, π2 ) =⇒ (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, π2 )ϕ: all points in this arc of T have a positive

real direction and a positive imaginary direction (e.g., (
√
2
2 ,

√
2
2 )C).

– II: ⟨x⃗⟩ ∈ (π2 , π) =⇒ (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (π, π2 )ϕ: all points in this arc of T have a negative

real direction and a positive imaginary direction (e.g., (− 1√
2
, 1√

2
)C).

– III: ⟨x⃗⟩ ∈ (π, 3π2 ) =⇒ (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (π, 3π2 )ϕ: all points in this arc of T have a

negative real direction and a negative imaginary direction (e.g., (− 1√
2
,− 1√

2
)C).

– IV: ⟨x⃗⟩ ∈ (3π2 , 2π) =⇒ (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, 3π2 )ϕ: all points in this arc of T have a

positive real direction and a negative imaginary direction (e.g., ( 1√
2
,− 1√

2
)C).

• Axis Boundary Phase Pairs

– “East”: ⟨x⃗⟩ = 0 =⇒ (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, 0)ϕ: the single point (1, 0)C on this position
of T has a positive real direction and a zero imaginary direction.

– “North”: ⟨x⃗⟩ = π
2 =⇒ (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, π2 )ϕ: the single point (0, 1)C on this position

of T has a zero real direction and a positive imaginary direction.

– “West”: ⟨x⃗⟩ = π =⇒ (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (π, 0)ϕ: the single point (−1, 0)C on this position
of T has a negative real direction and a zero imaginary direction.

– “South”: ⟨x⃗⟩ = 3π
2 =⇒ (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, 3π2 )ϕ: the single point (0,−1)C on this

position of T has a zero real direction and a negative imaginary direction.

Thus, we can take any point on T to obtain a fixed phase pair; this structured orientation on T
gives it an intrinsic directional structure with phase pairs encoding real and imaginary directions
(positive, negative, or zero) across all ⟨x⃗⟩ ∈ [0, 2π).

Having established T ’s structured orientation, we now demonstrate how this orientation distin-
guishes the approach from X− and X+. Since T separates X− and X+, we have ∂X− = T = ∂X+,
where ∂X− is the boundary of the inner zone X− and ∂X+ is the boundary of the closure of the
outer zone X+ with X+ = {x⃗ ∈ X : ||x⃗|| ≥ 1}. Now ∀x⃗ ∈ T , the assigned phase pair (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ
identifies a consistent directional label based on ⟨x⃗⟩. Specifically, the approach direction is distin-
guished by combining phase pairs with ||x⃗||’s limiting behavior as it approaches the unit radius of
T , which can be from below in X− as ||x⃗|| → 1− or from above in X+ as ||x⃗|| → 1+. So we consider
the following two cases:
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• Case 1: Inward Orientation from X−. As the boundary of the inner zone X−, T is
approached radially by vectors in X− along rays defined by ⟨x⃗⟩. So take x⃗ ∈ X−. Then
||x⃗|| < 1. Now fix ⟨x⃗⟩ ∈ (0, π2 ) as an example, with the structured orientation of Equations
(9–10) ensuring that the system’s phase pair assignment remains constant across all ⟨x⃗⟩ ∈
[0, 2π) as x⃗ → T from within X−. Then x⃗ = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩)C = (xR, xI)C where
xR > 0 and xI > 0. So the system assigns the phase pair (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, π2 )ϕ. As the
inward approach from withinX− is identified by ||x⃗|| → 1−, we have x⃗ → (cos⟨x⃗⟩, sin⟨x⃗⟩)C ∈
T , where the system’s continuously assigned phase pair (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, π2 )ϕ remains
fixed, serving as a consistent reference for the inward radial approach from X− to T . This
encodes a contractive orientation as the increasing magnitude ||x⃗|| → 1− scales toward
T ’s unit radius from below. This is a structured orientation with a consistent directional
encoding.

• Case 2: Outward Orientation to X+. As the boundary of the outer zone X+, T is
approached radially by vectors in X+ along rays defined by ⟨x⃗⟩. So take x⃗ ∈ X+. Then
||x⃗|| > 1. Now (again) fix ⟨x⃗⟩ ∈ (0, π2 ) as an example, with the structured orientation of
Equations (9–10) ensuring that the system’s phase pair assignment remains constant across
all ⟨x⃗⟩ ∈ [0, 2π) as x⃗ → T from X+. Then x⃗ = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩)C = (xR, xI)C where
xR > 0 and xI > 0. So the system assigns the phase pair (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, π2 )ϕ. As the
outward approach from X+ is identified by ||x⃗|| → 1+, we have x⃗ → (cos⟨x⃗⟩, sin⟨x⃗⟩)C ∈ T ,
where the system’s continuously assigned phase pair (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, π2 )ϕ remains fixed,
serving as a consistent reference for the outward radial approach from X+ to T . This
encodes an expansive orientation as the decreasing magnitude ||x⃗|| → 1+ scales toward
T ’s unit radius from above. This is a structured orientation with a consistent directional
encoding.

Therefore, ∀x⃗ ∈ T , the assigned phase pair (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ dualizes the approach: inward to X−
and outward to X+. The structured orientation on T distinguishes the approach from X− and X+

by maintaining consistent phase pairs that encode distinct directional behaviors (contractive from
X−, expansive from X+) across all ⟨x⃗⟩ ∈ [0, 2π).

Thus, T is topologically dual to X− and X+, with its structured orientation ensuring consistent
directional separation across X. □

6 Conclusion
This Tri-Quarter Theorem mathematical framework’s strength resides in its unification of com-
plex, Cartesian, and polar coordinates with a topological twist—duality and orientation across a
boundary. This makes it versatile for:

• Problems involving separation of domains (inner vs. outer).

• Systems with circular symmetry or boundaries.

• Analyses requiring consistent directional or phase information in the complex plane.

To animate the Tri-Quarter Theorem and give a visual depiction of the additional data layer
it serves, we created a software tool with open source code that is available online at [5]. It is a
Python script that should execute on any machine equipped with Python 3.8+. So feel free to
check that out. See Figure 1 for a screenshot of the animation.

My hypothesis is that this mathematical framework may be further developed and applied to
help decipher great beasts like quark confinement [6] and black holes [7, 8, 9]. It could inspire or
enhance technologies that rely on complex numbers, boundary behaviors, or spatial partitioning in
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engineering, computing, and applied sciences. Can it be applied to improve things like quantum
computing hardware, cryptography, machine learning, digital signal processors, medical imaging
devices, or wireless communication networks? Perhaps someday we will find out.

By formally establishing the topological duality of the unit circle with a structured orientation,
the Tri-Quarter Theorem offers a novel perspective that could inspire new methodologies. For
example, in quantum computing, where complex domain behaviors underpin qubit operations,
this framework might enhance the modeling of phase relationships across boundaries, potentially
improving gate design or error correction. Indeed, more work is needed to further develop and
apply this framework via the methods of science and mathematics.
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Author’s Note

I originally came up with the ideas for the generalized complex-Cartesian-polar coordinate system,
structured orientation, and consistent directional separation back in 2012 when I was working
on quark confinement [6]. In that work, the core ideas are basically there but I never had the
opportunity and realization to fully test, refine, and finalize them into a single consolidated theorem
and proof with legit terminology until now.

Then, just recently, upon revisiting these ideas from 2012 and focusing to further develop them,
I began to experiment with Grok v3 as an assistive tool. I wrote latex code with text and equations
to formulate my ideas into written thought experiments, and then I asked Grok to pretend to be a
mathematician and scientist, and then I fed my latex code directly into Grok and asked it to help
validate or refute my various thought experiments. I also asked it to help me look for holes or gaps
in my work. It found things that I missed and I found things that it missed. Fix it. Rinse and
repeat. Through this process, I was able to test, refine, and advance my ideas at a faster velocity.

Thus far, I’ve discovered that the key to using Grok (or any artificial intelligence) to effectively
help as an assistant—with technical disciplines like mathematics, engineering, and science—resides
in one’s technical ability to creatively question, prompt, and apply the methods of the mathematics
and science. I think of Grok as a friendly, powerful piece of heavy machinery, where I’m the operator
and it serves as a force multiplier that helps get the job done.
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Figure 1. A screenshot from our software animation tool [5] illustrating the three
topological zones and the structured orientation on the unit circle.
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