Disprove of a Proof of Euler's Formula

Author:

Sigrid M.-L. Obenland

Abstract

In 1991, Gilbert Strang published a proof of Euler's formula using polar coordinates in Calculus, Wellesley-Cambridge, p. 389. In the following we show that this alleged proof is not valid.

Comments

The so-called proof uses the fact that all complex numbers can be expressed in polar coordinates. It is assumed that $e^{ix} = r(\cos \theta + i \sin \theta)$ at least for some r and θ .

No assumptions are made for x, r and θ , especially for the relationship between x on one side and r and θ on the other side

In the following, the derivative of x for the assumed equation will be calculated. The derivative of e^{ix} with respect to x is ie^{ix} . Calculating the derivative with respect to x for r (cos $\theta + \iota \sin \theta$) yields the following equation:

 $ie^{ix} = (dr/dx) (\cos \theta + i \sin \theta) + (d\theta/dx) ir (\cos \theta + i \sin \theta)$

Using the assumption for e^{ix} as given above, this yields the equation:

 $ie^{ix} = (dr/dx) (\cos \theta + i \sin \theta) + (d\theta/dx) i e^{ix}$

Making the right and the left side of the equation equal can be achieved by setting:

(dr/dx) = 0 and $(d\theta/dx) = 1$.

Integrating the latter assumption yields a linear relationship between x and θ , which can be written as:

 $\theta = x + C$, with C being a constant.

While the former assumption holds true, the latter assumption is obviously incorrect, as demonstrated in the following by figure 1.

Figure 1

In figure 1, each unit Δx on the x-axis is associated with an angle θ in arc measure on the arc of the circle with radius r and its corresponding secant (shown in red).

From figure 1 it becomes obvious, that the secants and, thus, the angles are not in a linear relationship with x, since each secant has different length. Even if a constant C is introduced into the secant between x = 9 and x = 10, only the secants between x = 8 and x = 9 as well as between x = 9 and x = 10 can be made of equal length. The rest of the secants still remains different. Accordingly, it is obvious that a linear relationship between x and θ does not exist, and therefore, the alleged proof of Euler's formula in polar coordinates does not hold.