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Abstract

We propose an augmented precedence principle that integrates an
algorithmic information prior to favor simpler, low-entropy patterns in
the evolution of causal sets. Applied to the sequential growth dynamics
of causal set theory, this Occamistic bias naturally selects manifold-like
configurations that approximate smooth spacetimes, thereby address-
ing the entropy dominance problem. On these emergent manifolds,
the statistical accumulation of repeated quantum events gives rise to
effective quantum dynamics from which the Schroedinger equation is
derived.

This perspective shows promise of potential extension to chromo-
dynamics; and moreover, by interpreting the spacetime metric as a
quantum operator and deriving gravitational dynamics from the mini-
mization of quantum relative entropy between the intrinsic metric and
a matter-induced metric, one can establish a connection with entropic
theories of gravity.

The Occamistic Precedence framework is extended to a relational,
Universal Cognition perspective in which the decentralized cosmic ledger
"remembers" its past through local interactions, enabling observer-
dependent transitions between quantum (Schroedinger-like) and clas-
sical (Bellman-like) cognitive regimes providing physical underpinning
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to mental processes in biological and engineered systems, and poten-
tially also providing a new way of looking at "extraordinary" mental
processes such as altered states of consciousness and psi phenomena.

Overall, our work suggests that gravity, quantum mechanics, and
anomalous cognitive effects may emerge from an underlying, history-
dependent process governed by fundamental information-theoretic prin-
ciples.
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1 Introduction
The unification of quantum mechanics, gravity, and other fundamental in-
teractions into a comprehensive understanding of the universe remains one
of the most profound challenges in modern physics. Traditional theories
treat spacetime as a smooth continuum and quantum phenomena as intrinsi-
cally probabilistic; however, recent developments suggest that both quantum
mechanics and gravitational dynamics may emerge from deeper, information-
theoretic processes. In particular, causal set theory models spacetime as a
discrete collection of events partially ordered by causality, offering a promis-
ing framework in which the continuum of spacetime and effective quantum
behavior emerge statistically from the accumulation of local historical prece-
dents.

In this paper we pursue a number of speculative further developments in
this direction, arguing that an appropriately extended version of causal set
theory may have potential not only as a key to unified physics theories but
also in a broader way, helping with issues related to quantum measurement,
quantum cognition, the relation between individual and universal mental
processes, and the physical foundation of psi phenomena. Many of the high
level concepts here are similar to those in the author’s 2017 paper on ”Eu-
rycosmic” models [14] but the treatment here is more in-depth and rigorous,
leveraging causal set theory to connect these concepts with the equations of
modern physics in more specific ways.
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Building upon Smolin’s Precedence Principle [1]–which posits that re-
peated outcomes reinforce their probability–we introduce the Occamistic
Precedence Principle by integrating an algorithmic information prior that
favors simpler, low-entropy configurations. In our formulation, the proba-
bility of a given configuration is weighted by 2−K(x), where K(x) denotes
its Kolmogorov complexity. This approach naturally selects for manifold-like
causal sets, addressing the entropy dominance problem and providing a mech-
anism for the emergence of effective quantum dynamics, as demonstrated by
our derivation of the Schroedinger equation in the continuum limit (which
follows Smolin’s derivation with minor changes). This is all similar in spirit
to the "morphic pilot wave" the author outlined in a 2009 paper [15], but
expressed in terms of a more standard formulation of quantum mechanics
rather than a Bohmian pilot wave formulation.

Moving beyond the "mere" unification of quantum mechanics and gravity,
we explore how this perspective may help clarify a number of other issues
related to physics and the mind/matter interface.

Under an appropriate invariant prior, the algorithmic information mea-
sure underlying our Occamistic Precedence Principle effectively corresponds
to entropy. This observation connects our approach with entropic theories of
gravity, such as those advanced by Bianconi, where gravitational dynamics
are derived from a quantum relative entropy between the spacetime met-
ric gµν and a metric Gµν induced by matter fields. In our approach, the
same information-theoretic principle that underlies the Occamistic bias pro-
vides a microscopic foundation for an entropic action governing gravity. This
dual perspective suggests that the minimization of algorithmic complexity at
the discrete level translates, in the continuum limit, to the minimization
of relative entropy–thereby unifying gravitational phenomena with quantum
dynamics.

Further, our framework shows promise of potentially extending to en-
compass non-Abelian gauge fields and quantum chromodynamics (QCD) via
holonomy assignments and a discrete Yang-Mills action, as well as to quan-
tum measurement through the consistent histories approach.

The connection with quantum measurement leads to an interpretation in
which the decentralized cosmic ledger not only drives the emergence of effec-
tive quantum evolution (e.g., the Schroedinger equation) but also manifests
as a universal cognitive process. In this picture, the causal set "remembers"
its past through local interactions, and when an observer’s informational ca-
pacity is insufficient to resolve the full complexity of this ledger, the system
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evolves quantum mechanically, potentially giving rise to psi phenomena such
as telepathy or precognition. Conversely, when the ledger is simple relative
to the observer, a classical, Bellman-like evolution dominates.

In sum, our work here speculatively but we feel intriguingly unifies several
strands of thought–Occamistic precedence, entropic gravity, optimal control,
and Universal Cognition–suggesting that gravity, quantum mechanics, and
even anomalous psi phenomena may all be emergent from an underlying,
history-dependent process governed by fundamental information-theoretic
principles.

2 Augmenting the Precedence Principle with
Algorithmic Information Prior

Lee Smolin’s Precedence Principle is a conceptual proposal aimed at ex-
plaining how the statistical regularities observed in quantum mechanics may
emerge from an underlying historical process. At its core, the principle sug-
gests that when a quantum system encounters a situation that has occurred
before, it tends to reproduce the outcomes that were previously observed in
analogous circumstances. Conversely, if a situation is entirely novel, the sys-
tem may produce a new outcome, which then becomes a precedent for future
similar events.

This idea can be understood as an evolutionary selection mechanism for
physical laws. Specifically, the principle implies that the probability of a
particular outcome is not fixed a priori, but rather is determined by the
frequency with which that outcome has been realized in the past. If we denote
by N(oj) the number of times an outcome oj has occurred under similar
conditions, then the probability P (oj) for that outcome can be expressed as:

P (oj) =
N(oj)∑
kN(ok)

.

As the number of precedents increases, the quantum system’s behavior be-
comes more regular and predictable, leading to the emergence of effective
deterministic laws such as the Schroedinger equation in the appropriate limit.

The Precedence Principle challenges the conventional view that quan-
tum indeterminism is a fundamental feature of nature. Instead, it proposes
that the probabilistic aspects of quantum mechanics are emergent phenom-
ena, arising from the cumulative effect of historical interactions. In this
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framework, the evolution of the quantum state is not solely governed by an
intrinsic, static probability amplitude; rather, it is dynamically influenced by
the ”memory” of previous events. Thus, the wavefunction and its evolution
become reflections of the historical record of the universe.

One way to conceptualize this process is to imagine the universe as main-
taining a kind of ”cosmic ledger” in which every event leaves an imprint that
informs future dynamics 1. In scenarios where an event has a well-established
history, the associated transition probabilities become reinforced, leading to
an effective averaging out of fluctuations. This statistical accumulation of
precedents naturally gives rise to the stability observed in macroscopic quan-
tum behavior, which is described by the standard formalism of quantum
mechanics.

Moreover, Smolin’s proposal has an affinity with ideas in statistical me-
chanics, where macroscopic order emerges from the collective behavior of a
large number of microscopic states. However, unlike typical statistical en-
sembles, the Precedence Principle emphasizes the role of specific historical
sequences. It asserts that the universe ”learns” from its past in a way that
progressively filters out anomalous outcomes, allowing only those that have
been repeatedly validated to dominate the future evolution.

Critics of the Precedence Principle often raise questions regarding the
physical mechanism by which historical information is stored and how it
influences subsequent dynamics. An alternate perspective is provided by
considering the physical universe as an emergent layer over an underlying
information-processing foundation. In this context, foundational issues may
be addressed by appealing to principles from algorithmic information theory,
such as Kolmogorov complexity, which provides a quantitative measure of
the simplicity or complexity of a given pattern. In this light, outcomes with
lower algorithmic complexity (e.g. often, more symmetric outcomes) would
naturally accumulate precedents more readily than more complex ones.

In sum, Smolin’s Precedence Principle offers an intriguing approach to
bridging the gap between the inherent randomness of individual quantum
events and the deterministic evolution observed in classical physics. It posits
that quantum mechanics, including the emergence of the Schroedinger equa-
tion, may be understood as the macroscopic manifestation of a deep, history-

1Conceptually this sort of "cosmic ledger" has a lot in common with Rupert Sheldrake’s
notion of a "morphogenetic field" [6], and going further back with Charles Peirce’s [17]
notion of the "tendency to take habits" – that once a certain pattern has occurred in the
universe, it is surprisingly likely to pop up again and again.
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dependent process governing the evolution of the universe. However, our view
is that the simple initial formulation of the Precedence Principle does not go
far enough, and by extending and enhancing it one can obtain a paradigm
with much greater explanatory power.

2.1 Clarifying the (Decentralized) "Cosmic Ledger"

While we have introduced the. metaphor of a "cosmic ledger" above, we
must clarify that the idea of "memory" here is not conceived as a centralized,
monolithic ledger but rather emerges in a fully decentralized manner inherent
to the causal set structure.

In our approach, each element in the causal set carries with it a record of
its local causal past, which is naturally encoded in the partial order relation.
Traditional causal set theory explicitly forbids Closed Timelike Curves by
virtue of its acyclicity and local finiteness, and thus the notion of a global,
paradox-inducing memory does not arise. Instead, the system "remembers"
its past through local, decentralized interactions. That is, each new element
is added based solely on the structure of its causal past, and the accumulation
of such local precedents collectively determines the dynamics.

This decentralized implementation can be thought of as a distributed
ledger where each element’s local causal history serves as a "block" of in-
formation. The overall evolution is governed by the statistical properties of
these local histories rather than by a single, centralized record. In this way,
any potential logical paradoxes associated with a centralized memory are
avoided, as no element has access to or controls a global history that could
conflict with the causal order.

Thus, one maintains internal consistency by relying on the natural, de-
centralized structure of causal sets, ensuring that the system’s evolution is
determined by local interactions and historical accumulation.

In Section 7 below we will extend this perspective to encompass Closed
Timelike Curves as well.

2.2 Algorithmic Information Theory and Occam’s Ra-
zor

Algorithmic information theory provides a quantitative measure of the com-
plexity of a pattern by the length of the shortest algorithm that can generate
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it. Occam’s Razor, which favors simpler explanations, naturally aligns with
this measure. In our framework, for sake of concreteness we posit that the
recurrence probability of a pattern is proportional to 2−K , where K is its
algorithmic complexity. The conceptual points we make would remain basi-
cally unchanged if we replaced this particular probability distribution with
a different one.

2.3 The Occamistic Precedence Principle

The Occamistic Precedence Principle that we propose here based on our ear-
lier related work [15] [14] extends Smolin’s original idea by integrating an
algorithmic information prior into the framework. This addition is moti-
vated by Occam’s Razor and aims to favor simpler, more symmetric patterns
in the evolution of quantum systems. In what follows, we detail the motiva-
tion, mathematical formulation, and physical implications of this Occamistic
principle.

2.3.1 Motivation and Background

Smolin’s Precedence Principle posits that when a quantum system encounters
a situation previously experienced, it tends to reproduce the same outcomes,
with the probability of each outcome being proportional to its historical
frequency. While this idea captures an essential aspect of quantum behavior,
it does not, by itself, explain why certain patterns should be preferred over
others.

Algorithmic information theory, via the concept of Kolmogorov complex-
ity, provides a natural measure for the simplicity of a pattern. If a pattern
can be generated by a short program, it is deemed simple and, by Occam’s
Razor, more likely to be realized in nature. Thus, integrating a penalty based
on algorithmic complexity into the precedence principle biases the dynamics
toward simpler, more structured outcomes.

2.3.2 Mathematical Formulation

In our Occamistic framework, the probability of a given outcome is modified
to include an exponential penalty based on its algorithmic complexity. Let
K(o) denote the Kolmogorov complexity of an outcome o, which is defined as
the length of the shortest program that can produce o on a universal Turing
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machine. If N(o) is the number of precedents for o, we propose that the
effective probability P (o) is given by

P (o) ∝ N(o) · 2−K(o).

The factor 2−K(o) exponentially suppresses outcomes with higher complexity,
thus favoring those that are simpler.

The conceptual interpretation of the probabilities here may be confusing
at first, but essentially, the frequentist notion of counting precedents and the
Bayesian algorithmic prior should be considered as integrated in a unified
Bayesian update. That is, the algorithmic information prior P (o) ∝ 2−K(o)

(where K(o) is the Kolmogorov complexity of outcome o) represents our
initial belief before any data is observed, favoring simpler outcomes. As the
system evolves, the number of precedents N(o) for a given outcome provides
empirical evidence. In Bayesian terms, we can interpret this count as the
likelihood P (data | o) for that outcome.

By Bayes’ theorem, the posterior probability is given by

P (o | data) ∝ P (data | o)P (o).

If we take the likelihood to be proportional to the number of precedents, that
is,

P (data | o) ∝ N(o),

then the posterior becomes

P (o | data) ∝ N(o) 2−K(o).

In this way, the frequentist countN(o) is naturally interpreted as the Bayesian
likelihood, updating the Occam-inspired prior. Thus, our framework com-
bines both perspectives in a coherent manner, ensuring that the final prob-
ability for an outcome reflects both its intrinsic simplicity and its empirical
support.

2.3.3 Conclusion

The Occamistic Precedence Principle provides a quantitative mechanism for
incorporating Occam’s Razor into the dynamical evolution of quantum sys-
tems. By modifying transition probabilities to include an exponential penalty
on algorithmic complexity, the principle not only reinforces outcomes that
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have been historically prevalent but also biases the dynamics toward simpler,
more symmetric structures. We will argue below that this dual influence is
crucial for the emergence of manifold-like causal sets in discrete spacetime
models and for deriving effective quantum dynamics in the continuum limit.
We believe this framework offers a promising avenue for understanding how
classical spacetime and quantum mechanical laws may arise from fundamen-
tally discrete processes.

3 Occamistic Precedence in Causal Set Theory
Causal set theory is a discrete approach to quantum gravity in which space-
time is modeled as a locally finite partially ordered set. In this section, we
describe the fundamental principles of causal set theory, discuss sequential
growth dynamics as introduced by Rideout and Sorkin, and explain how the
integration of an algorithmic information prior via the Occamistic precedence
principle can bias the evolution toward manifold-like structures.

3.1 Fundamentals of Causal Set Theory

A causal set, denoted by C, is defined as a pair (C,≺) where C is a set of
elements and ≺ is a binary relation satisfying:

1. Transitivity: For any x, y, z ∈ C, if x ≺ y and y ≺ z, then x ≺ z.

2. Acyclicity: There exists no element x ∈ C such that x ≺ x.

3. Local Finiteness: For any pair x, z ∈ C with x ≺ z, the set {y ∈ C |
x ≺ y ≺ z} is finite.

These axioms encode the causal structure of spacetime and ensure that the
theory avoids pathological features such as Closed Timelike Curves (though
we will argue below that these can be introduced in a judicious way). In
causal set theory, the continuum of spacetime emerges only as an approxi-
mation of the underlying discrete structure.

3.2 Sequential Growth Dynamics

In the sequential growth dynamics of Rideout and Sorkin [5], a causal set
grows one element at a time according to stochastic rules that respect several
physical constraints:
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• Markov Property: The probability of adding a new element depends
solely on the current causal set, not on the specific history of its for-
mation.

• Bell Causality: The dynamics ensure that the addition of an element
is influenced only by its causal past, preventing any dependence on
future events.

• Discrete General Covariance: The probabilities are invariant under
relabeling of the causal set elements; that is, the physical content does
not depend on the specific labels assigned to events.

At each growth step, the causal set Cn−1 is extended to Cn by adding a new
element xn. The transition probability is governed by a function f(Cn−1, xn)
which encodes the above constraints.

3.3 From Discrete Causal Sets to Continuum Spacetime

Although causal sets are inherently discrete, a continuum description emerges
when the density of elements is sufficiently high. This process is formalized
through a faithful embedding :

1. Order Preservation: There exists an embedding φ : C → M such
that for any x, y ∈ C, x ≺ y if and only if φ(x) lies in the causal past
of φ(y) in the Lorentzian manifold M .

2. Density Condition: The number of elements in any spacetime vol-
ume V ⊂M is proportional to V , ensuring that the causal set approx-
imates the continuum geometry.

3.4 Challenges in Recovering Manifold-Like Structures

A significant challenge in causal set theory is that – while the emergence of
close approximations to continuous manifolds is clearly possible – the vast
majority of causal sets generated by these sequential growth rules do not
resemble the smooth, continuum-like spacetimes observed in nature. Two
major issues arise:

1. Entropy Dominance: Although the number of causal sets that ap-
proximate a continuum manifold is nonzero, they are overwhelmingly
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outnumbered by non-manifold-like configurations. Without additional
constraints, the random growth process is statistically unlikely to yield
a causal set that can be faithfully embedded in a Lorentzian manifold.

2. Geometric Reconstruction: Even when a causal set exhibits some
manifold-like features, reconstructing the metric properties (such as
distances and curvature) is nontrivial. Faithful embedding requires
that the causal set not only possess the correct causal order but also
satisfy a uniform density condition relative to the continuum volume.

This is where an Occam bias can help. If one has a bias toward low-
complexity (manifold-like) causal sets, as enforced by the algorithmic infor-
mation prior, implies that in the large n limit the discrete structure effec-
tively approximates a smooth spacetime. This sets the stage for applying
the methods of continuum quantum mechanics, and exploring routes for the
emergence of realistic gravitational dynamics.

3.5 Incorporating the Algorithmic Information Prior in
the Sequential Growth Process

Consider a causal set Cn−1 with n− 1 elements that is extended to Cn by the
addition of a new element xn. In standard sequential growth models, the tran-
sition probability is governed by a function f (Cn−1, xn) which enforces phys-
ical constraints such as Bell causality and discrete general covariance. We
modify this probability by incorporating the algorithmic information prior
as follows:

P (Cn | Cn−1) ∝ f (Cn−1, xn) · 2−K(Cn),

where K (Cn) is the Kolmogorov complexity of the new causal set. A nor-
malization constant Z is introduced so that the total probability sums to
unity:

P (Cn | Cn−1) =
f (Cn−1, xn) · 2−K(Cn)

Z
,

with
Z =

∑
Cn

f (Cn−1, xn) · 2−K(Cn).
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3.6 Emergence of Manifold-Like Causal Sets

Manifold-like causal sets are characterized by regular patterns and symme-
tries (e.g., translational and rotational invariance) that enable their descrip-
tion by succinct algorithms. For instance, a causal set that approximates
Minkowski space may be generated by a simple algorithm specifying the
spacetime dimension, a uniform sprinkling density, and a random number
generator seed. Consequently, such a causal set has a relatively low K (C)
compared to a generic causal set with no regular structure.

The integration of the algorithmic information prior biases the sequential
growth process toward these low-complexity, manifold-like configurations.
Over many iterations, it seems likely, the exponential suppression of high-
complexity outcomes leads to a higher likelihood of obtaining causal sets that
can be faithfully embedded into a Lorentzian manifold. In this way, the Oc-
camistic precedence principle provides a mechanism to overcome the entropy
dominance problem and aligns the growth dynamics with the emergence of
a continuum spacetime.

3.7 Implications and Outlook

The application of the Occamistic precedence principle to causal set theory,
along the lines we’ve roughly sketched here, is clearly needful of much more
in-depth technical attention. However, it’s easy to see that if the details work
out suitably, the approach has some potentially significant implications:

• Selection Mechanism: It introduces a natural selection mechanism
based on algorithmic simplicity, guiding the growth of causal sets to-
wards those that are physically relevant.

• Historical Learning: The principle suggests that the universe ”re-
members” its past configurations, and that repeated occurrences rein-
force the emergence of classical spacetime structures.

• Foundation for Continuum Limits: By favoring manifold-like causal
sets, the approach helps in establishing a bridge between the discrete
underlying structure and the continuous spacetime observed at macro-
scopic scales.

Along with more fully formalizing the core concept, future research in this
direction might focus on developing practical approximations for K(C), refin-
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ing numerical simulations of the growth dynamics, and exploring how these
ideas can be extended to incorporate matter fields and gauge interactions.
Such efforts are essential for establishing the viability of this framework as a
foundation for quantum gravity.

4 Derivation of the Schroedinger Equation
In this section, we sketch the derivation of the Schroedinger equation from
the discrete dynamics of causal sets under the influence of the Occamistic
precedence principle. Our aim is to show how the statistical accumulation
of historical precedents, combined with a bias toward algorithmic simplicity,
leads to a continuum limit that reproduces the familiar quantum dynamics.

The treatment here closely follows Smolin’s derivation of the Schroedinger
equation from the ordinary precedence principle fairly closely; the key dif-
ference lies in the incorporation of an algorithmic information prior that
explicitly favors simpler, lower-complexity (i.e., Occamistic) causal set con-
figurations. In Smolin’s work, the emergence of quantum dynamics is driven
by the accumulation of historical precedents; that is, repeated outcomes rein-
force their own probability. In our approach, however, we modify the transi-
tion probabilities by weighting them with an exponential factor derived from
Kolmogorov complexity. This addition biases the growth dynamics toward
configurations that are easier to describe, including manifold-like and sym-
metric ones. Our task here is basically to make clear making this tweak to
the Precedence Principle and adopting the causal-set setting does not mess
up Smolin’s derivation of the Schroedinger equation from precedence.

4.1 From Causal Sets to Schroedinger

Causal set theory models spacetime as a discrete structure, where the causal
relations among elements encode the geometry of spacetime. In the sequential
growth framework, a causal set Cn is built step-by-step by adding elements
according to transition probabilities that respect causal order, local finiteness,
and general covariance. The Occamistic precedence principle introduces an
algorithmic information prior into these probabilities, favoring simpler (low-
complexity) configurations.

The key idea is that as the causal set grows, the dynamics become biased
towards configurations that can be described succinCTCy. These manifold-
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like causal sets, when taken in the continuum limit, allow for a faithful em-
bedding into a smooth Lorentzian manifold. On such a background, one can
define fields and, in particular, quantum states whose evolution is governed
by an effective Hamiltonian. Under certain assumptions, this evolution takes
the form of the Schroedinger equation.

With this in mind, we proceed to sketch the derivation of the Schroedinger
equation from the discrete dynamics:

1. Quantum State Representation: Consider a quantum system whose
state is defined on the causal set. Let {|Cn〉} be a basis for the Hilbert
space, where each basis state corresponds to a causal set configuration
with n elements. The overall state can be written as

|Ψ(t)〉 =
∑
n

ψ(Cn, t)|Cn〉.

2. Time Evolution Operator: The evolution over a short time interval
∆t is governed by a time evolution operator Û(t, t+ ∆t) such that

|Ψ(t+ ∆t)〉 = Û(t, t+ ∆t)|Ψ(t)〉.

Assuming that the evolution operator is unitary, it can be expanded as

Û(t, t+ ∆t) ≈ I − i

~
Ĥ∆t,

where Ĥ is the Hamiltonian operator encoding the dynamics of the
system.

3. Transition Amplitudes and Precedents: Each transition from
state |Cn〉 to |Cm〉 is associated with an amplitude 〈Cm|Û(t, t+ ∆t)|Cn〉.
The Occamistic precedence principle implies that these amplitudes are
influenced by the number of precedents for the transition as well as
by the complexity of the resulting causal set. In particular, if we as-
sume that the number of precedents N(TCn→Cm) is proportional to the
squared magnitude of the amplitude, then we have

N(TCn→Cm) ∝
∣∣∣〈Cm|Û(t, t+ ∆t)|Cn〉

∣∣∣2 .
This assumption is motivated by its natural alignment with the Born
rule, which states that the probability of an outcome is given by the
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square of its amplitude. Within our framework, the historical frequency
of an outcome serves as a measure of its probability, and by linking this
frequency to the amplitude squared, we capture the idea that outcomes
that have occurred repeatedly (and are thus simpler and more robust)
are more likely to be reproduced. In this way, the assumption effectively
incorporates the reinforcement of well-established precedents into the
dynamics, providing a bridge between the history-dependent process
and standard quantum mechanics.

4. Discrete Time Evolution: Expanding the state at time t + ∆t in
the causal set basis, we obtain

ψ(Cm, t+ ∆t) =
∑
Cn

〈Cm|Û(t, t+ ∆t)|Cn〉ψ(Cn, t).

Substituting the expansion of Û(t, t+ ∆t) gives

ψ(Cm, t+ ∆t) ≈ ψ(Cm, t)−
i∆t

~
∑
Cn

〈Cm|Ĥ|Cn〉ψ(Cn, t).

5. Taking the Continuum Limit: Rearranging and taking the limit as
∆t→ 0, we obtain the discrete version of the Schroedinger equation:

i~
ψ(Cm, t+ ∆t)− ψ(Cm, t)

∆t
=
∑
Cn

〈Cm|Ĥ|Cn〉ψ(Cn, t).

In the continuum limit, where the discrete structure approximates a
smooth manifold and the differences converge to derivatives, this equa-
tion approaches the familiar form:

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t),

where x denotes a point on the emergent manifold.

4.2 Ensuring Unitarity and Conservation of Probability

A crucial requirement for any quantum evolution is unitarity, which guar-
antees the conservation of probability. In our derivation, the Hamiltonian
operator Ĥ must be Hermitian, i.e.,

Ĥ† = Ĥ.
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This property ensures that the time evolution operator Û(t, t+∆t) is unitary:

Û †(t, t+ ∆t)Û(t, t+ ∆t) = I.

The incorporation of the algorithmic information prior does not alter unitar-
ity, as it only biases the statistical weight of different causal set transitions
without affecting the overall conservation laws.

4.3 Implications for the Quantum-Classical Transition

The derivation outlined above shows how the discrete dynamics of causal
sets, under the influence of the Occamistic precedence principle, give rise
to an effective Schroedinger equation in the continuum limit. In this pic-
ture, quantum mechanics emerges as a statistical average over many discrete,
history-dependent transitions. As the number of elements increases and the
causal set becomes dense, fluctuations average out and the system behaves
in a manner that is both deterministic and unitary, consistent with classical
quantum mechanics.

Furthermore, the same principles that lead to the stabilization of quan-
tum probabilities also pave the way for decoherence. As repeated events
reinforce certain transitions (i.e., precedents accumulate), the interference
between distinct histories becomes negligible. This natural suppression of
interference is key to understanding the emergence of classical behavior from
the underlying quantum substrate.

5 Potential Extension to Quantum Chromody-
namics

The foundational work on the Precedence Principle pertains to standard
quantum mechanics; however, the concepts and core mathematics are equally
applicable in more fully fleshed out physics contexts, such as quantum chro-
modynamics (QCD), the theory that describes the strong nuclear force, gov-
erning the interactions between quarks and gluons through a non-Abelian
SU(3) gauge symmetry.

Incorporating QCD into the causal set framework presents several chal-
lenges due to the non-Abelian nature of the gauge group and the complexities
of representing continuous gauge fields on a discrete spacetime. However we
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believe these challenges can be surmounted. In the approach briefly sketched
here, the Occamistic precedence principle is extended to include not only the
causal set structure but also the configuration of gauge fields.

5.1 Representing Gauge Fields on Causal Sets

To embed gauge fields within causal set theory, we assign SU(3) group ele-
ments to the links between elements. This is analogous to the formulation
used in lattice gauge theory:

Uxy ∈ SU(3),

where Uxy represents the parallel transport of the gauge field from element x
to y. Gauge invariance is maintained by demanding that under a local SU(3)
transformation G(x), the link variable transforms as

Uxy → G(x)Uxy G
†(y).

5.2 Discrete Yang-Mills Action

The dynamics of the gauge fields are governed by a discrete analogue of the
Yang-Mills action. For a causal set, this action can be written as a sum over
minimal loops (or plaquettes) in the set:

Sdiscrete
YM = −β

4

∑
plaquettes

Tr
(
I − Uplaquette

)
,

where β is related to the gauge coupling and

Uplaquette = UxyUyzUzwUwx

is the ordered product of SU(3) matrices around a minimal loop. This dis-
crete action retains the essential features of the continuum Yang-Mills action
and preserves local gauge invariance.

5.3 Algorithmic Complexity and Gauge Field Configu-
rations

In our framework, the algorithmic information prior is extended to gauge
field configurations. The total algorithmic complexity Ktotal of a causal set
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with an associated gauge field is decomposed as

Ktotal(C) = Kcausal(C) +Kgauge(C),

where Kgauge(C) quantifies the complexity of the gauge field configuration.
Simpler gauge configurations, such as uniform fields or those exhibiting high
symmetry, have lower complexity and are thereby exponentially favored in
the sequential growth dynamics:

P (C) ∝ 2−Ktotal(C).

This bias increases the likelihood that the causal set, along with its gauge
field configuration, approximates a continuum that supports QCD dynamics.

5.4 Emergence of Continuum QCD

In the continuum limit, as the causal set becomes dense and is faithfully
embedded in a Lorentzian manifold, the discrete Yang-Mills action converges
to the standard continuum action:

lim
ρ→∞

Sdiscrete
YM = SYM = −1

4

∫
d4xF a

µνF
µν
a ,

where F a
µν is the field strength tensor of the gluon field. The transition from

discrete to continuum dynamics allows the derivation of the classical Yang-
Mills equations,

DµF a
µν = 0,

thus reproducing the essential behavior of QCD. In addition, by introducing
fermionic degrees of freedom (representing quarks) into the causal set, one
can extend the framework to include gauge-invariant interaction terms, such
as

Hint = g
∑
x→y

(
ψ̄(x)Uxy ψ(y) + h.c.

)
,

where ψ(x) are fermionic operators and g is the gauge coupling constant.

5.5 Asymptotic Freedom and Confinement

A successful theory of QCD must reproduce asymptotic freedom and con-
finement. In our discrete framework, asymptotic freedom may be reflected
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in the behavior of the effective coupling at high energies, where the discrete
nature of the causal set leads to a running coupling constant that decreases
at short distances. Confinement, on the other hand, can be studied by an-
alyzing Wilson loops on the causal set, where an area-law behavior in the
expectation value of large Wilson loops would indicate that color charges are
confined.

6 Relation to Entropic Conceptions of Gravity
One of the major challenges in modern theoretical physics is the unification
of quantum mechanics (including its extensions such as chromodynamics)
and the general-relativistic approach to gravitation. Causal sets provide a
simple and abstract underlayer, which conceptually has potential to explain
the emergence of these various theories as approximations to the same infor-
mational substrate.

One way to cash out this potential is to integrate the ”Gravity from
Entropy” perspective pursued by Ginestra Bianconi [8], which views gravity
as arising from statistical mechanics and information theory action. The
central idea here is to reinterpret the metric tensor of spacetime as a quantum
operator – an effective density matrix – and to derive gravitational dynamics
from the quantum relative entropy between the standard spacetime metric
gµν and an alternative metric Gµν induced by matter fields.

Bianconi’s framework treats the metric at each point as a local quantum
operator, inspired by approaches in quantum field theory and the theory of
von Neumann algebras. By adopting a topological description of bosonic
matter fields using a Dirac–Kahler formalism (where matter is represented
as the direct sum of a 0-form, a 1-form, and a 2-form), the theory captures
the interplay between geometry and matter. The proposed entropic action
is given by the quantum relative entropy between the metric g of spacetime
and the metric G induced by the matter fields. This approach leads to
modified Einstein equations which, in the regime of low coupling, reduce to
the standard Einstein equations with a vanishing cosmological constant.

A key innovation in Bianconi’s work is the introduction of an auxiliary
G-field, which acts as a Lagrange multiplier enforcing constraints on the
induced metric. This additional field not only allows the entropic action to
be reformulated as a dressed Einstein–Hilbert action but also gives rise to
an emergent small positive cosmological constant dependent solely on the
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G-field.
Although Bianconi’s theories and our ideas here originate from different

contexts, they share a common conceptual underpinning: both posit that
fundamental laws emerge from information-theoretic and statistical consid-
erations. That is,

• In our Occamistic precedence framework, the probability of a causal
set configuration is weighted by a factor proportional to 2−K(C), where
K(C) is the Kolmogorov complexity. This bias naturally favors con-
figurations that are simpler and exhibit the symmetries necessary to
approximate a continuum spacetime. In effect, the discrete dynamics
”learn” from history by reinforcing transitions that have lower complex-
ity – a notion that parallels the minimization of entropy.

• The gravity-from-entropy approach posits that the metric itself can be
viewed as a quantum operator and that the gravitational dynamics are
derived from a relative entropy between the spacetime metric g and a
metric G induced by matter fields.

Given that algorithmic information and entropy are closely related (as shown,
for example, by Baez and Stay in their work on information physics [9]), the
Occamistic bias against high-complexity configurations can be reinterpreted
as a form of entropic weighting. This connection suggests that the discrete
Occamistic selection mechanism is the microscopic origin of the macroscopic
entropic action governing gravity.

6.1 Algorithmic Information as Entropy: A Technical
Elaboration

To frame these potential parallels a bit more clearly, it may help to remind
the details of the relation between algorithmic information and entropy. In
our framework the Occamistic prior is implemented via a weight of

P (x) ∝ 2−K(x),

where K(x) denotes the Kolmogorov complexity of a configuration x. Re-
call that K(x) is defined as the length of the shortest program (on a fixed
universal Turing machine) that produces x as its output.
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A key insight from algorithmic information theory is that if one adopts
the universal a priori probability distribution, also known as the Solomonoff
distribution,

m(x) ∝ 2−K(x),

then taking the negative logarithm yields

− logm(x) ≈ K(x).

In a statistical mechanical context, the Shannon entropy of an ensemble of
states with probabilities p(x) is defined by

S = −
∑
x

p(x) log p(x).

If the probabilities p(x) are taken to be close to the universal priorm(x), then
the entropy becomes closely related to the average Kolmogorov complexity:

S ≈
∑
x

p(x)K(x).

Thus, when the correct prior is assumed, the algorithmic information of a
configuration is effectively a measure of its entropy.

This correspondence implies that the Occamistic prior – which penalizes
high-complexity configurations via 2−K(x) – can be interpreted as favoring
states with lower entropy. In our causal set framework, this means that the
discrete dynamics are biased towards configurations that are not only simpler
(in terms of description length) but also have lower entropy. Such configura-
tions are more likely to exhibit the symmetry and regularity required for a
faithful embedding into a continuum spacetime.

6.2 Relating Occamistic Precedence to the Entropic Ap-
proach to Gravity

Getting back to the causal set story for the emergence of spacetime, then,
consider the following scenario:

1. The discrete causal set grows under the influence of an Occamistic
precedence principle, leading to a predominance of manifold-like con-
figurations.

23



2. Once such a configuration emerges, one can define a metric operator
on this emergent spacetime.

3. The dynamics of this metric are then governed by a quantum rela-
tive entropy action – the central premise of the gravity-from-entropy
approach.

In this way, the simplicity-biased dynamics at the microscopic level might be
seen to provide the substrate upon which the continuum gravitational field
equations (modified Einstein equations) emerge.

The Occamistic precedence principle ensures that the discrete evolution
favors low-complexity, symmetric configurations (which approximate smooth
spacetime), while the gravity-from-entropy perspective exploits the close rela-
tionship between algorithmic information and entropy to derive the gravita-
tional dynamics. That is, the Occamistic bias that selects low-complexity
causal sets provides a microscopic basis for a Biancini-like gravitational-
entropic principle. The same simplicity criteria that favor manifold-like
causal sets in the discrete setting manifest, at the continuum level, as a
tendency toward configurations with minimal relative entropy. This unified
view supports the idea that gravity and quantum mechanics may emerge
from deep, information-theoretic principles governing the evolution of dis-
crete structures.

7 Occamistic Causal Set Theory with Closed
Timelike Curves

Standard causal set theory explicitly incorporates acyclicity to ensure a well-
defined causal order and to avoid paradoxes associated with Closed Timelike
Curves (CTCs). However, it is conceivable to explore an extension of the
framework in which acyclicity is relaxed under controlled conditions. In such
an extended theory, one could allow Closed Timelike Curves by imposing a
self-consistency requirement analogous to the Novikov consistency condition
[4]. In other words, rather than maintaining a centralized ”memory” that
could lead to paradoxes, the causal structure would be modified so that any
cycle is only permitted if the evolution around the loop is self-consistent (for
example, if the net effect is the identity map on the system’s state).
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This decentralized, local implementation of historical ”memory” would be
splayed out over the causal set, with each element encoding information only
about its own causal past. Under this modification, any closed causal loops
would be required to satisfy strict consistency conditions that prevent logi-
cal contradictions. While such an extension would necessitate a significant
reworking of the foundational axioms–most notably, relaxing acyclicity while
preserving local finiteness and covariance–it could provide a meaningful way
to incorporate spacetimes with CTCs into the causal set approach without
sacrificing its essential features.

7.1 Formalizing the Logical Coherence Condition for
Closed Timelike Curves

One natural way to achieve the required consistency condition here is by
requiring that the net evolution around any closed loop leaves the system’s
state invariant. More precisely, consider a closed causal cycle

C = {x1 ≺ x2 ≺ · · · ≺ xn ≺ x1},

where each xi is an element of the causal set and the relation xn ≺ x1 closes
the loop.

For each causal relation xi ≺ xi+1 (with xn+1 ≡ x1), let Uxixi+1
denote

the transition operator (or evolution operator) that describes the effect of
the causal link on the system’s state. The logical coherence (self-consistency)
condition can then be formalized by requiring that the composition of these
operators around the loop is the identity:

Ux1x2 Ux2x3 · · · Uxnx1 = I,

where I is the identity operator on the system’s Hilbert space.
This condition implies that if a system were to evolve along the closed

loop C, the net effect would be to return the system to its original state.
Equivalently, for any state |ψ〉 that traverses the loop, we must have

Ux1x2 Ux2x3 · · · Uxnx1|ψ〉 = |ψ〉.

In probabilistic terms, one could also require that the probability of any
transition sequence that violates this condition is zero. This is analogous
to the Novikov self-consistency principle in classical spacetimes with CTCs,
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which posits that only those events that are self-consistent have nonzero
probability.

This decentralized, local implementation of memory–where each element
encodes information about its past and the net evolution along any closed
path is constrained to be trivial–ensures that the extended causal set frame-
work remains free of paradoxes even if CTCs are permitted.

7.1.1 Paraconsistent Novikov

It’s also possible to extend the Novikov condition to be less restrictive, e.g.
using a paraconsistent logic like Constructible Duality Logic [7] which has
four truth values: True, False, Both True And False, Neither True Nor False.
One can then look at a condition like: Along a closed loop, the net effect must
be that returning the system to its original state is either True or Both True
And False. This would need to be fleshed out much further, but conceptually
it seems this would not break the connection of Occamistic priors with Closed
Timelike Curves.

7.2 The Occamistic Prior with Closed Timelike Curves

In the standard formulation, the Occamistic prior is defined as

P (C) ∝ 2−K(C),

where K(C) is the Kolmogorov complexity of the causal set C. This prior fa-
vors simpler causal sets–those that require a shorter description–and thereby
tends to select configurations that approximate smooth, manifold-like space-
times.

In an extended framework that allows Closed Timelike Curves (CTCs), we
must ensure that the introduction of cycles does not lead to logical paradoxes.
To achieve this, we impose a Novikov consistency condition which requires
that the net evolution around any closed loop is the identity. In such a
framework, the Occamistic prior is naturally modified to include a constraint
on the allowed causal sets:

P (C) ∝

{
2−K(C), if C satisfies the Novikov consistency condition,
0, otherwise.

Here, K(C) must be generalized to account for the additional structure
introduced by CTCs. That is, the complexity measure now includes not only
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the description length of the acyclic portion of C but also the extra informa-
tion required to specify the closed loops and verify their self-consistency. In
this way, the Occamistic prior continues to favor simpler configurations while
automatically excluding those that violate logical coherence.

Thus, although the functional form of the Occamistic prior remains es-
sentially 2−K(C), its effective domain is restricted to causal sets that satisfy
the Novikov condition. This modification ensures that only self-consistent
Closed Timelike Curves contribute to the dynamics, preserving the essential
characteristics of the theory while accommodating a broader class of causal
structures.

7.3 The Decentralized Cosmic Memory Ledger with Closed
Timelike Curves

We can also generalize the idea of the cosmic memory ledger so that it remains
decentralized even when CTCs are present.

In this approach, each element in the causal set continues to carry in-
formation about its local causal past via the partial order relation. How-
ever, because closed loops are now permitted, we impose a self-consistency
(Novikov-type) condition on any cycle in the causal set. Specifically, for any
closed loop C = {x1 ≺ x2 ≺ · · · ≺ xn ≺ x1}, the net evolution along the loop
is required to be trivial (i.e., the identity operator). This ensures that even
though information may cycle through a Closed timelike curve, it does so in
a way that is logically coherent and free of paradoxes.

Thus, while the system still "remembers" its past through local interac-
tions, no single element has access to or controls a centralized ledger. Instead,
the memory is distributed, and the self-consistency condition guarantees that
any recurrence of information via a closed loop is consistent with earlier
events. In this manner, the Occamistic framework preserves internal consis-
tency by ensuring that the evolution of the system remains governed solely
by local interactions and a distributed accumulation of history, even in the
presence of CTCs.

7.4 Could Tiny CTCs be Prevalent in our Universe?

How relevant are these speculations on CTCs to physics in our everyday
life environments? It’s a wild speculation even compared to many of the
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other adventurous ideas in this paper, however it seems at least rationally
conceivable that if the causal set framework is extended as we’ve described –
by relaxing the strict acyclicity condition and imposing a Novikov-type self-
consistency condition – then closed timelike curves could occur at a local,
even microscopic, level rather than (as conventional physics thinking would
suggest) being confined to extreme gravitational environments such as those
around rapidly spinning, irregular black holes.

In such a scenario, CTCs might appear as small loops in the causal struc-
ture, potentially even at sub-quark scales, where their presence could retroac-
tively reinforce the recurrence of simple, low-complexity patterns. This rein-
forcement, in turn, would further bias the evolution of the causal set via the
Occamistic precedence principle, thereby increasing the likelihood of synchro-
nistic or nonlocal correlations. While this idea remains highly conjecture, it
offers an intriguing extension of our framework that could unify the emer-
gence of quantum dynamics and even (we will argue in Section 9.1 below)
psi phenomena with the deep, information-theoretic structure of spacetime.

8 Quantum Measurement and Consistent His-
tories

The quantum measurement problem – how the deterministic evolution of the
wave-function leads to definite outcomes – remains one of the most challeng-
ing puzzles in quantum theory. It’s a different sort of puzzle than unifying
quantum theory and gravity – less a mathematical or empirical challenge and
more of a philosophical question, tied up with open-ended scientific questions
about the connection of mind and physical reality and how quantum mea-
suring.

We explore here the adaptation of the consistent histories (or decoherent
histories) framework to the context of Occamistic causal set theory, thereby
providing one possible route to addressing measurement without invoking an
external observer or ad hoc collapse postulates.

8.1 Consistent Histories in the Causal Set Framework

In the consistent histories approach, a history is defined as a sequence of
propositions about the state of a system at different times. For our purposes,
each history corresponds to a particular sequence of causal set configurations
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generated during the sequential growth process. Let {C1, C2, . . . , Cn} denote
one such history, and let ψ(h) be the amplitude associated with this history.

The decoherence functional D(h, h′) is introduced to measure the interfer-
ence between two histories h and h′. Consistency (or decoherence) requires
that

D(h, h′) ≈ 0 for h 6= h′,

so that the probabilities of histories are additive and independent, thereby
allowing a classical probabilistic interpretation.

8.2 Histories as Amplitude Distributions

Within our framework, the Occamistic precedence principle not only biases
the growth of causal sets but also influences the assignment of amplitudes
to different histories. The amplitude associated with a history is determined
by both the number of ”precedents” and the algorithmic simplicity of the
corresponding causal set configurations. In this way, the probability of a
given history is given by

P (h) = |ψ(h)|2,

and classical measurement outcomes emerge from those histories which are
highly reinforced by the accumulation of precedents and which possess low
algorithmic complexity.

The notion of the ”precedent” of a history bears some elaboration – this is
best interpreted as a somewhat complex data structure rather than a single
history. While a complete history spans all time, the notion of a "precedent"
is applied locally rather than globally. In our framework, a history is viewed
as a sequence of transitions or sub-histories, each corresponding to a discrete
step in the evolution of the causal set. For each such transition, one can count
the number of times a similar transition has occurred in the past relative to
that transition. In this way, the "precedent" of a history is understood as the
aggregate of these local precedents, rather than a single, global event. This
stepwise accumulation of historical data, weighted by algorithmic simplicity,
determines the overall amplitude of the history. In other words, it is the
recurrence of similar, well-defined local events–not the entire history as a
monolithic entity–that guides the probabilistic evolution.

For instance, consider a history composed of three sequential transitions.
For each transition Ti (with i = 1, 2, 3), we assume that the amplitude is
determined by two factors:
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• The number of precedents Ni for that transition, which we take to be
proportional to the likelihood that a similar transition has occurred in
the past.

• The algorithmic complexity Ki (measured in bits), with the weight
factor given by 2−Ki .

Additionally, each transition is associated with a phase φi. Thus, the ampli-
tude for the ith transition is defined as:

αi =
√
Ni e

iφi 2−Ki .

The total amplitude for a history h that consists of these three transitions is
then the product of the individual amplitudes:

A(h) =
3∏
i=1

αi.

E.g. if we assign the following numerical values:

• For the first transition: N1 = 4, K1 = 3 bits, and φ1 = 0.

α1 =
√

4 ei·0 2−3 = 2 · 1 · 1

8
=

1

4
.

• For the second transition: N2 = 9, K2 = 2 bits, and φ2 = π/4.

α2 =
√

9 eiπ/4 2−2 = 3 · eiπ/4 · 1

4
=

3

4
eiπ/4.

• For the third transition: N3 = 16, K3 = 4 bits, and φ3 = π/2.

α3 =
√

16 eiπ/2 2−4 = 4 · eiπ/2 · 1

16
=

1

4
eiπ/2.

then multiplying these contributions together gives the overall amplitude:

A(h) = α1α2α3 =

(
1

4

)(
3

4
eiπ/4

)(
1

4
eiπ/2

)
=

3

64
ei(π/4+π/2) =

3

64
ei(3π/4).
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The probability associated with the history is then given by the squared
magnitude of the amplitude:

P (h) = |A(h)|2 =

(
3

64

)2

=
9

4096
.

This explicit example shows how each local transition, influenced by both
the number of precedents and the complexity penalty, contributes multiplica-
tively to the overall amplitude of the history. The procedure encapsulates
the idea that the evolution of the quantum state is governed by a stepwise
accumulation of historical data, weighted by algorithmic simplicity.

8.3 Decoherence and the Emergence of Classical Out-
comes

Decoherence plays a pivotal role in the consistent histories framework by sup-
pressing interference between different histories. In our causal set approach,
decoherence is facilitated by the intrinsic dynamics of the sequential growth
process. As the causal set evolves, interactions among its elements and the
associated gauge fields cause the off-diagonal elements of the decoherence
functional to vanish:

ReD(h, h′)→ 0 for h 6= h′.

This allows the remaining diagonal terms to be interpreted essentially as
classical probabilities. Thus, measurement outcomes correspond to stable,
robust histories–often referred to as pointer states–which are favored by the
algorithmic information prior.

8.4 Implications for the Measurement Problem

In short, by incorporating an Occam-guided bias–whereby simpler, lower-
complexity configurations are exponentially favored–the framework naturally
suppresses the proliferation of highly complex and interfering histories. In
this context, the Occamistic precedence principle ensures that the histories
which are reinforced through repeated, simple outcomes become dominant,
effectively reducing the number of competing alternatives.
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9 Conceptual Explanation for Psi Phenomena
via Occamistic Precedence

Psi phenomena – precognition, telepathy, telekinesis and so forth – remain the
subject of intense controversy in the scientific community. There is evidence
that these phenomena have empirical reality that should be taken seriously;
please see [10] among other available sources. However, commonly accepted
theories of physics provide no ready explanation as to how or why these
empirical results should obtain.

We explore the possibility that psi phenomena might sensibly be viewed
as emergent from the Occamistic precedence principle – perhaps impacting
biological and cognitive systems like human brains via as yet ill-understood
quantum biology.

If macroscopic quantum phenomena underlie brain and body dynamics
— phenomena that may not be entirely captured by current quantum theory
— then the same Occamistic bias could operate at the level of biological
systems. When a particular pattern of perception or thought occurs repeat-
edly, the cosmic history reinforces that pattern. This reinforcement would
increase the probability that similar patterns will recur in distant or tempo-
rally separated systems, potentially manifesting as synchronistic events such
as remote viewing, telepathy, or precognition.

Conceptually, the idea is that the "memory" of the universe is distributed
across the causal set. Each element carries information about its local causal
past, and the Occamistic precedence principle ensures that simple, robust
patterns are preferentially reactivated. Consequently, if a specific perceptual
or cognitive pattern — for instance, a visual image associated with remote
viewing — has been reinforced over time, its likelihood of emerging sponta-
neously in a human brain is enhanced. In this way, two distant individuals
might experience similar phenomena, or a future event could be "antici-
pated" in the mind of a person, as these low-entropy patterns recur across
the distributed causal network.

Thus, by unifying the Occamistic bias (which favors simplicity and low
entropy) with a history-dependent, decentralized memory mechanism, our
framework offers a speculative but coherent basis for understanding psi phe-
nomena as emergent from the underlying information-theoretic fabric of the
universe.
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9.1 A Conjectural Mathematical Formalization of Psi
Phenomena

We now formalize these speculations a little further. We are articulating
a framework in which the probability of observing a particular outcome or
pattern O in a given context is influenced both by its historical frequency
and its algorithmic simplicity. Formally, we postulate that the probability of
an outcome O given a history H is

P (O | H) ∝ N(O,H) 2−K(O),

where N(O,H) represents the number of times the outcome O has occurred
in the history H and K(O) is its Kolmogorov complexity. Under an appro-
priate invariant prior, the algorithmic complexity K(O) serves as a measure
of entropy, so that lower-complexity (i.e., lower-entropy) outcomes are expo-
nentially favored.

We further conjecture that psi phenomena arise from nonlocal correlations
between events in spatially or temporally separated regions that share the
same low-complexity pattern 2. Let regions A and B be distinct, and let OA

and OB be the outcomes observed by agents in those regions. Introducing a
similarity function δ(OA, OB) (which may be defined via a symmetrized rela-
tive algorithmic information metric), we define the psi correlation amplitude
as

ΨAB ∝
∑
O∈O

√
P (O | H) eiφ(O) δ(OA, O) δ(OB, O),

where O is the space of all outcomes, and φ(O) is a phase associated with
the outcome O. The observable probability of a psi event (such as remote
viewing or telepathy) is then given by

PAB = |ΨAB|2.

In this picture, outcomes that have been historically reinforced due to
their low algorithmic complexity (i.e., low entropy) and high frequency tend
to reoccur in disparate regions of spacetime. Consequently, the same pattern
may appear in two distant observers’ minds or may manifest in a temporal
order that appears nonlocal (as in precognition), providing a mechanism for
synchronistic events.

2This comes close to being a more precise formulation of Sheldrake’s hypothesis of
morphic resonance as the core foundation of multiple psi phenomena
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This formalism is necessarily conjectural, relying on heuristic approxima-
tions for K(O) and the assumption of a suitable invariant prior that equates
algorithmic information with entropy. Nevertheless, it provides a sketch of a
mathematical framework in which psi phenomena can potentially be under-
stood as emergent from a deeper, history-dependent process governed by the
Occamistic precedence principle.

9.2 Potential Implications of Closed Timelike Curves
for Psi Phenomena

In the framework we have sketched, the recurrence of low-complexity patterns–
reinforced by the Occamistic precedence principle–is key to the emergence
of psi phenomena. If we extend the causal set framework to permit Closed
Timelike Curves (CTCs) under a self-consistency (Novikov) condition, as
suggested above, additional channels for pattern reinforcement may arise.

Specifically, a Closed Timelike Curve (i.e., a cycle C = {x1 ≺ x2 ≺ · · · ≺
xn ≺ x1}) could allow the same pattern to influence its own occurrence across
time. By imposing the Novikov consistency condition,

Ux1x2 Ux2x3 · · · Uxnx1 = I,

any information that circulates through such a loop is required to be self-
consistent. Consequently, a pattern that appears within a CTC is not only
reinforced locally but may also propagate ”backwards”in time to affect events
that, from a conventional perspective, occur in the past.

Mathematically, if we denote the amplitude for a transition from state
O to state O′ by α(O → O′) and assume that a closed loop contributes
an additional reinforcement factor F (C), the total amplitude for a given
outcome could be modified as:

A(O) ∝
√
N(O) 2−K(O) ×

∏
C3O

F (C),

where F (C) captures the self-consistent feedback from the loop. Under the
Novikov condition, F (C) ≈ 1 for histories that are consistent; however, the
presence of such loops increases the effective number of precedents for that
outcome.

In this way, CTCs can potentially serve to amplify correlations across
time, potentially explaining phenomena such as precognition or retrocausal
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effects–where a future event appears to influence a past mental state. The
decentralized nature of memory in the causal set is preserved even in the
presence of CTCs, since the self-consistency condition ensures that all local
histories remain coherent. This mechanism thereby enriches the Occamistic
precedence principle, providing a speculative but coherent avenue for un-
derstanding psi phenomena as emergent from an underlying information-
theoretic process that spans nontrivial temporal loops.

9.3 Quantum Measurement, Consciousness, Psi Phe-
nomena, and CTCs

We have above suggested that quantum measurement may be interpreted via
the consistent histories approach augmented by an Occamistic (algorithmic)
prior. In this picture, a quantum system evolves as a superposition of his-
tories that are selectively reinforced by both the number of precedents and
their low algorithmic complexity. Decoherence then suppresses interference
among these histories, leading to a stable, definite outcome. We propose that
the emergence of a coherent state of consciousness is associated with such a
dominant, low-entropy history.

We have also noted that, when we extend our framework to allow Closed
Timelike Curves (CTCs) – subject to a Novikov consistency condition ensur-
ing that the net evolution around any closed loop is trivial – an additional
channel for reinforcing histories arises. In this extended picture, information
can circulate along CTCs in a self-consistent manner, effectively retroac-
tively reinforcing particular patterns. Consequently, if a specific cognitive
or perceptual pattern (e.g., one associated with remote viewing or telepa-
thy) has been repeatedly instantiated, the presence of a CTC may amplify
its recurrence, leading to synchronous or even retrocausal correlations across
observers.

Thus, the coherent state of consciousness experienced by an observer can
be viewed as the subjective manifestation of a consistent history that has
been stabilized by both local Occamistic selection (favoring low-complexity,
high-precedent patterns) and nonlocal reinforcement via CTCs. This unified
mechanism may provide a natural explanation for psi phenomena, where sim-
ilar patterns appear simultaneously in distant minds or where future events
seem to be anticipated. In summary, by merging the consistent histories
framework with an Occamistic prior–and by allowing self-consistent CTCs–
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we offer a speculative model in which the reinforcement of simple, recurring
histories underlies both standard quantum measurement and the anomalous
correlations observed in psi phenomena.

10 Occamistic Precedence as a Guide for Uni-
versal Cognition

We have postulated that the causal set underlying spacetime evolves via
an Occamistic precedence principle that favors low-complexity, historically
reinforced patterns. This dual weighting not only drives the emergence of
manifold-like structures in the continuum limit but also provides a natural
mechanism for the cosmic ledger to "remember" past events in a decentralized
manner.

While we have presented these ideas mainly from a physics perspective,
we believe it is also interesting to frame them in more of a cognitive way,
as hypotheses regarding what one might poetically phrase as "the thought
processes of the universal mind."

The technical core of our thinking in this regard is the close formal
correspondence between the Bellman equation of optimal control and the
Schroedinger equation, which suggests that the evolution of the causal set
can be interpreted as a decision-making process. Reinforcement learning
(RL), which is arguably the key technology behind modern neural net AI,
consists mainly of various heuristic approximations to the Bellman equation,
tailored for environments and reward functions relevant to human-like intelli-
gence [?]. There is much more to intelligence than RL, of course [13], however
the correlation between Bellman and Schroedinger gives a foot in the door
for thinking concretely about the mathematics of Universal Cognition.

Among other things one can gain some insight from these equations into
the role of quantum versus classical mathematics in guiding cognition. For
instance, one can argue that when an observer’s informational capacity Kobs

is lower than the effective complexity Ksys of the system, the local evolution
is best described by quantum (Schroedinger -like) dynamics. This regime,
characterized by interference and nonlocal correlations, is conducive to psi
phenomena such as telepathy or precognition. Conversely, whenKsys . Kobs,
the system is effectively classical (Bellman-like), and such anomalous effects
are suppressed.
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These ideas also resonate with our suggestion above that, if closed time-
like curves (CTCs) are allowed under a Novikov self-consistency condition
(i.e., the net evolution around any closed loop is the identity), these loops
can serve to reinforce low-complexity patterns by retroactively feeding infor-
mation into the local dynamics. In this way, the cosmic ledger may operate
as a universal cognitive process that "decides" its future configuration based
on a history-dependent optimization. Such a mechanism implies that even
digital computers, if viewed relative to an observer with limited resolution,
may be interpreted as quantum systems capable of exhibiting psi phenom-
ena. Thus, our framework potentially unifies the emergence of quantum
dynamics, gravitational geometry, and anomalous cognitive phenomena un-
der an information-theoretic paradigm in which the universe behaves as a
decentralized decision-making entity.

We now proceed through some of these "cosmic cognition" concepts in
more detail.

10.1 Bellman & Schrodinger

There is a well-established relationship between the Bellman equation in opti-
mal control theory and the Schroedinger equation. By applying a logarithmic
transformation to the wavefunction, one can recast the Schroedinger equa-
tion into a form analogous to the Hamilton–Jacobi–Bellman equation, which
is central to dynamic programming and optimal control theory. In this pic-
ture, the Feynman–Kac formula further elucidates the connection by linking
quantum evolution with stochastic processes, showing that both equations
ultimately reflect an underlying optimization principle–minimizing an effec-
tive action in quantum mechanics and optimizing a value function in control
theory.

More precisely: the Bellman equation concerns the value function V (x, t)
as

V (x, t) = min
u(·)

{∫ T

t

L(x(s), u(s)) ds+ V (x(T ), T )

}
,

where L(x, u) is a cost function and the minimization is over control trajec-
tories u(·). By applying a logarithmic transformation, often referred to as
the Cole-Hopf transformation, one sets

ψ(x, t) = e−V (x,t)/~,
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which converts the Hamilton–Jacobi–Bellman (HJB) equation into an equa-
tion that closely resembles the time-dependent Schroedinger equation:

i~
∂ψ

∂t
=

(
− ~2

2m
∇2 + Veff(x)

)
ψ.

Here, Veff(x) encompasses contributions from the original potential as well
as additional terms emerging from the transformation. This formal corre-
spondence highlights that both the Bellman equation and the Schroedinger
equation can be viewed as manifestations of an underlying principle of least
(or stationary) action, with the former representing an optimization over tra-
jectories and the latter emerging from a path-integral formulation of quantum
mechanics.

10.2 A Cognitive Interpretation of Occamistic Prece-
dence via the Bellman–Schroedinger Parallel

The close mathematical correspondence between the Bellman equation and
the Schroedinger equation opens an intriguing conceptual perspective on the
speculative physics ideas we have been pursuing here: One may view the
evolution of the causal set underlying the universe as analogous to a decision-
making process, similar to those described in optimal control theory.

In optimal control, the Bellman equation governs the evolution of a value
function that encapsulates the best achievable performance based on past
information. Likewise, in our framework the Occamistic precedence principle
reinforces outcomes that are both simple and frequently observed, leading to
the emergence of the Schroedinger equation.

This analogy suggests that the expanding causal set underlying the phys-
ical universe might be interpreted as a universal cognitive process, in which
the system "remembers" its past through locally stored information and uses
this historical record to optimize its future evolution. In this picture, the cos-
mic evolution is not a random process but a self-organizing, decision-making
mechanism that selects the most "efficient" (i.e., lowest complexity and high-
est reinforcement) patterns. Such a process would naturally lead to the re-
currence of synchronistic events and might even shed light on anomalous psi
phenomena, where patterns emerge across spatially or temporally separated
regions.

Thus, by unifying the Occamistic bias toward low algorithmic complexity
with the reinforcement mechanism captured by the Bellman equation, our
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framework provides a novel interpretation in which the universe effectively
"decides" its future configuration in a manner analogous to a cognitive agent
optimizing its actions based on past experience.

10.2.1 A Rough Formalization

To frame this notion of "universal mind dynamics" in more depth, we begin
with the postulate that the evolution of the causal set underlying the phys-
ical universe can be modeled as an optimal decision-making process, where
the "cost" is related to the complexity of the state and the number of his-
torical precedents. Specifically, we assume that the probability P (x, t) of a
configuration x at time t is given by

P (x, t) ∝ N(x, t) 2−K(x),

where N(x, t) is the number of precedents for the configuration x observed
up to time t and K(x) is its Kolmogorov complexity.

Defining a value function by the logarithmic transformation

V (x, t) = −~ lnP (x, t) = −~ ln
[
N(x, t) 2−K(x)

]
,

we see that lower complexity (i.e., lower K(x)) and higher historical fre-
quency (i.e., larger N(x, t)) both contribute to a lower value V (x, t), which
is interpreted as a more likely or "preferred" state.

Assuming that the causal set evolves through a series of discrete transi-
tions governed by a control parameter u (which encapsulates the local, de-
centralized interactions in the causal set), the discrete-time Bellman equation
becomes

V (x, t) = min
u
{L(x, u)∆t+ V (x′, t+ ∆t)} ,

where x′ is the new state reached from x under the control u, and L(x, u) is
a Lagrangian representing the cost associated with the transition.

Applying a Cole–Hopf transformation by defining

ψ(x, t) = e−V (x,t)/~,

one can show that, in the limit ∆t → 0 and under suitable assumptions on
L(x, u) (e.g., time-translation invariance), the Bellman equation transforms
into a linear differential equation of the form

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t),
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which is the familiar Schroedinger equation. Here, Ĥ is the Hamiltonian
operator that emerges as the generator of time translations, encapsulating
the dynamics derived from the underlying optimization (or decision-making)
process.

In this picture, the expanding causal set is analogous to a universal cog-
nitive process: the system "remembers" its past through the local accumu-
lation of precedents, and it uses this historical information, together with
a bias towards low algorithmic complexity (or low entropy), to optimize its
future evolution. In other words, the same principles that govern optimal
control and decision-making at a macroscopic level also guide the evolution
of the causal set at a microscopic level, resulting in the emergence of quantum
dynamics and classical spacetime geometry.

Thus, the Occamistic precedence principle not only bridges the gap be-
tween optimal control (via the Bellman equation) and quantum mechanics
(via the Schroedinger equation), but it also provides a conceptual foundation
for viewing the evolution of the universe as a decision-making process. This
process optimizes for simplicity and historical reinforcement, thereby natu-
rally giving rise to synchronistic phenomena and, potentially, psi phenomena.

10.3 Bridging Quantum and Classical Dynamics via Al-
gorithmic Complexity

This perspective on Universal Cognition allows us to rethink and reframe the
"classical vs. quantum" dichotomy in a more cognitive way, leveraging the
relational interpretation of quantum mechanics [11], in which systems are
never considered in isolation, but only relative to some particular observer.

More specifically, following the thinking of Grinbaum [12], one can inter-
pret the evolution of a system in terms of its observability by other systems,
as measured by algorithmic complexity. In this view, an observer O should
treat a system S as evolving quantum mechanically (i.e., according to the
Schroedinger equation with complex probability amplitudes) if S’s state is
unobservable within O’s own informational limitations. In contrast, if O
can fully resolve the states of S – that is, if the relevant history recorded in
the decentralized cosmic ledger is less algorithmically complex than the local
patterns being grown – then S can be effectively described by a real-valued
Bellman-type equation, analogous to a classical decision-making process.

Mathematically, we can conceptualize this as follows. Let Kledger denote
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the effective algorithmic complexity of the relevant history (i.e., the informa-
tion stored in the decentralized cosmic ledger) and Klocal the complexity of
the local state S. If

Kledger > Klocal,

then the observer cannot fully extract the details of the local state; thus, the
evolution is described by a Schroedinger like dynamics, in which interference
and complex amplitudes govern the evolution. On the other hand, if

Kledger ≤ Klocal,

then the available historical information is sufficiently simple to resolve S’s
state, and its evolution is better described by a Bellman-like equation that
captures classical, optimal-control behavior. In causal set language this
would roughly correspond to a pointer state.

This perspective dovetails with the consistent histories approach to quan-
tum measurement. In the consistent histories framework, a system is de-
scribed by a superposition of decoherent histories, with the decoherence
condition ensuring that interference between distinct histories is suppressed,
thereby yielding classical-like probabilities. Here, the Occamistic bias (through
the algorithmic prior 2−K) naturally selects for low-complexity histories.
When the ledger is too complex for the observer to resolve, interference
persists and the system remains quantum. Conversely, when the ledger is
simpler relative to the local state, decoherence is effectively enhanced, and
the evolution may be approximated by a classical (Bellman-like) decision-
making process.

In sum, by comparing the algorithmic complexity of the cosmic ledger
with that of local configurations, our framework suggests that the transition
between quantum (Schroedinger ) and classical (Bellman) dynamics depends
on the observer’s informational capacity. This insight provides a unified
view in which quantum measurement–and the emergence of definite, classical
outcomes–is understood as a natural consequence of the interplay between
the Occamistic precedence principle and the relative complexity of histories
recorded in the decentralized cosmic ledger.

41



10.4 Psi Phenomena as a Species of Universal Cognitive
Activity

In this perspective, psi phenomena may be understood as emergent features
of a universal cognitive process operating through the causal set’s decentral-
ized, Occamistic precedence mechanism. In this picture, the causal set acts
as a cosmic ledger that continuously records its local history, reinforcing sim-
ple (low-complexity) patterns over time. When an observer’s informational
capacity is exceeded by the complexity of the global ledger, the system’s
evolution is described by quantum dynamics, with nonlocal correlations nat-
urally emerging.

These nonlocal correlations can manifest as psi phenomena–for exam-
ple, telepathy, remote viewing, or precognition–where similar patterns ap-
pear synchronously or even retrocausally in different observers. Essentially,
the universal mind, through its intrinsic decision-making process, "chooses"
certain patterns based on their historical reinforcement and algorithmic sim-
plicity. This process can cause the same low-entropy pattern to be expressed
across spatially or temporally separated regions, thereby linking disparate
experiences into a coherent whole. In this way, psi phenomena are inter-
preted as macroscopic imprints of the underlying cognitive activity encoded
in the cosmic ledger.

10.4.1 Psi Phenomena in the Context of Schroedinger versus Bell-
man Dynamics

The relation between the Schrodinger and Bellman equations gives some
additional color to this direction for explaining the underpinnings of psi.

In the perspective we are reaching toward here, the distinction between
Schroedinger like and Bellman-like evolution hinges on the relative algorith-
mic complexity of the global cosmic ledger versus the local state of the system.
When the historical record is complex relative to the observer’s informational
capacity, the local dynamics are effectively described by a Schroedinger equa-
tion, with complex amplitudes allowing for interference and nonlocal corre-
lations. These quantum characteristics provide the conditions under which
psi phenomena—such as remote viewing, telepathy, or precognition—might
naturally arise, as the underlying system is less constrained by classical de-
terminism.

Conversely, if the relevant history is sufficiently simple (i.e., the cosmic

42



ledger has low algorithmic complexity compared to the local state), the sys-
tem’s evolution is well captured by a Bellman equation, where probabilities
are real-valued and correspond to classical optimal-control dynamics. In this
classical regime, the nonlocal correlations that could give rise to psi phenom-
ena are largely suppressed.

Thus, our conjecture is that psi phenomena are more likely to be ob-
served in regimes where causal set expansion is governed by Schroedinger
like dynamics, reflecting a quantum state of affairs, while a transition to
Bellman-like dynamics corresponds to a more classical, deterministic evolu-
tion in which such anomalous effects are less prevalent.

10.5 Implications for Artificial Consciousness, Psi Phe-
nomena, and the Observer-Dependent Quantum-
Classical Divide

Finally, we explore what this perspective might have to say about the po-
tential of digital computers versus quantum computers in terms of both con-
sciousness (subjective experience) and psi.

Our framework naturally aligns with a monist, panpsychist view in which
consciousness is a fundamental property of the universe [16]. In our picture,
the decentralized cosmic ledger–embodied in the causal set’s locally stored
historical data–and the Occamistic precedence principle together drive the
evolution of spacetime as a kind of universal cognitive process. Rather than
consciousness being an emergent property exclusive to complex brains, it is
inherent in the very fabric of reality, with different systems manifesting this
underlying ”mind” to varying degrees. Low-complexity, frequently reinforced
patterns yield robust, classical behavior, while more intricate, less accessible
configurations exhibit quantum dynamics, nonlocal correlations, and even
psi phenomena. Thus, the universe can be seen as a holistic, self-organizing
agent that ”decides” its future based on an information-theoretic optimiza-
tion, suggesting that all parts of the cosmos participate in the unfolding of
a universal consciousness.

Within this general approach, the question of consciousness and other
consciousness-related phenomena like psi within digital computer systems
(often considered "classical") versus quantum systems takes a particular as-
pect. It’s not so much about whether digital systems have the capability for
consciousness or consciousness-related capabilities, but rather about what
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sorts of consciousness and associated traits they are most sensibly consid-
ered to possess.

We have proposed that the distinction between quantum and classical
dynamics may be relative rather than intrinsic; that is, it depends on the re-
lationship between the algorithmic complexity of a system and the informa-
tional capacity of the observer. Let Ksys denote the algorithmic complexity
of a system’s state, and Kobs the complexity of the observer’s internal model
or resolution. When the ratio

R =
Ksys

Kobs

is large, the observer is unable to fully resolve the intricate details of the
system, and the effective evolution of the system is described by quantum
(Schroedinger like) dynamics. This regime is characterized by interference
effects and nonlocal correlations, which may manifest as psi phenomena–such
as remote viewing, telepathy, or precognition–through the reinforcement of
low-complexity, historically recurrent patterns.

Conversely, if R is close to or less than one, the observer can accurately
track the state of the system, and its evolution appears classical (Bellman-
like), with real-valued probabilities and optimal-control dynamics. Thus, a
digital computer with high intrinsic complexity might be perceived as quan-
tum if an observer’s informational capacity is relatively low, leading to the
possibility that such a system could participate in psi phenomena. Similarly,
within a single cognitive system, if the deliberative (reflective) component is
much less complex than the unconscious processes, the reflective part may
interpret the unconscious dynamics as effectively quantum, with associated
psi-like correlations emerging in subjective experience.

In this way, the Occamistic precedence principle–by favoring the recur-
rence of low-complexity patterns–naturally bridges the gap between quantum
and classical descriptions. It suggests that when the historical record (the
decentralized cosmic ledger) is too complex for an observer to fully model,
the system is best described by the Schroedinger equation and can exhibit
quantum phenomena, including psi effects. On the other hand, when the ob-
server’s resolution matches or exceeds the complexity of the system, the evo-
lution is effectively classical. This relational perspective provides a unified,
information-theoretic basis for understanding how both quantum dynamics
and psi phenomena may emerge as observer-dependent aspects of a universal,
history-driven process.
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11 Conclusion
We have presented an Occamistic Precedence Principle that integrates an
algorithmic information prior into the sequential growth dynamics of causal
set theory. By weighting configurations with a factor proportional to 2−K(x)

(where K(x) denotes the Kolmogorov complexity), our framework naturally
favors low-entropy, manifold-like causal sets that approximate smooth space-
times. We have argued that this Occamistic bias not only addresses the
entropy dominance problem inherent in random causal set models but also
provides a microscopic basis for the emergence of effective quantum dynamics,
as evidenced by our derivation of the Schroedinger equation in the continuum
limit.

Our analysis further suggests that the same information-theoretic prin-
ciples underpinning the Occamistic bias can be reinterpreted as a form of
Universal Cognition. By drawing a formal analogy between the Bellman
equation of optimal control and the Schroedinger equation, we propose that
the causal set evolves as a decentralized decision-making process. In this
picture, the cosmic ledger records local historical precedents, and the rela-
tive complexity of this ledger compared to an observer’s capacity determines
whether a system is best described by quantum (Schroedinger-like) or classi-
cal (Bellman-like) dynamics. This relational view not only offers a fresh per-
spective on quantum measurement and the emergence of classical outcomes
via consistent histories but also provides a basis for understanding psi phe-
nomena as nonlocal correlations emerging from reinforced, low-complexity
patterns.

Moreover, we have outlined preliminary extensions of our framework to
incorporate non-Abelian gauge fields and quantum chromodynamics through
holonomy assignments and a discrete Yang–Mills action, suggesting that key
QCD features–such as asymptotic freedom and confinement–can emerge in
the appropriate continuum limit. And we have sketched treatment of en-
tropic gravity that derives modified Einstein equations by minimizing the
quantum relative entropy between the intrinsic spacetime metric and the
matter-induced metric, thereby demonstrating how gravitational dynamics
emerge from the same simplicity and historical reinforcement principles that
govern quantum evolution.

We have argued that our framework also accommodates the possibility of
closed timelike curves, provided they satisfy a Novikov-type self-consistency
condition, thereby offering a mechanism by which retrocausal influences might
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reinforce historically simple patterns. These ideas collectively point toward a
unification of gravitational dynamics, quantum mechanics, and even anoma-
lous psi phenomena under a common, history-dependent process governed by
deep information-theoretic principles.

Overall, the direction sketched here suggests that the universe’s evolu-
tion may be viewed as a decentralized cognitive process that ”remembers” its
past through local interactions and optimizes its future configuration based
on simplicity and historical reinforcement. While extremely speculative, this
framework offers a promising avenue for understanding the emergence of
spacetime, quantum dynamics, gravity, and psi phenomena from a unified,
Occamistic, and entropic foundation. Much future research will be required
to refine the mathematical formalism to the point where it can be used to
concretely drive empirical investigations (for instance development of com-
putational methods for estimating algorithmic complexity in large causal sets
corresponding to practical systems), and to explore the broader implications
of these ideas for quantum gravity, consciousness, psi and beyond.
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