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Abstract

Special Relativity (SR) assumes that velocity vectors, displacement vectors and di-
rection vectors coincide, since they are projected onto a flat analytical space (Minkowski
space) to interpret inertial relative motion. In contrast, Arnold Sommerfeld’s 1909 spher-
ical model interprets velocity composition on a spherical surface, where displacement
and constant direction vectors are fundamentally distinct. This paper demonstrates that
because Einstein and Sommerfeld use different surfaces to project their interpretation
of the Michelson-Morley interferometry, their predictions for relativistic effects diverge.
Specifically, while Einstein’s model necessitates Lorentz contraction and time dilation,
Sommerfeld’s spherical formulation predicts no such distortions. Notably, compatibility
between SR and Sommerfeld’s spherical model exists only in the special case of two right-
angled triangles. By extension, any hyperbolic model that claims compatibility with SR
must also be restricted to this special case. This work highlights a fundamental geometric
conflict between Special Relativity and Sommerfeld’s alternative formulation, warranting
further examination of the geometric nature of inertial motion.
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1 Introduction

Special relativity [1], formulated by Albert Einstein in 1905, fundamentally altered our
understanding of space, time, and motion. It provided a framework where the speed of
light remains constant in all inertial frames, leading to counter-intuitive but experimen-
tally verified concepts like time dilation and length contraction. A contemporary work
by Sommerfeld, On the Composition of Velocities in the Theory of Relativity [2] was pub-
lished just four years after Einstein. In his short paper Sommerfeld examines the problem
of relative velocity composition from the perspective of spherical trigonometry.

Restricting himself at first to two congruent right spherical triangles (shown later to
be equivalent to fig. 1 △ABQ and △CBQ), Sommerfeld arrives at the spherical equiva-
lent of Einstein’s addition theorem [3] for velocities. Proceeding further, they invoke the
cosine rule of spherical trigonometry to present a general solution to all triangles of the
form AB′C (refer fig. 1). Sommerfeld summarizes, “For the composition of velocities in
the theory of relativity, not the formulas of the plane, but the formulas of the spherical
trigonometry (with imaginary sides) are valid. By this remark the complicated transfor-
mation calculus becomes dispensable, and can be replaced by a lucid construction on a
sphere” [2]. Sommerfeld’s work leads Varicak to coin the term rapidity in 1910 thereby
extending Sommerfeld’s derived compatibility with special relativity into the hyperbolic
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geometry of Lobachevsky and Bolyai [4].

The aim of this paper is to conduct an in-depth theoretical re-visitation of the paradigm
shifting Michelson-Morley (MM) experiment. We will interpret the MM geometry using
the spherical model and compare Sommerfeld’s predictions with Einstein’s paradigm.
This investigation into inertial motion will show that Einstein and Sommerfeld differ
on the properties of the vector that each chooses to manipulate in their analysis of the
MM geometry. We will show that Sommerfeld’s interpretation of inertial motion is a
geometry of shortest distance paths and is distinct from Einstein’s geometry of inertial
motion employing velocity vectors on a flat surface. This fundamental disagreement on
the properties of inertial motion leads to conflict between Sommerfeld’s solution and the
predictions of special relativity.

2 Euclidean Geometry

On a flat surface [1], we draw any angle θ at origin Q bounded by two equal length line
segments QB = QB′ = h. We join points B and B′ to points A and C such that the line
segment AC is perpendicular to QB and centred at Q. Fig. 1 illustrates.

Figure 1: Triangles ABC and AB′C rendered on a flat surface.

From fig. 1, we posit the following:

1. If x > 0, physical measurements will verify the theoretical statement AB + BC ̸=
AB′ +B′C remains true for all θ ̸= 0, π, 2π...

2. Independent of x and keeping h constant, if line segment QB′ is rotated over π
radians about point Q then curve BB′ will take the form of a circle of radius h
about point Q.

3. If x > 0, physical measurements will verify the theoretical statement ̸ AB′Q ̸=
̸ QB′C remains true over all θ ̸= 0, π/2, π...

3 A Template of the MM Experiment

Now we turn to theoretical aspects of relativistic optical interferometry to demonstrate
that the geometry and sequence of events within an MM interferometer always templates
to that of fig. 1.
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3.1 Frames of Reference

Consider two imaginary euclidean reference frames that are in relative motion with respect
to each other. Let us arbitrarily assume one of these frames is at rest and the other moves
with some velocity v with respect to the rest frame. Accordingly we refer to fig. 1 and
declare,

1. A rest frame I0 centered at point Q.

2. A moving frame I1 that translates from point A to point C with some velocity v
relative to rest frame I0.

3.2 Geometry and Sequence of Events

Now let us consider the structure of an MM interferometer [5](see fig. 2). By fixing
̸ B′

1QB′
2 = π/2, line segments QB′

1 and QB′
2 form the arms of the interferometer. Mirrors

B1 and B2 are aligned perpendicular to their respective arms. The apparatus may be
rotated about its source and consequently each arm subtends its own angle θi measured
from a perpendicular to line segment AC. Let us affix moving frame I1 to the source of
the interferometer. Now let us imagine this interferometer moving through space under
inertial rules such that,

1. v remains constant (AQ = QC).

2. The interferometer orientation (θi) with respect to line segment AC remains con-
stant.

Reference frame I1 (affixed to the source) translates with constant velocity v from
point A to point C. From the perspective of the rest frame I0, a discrete event cycle
begins with the source at point A marking the simultaneous emission of a pair of photons
(wavelength=λ). As the entire apparatus moves with some constant (AQ = QC) velocity
v relative to origin Q along line segment AC, the photons are emitted at point A, reflect
from mirrors B1 and B2 to finally arrive simultaneously (in phase with each other) at
point C. This geometry and sequence of events remains true over all possible orientations
θ of an MM interferometer [6] and over all 0 ≤ v < c where c represents the velocity of
light in free space [7].
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Figure 2: Geometry of the Michelson-Morley experiment depicting the general case v ̸= 0 and
θi ̸= 0, π/2, π.... Point Q is chosen as the origin. Only the events within the interferometer
that are relevant to relativistic discussion are shown. Independent of the orientation of the
interferometer, rest frame I0 will find triangle AB′

iC is a generalisation of triangle AB′C in
fig. 1. Identical to fig.1, physical measurements of the geometry of events will confirm that
AB

′
i+B

′
iC ̸= AB

′
j+B

′
jC for all sin θi ̸= sin θj (inequality in path lengths) and ̸ AB′Q ̸= ̸ QB′C

(inequality in angles of incidence and reflection) for all θi ̸= 0, π/2, π... By setting v = 0 (x = 0),
the figure represents the observational perspective of moving frame I1. By setting v > 0 (x > 0),
the figure represents the observational perspective of rest frame I0. It is evident from fig. 1
that curve BB′ will take the form of a stationary circle of radius h about point Q independent
of θi (i.e. orientation) and v (i.e. frame of reference).

4 MMGeometry in Sommerfeld’s Spherical Model

4.1 Inertial Motion in Euclidean Space

It may be seen from fig. 1, that when events are drawn on an unbounded flat surface,
the velocity vectors v and the displacement vectors x are colinear and both vectors are
compatible with the properties of inertial motion i.e. nil acceleration. In flat space,
velocity vectors are compatible with:

1. Constant displacement over time along a path of shortest distance

2. Constant sense of direction over time

Figure 1 is the drawing basis [1] for Einstein’s special theory of relativity.

4.2 Inertial Motion on Spherical Surfaces

In his consideration of the problem, Sommerfeld [2] instead chooses to project the MM ge-
ometry onto a spherical surface. In this interpretation of space, constant direction vectors
and constant displacement vectors are not equivalent. Constant displacement vectors
(shortest distance paths between two points) are drawn as arcs of great circles on the
sphere and constant direction vectors are drawn as surface tangents (i.e. instantaneous
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arcs of small circles, known to navigators as rhumb lines [8]) to these great circles. This
crucial difference in the spatial properties of direction and displacement vectors arises
from the shape of the sphere and the geometry of the lines of meridian that drawn on
its surface. To measure a sense of direction, the meridians on a sphere are analogous to
parallel lines on a flat surface. At any point along a shortest distance path, an instanta-
neous sense of direction is measured by the angle bounded by the local meridian and the
surface tangent to the great circle path at that point. When extended indefinitely on a
sphere, a path of constant displacement will return to its origin whereas a path of constant
direction will eventually spiral into the nearest pole [8] forming a non-inertial track and
requiring some form of constantly changing acceleration input directed toward the pole
to maintain this track. In contrast to Einstein’s flat geometry, the notions of a constant
sense of direction and a shortest distance path are both conceptually and mathematically
distinct from each other when projected onto a bounded spherical surface [9] and only the
displacement vectors retain conformity with inertial motion i.e. nil acceleration.

Sommerfeld recognises this distinction between great circle displacement (shortest dis-
tance path) and tangential velocity (constant direction) vectors and advises that if our
discussion is restricted to inertial conditions and projected onto a spherical surface, the
constant direction vectors should be ignored since they represent non-inertial tracks. Som-
merfeld thus interprets the MM problem using great circle arcs rather than their tangents,
stating, “it apparently better corresponds to the meaning of the theory of relativity, to
calculate and (by consideration of the reality relations) to construct by rotation angles,
instead of only using its tangents, the velocities” [2]. Sommerfeld’s invocation of
great circle trigonometry (i.e. the cosine rule) confirms that from a mathematical perspec-
tive, the spherical solution is a model of shortest distance vectors not constant direction
vectors.

4.2.1 Agreement With Einstein’s Addition Theorem

In his 1909 paper, Sommerfeld demonstrates agreement between the spherical model and
Einstein’s 1905 special relativity by arriving at a common velocity addition formula [2][1].
But the derivation of Sommerfeld’s addition formula originates in two congruent right
spherical triangles (see △ABQ and △CBQ in fig. 1). It is only in this special case i.e.
a pair of congruent right spherical triangles that Einstein (velocity vector) and Sommer-
feld (displacement vector) will agree with each other. This is because if two great circles
intersect at a right angle then one forms the local line of meridian and the other forms
the local equator. In this special configuration, constant direction vectors and constant
displacement vectors are equivalent leading to agreement between Einstein and Sommer-
feld. This conceptual and theoretical agreement between flat space and spherical space
does not extend to the general case i.e. triangles of the form AB′C (refer fig. 1) where
constant direction vectors take on the non-inertial properties argued above.

4.3 Spherical Trigonometry

With these considerations in mind, let rest frame I0 project fig. 1 onto the surface of
an imaginary sphere of arbitrary radius R such that the shortest distance path between
any two points are described by great circles on the sphere [9]. Thus the magnitude of
physical distances x, h,AB′, B′C in fig. 1 are measured analytically as rotations in radians
subtended at the centre of this sphere. The angles depicted in fig. 1 are measured on the
surface of the sphere and curve BB′ takes the form of a small circle on the surface of this
sphere having radius h radians and centred at point Q. Since Sommerfeld has already
provided the cosine rule as a solution to all triangles of the form AB′C, let us generalise
further and invoke instead the sine rule of spherical trigonometry to see where it leads us.
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Figure 3: Spherical Trigonometry. Angles h, x,AB′, B′C are measured analytically at the
centre of an imaginary sphere. Angles i, r, A, C, θ are measured analytically on the surface of
the sphere.

4.4 Analysis of Spherical Model

From fig. 3 and the rule of sines for spherical triangles [10], rest frame I0 finds in △AB′Q:

sinAB′

sin (π/2 + θ)
=

sinh

sinA
=

sinx

sin i
(1)

where i = ̸ AB′Q. Similarly for △CB′Q:

sinCB′

sin (π/2− θ)
=

sinh

sinC
=

sinx

sin r
(2)

where r = ̸ CB′Q.

From equations, 1 and 2 rest frame I0 finds in all spherical triangles of the form AB′C:

sin(AB′)

sin(CB′)
= 1 (3)

From eq. 3, rest frame I0 finds AB′ and CB′ are supplementary angles of each other
i.e. always summing to π radians. Referring now to fig. 2, eq. 3 guarantees that by
interpreting the MM null result geometry with this analytical approach, rest frame I0 is
assured the theoretical statement AB′

i +B′
iC = AB′

j +B′
jC remains true independent of

x, h, θ. Thus the paradox of unequal path lengths presented by physical measurements of
fig. 1 vanishes independent of frame of reference xi or orientation of the interferometer θi
and significantly, the MM geometry is retained verbatim.

Thus rest frame I0 finds that Sommerfeld’s model, when applied to the MM problem
predicts no distortions in space and time and retains the circularity of curve BB′. These
predictions are in sharp contrast to Einstein’s special relativity which mandates distortions
in space and time as a function of the velocity vector v,

γ =
1√

1− v2/c2
(4)

Einstein’s solution is restricted to the domain 0 ≤ v < c whereas Sommerfeld’s solution
is valid over all 0 ≤ x/h < ∞.
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5 Conclusion

Sommerfeld’s title “On the Composition of Velocities in the Theory of Relativity” may
inadvertently lead the reader to an interpretation that differs from the work’s mathemat-
ical content i.e. a method of composition of shortest distance paths by projecting them
onto a sphere. Mathematically, employing great circle trigonometry ultimately leads to
conflict with special relativity’s employment of velocity vectors except in the special case
of two right congruent triangles. This conflict between Sommerfeld and Einstein arises
from the non-inertial properties of constant direction vectors when these are drawn on
a spherical surface. By extension, this fundamental incompatibility with special relativ-
ity must also infect other models that conjure the imaginary counter-image of spherical
geometry i.e. hyperbolic geometry such as Varicak cited above.
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