
Gravity and black holes

A J Owen
March 12th 2025

author's contact email address: ajowen@physics.org
formerly at Department of Physics, University of Regensburg; Depart-
ment of Materials, University of Cambridge; Department of Physics,
University of Cambridge; Department of Physics, University of Bristol;
Department of Physics, University of Oxford

Abstract
The question of how Newton's inverse-square law of gravity relates

to general relativity (GR) is discussed in this paper. In GR, gravity
is considered as a consequence of space and time curvature, whereas
Newton's law is restricted to a �at space. Logically, then, Newtonian
gravity must relate solely to the time curvature contribution in GR.
Instances where Newton's law does not describe phenomena correctly,
such as the perihelion rotation of the planet Mercury and the bending
of starlight, are therefore attributable to spatial curvature. The GR
solution for a static point mass, calculated on this basis for correspon-
dence with Newton's law, is entirely regular and agrees with all the
usual predictions of GR except the one leading to an event horizon.
This suggests that the currently accepted model of a static black-hole,
although mathematically possible, is non-physical. Not only is there no
horizon in spacetime, but gravitational attraction between two masses
does not diverge to in�nity as they approach each other. This means
there is no singularity at the origin of coordinates where physical laws
would break down, and relative speeds do not exceed the speed of light.
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1 Introduction
The current status quo amongst scientists is that black holes are ubiq-
uitous in the universe. Matter collapses in on itself due to gravitational
attraction, and an astronomical object, such as a very compact star,
becomes a black hole with its mass contained within a so-called event
horizon. Spacetime is then curved so much that nothing can escape
from within that event horizon, not even light. Furthermore, at the
centre of the black hole is a singularity where the laws of physics break
down. Since the year 2016, observational evidence for such objects has
been claimed both from gravitational wave signals, thought to emanate
from the coalescence of spinning black holes [1], as well as observations
of images from galactic centres, where there is thought to be a super-
massive black hole [2]. The purpose of this paper is to question some
of this.

2 Background
Black holes were given a compelling theoretical foundation a century
ago through application of Albert Einstein's theory of general relativity
GR [3] to the problem of �nding the gravitational �eld due to the
curvature of spacetime near a static point mass (Schwarzschild, 1916
[4]). A metric line element in a 4D spacetime with spherical spatial
symmetry around a point mass may be written in its most general
form as:

ds̃2 = c2dt′2 = A(r) c2dt2 −B(r) dr2 − C(r)(dθ2 + sin2 θ dφ2) (1)

where (r, θ, φ) are spherical polar coordinates and t is time, ds̃ is a
spacetime increment, c the speed of light, dt′ an increment of proper
time, dt an increment of coordinate time, and dr an increment of ra-
dial coordinate distance. A, B and C are radially dependent metric
coe�cients describing the curvature of time, radial and angular metric
coe�cients, respectively. If the spacetime were �at, A and B would be
unity and C equal to r2. In a curved space, the radial coordinate r is
the radial distance of a point from the coordinate origin viewed from
an in�nitely long distance from the mass causing curvature, or if the
distance were measured using a hypothetically rigid or non-deformable
ruler.

The calculus of variations is applied to the metric in a standard way
to obtain the geodesic equations, from which the Christo�el curvature
coe�cients are obtained and used to �nd the Ricci tensor components.
These are then all set to zero to satisfy Einstein's �eld equations of

2



GR for the vacuum outside the point mass. This procedure leads to
two independent equations for the three variables, A,B and C, which
means they cannot be solved explicitly, but only deliver a relationship
between the three quantities in terms of each other.

To overcome this problem, the metric is "simpli�ed" by writing it
as:

ds̃2 = c2dt′2 = A(r̃) c2dt2 −B(r̃) dr̃2 − r̃2(dθ2 + sin2 θ dφ2) (2)

where the angular curvature C(r) has been replaced by r̃2. Thus, in-
stead of the solid angle being curved in a radial direction, the space-
time geometry �xes it to be the same as in a �at space, and this is then
equivalent to introducing a new radial coordinate that I have denoted
in Equation 2 as r̃, in order to distinguish it from r in Equation 1.

The advantage of this substitution is that Einstein's �eld equations
of GR can then be used to �nd A and B explicitly in terms of r̃, giving
the well-known result:

A(r̃) =
1

B(r̃)
= 1− α

r̃
(3)

where α is a constant of integration.
The idea of a black hole now becomes apparent, since A(r̃) changes

sign if r̃ passes through α, while the reciprocal function B(r̃) becomes
in�nite, as well as changing sign at r̃ = α. A hypothetical sphere of
radius α is now imagined called the event horizon, centred at r̃ = 0,
where it is tacitly assumed the point mass is situated. The radius of
this sphere is referred to as the Schwarzschild radius or gravitational
radius, and the coordinates used in Equation 2 (t, r̃, θ, φ) are commonly
called Schwarzschild coordinates. However, it is important to realise
that r̃ is not the same as r in the general metric of Equation 1, and
therefore the coordinate distance r̃ in the solution of Equation 3 is not
an exact measure of the "undeformed ruler" or true distance r from
the mass at the origin (see, e.g. Rindler, [5]).

In his original solution, Schwarzschild [4] did realise that the metric
coe�cients can change sign to become negative, but he de�ned an aux-
iliary radial coordinate that prevented this happening, as he regarded a
coordinate discontinuity of this nature as non-physical. Schwarzschild
therefore did not predict black holes himself, even though current pop-
ular science often suggests he did. Einstein, too, did not believe black
holes existed and thought the solution was a mathematical quirk. Soon
after Schwarzschild tragically died at an early age, both Droste [6] and
Weyl [7] published a di�erent variant of the solution, essentially in
which they avoided the discontinuity by limiting the range of r̃ to
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∞ > r̃ > α. Subsequently, Hilbert [8] extended Droste and Weyl's so-
lution into the region r̃ < α, where the functions A(r̃) and B(r̃) become
negative. Hilbert's argument for extending the solution was essentially
that GR is conceived as a generally covariant theory, meaning that a
change of coordinates should not alter the physics of the situation, and
so now, the black-hole solution introduced by Hilbert has come to be
accepted as correct by the scienti�c community.

3 Correspondence with Newton's classical law
GR is essentially an abstract geometrical description of how space and
time are curved by stress-energy. In order to obtain correspondence
between GR and real physical quantities, it is customary to make use of
Newton's law of gravity. This is conventionally achieved in the region of
gravity where Newton's law holds and where curvature is considered to
be small. I shall adopt a di�erent approach here from most textbooks,
one which I think is most illustrative.

Consider a test particle falling towards the point mass along a radial
direction, starting a long way away with zero velocity. The geodesic
equation in r (which I have not speci�cally derived here) obtained from
the metric in Equation 1 is found to be given by:

r̈ +
A′

2B
c2ṫ2 +

B′

2B
ṙ2 − C ′

2B

(
θ̇2 + sin2 θφ̇2

)
= 0

From this, the following expression for the radial equation of motion is
obtained (setting θ̇ = φ̇ = 0):

r̈ = − A′

2B
c2ṫ2 − B′

2B
ṙ2 (4)

where r̈ = d2r/dt′2 is the proper acceleration, ṙ = dr/dt′ is the proper
velocity, ṫ = dt/dt′, A′ = dA/dr and B′ = dB/dr. Now writing the
metric (Equation 1) in the form:

ṫ2 =
1 + Bṙ2

Ac2
(5)

where again θ̇ = φ̇ = 0, the equation of motion may be rewritten
(eliminating ṫ) as:

r̈ = −1

2

A′

AB
c2 − 1

2

(
A′

A
+

B′

B

)
ṙ2 (6)

The same mathematical form for the equation of motion is derived
irrespective of which radial coordinate is used (r or r̃), since C does
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not appear in it, so the metric in Equation 2 gives us an equivalent
equation to Equation 6 in terms of r̃. In any case, we shall consider the
situation when gravity is weak, i.e. we are well away from any extreme
e�ects that occur near a point mass, such that any di�erence between
r̃ and r can be regarded as negligible. Now apply the GR solution in
Equation 3 (A = 1/B = 1 − α/r with r̃ = r) to Equation 6 and we
have

r̈ = −1

2
A′c2 = −1

2

αc2

r2
(7)

substituting A′ = α/r2. This neatly appears to agree with the inverse-
square form of Newton's gravitational law, which may be expressed
as:

a = −GM

r2
(8)

where a is the classical or absolute acceleration, G Newton's gravita-
tional constant, M the mass causing the acceleration, and where we
identify the proper quantities in GR with the corresponding classical
quantities in Newton's law. This correspondence gives α = 2GM/c2.
In doing so, this appears to con�rm there is an event horizon at a radius
α, since A and B appear to change sign at r = α. However, that would
be a �awed conclusion, since the analysis is only valid when gravity is
weak and r >> α. It is fundamentally incorrect to extrapolate this be-
havior to values of r of the order of α, where r̃ may di�er signi�cantly
from r.

The feature that characterizes Newtonian behaviour is the strict
inverse-square dependence of the acceleration on distance, i.e. it re-
lates strictly to a �at or Euclidean space with the absence of spatial
curvature. Thus, to obtain the correct correspondence between New-
ton's law and the equation of motion from the calculus of variations
the metric coe�cient for spatial curvature B must be set to unity in
Equation 6, which gives:

r̈ = − A′

2A

(
c2 + ṙ2

)
[B = 1] (9)

This expression now describes Newtonian free-fall motion in the four-
dimensional spacetime geometry of GR.

Solving this di�erential equation by using the asymptotic condition,
A = 1 for ṙ = 0, we obtain

A =

(
1 +

ṙ2

c2

)−1

(10)
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and if we now set ṙ equal to the Newtonian velocity of free-fall
√

2GM/r,
we obtain

A(r) =
(
1 +

α

r

)−1

(11)

which gives A → 1 for r → ∞ and A → 0 for r → 0, where α =
2GM/c2 is the same quantity as before.

This expression for A is regular for all values of r and can be re-
garded as resulting from positing that Newtonian gravity is determined
purely by the curvature of time in a Lorentzian four-dimensional space-
time. The corollary to this is that deviations from Newtonian gravity,
such as the anomalous perihelion rotation of the planet Mercury and
the bending of starlight past the Sun, i.e. gravitational lensing e�ects
generally, are caused by the additional e�ect of spatial curvature.

4 Back to GR
The solution A = (1 + α/r)−1 with B = 1 does not satisfy Einstein's
GR �eld equations for the vacuum exactly, since it was derived to
represent the conditions under which Newton's law applies, viz. with
no space curvature. However, there is no reason to suppose that this
time-curvature part of the solution does not remain valid under all
circumstances, and then assume that deviations from Newton's law
are due entirely to spatial curvature.

Comparing time curvature from the GR solution with that deduced
from Newton's law, one obtains (with A(r̃) = A(r)):

1− α

r̃
=

(
1 +

α

r

)−1

(12)

Rearranging this gives the following linear relationship between r̃ and
r:

r̃ = r + α (13)
This now solves the issue of how the Schwarzschild radial coordinate r̃
is related to the true radial coordinate r.

In addition, the spatial curvature functions are related by

B(r)dr2 = B(r̃)dr̃2

which gives

B(r) =
(
1− α

r̃

)−1
(

dr̃

dr

)2

= 1 +
α

r

A(r) and B(r) thus remain regular for all values of the true radial
coordinate distance, ∞ > r > 0. A(r̃) and B(r̃) change sign at r̃ = α,
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but this does not represent a discontinuity in spacetime, since from
Equation 13 the range of r̃ is restricted to ∞ > r̃ > α. Thus, the
extension made by Hilbert to r̃ < α is invalid and the concept of a
static black hole with an event horizon is false.

5 New law of gravitational attraction
Substituting the proposed GR solution A = 1/B = (1 + α/r)−1 into
the equation of motion gives for the free-fall acceleration:

r̈ = −1

2
c2A′ = −1

2

c2α

(r + α)2
(14)

This expression shows classical Newtonian behaviour for r À α but
deviates from inverse-square law behaviour for r of the order of α. For
r → 0 it reaches a constant value of c4/4GM , rather than increasing to
∞. This means that the attractive force between two masses does not
increase to in�nity as masses approach each other closely. Qualitatively,
the time curvature produces an ever-increasing attractive force, but
as spatial curvature becomes important at small r, this produces a
repulsive force that counteracts the attraction. There is therefore no
singularity at the origin of coordinates where the laws of physics would
break down.

The proper velocity of free-fall may be written:

ṙ2

c2
= 1− A

which gives
ṙ = c

√
α

r + α
(15)

This means that for r → 0 the proper velocity ṙ goes to the speed of
light. On the other hand, Hilbert's solution predicts

ṙ = c

√
α

r
(16)

which implies ṙ → c for r → α, and ṙ → ∞ for r → 0. In other
words, whereas Hilbert's mathematical solution permits superluminal
velocities, the regular solution presented here limits velocities to the
speed of light.
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