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Abstract

In this paper, we analyze the phenomenon of non-isotropic mass dis-
tribution in spiral galaxies and propose a hypothesis that such an imbal-
ance introduces a relative velocity for observers. Furthermore, we suggest
observational methods to verify this hypothesis. If proven correct, this
hypothesis could provide a more reasonable explanation for the origin of
dark matter.

1 Introduction

The dark matter problem has persisted for decades. Observations by Y. Sofue
et al.[3] and Yuan Zhou et al.[4] have revealed a significant mass discrepancy
between theoretical predictions and observational phenomena in spiral galax-
ies. This discrepancy is pervasive, leading us to hypothesize that its origin
lies in the inadequacy of current theories. Beyond the dark matter hypothesis,
Modified Newtonian Dynamics (MOND) has also been proposed to explain this
divergence[2].

We first distinguish the concept of distance in galactic observations and
conclude that an non-isotropic gravitational field can cause celestial bodies to
shift from perfect circular orbits to elliptical ones. Subsequently, through a
re-examination of Hubble’s Law, we find that gravity, as a force of constant
magnitude, cannot provide an acceleration that varies with the observer’s posi-
tion. Building on this, we propose a hypothesis that the gravitational potential
difference between the central body (equivalent body) and the orbiting body
from observer’s perspective, may induce a relative velocity. Furthermore, we
present observational methods to verify this hypothesis.

2 Distances in Astronomical Observations

Beyond the well-known concept of optical path distance, we introduce the notion
of geometric distance. The distinction between the two lies in the fact that the
latter cannot be directly obtained through the product of the speed of light
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and time in observations. Instead, geometric distance is derived from known
optical path distances combined with prior knowledge. A crucial characteristic
of geometric distance is it must incorporate information about the magnitude
of the gravitational field in which it is situated; otherwise, it loses its ability
to accurately describe distance. The geometric distance (d′) and optical path
distance (d) are described by the following equations:

d′ = f(d1, d2, . . . ) (1)

where f is a function incorporating prior knowledge of known optical path
distances. Further, to provide an invariant description of geometric distance,
we introduce the concept of absolute spacetime distance. The optical path
distance (d) and absolute spacetime distance (D) are described by the following
equations:

d ∝ 1

|Φ̄|
D (2)

where Φ̄ represents the average gravitational potential along the absolute
spacetime distance. In the absence of gravitational fields, the absolute spacetime
distance reduces to:

D = ct (3)

Under the influence of a gravitational field, the relationship between the
proper time dτ and coordinate time dt is given by:

dτ

dt
=

√
1 +

2Φ

c2
=

√
1− 2GM

c2r
(4)

where G is the gravitational constant, M is the mass of the gravitating body,
and r is the radial coordinate from the center of the gravitational source. This
expression follows from the Schwarzschild metric and describes time dilation
due to gravitational effects. Equation (2) can be derived by considering the
absolute spacetime distance in a gravitational field and the corresponding length
contraction effect that alters the measured distance.

The absolute spacetime distance provides a conceptual framework for repre-
senting optical path distances in different gravitational fields, where the latter is
influenced by variations in gravitational potential and the corresponding space-
time curvature.

In a non-isotropic gravitational field, deviations from standard orbital mo-
tion introduce modifications to the ellipticity of the trajectory. The degree of
asymmetry in the gravitational potential along different axial directions can be
reflected in the ratio of the major and minor axes.

When analyzing galactic rotation curves, the impact of gravitational po-
tential inhomogeneity on the propagation of light should be considered in ob-
servational distance measurements, rather than assuming a direct geometric
interpretation of the orbital radius.
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3 Dark Matter Contribution Curve

3.1 Revisiting Hubble’s Law

Hubble’s law[1] states that the recession velocity of a galaxy is proportional to
its distance:

V = HD (5)

For a small time interval t, the distance changes as:

Dt = D0 + V0t+
1

2
at2 (6)

where the initial velocity is given by:

V0 = HD0 (7)

and the equivalent acceleration can be approximated as:

a = H2D0 (8)

This formulation provides an intuitive description of the recession motion
under uniform acceleration. Rather than focusing on what causes galaxies to
recede, we are more concerned with how this acceleration is generated. Whether
the central body is considered dominant in the galaxy or treated equally with
other celestial bodies, the fact that interactions between celestial bodies rely on
gravitational transmission leads to a contradiction: a force of constant magni-
tude (gravity) cannot produce an acceleration that varies with the observer’s
position.

Considering that the orbital motion of celestial bodies is ubiquitous, acceler-
ation is inherently present between the observer and the observed celestial body.
This prevalence of accelerated motion suggests that it cannot simply be regarded
as a special case of Hubble’s Law, highlighting a fundamental contradiction that
should not be overlooked.

3.2 The Hypothesis and Its Verification Method

This hypothesis is proposed based on the following observations: the galaxies we
observe maintain stable structures over time, suggesting a degree of consistency
in their overall behavior, while the position of the observer relative to celestial
bodies within galaxies is inherently uncertain, and the observer is subject to con-
tinuous accelerated motion, such as that associated with the rotation of galaxies
and the motion of planetary bodies. Empirically, effects arising from changes in
the observer’s position and velocity relative to other objects are commonly re-
ferred to as relative motion effects, where the varying physical quantities in such
effects typically act as dependent variables influencing observational outcomes.

Conceptually, if we idealize a galaxy as a spherical celestial body, many of
the complexities regarding the observer’s relative position and velocity can be ef-
fectively simplified or ignored. Therefore, we hypothesize that the fundamental
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cause of these relative effects arises from the gravitational potential difference
between the observer, the central body (or an equivalent body), and the ob-
served celestial body. Compared to alternative explanations, which attribute
relative effects to continuously varying acceleration magnitudes and directions,
this hypothesis offers a simpler theoretical framework while maintaining consis-
tency with established physical principles.

Based on Newton’s law of gravitation, we derive the following relationship
between gravitational potential and velocity:

GM

R
= v2 (9)

which indicates a certain equivalence between gravitational potential and the
square of velocity. Therefore, we propose the following hypothesis:

v2 ∝ |∆Φ| (10)

where v2 represents the relative effect velocity, and ∆Φ denotes the grav-
itational potential difference between the central body (equivalent body) and
the surface of the observed celestial body. This potential difference is deter-
mined by the gravitational potential along the optical path from the observer
to the central body (equivalent body) and the observed celestial body. It is
important to note that the directionality of the gravitational potential must be
fully considered, meaning that the gravitational potential of the central body
differs significantly in the radial optical path and the direction perpendicular
to it. Since we do not yet have sufficiently precise data to determine the exact
proportionality of this relationship, we cannot provide specific numerical values.
However, we can observe the orbital velocity of celestial bodies in the Milky Way
under different gravitational potential differences.

Generally, we have reason to believe that when a celestial body orbits along
the radial line connecting the Galactic Center and the Sun, the gravitational
potential difference it experiences is smaller than at other positions. If our
hypothesis is correct, the orbital velocity of celestial bodies at this position
should exhibit a significant decrease. By combining this observation with the
Dark Matter Contribution Curve in the galaxy’s rotation curve, we can roughly
assess whether this effect corresponds to the gravitational potential difference
along the galactic center.

Furthermore, this hypothesis might potentially offer an explanation for the
precession problem within the Solar System. For an observer on Earth, there
might be a gravitational potential difference between the surface of the Sun and
that of the planets, which could possibly contribute to the observed precession
effects.
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