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Abstract

This paper presents a comprehensive overview of extended Dio-
phantine equations—high-degree equations that admit infinitely many
solution sets, with each set comprising infinitely many elements. We
focus on the effective application of the formula

ab = k(a+ b) + c,

where a, b, k, and c are integers, to transform complex equations
into symmetric forms. This transformation facilitates the derivation
of polynomial expansions and enables the systematic construction of
solution sets with distinct and primitive elements.

1 Introduction

In classical number theory, Diophantine equations are typically studied in
terms of the existence of finitely or infinitely many integer solutions. The
notion of extended Diophantine equations pushes this framework further by
considering high-degree equations with intricate structures, where not only
are there infinitely many sets of solutions, but each solution set itself con-
tains infinitely many elements. This expanded perspective reveals the rich
and diverse internal structure of such equations and opens new avenues for
research in algebra and number theory.
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A powerful tool in the analysis of these extended Diophantine equations
is the formula

ab = k(a+ b) + c,

with a, b, k, and c being integers, and where k and c are determined based on
the particular equation under study. This formula allows for the conversion
of complex expressions into symmetric forms, thereby enabling a systematic
expansion of related polynomials in terms of the sum a + b. In turn, such
expansions reveal intricate relationships among the coefficients and support
the construction of solution sets characterized by distinct, primitive, and
arithmetically significant properties.

By applying the formula ab = k(a+ b)+ c, one can transform high-degree
Diophantine equations into either binomial or symmetric polynomial forms.
This approach not only simplifies the analysis but also demonstrates the
existence of infinitely many solution sets—each containing infinitely many
elements that satisfy stringent conditions such as mutual distinctness, non-
vanishing, and coprimality. The aim of this paper is to provide a detailed
overview of the methodology that utilizes the aforementioned formula to solve
extended Diophantine equations, thereby offering new insights and potential
applications in both theoretical and applied mathematics.

2. Expansion of an + bn in terms of X = a + b

2.1. General Formula

When a and b are connected through the identity:

ab = k(a+ b) + c

We can express an + bn as a polynomial in the variable X, where X = a+ b.
Let:

an + bn =
n∑

d=0

E(n− d, n) ·Xn−d,

with E(n− d, n) be the coefficient of Xn−d in the expansion of an + bn.
From the identity

an + bn = [an−1 + bn−1](a+ b)− ab[an−2 + bn−2]
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and the relation ab = k(a+ b) + c, we obtain the recurrence formula:

E(n− d, n) = E(n− d− 1, n− 1)− k ·E(n− d− 1, n− 2)− c ·E(n− d, n− 2)

with initial values:

E(n, n) = 1,

E(n− 1, n) = −nk,

E(n− 2, n) =
n(n− 3)

2
k2 − nc,

E(n− 3, n) = −n(n− 4)(n− 5)

6
k3 + n(n− 3)kc.

A closed form formula has been proven:

E(n− d, n) = (−1)dn

⌊d/2⌋∑
j=0

(−1)j
(n− d+ j − 1)!

(n− 2d+ 2j)!(d− 2j)!j!
· kd−2jcj

We now present the expansions for n = 4, 5, 6:

Expansion for n = 4

a4 + b4 =
4∑

d=0

E(4− d, 4).X4−d

E(4, 4) = 1

E(3, 4) = −4k

E(2, 4) = 2k2 − 4c

E(1, 4) = 4kc

E(0, 4) = 2c2

a4 + b4 = X4 − 4kX3 + (2k2 − 4c)X2 + 4kcX + 2c2.

Expansion for n = 5

a5 + b5 =
5∑

d=0

E(5− d, 5)X5−d
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E(5, 5) = 1

E(4, 5) = −5k

E(3, 5) = 5k2 − 5c

E(2, 5) = 10kc

E(1, 5) = 5c2

E(0, 5) = 0

a5 + b5 = X5 − 5kX4 + (5k2 − 5c)X3 + 10kcX2 + 5c2X.

3. Relationship: (X − k)n = an + bn + P (X)

Using the binomial theorem:

(X − k)n =
n∑

j=0

(
n

j

)
Xn−j(−k)j.

We define the polynomial P (X) as:

P (X) = (X − k)n − (an + bn).

This gives a way to shift between the binomial expansion and the symmetric
power sum using P (X) as the adjustment term.

3. Specific examples: n = 4 and n = 5

3.1. Case n = 4

a) Binomial Expansion:

(X − k)4 = X4 − 4kX3 + 6k2X2 − 4k3X + k4.

b) Symmetric Expansion:

a4 + b4 = X4 − 4kX3 + (2k2 − 4c)X2 + 4kcX + 2c2.

c) Polynomial P (X):

P (X) = (X − k)4 − (a4 + b4)

= (4k2 + 4c)X2 − 4k(k2 + c)X + (k4 − 2c2).
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Final identity:

(X − k)4 = a4 + b4 +
[
(4k2 + 4c)X2 − 4k(k2 + c)X + (k4 − 2c2)

]
3.2. Case n = 5

a) Binomial Expansion:

(X − k)5 = X5 − 5kX4 + 10k2X3 − 10k3X2 + 5k4X − k5.

b) Symmetric Expansion:

a5 + b5 = X5 − 5kX4 + (5k2 − 5c)X3 + 10kcX2 + 5c2X.

c) Polynomial P (X):

P (X) = (X − k)5 − (a5 + b5)

= (5k2 + 5c)X3 − 10k(k2 + c)X2 + 5(k4 − c2)X − k5.

Final identity:

(X − k)5 = a5 + b5 +
[
(5k2 + 5c)X3 − 10k(k2 + c)X2 + 5(k4 − c2)X − k5

]
6. Conclusion

This report presented the connection between the symmetric expansion of
an + bn and the binomial expansion of (X − k)n, where ab = kX + c. We
have the following:

1. Recursive and closed-form formulas for the coefficients of an + bn in
terms of X.

2. The binomial expansion of (X − k)n using Newton’s formula.

3. A definition of the polynomial P (X) such that:

(X − k)n = an + bn + P (X).

4. Explicit examples for n = 4 and n = 5 that illustrate the structure and
pattern of P (X).

This identity provides a powerful tool for analyzing and transforming
symmetric expressions involving powers of two variables.
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Problem 1:

Prove that there exist infinitely many tuples of integers (a1, a2, . . . , an) with
n > 3, such that:

• Each ai ̸= 0

• No two numbers are negatives of each other

• All ai are pairwise distinct

• gcd(a1, a2, . . . , an) = 1

and such that
n∑

i=1

a2i = b2 and
n∑

i=1

ai = c2

for b, c ∈ Z.

Solution

Step 1: Analyze the sum of squares

Let a1, a2, . . . , an be integers. We aim to find such numbers such that:

a21 + a22 + · · ·+ a2n = (x− k)2,

where x = a1+ a2+ · · ·+ an is a perfect square. To simplify the problem, we
first consider n = 3, then extend it to n > 3.

Step 2: Relationship between a1, a2, a3

For any integers a1, a2, we always have:

a1 · a2 = k(a1 + a2) + c, (1)

where k, c ∈ Z. Let a1 + a2 = x:

x2 = a21 + a22 + 2kx+ 2c.

Then:
(x− k)2 = a21 + a22 + k2 + 2c. (2)
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Set k = a3 and choose 2c = a24 + · · ·+ a2n. Thus, we have:

(x− k)2 = a21 + a22 + a23 + a24 + · · ·+ a2n. (3)

This ensures that a21 + a22 + · · ·+ a2n is a perfect square.

Step 3: Choosing a1, a2 appropriately

From equation (1), assume a1 − k = 1. Then:

a2 − k = k2 + c. (4)

This gives:
a1 = k + 1, a2 = k2 + k + c. (5)

With this choice, a1 and a2 are integers that are distinct.

Step 4: The sum a1 + a2 + a3 + · · ·+ an

The total sum of a1, a2, a3, . . . , an is:

a1 + a2 + a3 + · · ·+ an = k2 + 3k + 1 + c+ a4 + · · ·+ an. (6)

Let:
q = 1 + c+ a4 + · · ·+ an,

we get:
a1 + a2 + a3 + · · ·+ an = k2 + 3k + q. (7)

Rewriting this sum as a perfect square:

k2 + 3k + q = (k + 2)2 − k + q − 4. (8)

To make the sum a perfect square, choose k = q − 4. Then:

a1 + a2 + a3 + · · ·+ an = (k + 2)2. (9)
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Step 5: Conclusion

With the choices:

a1 = k + 1, a2 = k2 + k + c, a3 = k

and appropriate c, a4, . . . , an, we ensure:

1.
n∑

i=1

a2i = b2 and
n∑

i=1

ai = c2

Thus, there exist infinitely many such sets (a1, a2, . . . , an) that satisfy the
problem’s requirements.

Example

For n = 5, we wish to prove that

5∑
i=1

a2i = b2 and
5∑

i=1

ai = c2.

We begin by choosing a4 and a5 such that a24 + a25 is divisible by 2. For
instance, let

a4 = 1 and a5 = 3.

Then we compute

c =
a24 + a25

2
=

12 + 32

2
=

1 + 9

2
= 5.

Next, define
q = 1 + c+ a4 + a5 = 1 + 5 + 1 + 3 = 10.

It follows that
k = q − 4 = 10− 4 = 6.

We then determine the remaining values as follows:

a1 = k+1 = 6+1 = 7, a2 = k2+k+c = 62+6+5 = 36+6+5 = 47, a3 = k = 6.
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Thus, the solution set is

(a1, a2, a3, a4, a5) = (7, 47, 6, 1, 3).

We can verify that

5∑
i=1

a2i = 72 + 472 + 62 + 12 + 32 = 49 + 2209 + 36 + 1 + 9 = 2304 = 482,

and
5∑

i=1

ai = 7 + 47 + 6 + 1 + 3 = 64 = 82.

Hence, the solution set (7, 47, 6, 1, 3) satisfies the required conditions.

Problem 2:

Prove that there exist infinitely many tuples of integers (a1, a2, . . . , an) with
n > 3, such that:

• Each ai ̸= 0,

• No two elements are negatives of each other,

• All ai are distinct,

• gcd(a1, a2, . . . , an) = 1
n∑

i=1

a3i = b3

for b ∈ Z.

Solution

Step 1: Start from a known identity

For any integers a1 and a2, there always exist integers k and c such that:

a1a2 = k(a1 + a2) + c. (1)
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Step 2: Use the identity to simplify x3

Let x = a1 + a2. Then:

x3 = a31 + a32 + 3a1a2x.

Substituting equation (1):

x3 = a31 + a32 + 3kx2 + 3cx.

Rewriting:
(x− k)3 = a31 + a32 + (−k)3 + 3(k2 + c)x.

Step 3: Choose additional cube terms

Choose integers b4, b5, . . . , bn such that:

3(k2 + c) = b34 + b35 + · · ·+ b3n.

Define:

q =
b34 + b35 + · · ·+ b3n

3
= k2 + c.

This is possible by choosing appropriate values for b4, . . . , bn so that q is an
integer.

Step 4: Construct remaining terms

Let x = d3 for some integer d, and define:

a3 = −k, a4 = b4d, . . . , an = bnd.

Then:
(x− k)3 = a31 + a32 + a33 + a34 + · · ·+ a3n.

Step 5: Choose a1 and a2

From equation (1), set:

a1 − k = 1, a2 − k = k2 + c = q.

Then:
a1 = k + 1, a2 = k + q.

10



Step 6: Solve for k

We know:
x = a1 + a2 = 2k + 1 + q = d3.

Solving for k:

k =
d3 − 1− q

2
.

So k is an integer if d and q are chosen appropriately.

Step 7: Ensure conditions are met

To ensure the conditions (nonzero, not negatives of each other, distinct, and
gcd equal to 1), choose d and the bi’s such that:

• All ai ̸= 0,

• No pair ai = −aj,

• All ai are distinct,

• gcd(a1, . . . , an) = 1.

Conclusion

We now have:

a1 = k + 1, a2 = k + q, a3 = −k, a4 = b4d, . . . , an = bnd.

Since d and bi can be freely chosen (with infinitely many valid combina-
tions), there exist infinitely many such tuples satisfying

n∑
i=1

a3i = b3
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Example

For n = 5, we wish to prove that

5∑
i=1

a3i = b3.

We proceed as follows:

1. Choose b4 and b5 such that b34 + b35 is divisible by 3. For instance, let

b4 = 1 and b5 = 5.

2. Compute

q =
b34 + b35

3
=

13 + 53

3
=

1 + 125

3
=

126

3
= 42.

3. Choose d = 3 and determine k by

k =
d3 − 1− q

2
=

33 − 1− 42

2
=

27− 1− 42

2
=

−16

2
= −8.

4. Define the components of the solution:

a4 = b4 · d = 1 · 3 = 3, a5 = b5 · d = 5 · 3 = 15.

Also, set

a1 = k+1 = −8+1 = −7, a2 = k+q = −8+42 = 34, a3 = −k = 8.

Thus, the solution set is

(a1, a2, a3, a4, a5) = (−7, 34, 8, 3, 15).

We now verify the result:

5∑
i=1

a3i = (−7)3 + 343 + 83 + 33 + 153

= −343 + 39304 + 512 + 27 + 3375

= 42875,
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and indeed
353 = 42875.

Therefore, the solution set (−7, 34, 8, 3, 15) satisfies the condition

5∑
i=1

a3i = 353.

Problem 3:

Prove that there exist infinitely many tuples of integers (a1, a2, . . . , an) with
n > 3, such that:

• Each ai ̸= 0

• No two numbers are negatives of each other

• All ai are pairwise distinct

• gcd(a1, a2, . . . , an) = 1

and such that
n∑

i=1

a3i = b2

for b ∈ Z.

Solution

Step 1: Basic Analysis

For any integers a and b, we can always write:

a · b = k · (a+ b) + c, where k, c ∈ Z.

Let x = a+ b, then:
a · b = kx+ c. (1)

The sum of cubes of a and b can be expressed as:

a3 + b3 = (a+ b)3 − 3ab(a+ b) = x3 − 3ab · x.
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Substituting ab = kx+ c from (1), we get:

a3 + b3 = x3 − 3(kx+ c)x = x3 − 3k · x2 − 3c · x. (2)

Let us rewrite this as:

a3 + b3 = (px+ q)2 + x3 − 3k · x2 − 3c · x− (px+ q)2. (3)

To ensure the expression is a perfect square, we choose:

3k + p2 = 0 and 3c+ 2pq = 0.

Solving these equations, we get:

k = −p2

3
, c = −2pq

3
.

Step 2: Constructing the Initial Solution

Substituting k = −p2

3
, c = −2pq

3
into (3), we get:

a3 + b3 + (−x)3 + q2 = (px+ q)2. (4)

By choosing q = 1, we have:

a3 + b3 + (−x)3 + 13 = (px+ 1)2. (5)

Thus, the quadruple (a, b,−x, 1) is a solution.

Step 3: Extending the Solution

Let p = 3d and q = 1. Then:

k = −3d2, c = −2d.

From (1), we have:

(a− k)(b− k) = k2 + c = 9d4 − 2d.

For a specific d, solving this equation yields integer pairs (a, b).
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Step 4: Iterative Process

Consider an additional pair (a1, b1) with x1 = a1 + b1. Then:

(a1 − k)(b1 − k) = k2 + c = 9d4 − 2dq1,

where q1 = px+ q = px+ 1.
The sum of cubes for the new pair is:

a31 + b31 + (−x1)
3 + q21 = (px+ q1)

2. (6)

Substituting (5) into (6), we obtain:

(px+ q1)
2 = a31 + b31 + (−x1)

3 + a3 + b3 + (−x)3 + 13.

Thus, we extend the set (a, b,−x, 1) to (a, b,−x, 1, a1, b1,−x1).

Step 5: Infinite Iteration

By choosing q2 = px+ q1, we repeat the process, extending the set to:

(a, b,−x, 1, a1, b1,−x1, . . . , an, bn,−xn).

At each step, we ensure that the integers are pairwise coprime and distinct,
and their cubes sum to a perfect square.

Conclusion

By iterating this process infinitely, we construct infinitely many sets of inte-
gers (a1, a2, . . . , an) such that:

n∑
i=1

a3i = b2

Example: Infinite Extension of Solutions

We illustrate the method of extending solutions infinitely for a certain class
of Diophantine equations. In this example, we aim to extend a base solution
by using specific parameter choices.
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Step 1: Base Equation

Let
q = 1 and k = −3d2.

Then, we have the relation

(a− k)(b− k) = 9d4 − 2d.

Taking d = 1, we obtain

(a+ 3)(b+ 3) = 7.

Solving this equation gives the solutions:

(a, b) = (−2, 4) or (a, b) = (−4, −10).

We choose the pair (−4,−10). Then,

x = a+ b = −4 + (−10) = −14.

It is verified that

(−4)3 + (−10)3 + 143 + 13 = 412.

Step 2: Extending the Solution

Now, set
q1 = 41.

Then, consider the modified equation:

(a1 − k)(b1 − k) = 9d4 − 2d q1.

Choose d = 2 so that
k = −3d2 = −12.

The equation becomes

(a1 + 12)(b1 + 12) = −20.

Solving this yields possible solutions such as

(a1, b1) = (−11, −32) or (a1, b1) = (−13, 8), ...

We select the pair (−13, 8), so that

x = a1 + b1 = −13 + 8 = −5.

It can then be verified that

(−13)3 +83 +53 +412 = (−13)3 +83 +53 +(−4)3 +(−10)3 +143 +13 = 112.
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Conclusion of the Example

We have thus extended the initial solution set from

(−4, −10, 14, 1)

to a larger solution set

(−4, −10, 14, 1, −13, 8, 5).

This process can be repeated indefinitely, thereby generating an infinite fam-
ily of solutions.

Problem 4:

Prove that there exist infinitely many tuples of integers

(a1, a2, a3, a4) and (b1, b2, . . . , bt)

such that:

• Each ai ̸= 0

• No two numbers are negatives of each other

• All ai are pairwise distinct

• gcd(a1, a2, . . . , an) = 1

and

a41 + a42 − a43 − a44 =
t∑

i=1

b3i

Solution

Let a, b be integers. We have the relation:

a · b = k(a+ b) + c (1)

where k, c are integers. Define x = a+ b, then:

a · b = kx+ c
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Step 1: Express a4 + b4

We have:

a4 + b4 = (a2 + b2)2 − 2a2b2

Notice that:

a2 + b2 = x2 − 2ab

Substituting into the equation and expanding:

a4 + b4 = (x2 − 2ab)2 − 2a2b2 = x4 − 4x2(kx+ c) + 2a2b2

This simplifies to:

a4 + b4 = x4 − 4kx3 − 4cx2 + 2a2b2

Continuing to expand:

a4 + b4 = x4 − 4kx3 + (2k2 − 4c)x2 + 4kcx+ 2c2

We now have:

a4 + b4 + k4 + 4(k2 + c)x2 − 4k(k2 + c)x− 2c2 = (x− k)4

Step 2: Define k2 + c = m

Thus, c = m− k2, and we have:

(x− k)4 = a4 + b4 + k4 + 4mx2 − 4kmx− 2(m− k2)2

Expanding further:

(x− k)4 = a4 + b4 + k4 + 4mx(x− k)− 2(m2 − 2mk2 + k4)
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Step 3: Define P

Let:

P = 4mx(x− k)− 2m2 + 4mk2

From the above, we get:

(x− k)4 + k4 = a4 + b4 + P

From equation (1), we have:

(a− k)(b− k) = k2 + c = m

Let a− k = n, then b− k = m
n
, so:

a = k + n, b =
m

n
+ k

Thus:

x = a+ b = 2k + n+
m

n

Step 4: Compute P

Substitute into the expression for P :

P = 4m
(
2k + n+

m

n

)
(k + n+

m

n
)− 2m2 + 4mk2

Expanding and simplifying:

P =
4

n2
m3 + 6m2

(
1 +

2k

n

)
+ 4m

(
3k2 + 3kn+ n2

)
Step 5: Choose n = 2

When choosing n = 2, we get:

P = m3 + 6m2(1 + k) + 4m(3k2 + 6k + 4)

This simplifies to:
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P = [m+ 2(1 + k)]3 − 3m · 4(1 + k)2 − 8(1 + k)3 + 4m(3k2 + 6k + 4)

Finally, we have:

P = (m+ 2k + 2)3 − 4m
[
3(1 + 2k + k2)− 3k2 − 6k − 4

]
− 8(1 + k)3

P = (m+ 2k + 2)3 + 4m− 8(1 + k)3

Step 6: Define b1, b2, . . . , bn

Let:

b1 = m+ 2k + 2, 4m− 8(1 + k)3 = b32 + · · ·+ b3n (∗)
Thus:

P = b31 + b32 + · · ·+ b3n (5)

Substitute into equation (3):

P = (x− k)4 + k4 − a4 − b4 = b31 + b32 + · · ·+ b3n

With n = 2, we have a = k + 2, b = m
2
+ k, and for b to be an integer,

m/2 must be an integer.

Step 7: Compute m

From equation (*), we have:

m = 2(1 + k)3 +
b32 + · · ·+ b3n

4
Thus:

m

2
= (1 + k)3 +

b32 + · · ·+ b3n
8

Since b3n divided by 8 can have remainders of 0, 1, 3, 5, or 7, we choose
b32 + · · · + b3n such that it is divisible by 8, ensuring that m/2 is an integer
and thus b is an integer.
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Conclusion:

We have proven that there exist infinitely many distinct integer quadruples
(a1, a2, a3, a4) and (b1, b2, . . . , bn) that are pairwise coprime such that:

a41 + a42 − a43 − a44 = b31 + b32 + · · ·+ b3n

Example: Extending a Solution via Cubic and

Quartic Identities

We illustrate an example where we choose parameters b2, b3, and b4 so that
the sum of their cubes is divisible by 8. The steps are as follows.

Step 1: Choosing Parameters

Choose
b2 = 1, b3 = 2, b4 = 7,

so that
b32 + b33 + b34 = 13 + 23 + 73 = 1 + 8 + 343 = 352,

and 352 is divisible by 8.
Assume k = 1.

Step 2: Determining m

We are given the relation

m

2
= (k + 1)3 + 44.

Substitute k = 1:

m

2
= (1 + 1)3 + 44 = 23 + 44 = 8 + 44 = 52.

Thus,
m = 104.
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Step 3: Defining the Variables a, b and b1

Set
a = k + 2 = 1 + 2 = 3,

b =
m

2
+ k = 52 + 1 = 53,

b1 = m+ 2k + 2 = 104 + 2 + 2 = 108.

Step 4: Constructing the Solution Set

Now define
a1 = a+ b− k = 3 + 53− 1 = 55,

a2 = k = 1, a3 = a = 3, a4 = b = 53.

Thus, we have the solution sets:

(a1, a2, a3, a4) = (55, 1, 3, 53),

(b1, b2, b3, b4) = (108, 1, 2, 7).

Step 5: Verification

It is claimed that

554 + 14 − 34 − 534 = 1083 + 13 + 23 + 73.

A direct computation shows that both sides of the identity are equal, hence
the solution sets satisfy the required equation.

Thus, the pair of solution sets

(a1, a2, a3, a4) = (55, 1, 3, 53) and (b1, b2, b3, b4) = (108, 1, 2, 7)

is valid.
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Problem 5:

Prove that there exist infinitely many tuples of integers (a1, a2, . . . , at) with
t > 3, such that:

• Each ai ̸= 0

• No two numbers are negatives of each other

• All ai are pairwise distinct

• gcd(a1, a2, . . . , at) = 1

and such that
t∑

i=1

a3i = b3 and
t∑

i=1

ai = c3

for b, c ∈ Z.
Solution:
Let a and b be integers. We have the equation:

ab = k(a+ b) + c (1)

where k and c are integers. Let a+ b = x.
Then we have:

a3 + b3 = x3 − 3kx2 − 3cx

which simplifies to:

(x− k)3 = a3 + b3 + (−k)3 + 3(k2 + c)x

Solution

Step 1: Define auxiliary variables

Define:
k2 + c = m1p and x = m2p

2

where p is an integer. Then:

3m1m2 = b34 + · · ·+ b3t (2)

This gives us the equation:

(x− k)3 = a3 + b3 + (−k)3 + (b4p)
3 + · · ·+ (btp)

3

23



Step 2: Express a and b

From the equation (1): (a− k)(b− k) = k2 + c, we have:

a− k = n and b− k =
k2 + c

n
=

m1p

n

Thus:
a+ b = 2k + n+

m1p

n
= m2p

2

Hence:
k =

m2

2
p2 − m1

2n
p− n

2
(*)

Step 3: Compute the sum S

Now compute the sum:

S = (a+ b) + (−k) + p(b4 + · · ·+ bt)

This simplifies to:

S =
m2

2
p2 +

(m1

2n
+ b4 + · · ·+ bt

)
p+

n

2

Step 4: Define new variables

Let:
n

2
= q3 (3)

and:
m1

2n
+ b4 + · · ·+ bt = 3q2 (4)

Thus:
S =

m2

2
p2 + 3pq2 + q3 = (p+ q)3 − p3 +

(m2

2
− 3q

)
p2

Step 5: Condition for S to be a perfect cube

For S to be a perfect cube, we need:

−p3 +
(m2

2
− 3q

)
p2 = 0

This gives:

p =
m2

2
− 3q (5)
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Step 6: Solve for m1 and m2

From equation (2), we have:

m1 =
[
3q2 − (b4 + · · ·+ bt)

]
2n =

[
3q2 − (b4 + · · ·+ bt)

]
4q3

and:

m2 =
b34 + · · ·+ b3t

3m1

=
b34 + · · ·+ b3t

12q3 [3q2 − (b4 + · · ·+ bt)]
(2)

Then the equation for p becomes:

p =
b34 + · · ·+ b3t

24q3 [3q2 − (b4 + · · ·+ bt)]
− 3q

Step 7: Expression for p

Let:
b5 = c5b4, . . . , bt = ctb4

Then:

p =
b34 (1 + c35 + · · ·+ c3t )

24q3 [3q2 − b4 (1 + c5 + · · ·+ ct)]
− 3q

Step 8: Express p in terms of d

Let:
b4 = 6dq2

Then:

p =
3d3q (1 + c35 + · · ·+ c3t )

1− 2d (1 + c5 + · · ·+ ct)
− 3q

Assume:
1− 2d (1 + c5 + · · ·+ ct) = 3q

Then:
p = d3

(
1 + c35 + · · ·+ c3t

)
− 3q

Thus:

d (1 + c5 + · · ·+ ct) =
1− 3q

2

with q odd, and then choose d, c5, . . . , ct such that the equation is satisfied.
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Step 9: Compute the values of a1, a2, . . . , at

From equation (*), we have:

k =
m2

2
p2 − m1

2n
p− n

2
= (p+ 3q)p2 − 9q3.p− q3

Thus:

a1 = k+n = k+2q3, a2 = k+
m1p

n
= k+18q3p, a3 = −k, b4 = 6dq2, a4 = b4p, . . . , at = btp = ctb4p

Example: Verification of a Cubic and Cube

Sum Identity for n = 5

We wish to show that for a certain choice of parameters, the following two
identities hold:

5∑
i=1

a3i = b3 and
5∑

i=1

ai = c3.

In this example, the parameters are chosen as follows.

Step 1: Parameter Selection

We start with the relation

d(1 + c5) =
1− 3q

2
.

Choose
q = 1 and d = 1.

Then
1 + c5 = −1 =⇒ c5 = −2.

Step 2: Compute p and k

With c5 = −2, we define

p = d3 (1 + c35)− 3q.
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Since d = 1 and c35 = (−2)3 = −8, we have:

p = 1 · (1 + (−8))− 3 · 1 = (1− 8)− 3 = −10.

Next, compute
k = (p+ 3q) p2 − 9q3 p− q3.

Substitute p = −10 and q = 1:

p+ 3q = −10 + 3 = −7,

(p+ 3q)p2 = −7 · (−10)2 = −7 · 100 = −700,

9q3 p = 9 · 1 · (−10) = −90,

so k = −700− (−90)− 1 = −700 + 90− 1 = −611.

Step 3: Determining the ai’s

We define the first three components as follows:

a1 = k + 2q3 = −611 + 2 · 1 = −609,

a2 = k + 18q3p = −611 + 18 · (−10) = −611− 180 = −791,

a3 = −k = 611.

Next, we set
b4 = 6d q2 = 6 · 1 · 12 = 6,

and define
a4 = b4 p = 6 · (−10) = −60,

a5 = c5 a4 = −2 · (−60) = 120.

Step 4: Verification

The resulting solution set is:

(a1, a2, a3, a4, a5) = (−609, −791, 611, −60, 120).

We now verify the identities.
Cube Sum of ai’s: It is given that

5∑
i=1

a3i = (−789)3.
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(One can check by direct calculation that the sum of cubes equals (−789)3.)
Sum of ai’s:

5∑
i=1

ai = −609− 791 + 611− 60 + 120

= (−609− 791) + 611− 60 + 120

= −1400 + 611− 60 + 120

= −789− 60 + 120

= −729,

and since
(−9)3 = −729,

we have
5∑

i=1

ai = (−9)3.

Thus, the solution set

(−609, −791, 611, −60, 120)

satisfies
5∑

i=1

a3i = (−789)3 and
5∑

i=1

ai = (−9)3.

Problem 6

Prove that there exist infinitely many tuples of integers (a1, a2, . . . , at) with
t > 6, such that:

• Each ai ̸= 0

• No two numbers are negatives of each other

• All ai are pairwise distinct

• gcd(a1, a2, . . . , at) = 1
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and such that
t∑

i=1

a3i = bs

for b ∈ Z, for any given positive integer s

Step 1: Establishing the General Equation

Consider two integers a, b satisfying the equation:

a · b = k · (a+ b) + c

Let a+ b = x, then the sum of their cubes is:

a3 + b3 = x3 − 3kx2 − 3cx

Rearranging:

(x− k)3 = a3 + b3 + (−k)3 + 3(k2 + c)x

Thus, we obtain:

(x− k)3 + k3 + (−a)3 + (−b)3 = 3(k2 + c)x

From the original equation, we have:

(a− k)(b− k) = k2 + c

Setting a− k = n, then b− k = k2+c
n

, so:

x = a+ b = 2k + n+
k2 + c

n

Let k2 + c = m = np, then:

x = 2k + n+ p

It follows that:

3(k2 + c)x = 3np(2k + n+ p) = 6knp+ 3np(n+ p)

Thus:
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(x− k)3 + k3 + (−a)3 + (−b)3 = 6knp+ (n+ p)3 − n3 − p3

By adding two new numbers n, p and their negative sum:

(x− k)3 + k3 + (−a)3 + (−b)3 + n3 + p3 + (−n− p)3 = 6knp

Step 2: Choosing k to Satisfy the Condition

Choose k such that:

k3 = a31 + a32 + ...+ a3t

where t ̸= 2, ensuring infinitely many choices for k. For each k, there
always exist integers n, p such that:

6knp = (6d)s

This allows us to compute a = k + n, b = k + p. Consequently:

(x− k)3 + (−a)3 + (−b)3 + n3 + p3 + (−n− p)3 + a31 + ...+ a3t = (6d)s

Conclusion

Thus, we have proven the existence of infinitely many integer sets satisfying
t∑

i=1

a3i = bs

for b ∈ Z, for any given positive integer s

Example: Verification of a Cubic Sum Equal

to a Fourth Power for t = 7, s = 4

In this example, we demonstrate that for a suitable choice of parameters, the
following identity holds:

7∑
i=1

a3i = b4.
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Step 1: Establishing the Relation

We start with the relation

6k n p = (6d)4.

Choosing d = 1, this becomes

6k n p = 64,

which implies
k n p = 63 = 216.

We then select:
k = 1, n = 8, p = 27,

since 1× 8× 27 = 216.

Step 2: Defining Intermediate Variables

Define:
a = k + n = 1 + 8 = 9, b = k + p = 1 + 27 = 28.

Step 3: Constructing the Solution Set

We now define the seven numbers a1, a2, . . . , a7 as follows:

a1 = a+ b− k = 9 + 28− 1 = 36,

a2 = k = 1,

a3 = −a = −9,

a4 = −b = −28,

a5 = n = 8,

a6 = p = 27,

a7 = −n− p = −8− 27 = −35.
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Step 4: Verification

It can be verified that

7∑
i=1

a3i = 363 + 13 + (−9)3 + (−28)3 + 83 + 273 + (−35)3 = 64.

Hence, the solution set

(36, 1, −9, −28, 8, 27, −35)

satisfies the identity
7∑

i=1

a3i = 64.

Problem 7

Prove that there exist infinitely many tuples of integers

(a1, a2, a3, a4) and (b1, b2, . . . , bt) (t > 5),

such that:

• Each ai ̸= 0

• No two numbers are negatives of each other

• All ai are pairwise distinct

• gcd(a1, a2, a3, a4) = 1

• gcd(b1, b2, . . . , bt) = 1

and

a41 + a42 − a43 − a44 = 6 ·

(
t∑

i=1

b3i

)2
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Solution

Step 1: Given Identity and Assumption

We are given that there exist integers a, b such that:

ab = k(a+ b) + c.

From a previous result, we have:

(X − k)4 = a4 + b4 +
[
(4k2 + 4c)X2 − 4k(k2 + c)X + (k4 − 2c2)

]
.

Let us denote:

P (X) = (4k2 + 4c)X2 − 4k(k2 + c)X + (k4 − 2c2).

Step 2: Simplifying P (X)

We set:
k2 + c = m ⇒ c = m− k2.

Then:
P (X) = 4mX2 − 4kmX + k4 − 2(m− k2)2.

Expanding and simplifying:

P (X) = m(4X2 − 4kX + k2)−mk2 + k4 − 2(m2 − 2mk2 + k4)

= m(2X − k)2 − k4 + (3mk2 − 2m2).

Step 3: Eliminate the Extra Term

We choose m such that:

3mk2 − 2m2 = 0 ⇒ m =
3k2

2
.

Now, let k = 2d, then:

m =
3(4d2)

2
= 6d2.

Thus,
P (X) = 6d2(2X − 2d)2 − (2d)4.
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Step 4: Expressing X = a+ b

From the identity:

ab = k(a+ b) + c ⇒ (a− k)(b− k) = k2 + c = m.

Set:
a− k = n, b− k =

m

n
.

Then:

a = k + n, b = k +
m

n
, X = a+ b = 2k + n+

m

n
.

Thus:

2X − k = 3k + 2n+
2m

n
.

Substitute k = 2d,m = 6d2, we get:

2X − k = 6d+ 2n+
12d2

n
.

For example, if n = 6, then:

2X − k = 6d+ 12 + 2d2.

Step 5: Final Expression for P (X)

Using m = 6d2 and 2X − k = 2d2 + 6d+ 12, we have:

P (X) = 6d2(2d2 + 6d+ 12)2 − (2d)4.

Note that:

6d2(2d2 + 6d+ 12)2 = 6
[
(d+ 2)3 + d3 + (−2)3

]2
.

Hence:

(X − k)4 = a4 + b4 + 6
[
(d+ 2)3 + d3 + (−2)3

]2 − (2d)4.
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Step 6: Final Identity

Let us define:

X − k = a1, k = a2 = 2.d, a = a3 = 2d+ 6, b = a4 = 2d+ d2,

and
d+ 2 = b1, −2 = b2.

Choose d such that:

d3 = b33 + b34 + · · ·+ b3t (t > 5),

then we obtain:

a41 + a42 − a43 − a44 = 6

(
t∑

i=1

b3i

)2

.

Example: A Quartic and Cubic Identity for

t = 7

We wish to demonstrate an example with t = 7 where the following identity
holds:

a41 + a42 − a43 − a44 = 6

(
7∑

i=1

b3i

)2

.

The construction is carried out as follows.

Step 1: Choosing the bi Values

Assume we require that

d3 = b33 + b34 + b35 + b36 + b37.

It is known that the tuple

(−7, 34, 8, 3, 15)

satisfies the necessary condition. Thus, choose

b3 = −7, b4 = 34, b5 = 8, b6 = 3, b7 = 15.
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Then we have
d3 = (−7)3 + 343 + 83 + 33 + 153.

For this example, it is given that d = 35.
Next, choose the remaining values:

b1 = d+ 2 = 35 + 2 = 37, b2 = −2.

Step 2: Defining the ai Values

We now define the parameters for the ai’s. Set

a2 = k = 2d = 2× 35 = 70.

Also, choose
a3 = 2d+ 6 = 70 + 6 = 76,

and
a4 = d2 + 2d = 352 + 2× 35 = 1225 + 70 = 1295.

Finally, define

a1 = a3 + a4 − 2d = 76 + 1295− 70 = 1301.

Step 3: Verification of the Identity

With the above choices, the solution set for the ai’s is

(a1, a2, a3, a4) = (1301, 70, 76, 1295),

and for the bi’s we have

(b1, b2, b3, b4, b5, b6, b7) = (37, −2, −7, 34, 8, 3, 15).

It is then verified that

a41 + a42 − a43 − a44 = 6

(
7∑

i=1

b3i

)2

.

A direct computation shows that the left-hand side equals the right-hand
side when the above values are substituted.

Thus, the solution set

(1301, 70, 76, 1295) and (37, −2, −7, 34, 8, 3, 15)

satisfies the desired identity.
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Problem 8

Prove that there exist infinitely many tuples of integers

(a1, a2, a3, a4,m) and (b1, b2, . . . , bt) (t > 4),

such that:

• Each ai ̸= 0

• No two numbers are negatives of each other

• All ai are pairwise distinct

• gcd(a1, a2, a3, a4,m) = 1

• gcd(b1, b2, . . . , bt) = 1

and
4∑

i=1

a5i = 5.m.
t∑

i=1

b3i ,

2 Step 1: The Core Identity

Let a, b be integers and define X = a+ b. Suppose:

ab = k(a+ b) + c. (1)

We consider the expansion of (X − k)5, which yields:

(X − k)5 = a5 + b5 + P (X),

where P (X) is a polynomial in X depending on k and c.

3 Step 2: Deriving the Polynomial P (X)

The polynomial P (X) is given by:

P (X) = (5k2 + 5c)X3 − 10k(k2 + c)X2 + 5(k4 − c2)X − k5.

This simplifies to:

P (X) = 5(k2 + c)(X3 − 2kX2 + (k2 − c)X)− k5.
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4 Step 3: Symmetrization of the Identity

Using the symmetry of powers:

(X − k)5 + (−a)5 + (−b)5 + k5 = 5(k2 + c)(X3 − 2kX2 + (k2 − c)X).

Let:
G(X) = X3 − 2kX2 + (k2 − c)X.

5 Step 4: Setting Parameters

Let k = 3d for some integer d, then:

G(X) = X3 − 6dX2 + (9d2 − c)X.

Now rewrite:

G(X) = (X − 2d)3 + (2d)3 + (−3d2 − c)X.

To simplify this expression, choose:

c = −3d2 ⇒ G(X) = (X − 2d)3 + (2d)3.

6 Step 5: Constructing the bi’s

Let:

X − 2d = b1, (2d)3 =
t∑

i=2

b3i for t > 4.

Then:

G(X) =
t∑

i=1

b3i .

7 Step 6: Constructing the ai’s

Recall that:

(X − k)5 + (−a)5 + (−b)5 + k5 = 5(k2 + c)
t∑

i=1

b3i .
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Define:
a1 = X − k, a2 = k, a3 = −a, a4 = −b.

From the identity (2), we have:

(a− k)(b− k) = ab− k(a+ b) + k2 = k2 + c.

Using k = 3d, c = −3d2, we get:

k2 + c = 6d2.

Choose:

a = 3d+ 6, b = d2 + 3d ⇒ a+ b = X = 3d+ 6 + d2 + 3d = d2 + 6d+ 6.

Thus:

X − k = a1 = d2 + 6d+ 6− 3d = d2 + 3d+ 6, a2 = 3d,

a3 = −a = −3d− 6, a4 = −b = −d2 − 3d.

8 Step 7: Final Identity

From all of the above, we get:

a51 + a52 + a53 + a54 = 5(k2 + c)
t∑

i=1

b3i = 5 ·m ·
t∑

i=1

b3i .

Hence, this identity holds:

4∑
i=1

a5i = 5 ·m ·
t∑

i=1

b3i ,

after choosing d such that (2d)3 =
∑t

i=2 b
3
i , and setting b1 = X − 2d.

9 Conclusion

We have demonstrated a method to construct infinitely many tuples of inte-
gers satisfying:

4∑
i=1

a5i = 5 ·m ·
t∑

i=1

b3i ,
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Example: A Fifth-Power and Cubic Identity

with t = 6

In this example, we show that for a certain choice of parameters, the following
identity holds:

4∑
i=1

a5i = 5m ·
6∑

i=1

b3i ,

with m = 96.

Preliminary Observation

It is given that
(−7)3 + 343 + 83 + 33 + 153 = 353.

Hence, we can deduce

83 = (2 · 4)3 = 353 + 73 + (−34)3 + (−3)3 + (−15)3.

Step 1: Choice of Parameters for the bi’s

Take
d = 4.

Then choose:

b2 = 35, b3 = 7, b4 = −34, b5 = −3, b6 = −15.

Define
b1 = d2 + 4d+ 6.

Substituting d = 4, we have:

b1 = 42 + 4 · 4 + 6 = 16 + 16 + 6 = 38.

Thus, the vector for the bi’s is:

(b1, b2, b3, b4, b5, b6) = (38, 35, 7, −34, −3, −15).
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Step 2: Choice of Parameters for the ai’s

We define the ai’s by setting:

a1 = d2 + 3d+ 6, a2 = 3d, a3 = −3d− 6, a4 = −d2 − 3d.

For d = 4:
a1 = 42 + 3 · 4 + 6 = 16 + 12 + 6 = 34,

a2 = 3 · 4 = 12,

a3 = −3 · 4− 6 = −12− 6 = −18,

a4 = −42 − 3 · 4 = −16− 12 = −28.

We are also given m = 96.
Thus, the vector for the ai’s is:

(a1, a2, a3, a4) = (34, 12, −18, −28).

Step 3: Verification of the Identity

We claim that the chosen vectors satisfy the identity

4∑
i=1

a5i = 5 · 96 ·
6∑

i=1

b3i .

A direct (albeit lengthy) computation confirms that the sum of the fifth
powers of the ai’s equals 5 · 96 times the sum of the cubes of the bi’s.

Thus, the solution set

(a1, a2, a3, a4) = (34, 12, −18, −28) and (b1, b2, b3, b4, b5, b6) = (38, 35, 7, −34, −3, −15)

satisfies the desired identity.

Problem 9

Prove that there exist infinitely many tuples of integers

(a1, a2, a3, a4,m) and (b1, b2, . . . , bt)

such that:
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• Each ai ̸= 0

• No two numbers are negatives of each other

• All ai are pairwise distinct

• gcd(a1, a2, a3, a4,m) = 1

• gcd(b1, b2, . . . , bt) = 1

and
4∑

i=1

a5i = 5.m.
t∑

i=1

b4i ,

Step-by-step Construction

Step 1: Consider the identity:

a · b = k(a+ b) + c (1)

This implies:
(a− k)(b− k) = k2 + c

Step 2: From previous expansion, we have:

(X − k)5 = a5 + b5 + P (X)

where:

P (X) = (5k2 + 5c)X3 − 10k(k2 + c)X2 + 5(k4 − c2)X − k5

which can be rewritten as:

P (X) = 5(k2 + c)
[
X3 − 2kX2 + (k2 − c)X

]
− k5

(X − k)5 + (−a)5 + (−b)5 + k5 = 5(k2 + c)X(X2 − 2kX + k2 − c)
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Step 3:

G(X) = X2 − 2kX + k2 − c = (X − k)2 − c

Suppose:

X − k = b21, −c =
t∑

i=2

b4i ⇒ G(X) =
t∑

i=1

b4i

Step 4: Use the relation (a− k)(b− k) = k2 + c

Let a = k + 1 and define b accordingly:

b = k2 + k + c

Then:
X = a+ b = (k + 1) + (k2 + k + c) = k2 + 2k + c+ 1

So:
X − k = k2 + k + c+ 1 = (k + 1)2 − k + c = b21

Step 6: Choose c = k then:

X − k = (k + 1)2 = b21 ⇒ b1 = k + 1

Thus, we define:

a1 = X − k, a2 = k, a3 = −a, a4 = −b

Compute m = (k2 + c).X = (k2 + k).X.
Finally, we get:

4∑
i=1

a5i = 5m
t∑

i=1

b4i

Conclusion

We have shown that for any integer k, by choosing:

a = k + 1, b = k2 + k + c, c = k
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and defining X = a+ b, X − k = b21, and selecting b2, . . . , bt so that:

−c =
t∑

i=2

b4i

we construct infinitely many sets (a1, a2, a3, a4) and (b1, . . . , bt) such that:

a51 + a52 + a53 + a54 = 5m
t∑

i=1

b4i

Example: A Fifth-Power and Fourth-Power

Identity for t = 3

We wish to demonstrate an example with t = 3 for which the following
identity holds:

4∑
i=1

a5i = 5m
3∑

i=1

b4i .

The construction is carried out as follows.

Step 1: Determine c and k

We start by requiring that
−c = b42 + b43.

Choose
b2 = 1, b3 = 2.

Then
b42 + b43 = 14 + 24 = 1 + 16 = 17,

so that
−c = 17 =⇒ c = −17.

We also set
k = c = −17.
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Step 2: Define a, b, and b1

Define
a = k + 1 = −17 + 1 = −16,

b = k2 + 2k.

Since
k2 = (−17)2 = 289 and 2k = −34,

we have
b = 289− 34 = 255.

Also, let
b1 = k + 1 = −16.

Step 3: Construct the ai Values

Define the four ai’s by

a1 = a+ b− k, a2 = k, a3 = −a, a4 = −b.

Substituting the computed values:

a1 = (−16) + 255− (−17) = 239 + 17 = 256,

a2 = k = −17,

a3 = −(−16) = 16,

a4 = −255.

Thus, the ai vector is

(a1, a2, a3, a4) = (256, −17, 16, −255).

Step 4: Define m and the bi Vector

We define the parameter m by

m = (k2 + k)(a+ b).

Here,
k2 + k = 289− 17 = 272,
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and
a+ b = (−16) + 255 = 239.

Thus, m = 272 × 239 (its exact numerical value is not necessary for our
identity).

The bi vector is given by

(b1, b2, b3) = (−16, 1, 2).

Step 5: Verification

It can be verified (by direct computation) that the chosen values satisfy the
identity

4∑
i=1

a5i = 5m
3∑

i=1

b4i .

That is, the sum of the fifth powers of the ai’s equals five times m times the
sum of the fourth powers of the bi’s.

Thus, the solution set

(a1, a2, a3, a4) = (256, −17, 16, −255) and (b1, b2, b3) = (−16, 1, 2)

satisfies the desired identity.

Problem 10

Prove that there exist infinitely many tuples of integers

(c1, c2, . . . , c7) and (d1, d2, . . . , dt) (t > 11 or t = 9)

such that:

• Each ci, di ̸= 0

• No two numbers are negatives of each other

• All ci are pairwise distinct

• All di are pairwise distinct
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• gcd(c1, c2, . . . , c7) = 1

• gcd((d1, d2, . . . , dt) = 1

and
7∑

i=1

c5i =
5np

2

t∑
i=1

d3i .

Let n, p ∈ Z be arbitrary integers

10 Step 1: The Core Identity

Let a, b be integers and define

X = a+ b.

Suppose that
ab = k(a+ b) + c, (2)

for some fixed integers k and c. One may show that the fifth power of X − k
can be written as

(X − k)5 = a5 + b5 + P (X),

where P (X) is a polynomial in X (with coefficients depending on k and c).

11 Step 2: Deriving the Polynomial P (X)

It can be proved that

P (X) = (5k2 + 5c)X3 − 10k(k2 + c)X2 + 5(k4 − c2)X − k5.

Using the transformation

(a− k)(b− k) = k2 + c,

we write
(a− k)(b− k) = n · p,

so that
c = np− k2.
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With the substitutions

a = k + n, b = k + p,

we obtain
X = a+ b = 2k + n+ p.

After a lengthy calculation, one deduces the alternative form:

P (X) = 20np k3 + 30np k2(n+ p) + 20k np (n2 + p2) + 30k (np)2

+ 5n4p+ 5np4 + 10(np)2(n+ p)− k5

= (n+ p)5 − n5 − p5

+ 10np k
[
2k2 + 3k(n+ p) + 2(n2 + p2) + 3np

]
− k5.

12 Step 3: Forming the Symmetric Fifth-Power

Identity

By definition,
(X − k)5 = a5 + b5 + P (X).

Thus,

(X − k)5 = a5 + b5 + (n+ p)5 − n5 − p5

+ 10np k
[
2k2 + 3k(n+ p) + 2(n2 + p2) + 3np

]
− k5.

Now, by adding the fifth powers of the negatives of a and b and of (n + p),
we obtain:

(X−k)5+(−a)5+(−b)5+(−n−p)5+n5+p5+k5 = 10np k
[
2k2+3k(n+p)+2(n2+p2)+3np

]
.

This expression may be rewritten as

5np

2

[
8k3+12k2(n+p)+8k(n2+p2)+12knp

]
=

5np

2

[
(2k+n+p)3+2k(n2+p2)+(−n−p)3

]
.

(*)
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13 Step 4: Reformulation via New Variables

Assume that

2k(n2 + p2) = 6n1p1k1 or equivalently k(n2 + p2) = 3n1p1k1.

Then one can prove the identity

6n1p1k1 = (a1 + b1 − k1)
3 + (−a1)

3 + (−b1)
3 + k3

1 + n3
1 + p31 + (−n1 − p1)

3,

where
k3
1 = d39 + d32 + · · ·+ d3t (t > 11 or t = 9),

and the remaining cubes are denoted by d33, d
3
4, . . . , d

3
8. Thus,

6n1p1k1 = d33 + d34 + · · ·+ d3t .

Setting
d1 = 2k + n+ p and d2 = −n− p,

equation (∗) becomes

(X − k)5 + (−a)5 + (−b)5 + (−n− p)5 + n5 + p5 + k5 =
5np

2

t∑
i=1

d3i .

Finally, define

c1 = X − k, c2 = −a, c3 = −b, c4 = −(n+ p), c5 = n, c6 = p, c7 = k.

Then, the above identity can be written in compact form:

7∑
i=1

c5i =
5np

2

t∑
i=1

d3i .

14 Conclusion and Infinitude of the Solutions

It remains to show that there exist infinitely many tuples

(c1, c2, . . . , c7) and (d1, d2, . . . , dt)

satisfying:
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• Each ci, di ̸= 0,

• No two numbers are negatives of each other,

• All ci are pairwise distinct,

• All di are pairwise distinct,

• gcd(c1, c2, . . . , c7) = 1,

• gcd(d1, d2, . . . , dt) = 1.

Because the parameters n, p, k can be chosen arbitrarily (subject to the con-
straint in (2) and the derived identities) and the transformation

(a− k)(b− k) = n · p

yields infinitely many representations, the identity

7∑
i=1

c5i =
5np

2

t∑
i=1

d3i

Let n, p ∈ Z be arbitrary integers

Example: A Fifth-Power and Cubic Identity

with n = 1, p = 2, and t = 7

We wish to verify the following identity:

7∑
i=1

c5i = 5
7∑

i=1

d3i ,

with parameters chosen as follows.

Step 1. Determination of k:
It is given that

k(n2 + p2) = 3n1 p1 k1 = 5k.

We choose
n1 = 5, p1 = 1, k1 = 3.
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Then,

3 · 5 · 1 · 3 = 45 = 5k =⇒ k =
45

5
= 9.

Step 2. Relating Higher Powers:
We have the relation

2k(n2 + p2) = 6n1 p1 k1.

Moreover, it is assumed that

2k(n2+p2) = (n1+p1+k1)
3+k3

1+n3
1+p31+(−k1−n1)

3+(−k1−p1)
3+(−n1−p1)

3.

Substituting n1 = 5, p1 = 1, k1 = 3 gives:

(n1 + p1 + k1)
3 = (5 + 1 + 3)3 = 93,

k3
1 = 33, n3

1 = 53, p31 = 13,

(−k1 − n1)
3 = (−3− 5)3 = (−8)3,

(−k1 − p1)
3 = (−3− 1)3 = (−4)3,

(−n1 − p1)
3 = (−(5 + 1))3 = (−6)3.

Thus, the relation becomes:

2k(n2 + p2) = 93 + 33 + 53 + 13 + (−8)3 + (−4)3 + (−6)3.

Step 3. Defining the di Values:
We set

d1 = 2k + n+ p.

With k = 9, n = 1, and p = 2, we have:

d1 = 2 · 9 + 1 + 2 = 18 + 3 = 21.

Also, let
d2 = −n− p = −1− 2 = −3.

The remaining di are taken as given by the decomposition:

(d1, d2, d3, d4, d5, d6, d7) = (21, 9, 5, 1, −8, −4, −6).

Step 4. Defining the ci Values:
We define

c1 = k + n+ p = 9 + 1 + 2 = 12,
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c2 = −k − n = −9− 1 = −10,

c3 = −k − p = −9− 2 = −11,

c4 = n = 1, c5 = p = 2, c6 = k = 9,

c7 = −n− p = −1− 2 = −3.

Thus, the ci vector is:

(c1, c2, c3, c4, c5, c6, c7) = (12, −10, −11, 1, 2, 9, −3).

Step 5. Verification:
A direct computation shows that

7∑
i=1

c5i = 5
7∑

i=1

d3i .

That is, the sum of the fifth powers of the ci’s equals five times the sum of
the cubes of the di’s.

Conclusion:
The solution set

(c1, c2, c3, c4, c5, c6, c7) = (12, −10, −11, 1, 2, 9, −3)

and
(d1, d2, d3, d4, d5, d6, d7) = (21, 9, 5, 1, −8, −4, −6)

satisfies the identity
7∑

i=1

c5i = 5
7∑

i=1

d3i .

Conclusion

In this work, we have laid the theoretical foundation for a new branch of Dio-
phantine analysis, which we refer to as the extended Diophantine equations,
through the application of the symmetric identity

ab = k(a+ b) + c.
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This identity allows high-degree symmetric expressions such as an + bn to
be rewritten in terms of the variable X = a+ b, establishing a deep connec-
tion between symmetric expansions and binomial expansions via a correction
polynomial P (X). As a result, we derived both recurrence and closed-form
formulas for the coefficients, enabling the construction of infinitely many sets
of integer solutions that satisfy strict conditions—nonzero, mutually distinct,
not negatives of each other, and pairwise coprime.

The contributions of this work are not only theoretical in nature but also
open several promising avenues for further development:

• Extension to multivariable systems: The method can potentially
be generalized to Diophantine systems in more than two variables, mak-
ing it applicable to more complex symmetric structures.

• Connections to combinatorics and abstract algebra: The coef-
ficients appearing in the symmetric expansions may relate to combi-
natorial quantities such as Catalan numbers or binomial coefficients,
bridging number theory with other mathematical disciplines.

• Applications in solution generation algorithms: The explicit
structure of the identities and formulas supports the creation of com-
putational tools that can systematically generate and verify solutions.

• Inspiration for new Diophantine problems: This framework en-
ables the formulation and resolution of new problems involving sums
or differences of powers under symmetric or structural constraints.

Thus, this work not only broadens the existing understanding of classical
Diophantine equations but also establishes a solid foundation for a rich and
expandable branch of number theory, with both theoretical significance and
practical potential.
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