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Abstract
The purpose of this paper is to explore gravity as a dynamic phenomenon where the gravitational effects
described by the Schwarzschild metric are transferred to changes in the quantities of time, length, velocity,
acceleration, mass, energy and force. These changes are assumed to be physically real and not just
a superficial effect of the used coordinate system. Subsequently, physics calculations can be done in
classical orthogonal space using these malleable quantities even beyond the Newtonian regime, as gets
demonstrated by applying them to the typical tests of general relativity. Moreover, the dynamic gravity
notion gets corroborated by uncovering concealed connections between Newtonian gravity and the theory
of general relativity, in particular gravitational potential energy is identified as an effect of changing mass
energy. Thereafter a quantum gravity approach is put forward, as originally proposed by John A. Macken,
which provides clues to how gravity can be expressed on the quantum level using a classical wave
based approach. In that context the electrostatic force is also examined, since it exhibits an unexpected
mathematical similarity to gravity. Finally, an inertial mass adjustment gets introduced that is caused by a
cavity effect of excluded gravitational waves, which would break the equivalence principle if it turns out to
be physically real.

Keywords: gravity; gravitational potential; space; general relativity; Schwarzschild metric; special relativity;
time dilation; Planck units; Planck force; quantum physics; light speed; relativistic mass; refraction; waves;
perihelion precession; light bending; redshift

1 Introduction

Ever since the theory of general relativity has been seemingly affirmed beyond doubt by experimental
evidence, the notion that an unified as well as curved space-time is responsible for gravity is not questioned
any more by most physicists, particularly since special relativity and classical Newtonian gravity can also
be derived from the equations of general relativity as limiting cases. The general theory of relativity is
certainly a useful tool that brought up new ideas about space, time and the evolution of our universe, but
its suppositions are not proven irrefutably. For example, time is phenomenologically distinct from space
and there is no good conceptual justification for treating time like an additional spatial dimension, except
that it works out nicely mathematically. Moreover, experimental evidence for the physical reality of curved
space is still sparse since proving it requires very sensitive experiments and therefore the main evidence
for spacetime curvature still seems to be the perihelion precession of the planet Mercury which could not
be explained satisfactorily before general relativity. There are, however, ways to explain the typical tests
of general relativity, at least inside our solar system, in other ways as will be demonstrated later on. To
achieve this it is necessary to derive dynamic quantities for time, length, velocity, energy and mass from
the line element of the Schwarzschild metric, which is considered here to be applicable in general to static
and spherically symmetric bodies, and not only to black holes. For those bodies the Schwarzschild radius is
simply not reachable because it lies inside the object. Naturally, the question that follows from all this is what
mechanism allows those malleable dynamic properties to arise? We definitely need to look for a framework
that is already dynamical in nature and a wave based quantum gravity, which is embedded in some kind
of medium that can also carry gravitational waves and light, might be what is needed. However, it should
be emphasized that this paper does not disavow any physical effects predicted by general relativity theory.
Before venturing deeper into this paper, though, it is sensible to first establish a few prerequisites.
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2 Prerequisites

The Planck units are used extensively in the quantum gravity sections of this paper, in particular the Planck
mass ml, Planck length ll and the Planck force Fl = c4/G, which may also be called the super force. This is
a term coined by Salvatore Pais that emphasizes the extreme strength of the Planck force. The definitions of
the Planck units, as well as the values of the natural constants used in this paper, can be found in appendix A.

2.1 Relativistic particle energy

The total special relativistic energy for an object with rest mass m that possesses a velocity v can be stated
as Eγ =

√
(mc2)2 + (γmvc)2, whereby the relativistic Lorentz factor is defined as γ = 1/

√
1− v2/c2 and

light speed is denoted as c. For spin ½ particles which possess a Compton wavelength λc = h/(mc) it
is also possible to define their total relativistic energy using their Compton wavelength and their de Broglie
wavelength λdB = h/(mv), but it is more sensible to use their frequency counterparts fc = c/λc as well
as fdB = c/λdB and to combine those into a novel frequency fγ =

√
f2
c + γ2f 2

dB , which I refer to as the
Lorentz frequency, for describing total special relativistic energy, as originally shown in (1).

Eγ = h
√

f2
c + γ2f2

dB = hfγ (2.1)

The last equation suggests that the special relativistic energy of a spin ½ particle is stored intrinsically to
the particle, contrary to the currently prevalent opinion in physics. This assertion might also be related to the
notion of Doppler shifted spherical waves, as proposed by John A. Macken (4)(5). Moreover, it is shown in
(1), (3), (4) and (5) that spin ½ particles possess an equatorial perimeter speed of c, from which it follows
that a spin ½ particle’s relativistic radius is given by rγ = c/(2πfγ) or that its size is at least proportional
to that radius by a constant factor. This, in turn, leads to the controversial situation that electrons should
be bigger than protons, a topic which is also discussed in the aforementioned papers. In case a spin ½
particle is at standstill rγ equals the so called reduced Compton wavelength λc/2π, since its de Broglie
frequency will be zero, and its Lorentz frequency fγ simply equals its unchanging Compton frequency fc.
Moreover, spin ½ particles should exhibit a Lorentz frequency increase as they move faster since then their
total relativistic energy Eγ is increasing, which in turn implies that they are shrinking as they move faster
since their equatorial perimeter speed cannot exceed light speed c.

2.2 Properties of space

The energy density of space itself is given by

ρs =
1

2

ml

l3l
= 2.577 59× 1096 kg/m3 (2.2)

as proposed in (1). This huge energy density is consistent with the so called zero point energy of quantum
physics which presumably is caused by tiny Planck oscillators that space is comprised of. Subsequently,
the ”acoustic” impedance of space itself, in which gravitational waves are propagating with light speed c ,
evaluates to

Zs = ρs c =
c

2

ml

l3l
=

c3

2G l2l
= 7.727 42× 10104 s Pa/m (2.3)

as originally shown in (2). Moreover, the impedance of space can also be specified without the Planck units,
in which case it takes on the form Zs = 1/(2ℏ) (c3/G)2. The gigantic value resulting from these formulas for
Zs implies that space has a huge stiffness, which is why even gravitational waves that were caused by black
holes are barely detectable by highly sophisticated measurement equipment.

Physics literature usually denotes the impedance of space as c3/G, for example in (11), which is also
the expression that John Macken uses in his works (4)(5). This alternative expression for the impedance
of space is equivalent to the one stated in equation 2.3 when using it in wave equations together with a
dimensionless strain amplitude instead of an amplitude which is defined in an unit of length. In this paper,
however, Zs is always used as expressed in equation 2.3 so that an ordinary amplitude, specified in an unit
of length, can be used for wave equations that involve Zs.

Interestingly, the impedance of space can also be specified in terms of the Hubble mass mH and Hubble
radius rH , i.e. c3/G ∼= 2 cmH/rH and Zs

∼= 4π c2 m 2
H /(r 2

H h). Whether these relations are exact, or only
approximate, remains to be seen. In any case, however, the various formulations for the impedance of space
indicate that the microscopic quantum world, the macroscopic world as well as the cosmological world can
be brought together through the impedance of space.
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2.3 Scope

This paper operates within a space-time as described by the so called Schwarzschild metric, from a general
relativity point of view, i.e. the gravitational effects of rotating masses are not covered. Consequently, the
appropriate line element is associated with a non-rotating non-moving spherically symmetric homogenous
and dominant central mass M which can be stated in polar coordinates as follows

ds2 = −
(
1 +

2Φ

c2

)
c2dt2 +

(
1 +

2Φ

c2

)−1

dr2 + r2dΘ2 + r2 sin2(Θ) dϕ2 (2.4)

whereby Φ denotes the classical Newtonian gravitational potential

Φ = −GM/r (2.5)

Using the following dimensionless factor to quantify gravitational effects

Γ = 1/
√

1− 2GM/(r c2) (2.6)

the aforementioned line element can also be rewritten as follows

ds2 = −(1/Γ2) c2dt2 + Γ2dr2 + r2dΘ2 + r2 sin2(Θ) dϕ2 (2.7)

whereby the factor Γ practically equals 1.0 far away from the central mass M and slowly increase in value
towards that mass. In close vicinity to the Schwarzschild radius rs = 2GM/c2 associated with a mass M
the value of Γ starts to increase faster until it finally reaches positive infinity at rs. The region inside a black
hole is not treated in this paper.

3 Dynamic gravitation

Using the aforementioned line element it is possible to explore how the quantities of frequency, time duration,
energy, length, speed, acceleration, mass and force are changing inside the gravitational field of a mass
M and to derive the appropriate scaling factors. This endeavour is motivated by the presumption that
those changes are physically real, which in the case of gravitational time dilation is universally accepted by
physicists and proven experimentally. Consequently, it is only logical to extend that notion to other physical
quantities. Please note that in the following sections the subscript f always denotes a physical quantity
infinitely far away from the gravitational field of M and the subscript Γ denotes a physical quantity within its
gravitational field, whereby the mass M always denotes a non-rotating non-moving dominant spherical mass
with a homogeneous density. Linear approximations are always preceded by a ∼= sign hereafter.

3.1 Time

As proven experimentally clocks run slower near a large mass than far away from it. The following table
contains an example of this gravitational time dilation for an extreme black hole scenario with Γ = 10.

Near ← Far
Frequency 1Hz 1/Γ 10Hz

Period 1 s Γ 0.1 s

Table 1: Example with Γ = 10

This table shows that while a needle watch completes 10 turns far away from a black hole it only does
complete 1 turn close to the black hole, as observed from far away, when Γ = 10. From this example we can
infer that frequencies change as follows inside the gravitational field of a mass M :

fΓ = ff/Γ ∼=
(
1− GM

r c2

)
ff (3.1)

Since a certain time period and its associated frequency are always inversely related a time duration ∆t, like
a full clock period, changes inside the gravitational field of a mass M according to:

∆tΓ = ∆tf Γ ∼=
(
1 +

GM

r c2

)
∆tf (3.2)
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3.2 Energy

The factor Γ can also be formulated in terms of an escape velocity s =
√

2GM/r as follows for a scenario
with a central non-rotating non-moving homogeneous spherical mass M .

Γ =
1√

1− s2/c2
(3.3)

Interestingly, this equation looks very similar to the Lorentz factor γ, which is also used for special relativistic
energy calculations.

γ =
1√

1− v2/c2
(3.4)

This congruence gives rise to the supposition that Γ should be relevant for describing the presumed change
in the quantity of energy inside a gravitational field. Since energy terms of the form E = hf are applicable
to spin ½ particles as well as photons, and Planck’s constant h is assumed to be independent of gravity, it
can be inferred using equation 3.1 that energy must in general scale as follows inside a gravitational field:

EΓ = Ef/Γ ∼=
(
1− GM

r c2

)
Ef (3.5)

Extending equation 2.1 in the same way the mass energy of a spin ½ particle can be expressed as follows,

EΓ = hfγ/Γ = h
√

f2
c /Γ2 + (γ2/Γ2)f2

dB = h
√

(1− s2/c2) f2
γ = hfΓ (3.6)

whereby fγ , fc and fdB keep their respective meaning and are therefore defined in the absence of a
gravitational field. A decreasing mass energy due to gravity seems to be concerning at first glance, but
this change is assumed to be undetectable locally, as discussed later on, and moreover lost mass energy is
accounted for by a changing gravitational potential energy, as shown in section 5.1.

3.3 Length
Since the scaling behaviour of length should be inverse to the scaling of a time duration, according to the
line element described by equation 2.7, a reasonably small length element ∆d should scale as follows inside
the gravitational field of a mass M under consideration of equation 3.2.

∆dΓ = ∆df/Γ ∼=
(
1− GM

r c2

)
∆df (3.7)

This result implies that a ruler which had a length of 1m outside of a gravitational field shrinks to 0.1m at
a location where Γ = 10, as observed from outside of the gravitational field. In this interpretation for the
effect of gravity on length there is no need for a curved space and thus the three dimensions of space can
be regarded as remaining orthogonal inside a gravitational field. Consequently, from the perspective of an
object falling into a gravitational field it appears as if the whole universe is expanding.

3.4 Velocity
A velocity v = Λf can be calculated using a wavelength Λ, which qualifies as a length element, and a
frequency f . Subsequently, considering equation 3.2 and 3.7 it can be said that any given velocity scales as
follows in the gravitational field of a mass M when assuming no net acceleration influence due to gravity or
other forces.

vΓ = vf
1

Γ

1

Γ
= vf/Γ

2 ∼=
(
1− 2GM

r c2

)
vf (3.8)

Since the Γ factors don’t cancel out here a velocity which should be constant is effectively getting reduced
inside a gravitational field, as observed from outside the gravitational field. This also implies that a moving
object which gets very close to a black hole horizon is freezing in its motion, as observed from far away.

The scaling behaviour for velocity is universal and therefore also applies to light rays. Consequently, the
scaling behaviour for the speed of light in a gravitational field of a mass M is described as follows, whereby
the letter c, without any subscript, still denotes the usual constant speed of light to avoid confusion and to
retain the common convention, but c now has to be defined in the absence of a gravitational field to be
unambiguous, i.e. c = cf .

cΓ = c/Γ2 ∼=
(
1− 2GM

r c2

)
c (3.9)

Distances measured using light rays will thus change, i.e. they become shorter deeper inside a gravitational
field, in accordance with the findings of the previous section. However, since measurement devices
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themselves also experience changes in length and time inside a gravitational field it is not possible to
measure the slowdown of light locally. For example, imagine a rocket flying at constant speed in a region of
space with Γ = 2 , for which special relativistic time dilation is negligible (i.e. γ ∼= 1), to traverse a certain
distance measured in meters that is established using a light ray that travels for a certain time duration. The
rocket’s velocity will be 1/4th compared to the speed it would have outside of the gravitational field, however,
a clock inside the rocket is running at a halved rate, compared to outside the gravitational field, and the
distance is also half as long comparatively. Thus these effects cancel out for an observer inside the rocket,
which should also be the case locally for all other scaling behaviours caused by a gravitational field.
Whilst the slowdown in the speed of light is not measurable locally the bent trajectory of light as it passed by
a mass is likely the result of a change in the speed of light. For this purpose the last equation can be easily
reformulated into a refractive index n which can be used to calculate said light bending - see section 4.2 for
more details.

n =
c

cΓ
= Γ2 ∼=

(
1 +

2GM

r c2

)
(3.10)

A higher refraction index n usually, but not always, denotes a denser medium and the linear approximation
of n shows that the refractive index is increasing towards a gravitational source M . If this implies that the
energy density of space is increasing towards a mass M is not clear yet and we should be careful to not take
the optical analogy too far, as that might be misleading.

The knowledge about a changing speed of light now allows to consider what happens to the size of a
spin ½ particle, whose radius inside a gravitational field, as observed from outside of it, must be given by
rΓ = cΓ/(2πfΓ), which is a logical extension of the special relativistic radius rγ = c/(2πfγ). Consequently,
the size of a spin ½ particle also scales like a length element as specified by equation 3.7, i.e. it shrinks as
observed from outside of the gravitational field it is in.

3.5 Mass
Since mass can be stated as m = E/c2 the scaling behaviour for a mass m inside the gravitational field of a
mass M is given as follows under consideration of equation 3.5 as well as 3.9.

mΓ = mf
1

Γ

Γ4

1
= mf Γ

3 ∼=
(
1 +

3GM

r c2

)
mf (3.11)

Thus objects effectively gain mass as they move deeper into a gravitational field, as observed from outside
of the gravitational field.

3.6 Local force
Since Force can be stated as F = E/∆d the scaling behaviour for a Force F inside the gravitational field of
a mass M is given as follows under consideration of equation 3.5 as well as 3.7.

FΓ = Ff
1

Γ

Γ

1
= Ff (3.12)

Interestingly, force is an unchanging quantity, whereas even energy is changing within a gravitational field.
For example, when a space probe is leaving the gravitational field of a planet by using a chemical thruster
that can only operate with an unchanging chemical reaction the force of that thruster will remain constant
during the space probe’s journey, as observed locally as well as from outside of the gravitational field.

However, there is something strange going on with the Newtonian gravitational force Fg = Gm1 m2/r
2,

which seems to violate the independence from Γ for a force. This issue can be understood by realizing
that the Newtonian gravitational force is calculated with values for the involved masses, and the separation
between them, as if they were not affected by a gravitational field so that Γ = 1 for all involved variables.
Imagining that m1 and m2 are located inside an external gravitational field caused by another dominant mass
M , whose gravitational field is approximately uniform for m1 and m2, they would be affected by the same
factor Γ which might deviate noticeably from one. Subsequently m1, m2 and r need to be multiplied with this
factor Γ to the appropriate power for incorporating the gravitational effect of M . However, the gravitational
constant G appears to be an emergent constant which is comprised of the squared speed of light and a
kind of (inverse) mass density that is defined by the mass contained in a sphere with a certain radius (2),
i.e. G ∼= c2 rH/(2mH) whereby rH is the radius of the observable universe and mH is its mass. This
suggests that for the given scenario G also has to be corrected, whereby a scaling factor of 1/Γ8 seems to
be appropriate. Subsequently, in this example scenario all Γ contributions cancel out so that the gravitational
force between m1 and m2 is unchanging if r were held constant as the two masses move through the external
gravitational field. This scenario is what, for gravity, comes closest to the unchanging force notion which was
derived from equation 3.12.

5



For the special case of m1 being a central spherical dominant mass M , like in the Schwarzschild metric, a
more precise description of the gravitational force acting on m2 can be achieved by treating m2 as a variable
mass while keeping all other variables unaffected by gravity. In that scenario the resulting gravitational force
is not unchanging anymore with respect to Γ and this circumstance is the key to explain Mercury’s perihelion
precession accurately, as shown in section 4.3.
More complicated cases would require more scrutiny because gravity actually involves two different Γ factors,
one caused by m1 and one caused by m2. Therefore also the distance r is not identical, from the point of view
of a mass m1 and m2. Moreover, the same asymmetry issue presumably even applies to G. Subsequently,
the Newtonian formulation for the gravitational force might not be suited for being developed into an accurate
description for the gravitational attraction between two bodies since it is not clear if and how Newton’s third
law can be retained.

3.7 Acceleration
Since acceleration can be stated as a = F/m the scaling behaviour for an acceleration a inside the
gravitational field of a mass M is given as follows under consideration of equation 3.11 as well as 3.12
when assuming no net jerk influence due to changing gravity or other changing forces.

aΓ = af/Γ
3 ∼=

(
1− 3GM

r c2

)
af (3.13)

This equation, together with the gravitational scaling of mass, implies that objects get more inert as they go
deeper into a gravitational field, as observed from outside of the gravitational field.

3.8 Alternative to Γ

Kris Krogh devised an alternative for Γ which uses Euler’s number and also applies to a non-rotating non-
moving dominant homogeneous spherical mass M (8).

exp
(
GM

r c2

)
= exp

(
−Φ

c2

)
∼= Γ (3.14)

This alternative to Γ might turn out to be interesting for further research on gravity, as its approximation differs
from the approximation of Γ for powers of r beyond one.

4 Tests

4.1 Redshift & blueshift
The gravitational change of a length segment as specified in equation 3.7 matches with the equation for
gravitational redshift, i.e.

z + 1 =
λf

λΓ
= Γ (4.1)

whereby λΓ = ∆dΓ denotes the wavelength as sent out by an emission source inside a gravitational field
and λf = ∆df denotes the wavelength received far away from that gravitational field. A photon moving out
of a gravitational field will thus obtain a longer wavelength during its journey, i.e. it will redshift.

4.2 Light deflection
The refraction index n can also be calculated by considering the motion of a light ray in a gravitational field by
using the line element as specified in equation 2.4 or 2.7 to describe that motion. To simplify the calculation a
straight motion can be chosen with an angle Θ such that sin2(Θ) is zero and dϕ = 0, i.e. a radial movement
with Θ = 0◦. Moreover, considering that for a light ray ds2 = 0 and using velocity v = dr/dt the line element
can be reshaped into a refractive index n. Due to the spherical symmetry of the Schwarzschild metric the
obtained result must hold true everywhere outside of the Schwarzschild radius associated with a mass M .(

1 +
2Φ

c2

)
c2dt2 =

(
1 +

2Φ

c2

)−1

dr2(
1 +

2Φ

c2

)2

c2 =
dr2

dt2

n =
c

v
= 1

/(
1− 2GM

r c2

)
= Γ2

(4.2)
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This result matches exactly with equation 3.10, which means that the Schwarzschild metric can be regarded
as a description of an optical medium with a changing refractive index n and therefore any gravitational
light bending calculation based on the refractive index n has to produce results that are equivalent to other
calculation approaches which use the framework of general relativity theory. Calculations using the refractive
index n thus have to result in the typical gravitational light bending angle θ for light rays moving past a non-
rotating stationary homogeneous spherical mass M at a distance r, which is given by the following equation.

θ =
4GM

r c2
(4.3)

The refractive index n was first used by Robert Dicke to correctly calculate the deflection angle for light
passing by our sun (6). This is a topic that is covered extensively by Alexander Unzicker, for example in
(9). There Unzicker explains that Albert Einstein also attempted to use a refraction index to calculate the
amount of light deflection around our sun before he developed his theory of general relativity (12). Einstein’s
result using a refraction index was exactly half of the correct value that he predicted later on by using general
relativity, which was because Einstein only took light’s gravitational frequency change into consideration but
missed the change in wavelength. Thus his expression for the reduced speed of light in a gravitational field
was slightly off, i.e. [1 − GM/(r c2)] c. Today, however, it is pretty much forgotten that Einstein was taking
the notion of a variable speed of light due to gravity very seriously. There are also lots of other papers
available which calculate the refractive index using general relativity, but these derivations are usually more
complicated than the derivation done here in equation 4.2 and their respective authors are usually not willing
to interpret the refraction index as evidence for space being a physical medium with substance to it.

4.3 Perihelion precession

The precession of Mercury’s perihelion stands as one of the most significant tests of Einstein’s general
theory of relativity. While that theory explains an otherwise unexplained amount of Mercury’s perihelion
precession through space-time curvature, an alternative mathematical approach is presented in this section
which achieves the same prediction by incorporating the notion of a variable mass in the function for the
gravitational potential energy between our sun and Mercury.

The relevant properties and definitions used for Mercury’s perihelion precession calculation are as follows:
Distance between our sun and Mercury: r
Mass of our sun: M = 1.988 841 6× 1030 kg
Mass of Mercury: m = 3.30× 1023 kg
Eccentricity factor of Mercury: e = 0.20563069
Semi-major axis of Mercury: a = 0, 387 au = 5.789× 1010 m
Mercury’s number of orbits per century: Nm = 365.25/88.00× 100 = 415.057
Conversion factor for radians to arcseconds: rad2arcs = 206 265 ′′/rad
Please note that in this section the letter e is used to denote eccentricity instead of fundamental charge, to
comply with the common notation for calculating elliptic orbits.

Since Mercury moves in a plane, and thus θ̇ = 0, its kinetic energy T is given by

T = m(ṙ2 + r2ϕ̇2)/2 (4.4)

in polar coordinates. Its gravitational potential energy V with respect to our sun and is given by

V = −GMΓ3m/r (4.5)

when also considering a variable mass Γ3m for Mercury. Using these last two expressions the Lagrangian
L = T − V can be obtained.

L = m(ṙ2 + r2ϕ̇2)/2 +GMmΓ3/r (4.6)

Applying the Euler-Lagrange equations to it we get the following equation,

d

dt

∂L

∂ϕ̇
=

∂L

∂ϕ

d

dt

(
mr2ϕ

)
= 0

(4.7)
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which means that the angular momentum of Mercury is constant because the product of these variables
doesn’t change with time, and another equation for Mercury’s radial motion

d

dt

∂L

∂ṙ
=

∂L

∂r
d

dt

(
mṙ

)
=

∂

∂r

(
mr2ϕ̇2/2 +GMmΓ3/r

)
d

dt

(
ṙ

)
=

∂

∂r

(
r2ϕ̇2/2 +

GM

r

[
1 +

3GM

rc2

])
r̈ =

∂

∂r

(
r2ϕ̇2/2 +

GM

r
+

3G2M2

r2c2

)
r̈ = rϕ̇2 − GM

r2
− 6G2M2

r3c2

(4.8)

which is an equation of motion extended by an additional 3rd term with a 1/r3 dependency compared to
the classical Newtonian case. Hereafter it is shown that this additional term is explaining the perihelion
precession of Mercury.

Using u = 1/r, Kepler’s second law in the form of r2ϕ̇ = h and d/dt = ϕ̇(d/dϕ) = hu2(d/dϕ) it is possible
to obtain a standard differential equation from equation 4.8.

−h2u2(d2u/dϕ2) = h2u3 −GMu2 − 6G2M2u3/c2

−u2(d2u/dϕ2) = u3 −GMu2/h2 − 6G2M2u3/(h2c2)

(d2u/dϕ2) + u = GM/h2 + 6G2M2u/(h2c2)

(d2u/dϕ2) + [1− 6G2M2/(h2c2)]u = GM/h2

(4.9)

Using the relationship h2 = GMa(1− e2) for elliptical orbits the last equation can be reformulated as follows:

d2u

dϕ2
+

(
1− 6GM

c2a(1− e2)

)
u =

GM

h2
(4.10)

This is a standard differential equation of the form u′′ + k2u = C where k =
√

1− 6GM/[c2a(1− e2)]. The
general solution for equation 4.10 is given by

u(ϕ) = A cos(kϕ+ σ) +
C

k2
(4.11)

and Mercury must thus advance by 2π/k to complete one orbit. Since 1/k can be approximated as follows

1/k ∼= 1 +
3GM

c2a(1− e2)
(4.12)

the perihelion precession of Mercury per orbit is given by

∆ϕ = 2π/k − 2π ∼=
6πGM

c2a(1− e2)
(4.13)

which, when expressed in arcseconds per century, evaluates to

∆ϕ×Nm × rad2arcs = 42.98′′/ century (4.14)

This result matches perfectly with the one obtained by doing a perihelion precession calculation for Mercury
using the framework of general relativity. It should also be emphasized that the calculation carried out here
did not require the concept of space curvature.

Special relativistic contributions were not included in the calculation done here, since they would cancel
out in the equation of motion 4.8 anyways together with Mercury’s mass m. However, the same argument
could be made about the Γ3 factor for Mercury’s mass m which was only applied in V but not in T and
there needs to be a reason for this unequal treatment. Since T as well as V denote energies they both
are subject to the same 1/Γ factor which would also cancel out in equation 4.8 and therefore that factor
wasn’t needed in equation 4.4 and 4.5. This omitted 1/Γ factor already accounted for all of the gravitational
influence on the individual variables in T due to the gravity of the mass M , but in the case of V it cannot
because the gravitational potential energy formula involves different locations in the overall gravitational field.
Judging from the final result the next best approximation seems to be to also incorporate a variable mass for
Mercury’s mass m in V besides the omitted 1/Γ factor. In plain words: the quantity of energy is changing
with the distance of Mercury from our sun but still the amount of gravitational potential energy between
our sun and Mercury requires considering a variable mass m. The influence on our sun’s mass M by the
gravitational field of Mercury can be neglected in V since our sun’s gravitational field is by far the dominant
factor here.
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5 Newtonian gravity reexamined

5.1 Gravitational potential energy
The following equation states the gravitational potential energy that is released when a test mass mt =
1.000 kg is moved inside the gravitational field of earth, with mE = 5.972 × 1024 kg being the mass of earth
and rnear = 6371 km being the radius of earth, from a position rfar = rnear + 10.000 km to the surface of
the earth.

∆E =
−GmE mt

rfar
− −GmE mt

rnear
=

(
1

rnear
− 1

rfar

)
GmE mt = 98.043 kJ (5.1)

So roughly 100 kilojoules of energy are released according to Newtonian gravity as the test mass is moved
to a lower gravitational potential, i.e. the surface of earth. To make the connection to general relativity the
last equation can also be written as follows:

∆E =

[
GmE

rnear c2
− GmE

rfar c2

]
mt c

2 =

[(
1− GmE

rfar c2

)
−

(
1− GmE

rnear c2

)]
mt c

2 (5.2)

Using the following linear approximation

1/Γ =
√

1− 2GM/(r c2) ∼= 1−GM/(r c2) (5.3)

it is possible to rewrite ∆E as

∆E =

[
1

Γfar
− 1

Γnear

]
mt c

2 = 98.046 kJ (5.4)

whereby Γnear denotes Γ for r = rnear with M = mE and Γfar denotes Γ for r = rfar with M = mE . It can
be seen that the results of equation 5.2 and 5.4 are quite close and they get even closer for larger separation
distances. Moreover, the results also get closer when treating mt as a variable mass in the Newtonian
calculation, as it was done for the mass of Mercury in section 4.3. The remaining deviation between the
result of equation 5.1 and 5.4 is presumably largely due to the linear approximation in equation 5.3.

The calculation presented in this section is based upon a related example in John A. Macken’s work where he
claims that time dilation is responsible for the gravitational potential energy (4), which can be said rightfully
so since frequency f as well as energy E both scale with 1/Γ and they are directly related via E = hf .
This effectively means that when a spin ½ particle is moving towards the earth’s surface it looses mass
energy, due to the reduction in its frequency fΓ, and since this change in its mass energy is not directly
detectable locally that change is accounted for as a lowered gravitational potential energy in classical physics
calculations. In case that this particle is in free fall its lost mass energy will be converted to kinetic energy
and thus the overall energy remains conserved. This notion also provides a simple explanation for the origin
of gravitational potential energy which cannot be accounted for satisfactorily in Newtonian physics otherwise,
because contrary to electric fields the potential energy here is not linked to an energy in the field.

5.2 Normalized potential gradient
Another fascinating example from John A. Macken shows that Newtonian gravity calculations contain
concealed gradient calculations, akin to the maths of space curvature. For a similar example we consider
the gravitational force between earth’s mass m1 = mE and a proton with mass m2 = 1.672 62× 10−27 kg at
a distance rfar, which is given by:

−G
m1 m2

r 2
far

= −2.487× 10−27 N (5.5)

The minus sign here just explicitly indicates that the force is attractive. Next it will be shown that the same
force can be calculated with a totally different approach. However, the alternative approach requires at least
one spin ½ particle and thus the alternative approach cannot be applied to arbitrary situations without some
tweaks.

A classical gravitational potential at r can be normalized by dividing it through −c2 since −c2 is the presumed
gravitational potential limit in our universe (2). Macken called such a normalized gravitational potential the
gravitational magnitude ß which can be written in the following ways for a mass M and a distance r.

ß = −Φ/c2 =
GM

r c2
∼= Γ− 1 (5.6)

This dimensionless parameter will always have a value between 0 and 1. Calculating it for our example
situation with M = m1 and r = rfar gives the following concrete value:

ß1 =
Gm1

rfar
× 1

c2
= 2.709× 10−10 (5.7)
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It is also possible to calculate how the gravitational magnitude changes at r, which is simply the gradient of
the gravitational magnitude ß at r. The gravitational magnitude has a 1/r factor in it whose derivative with
respect to r is simply −1/r2 and therefore dß/dr = −ß/r = −GM/(r2c2). In our example this evaluates to:

dß1/dr = −ß1/rfar = −1.655× 10−17/m (5.8)

Using this gradient it can be estimated by how much the gravitational magnitude ß1, which is caused by
the earth’s gravitational field in our example, is changing over the confines of our example proton. As
already mentioned in section 2.1 the reduced Compton wavelength rc = λc/2π is used as a measure of a
spin ½ particle’s size in this paper. More correctly rc describes half of its size, since it denotes a radius, but
incidentally this is the appropriate measure for the calculation in this section. The change in the gravitational
magnitude at a distance r caused by a mass mj over the confines of a spin ½ particle’s mass mk can then in
general be approximated as follows whereby rck denotes the reduced Compton wavelength of the mass mk.

∆ßj = −Gmj

r2 c2
× rck (5.9)

The reduced Compton wavelength of a proton is 2.1031 × 10−16 m and therefore in our example with j = 1
and k = 2 the approximate gravitational magnitude change caused by m1 at r = rfar over the size rc2 of the
mass m2 is given by:

∆ß1 = −ß1/rfar × rc2 = −3.500× 10−33 (5.10)

The force that keeps a spin ½ particle together can be estimated by multiplying its mass with its centripetal
acceleration, whereby its centripetal acceleration is assumed to arise from an equatorial perimeter rotation
which occurs at light speed c. For a proton, which in our example is associated with mass m2, this approach
gives the following force:

Fs2 = m2 × c2/rc2 = cℏ/r 2
c2 = 7.148× 105 N (5.11)

In case of a proton the strength of this force closely matches with the expected strength of the strong force,
which is why the subscript letter s was used to refer to this force. Moreover, as discussed in (1) and (3)
the strong force seems to be the near field behaviour of gravity and therefore it makes sense that this force
appears in the calculations done here.
Finally, multiplying Fs2 with ∆ß1 results in the gravitational force of equation 5.5, whereby this match is
symbolically, and not just numerically, since the involved terms cancel out in exactly the right way.

Fs2 ×∆ß1 = −2.487× 10−27 N (5.12)

Macken compares this congruence with a mirror effect, i.e. a spin ½ particle experiences a physically real
change in its surrounding space which leads to a kind of reflection, comparable to incoming light being
partially reflected by a mirror that it encounters. The strength of the reflection by a ½ particle seemingly
depends on the force that holds the affected particle together and the gravitational magnitude change over
the particle’s size. However, the problem with the mirror analogy is that it suggests a repulsive force.
Macken also suggested that ∆ß quantifies a change in the rate of time, i.e. masses move towards regions
with slower time and indeed in our example ∆ß is approximately equal to the difference of two approximated
1/Γ factors, i.e. [1 − Gm1/((rfar + rc2) c

2)] − [1 − Gm1/(rfar c
2)] ∼= ∆ß1 (note: the small value of rc2

and the relatively large value of rfar can lead to precision problems with the used calculation software).
Since E = hf this can be rephrased as masses moving towards states of lower energy, which is a common
scheme in physics and in accordance with the findings of section 3.2 and 5.1. Admittedly, this line of thought
is not elaborated enough yet to quality as a satisfactory explanation for the attractive nature of gravity in the
presented model.

6 Quantum forces

The previous sections were portraying a very dynamic behaviour of physical quantities in a gravitational field
and the question that follows from this is what mechanism could provide such dynamics? Curved space-
time, as envisioned by general relativity theory, does not seem to fit, or at least it does not yet provide
a mechanism to explain the presented couplings. One viable candidate could be a wave based quantum
gravity approach as proposed by John A. Macken in (5)(4), whose fundamentals will be presented and
assessed in the following sections. Macken uses two main starting points in his works, one is an analogy of
matter to light waves trapped between two mirrors and the other is the equation for the intensity of a planar
gravitational wave. It should be noted, though, that some of Macken’s claims differ from what was presented
here before, in particular the scaling factors for the various physical quantities due to gravity, but that does
not invalidate what gets presented from his work hereafter.

The starting point for examining quantum gravity in this paper is also the equation for the intensity of a
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planar gravitational wave as derived from general relativity theory, which can be defined as follows

Igw =
1

8π
l2l

(
∆L

L

)2

ω2 Zs (6.1)

whereby ω is the angular frequency of the gravitational wave and the term ∆L/L is a dimensionless factor
that accounts for the stretching of space due to a gravitational wave. Here L denotes a reference length
transverse to the wave’s propagation direction and ∆L refers to the change of that length due to the wave.
The usual formulation for the intensity of gravitational waves does not contain an explicit amplitude, since
the impedance term c3/G, that is appropriate for strain amplitudes, is normally used (11) instead of the
unacquainted ”acoustic” gravitational impedance Zs. As shown in the upcoming sections gravity might be
transmitted by a sea of ”background” waves whose natural amplitude is the Planck length ll. Therefore,
equation 6.1 contains the Planck length ll as the unstretched amplitude and the effective amplitude is thus
given by ll (∆L/L). Another small difference to the usual equation for the intensity of a planar gravitational
wave is the proportionality constant, which here is 1/8π instead of 1/16π, in order to yield identical results
between the different formulations.

6.1 Strong force
Previously, in equation 5.11 a force was calculated which presumably holds the proton together. The used
formula can be generalized to a strong force Fs for spin ½ particles which possess a Compton wavelength λc.
This force can be written in the following ways:

Fs = m2c3/ℏ = m× c2/rc = Gm2
l /r

2
c = e2/(4πϵ0αr

2
c) = cℏ/r2c (6.2)

Interestingly, one variant involves the Planck mass ml, but the meaning of this occurrence is not the focus
here. The relationship between a spin ½ particle’s mass m and its radius rc is given by

rc = c/(2πfc) = λc/2π = ℏ/(mc) (6.3)

whereby the relativistic cases, and their relation to frequency, were already stated before, i.e. rγ = c/(2πfγ)
and rΓ = c/(2πfΓ). Doing a simple comparison of forces reveals that Fs matches quite closely with the
nuclear strong force for the proton and neutron, since Fs is approximately 1038 times stronger than Newtonian
gravity. For example, a calculation for the proton, with mp being the proton’s mass and rcp being the proton’s
radius, yields

Gm2
l

r 2
cp

/
Gm2

p

r 2
cp

=
m2

l

m2
p

= 1.69× 1038 (6.4)

Thus Fs really deserves its name and this result even indicates that the strong force is the near field
behaviour of gravity when a particle’s rotational effects on space are included too (1). Another calculation
reveals that using the Planck length ll as radius rc the strong force Fs evaluates to the gigantic Planck force
Fl = cℏ/l2l = c4/G = 1.21 × 1044 N, which will play an important role in the upcoming sections and which
the physicist Salvatore Pais calls the super force. For reasons touched upon in appendix B the Planck force
can also be regarded as the primordial force or pristine force of our universe.

Analogous to the equation for the intensity of a planar gravitational wave the Planck force can be defined
as the force caused by a planar wave with Amplitude Ao = ll, a proportionality constant ks = 1, an angular
frequency ω = ωl = c/ll = 1/tl, which is the inverse of the Planck time tl, and the ”acoustic” impedance of
space Zs (equation 2.3). Additionally, the propagation velocity v of the wave in space is assumed to be light
speed c and the relevant cross section is assumed to be A = 2l2l , due to reasons presented in (1) where a
possible geometric structure of space was discussed. This then leads to the following force equation:

Fl = ks A
2
o ω2 Zs A/v = l2l ω

2
l

c3

2G l2l
(2l2l )/ c = c4/G (6.5)

It is assumed here that the last equation describes the base layer of space, i.e. that space is composed of
tiny oscillators which are also responsible for the so called zero point energy of quantum physics. Moreover,
these oscillators are assumed to form standing waves in the observable universe.
Curiously, spin ½ particles also seem to be able to emit similar waves since using ω = ωc = 2πfc and
A = 2r2c also produces the Planck force, as shown in the following equation:

Fl = l2l ω
2
c

c3

2G l2l
(2r2c)/ c = c4/G (6.6)

The amplitude is again ll, but the frequency and the relevant cross section have changed compared to
equation 6.5. Subsequently, due to the much lower angular frequency the intensity of waves emitted by
spin ½ particles must be much lower than the intensity associated with the proposed fundamental oscillators,
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which makes sense. The next section will show how the waves described by equation 6.5 and 6.6 are related
to gravity as we observe it, as a continuation of the groundwork that has been laid out here.

Equation 6.1 could also be relevant for the waves associated with the proposed fundamental oscillators,
but in that case ∆L/L is not applicable and must therefore be set to 1. Using that stipulation the modified
planar wave intensity Im = l2l ω

2 Zs/ 8π and the Planck force Fl can be related for the relevant cross section
area 2l2l by Im × 2l2l /c = Fl/(8π) = 1/κ, whereat the symbol κ denotes the Einstein constant 8πG/c4 which
is a conversion factor between space curvature and energy density in the Einstein field equations of general
relativity theory. This correlations show that general relativity theory can be connected to the quantum wave
model introduced here on at least one level, which provides some first credence to the chosen approach.

6.2 Gravitational force
The starting point point for this section is the classical Newtonian gravity as stated hereafter for two masses
m1 and m2 at some distance r. The minus sign again denotes the attractive nature of the gravitational force.

Fg = −G
m1m2

r2
(6.7)

Intriguingly, this equation can be formulated in terms of the Planck force Fl in the following way for spin ½
particles.

Fg = −Fl
Fs1

Fl

Fs2

Fl

1

r/rc1

1

r/rc2
(6.8)

Here Fsn means Fs for m = mn and rcn refers to the reduced Compton wavelength rc of the mass mn ,
whereby n is 1 or 2. This equation offers a number of interesting insights into classical Newtonian gravity:

• The reference quantity for the gravitational force is the Planck force Fl

• There is a deeper connection connection between the gravitational force and the strong force.

• The contribution to the gravitational force caused by each of the involved masses, i.e. Fs1/Fl and
Fs2/Fl, is also relative to the Planck force Fl.

• When explicitly stating these force contributions, like it was done in equation 6.8, the strength of the
gravitational force does not simply scale with 1/r2 anymore, instead it scales inversely with distance
measured in multiples of the reduced Compton wavelength of the involved particles, denoted by rc1
and rc2, i.e. 1/(r/rc1) and 1/(r/rc2).

• Using the same notation as in equation 5.9 it can be inferred for the special case of two spin ½
particles that the change of gravitational magnitude is given by

∆ßj = −Fsj rcj rck/(Fl r
2) = −rck

rcj

1

r2/l2l
= −mj

mk

1

r2/l2l
(6.9)

such that Fg = Fsk ×∆ßj . Surprisingly, the equation for ∆ßj has become pretty simple, especially if
the two involved particles are of the same type.

Equipped with that knowledge, and that of the previous section, it is now sensible to switch over to Macken’s
equations for the gravitational force.

Macken uses a particular notation which utilizes the following two dimensionless factors:

Aß =
1

rc/ ll
=

√
Fs

Fl
(6.10)

N =
r

rc
(6.11)

N obviously quantifies a distance r in terms of multiples of the measure for a particle radius, i.e. the reduced
Compton wavelength rc. Aß quantifies the relative size of a fundamental Planck oscillator compared to a
spin ½ particle, which incidentally is also is a measure for the relative strength of Fs and Fl. Macken’s work
features different equations for expressing Newtonian gravitational force, whereby the most encompassing
and understandable one is the following equation

Fg = −
[
A2

ß1

N1

A2
ß2

N2

]
Fl (6.12)

which is structurally comparable to equation 6.8. Here Aßn means Aß for rc = rcn and Nn means N for
rc = rcn, whereby n is again 1 or 2. Macken claims that the squared Aß terms are indicative of gravity being a
second order effect of the waves emitted by spin ½ particles, inspired by the fact that the upcoming equation
6.19 features a lower power for Aß - a notion which cannot be judged finally from what was presented so far.
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Equation 6.12 is an intriguing way to state the gravitational force, but to get a better understanding of what
it might mean physically the terms have to be expanded. Expanding only the Fl part first gives two possible
variants:

Fg = −
[
A2

ß1

N1

A2
ß2

N2

]
l2l ω

2
l

c3

2G l2l
(2l2l )

1

c
(6.13)

Fg = −
[
A2

ß1

N1

A2
ß2

N2

]
l2l (ωc1 ωc2)

c3

2G l2l
(2 rc1 rc2)

1

c
(6.14)

Of these two variants equation 6.14 should be the relevant one, since it is highly unlikely that spin ½ particles
can emit waves with a frequency of ωl. Doing an expansion of equation 6.14 gives the following two sensible
equations:

Fg = −l2l (ωc1 ωc2)
c3

2G l2l

[
2

1

r/l2l

1

r/l2l

]
1

c
(6.15)

Fg = −l2l

(
ωc1 ωc2

ωl

)2
c3

2G l2l

[
2
rc1
r/ll

rc2
r/ll

]
1

c
(6.16)

Which of these two equations is the physically relevant one is something that is not fully clear yet. Presumably
it is equation 6.16, which incidentally seems to be absent from Macken’s work, since its cross section term
still contains rc1 and rc2. The effective angular frequency of that equation is given by ω = ωc1 ωc2/ωl. The
rather clumsy term 2 rc1/(r/ll) rc2/(r/ll) = 2 rc1 rc2 (r/ll)

−2 likely denotes the reduction of the effective
cross sectional area due to the separation between the two objects in gravitational attraction, which is likely
describing a loss of intensity since the described wave, or the waves, dissipate with increasing distance d
as they spread out over an increasing spherical area. The wave’s amplitude and frequency are seemingly
unchanged as the wave spreads.

Section 5.2 was exploring how the gravitational magnitude ß changes over the size of a particle, whereby
this change is presumably related to a change in the experienced time of the affected particle. The following
equation shows several ways to calculate this value using the wave equations that were presented before.

∆ßj =
Fg

Fsk
= Fg

c

ℏω 2
ck

= −l2l
ωcj

ωck

c3

2G l2l

[
2

1

r/l2l

1

r/l2l

]
1

ℏ
= −l2l

ω 2
cj

ω2
l

c3

2G l2l

[
2
rcj
r/ll

rck
r/ll

]
1

ℏ
= −ωcj

ωck

1

r2/l2l
(6.17)

These alternative formulations for ∆ßj suggest that a wave based gravity could somehow be causal for
gravitational time dilation. Moreover, the term −(ωcj/ωck) (l

2
l /r

2) suggests that the Newtonian approximation
of gravity is applicable as long as each particle’s angular Compton frequency ωc is not affected too much by
gravitational time dilation.

In case you want to compare Macken’s work with this work it should be noted again that Macken’s equations
are slightly different since he uses a strain amplitude instead of an explicit amplitude of one Plank length.
The equations in question, the ones presented in this paper which explicitly feature the ”acoustic” impedance
of space Zs, can be made comparable easily, though, by cancelling out a factor of 2l2l from the respective
equation. This notice also applies to the next section.

6.3 Electric force
To properly classify Macken’s equations it is insightful to also look at the classical electric force Fe between
two fundamental charges e, which may have different polarity, separated by a distance r.

Fe = ± 1

4πϵ0

e2

r2
= ± α

4πϵ0

q2l
r2

(6.18)

In his work Macken shows that the electric force can also be formulated in a way that is surprisingly similar
to equation 6.12 (4)(5). It is necessary, though, to also insert the Sommerfeld constant α to get the correct
calculation results. Macken presents different variants for the electric force in his work, like in the case of
gravity, whereby the most encompassing and understandable equation is the following one.

Fe = ±α

[
Aß1

N1

Aß2

N2

]
Fl (6.19)

The last equation is applicable to charged spin ½ particles with a Compton wavelength λc , i.e. the proton,
electron, positron and muon. Doing some rearrangements the last equation can also be brought into a form
that is similar to equation 6.8.

Fe = ±αFl

√
Fs1

Fl

√
Fs2

Fl

1

r/rc1

1

r/rc2
(6.20)

13



The similarities of the previous two equations to equation 6.12 and 6.8 are highly puzzling as there is no
justification in contemporary physics why these similarities should exist. This in turn indicates that the
gravitational force as well as the electric force are manifestations of the same underlying phenomenon,
which arguably has a wave like nature. Admittedly, equation 6.19 and 6.20 cannot explain the attractive and
repulsive effect that electric charges can have, but still the revealed similarities are remarkable. Please also
note that the square root of a value smaller than one actually is greater than this value, e.g.

√
0.5 ∼= 0.7071,

which is why in the end the electric force as stated in equation 6.20 is stronger than the gravitational force
as stated in equation 6.8 for a comparable situation.

Again, like done for gravity beforehand, there are two ways to expand Fl. Doing that expansions for equation
6.19 results in

Fe = ±α

[
Aß1

N1

Aß2

N2

]
l2l ω

2
l

c3

2G l2l
(2l2l )

1

c
(6.21)

Fe = ±α

[
Aß1

N1

Aß2

N2

]
l2l (ωc1 ωc2)

c3

2G l2l
(2 rc1 rc2)

1

c
(6.22)

whereby equation 6.22 seems to be the physically relevant one as spin ½ particles are presumably not able
to emit waves with an angular frequency ωl. Doing a full expansion for Fe using equation 6.19 gives only one
sensible equation since the Aß terms are to the power of one and subsequently the radius rc in N and Aß

cancels out.

Fe = ±α l2l (ωc1 ωc2)
c3

2G l2l

[
2
rc1
r/ll

rc2
r/ll

]
1

c
(6.23)

The last equation is seemingly absent from Macken’s work, like equation 6.16.

What was shown so far suggests that the electric force as well as the gravitational force are both wave
phenomena, but there must be some telling distinctions in their equations to explain their different behaviour
and strength. Comparing equation 6.16 and 6.23 reveals such a difference: in equation 6.16 the resulting
angular frequency is always positive, whereas in equation 6.23 a negative overall frequency term is
theoretically possible when assuming that ωc can have positive and negative values. Subsequently, equation
6.23 is able to describe attractive as well as repulsive behaviour, as expected from the electric force.

In Macken’s formulation of the gravitational and electric force the primary cause for the difference in their
respective strength are the powers of the Aß terms. As already said previously, Macken therefore claims
that the gravitational force is some kind of second order wave effect. If that really can be concluded from the
distinct powers of Aß is not a simple question. Please see Macken’s work (4) for more information on that
topic. What can be inferred from the presented material, though, is that the strength difference between the
electric and gravitational force depends on how the size of a spin ½ particle is associated with the respective
force, i.e. when considering equation 6.10 gravity depends on 1/(r2c/l

2
l ) and the electric force depends on

1/(rc/ll), which in turn suggests that the electric force is inversely proportional to the circumference of a spin
½ particle and gravity is inversely proportional to its surface area. This difference could be a clue for how
these two forces operate physically and what makes them different, in case the second order wave effect
notion is discarded. In my own previous work I assumed that the fundamental oscillators come in two species
(1)(3), which may or may not fit with what was presented here for the electric force. However, this assumption
could provide a way to establish different modes of operation and explain what a negative frequency means
in the context of a spin ½ particle. Physically seen, positive and negative frequencies could be related to a
rotation handedness of spin ½ particles.

The mysterious presence of the Sommerfeld constant α in the electric force equations could have a similar
role like it has for hydrogen, where the electron’s equatorial perimeter velocity is reduced from a value of
c , for a free electron, to αc , as it wraps itself around a proton (1)(3). In the presented equations for the
electric force the Sommerfeld constant α can also be applied to a velocity by reducing the angular frequency
of a spin ½ particle from ωc = c/rc to

√
αωc =

√
α c/rc, so that the centripetal force of a spin ½ particle

and an imaginary electric force for two fundamental charges would be in balance at a particle’s radius rc ,
i.e. αFs = m (

√
α c)2/rc = e2/(4πϵ0r

2
c), which likely is no coincidence and reminiscent of the situation with

hydrogen. Expressing the reduced speed explicitly gives the following equation for the electric force:

Fe = ± l2l

[
c
√
α

rc1

c
√
α

rc2

]
c3

2G l2l

[
2
rc1
r/ll

rc2
r/ll

]
1

c
(6.24)

The physical reason for this frequency reduction may be that the super fast rotation of a spin ½ particle
distorts the space around it which subsequently somehow shields the real electric charge from a far away
observer in exactly the right amount to achieve the mentioned force equilibrium, for reasons not yet fully
understood.
In the case of gravity there seems to be a similar situation: in close vicinity to a spin ½ particle its unshielded
mass, which presumably takes into account additional rotational energy, apparently corresponds to the
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Planck mass ml instead of what we consider to be the respective particle mass (see equation 6.4), a
circumstance that contemporary physics seemingly interprets as the nuclear strong force to explain what
holds a fundamental particle together while assuming a much lower mass than ml. The shielded mass mass
hypothesis is also hinted at by the puzzling mass energy relation mc2 = Gm2

l /rc.
Alternatively, the electric charge on the surface of a spin ½ particle might move slower than the overall
particle which presumably has a rotation speed of c at its equatorial perimeter, i.e. the electric current lags
behind somehow. In any case, the Sommerfeld constant α seems to arise from equilibrium situations, which
would explain why this constant exists and what it really means - a topic that is still disputed.

6.4 Inertial mass correction
Phenomena which so far could not be explained by the theory of general relativity, like the rotation speed
of galaxies and dark energy, might be explained by changing inertia, as Michael McCulloch advocates for
in his works. His approach is also suggesting a wave phenomenon behind these mysterious gravitational
anomalies that, according to McCulloch, arise because there is a limit for gravitational wavelength between
a mass in space and the cosmic horizon, which in turn has some effects on inertial mass and gravity.

According to McCulloch there is an upper limit to the wavelength between an accelerated object and the
horizon of the observable universe, which is given by 2c2/a for an acceleration a. This wavelength limit might
be the lowest possible harmonic of the gravitational waves which were proposed before. As a consequence,
as McCulloch claims, inertial mass must be modified and the equivalence principle mi = mg for the inertial
mass mi and gravitational mass mg of an object gets violated. The inertial mass correction factor, that I
denote here as η, is stated in (10) as

η =

(
1− 2c2

a d

)
(6.25)

whereby d is the distance between a cavity’s confines, or strictly speaking two times half of it, which in the
absence of an artificial cavity is twice the Hubble radius, i.e. d = 2c/H0. This correction factor is usually
irrelevant since it is extremely close to 1, but it becomes relevant as it goes lower for artificial cavities, like two
closely placed parallel metal plates, and ultra low accelerations, like at the edges of a spiral galaxy. Moreover,
an interesting net effect of the inertial mass correction is that gravitational attraction should exhibit a residual
acceleration of 2c2/d = 2c2/(2c/H0) = cH0

∼= 7.2 × 10−10 m/s2, using a Hubble radius of 1.25 × 10−26 m,
as shown in chapter 7.1 of (10).

7 Discussion
Several Γ based factors were provided in section 3 that quantified how various physical quantities scale inside
a gravitational field compared to being so far away from the gravitational field that its effects are negligible.
The presented supplementary linear approximations of these scaling factors were also obtained by Dehnen,
Hönl and Westpfahl in (7) and by Krogh in (8), for those relations that were derived by them using different
approaches than the one applied here. Clearly, these agreements support the scaling factors put forward in
this paper. Macken, however, derived different factors in his work (4) which presumably should not be able
to correctly quantify gravitational light bending and planetary perihelion precession.
The presented scaling factors should work quite well even for stronger gravitational fields, when the
respective Γ factor is utilized instead of the associated linear approximation. In case the gravitational field
becomes so strong that its influence on Γ even varies over a fundamental particle’s confines, the presented
scaling factors become inappropriate. That situation should be rather unattainable, though, since it was
shown in section 3.2 that gravity actually shrinks fundamental particles so that they become substantially
smaller in a strong gravitational field.
What wasn’t considered in this paper are the effects that a rotating mass has on space and gravity, in theory,
though, it should also be possible to describe these effects using classical physics equations.

As it was already mentioned in section 3.4, the propagation speed of light is claimed to slow down slightly
near a substantial mass but a local observer would not be able to measure that effect since any measurement
device used is affected too by gravity. This clandestine behaviour of light in general relativity also highlights
questions about the validity of special relativity, which too has some inherent undercover issues that are
usually brushed aside. Special relativistic time dilation, for example, may actually result from a Doppler
effect in a medium which constitutes a unique absolute reference frame that is obscured by the circumstance
that we can’t measure the one way speed of light. This inability is not merely a technical issue, but a
conceptual problem for which no conceptual solution has been found so far. Moreover, special relativity rests
on the unproven arbitrary claim that the proper length of an object is measured in any inertial frame, but the
measurement of proper length may be reserved for the already mentioned unique absolute reference frame.
Special relativistic space-time, i.e. Minkowski space-time, may thus not be physically real, which in turn
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indicates that curved space-time might not be physically real too, since Minkowski space-time is a special
case of it. Intelligible video lectures on the issues with the theory of special relativity can be found on the
YouTube channel dialectphilosophy.

One of the main questions addressed in this paper was if space curvature can be avoided in calculations,
as curved space might not be physically real. Arguably, this paper showed that calculations can be made
without using the concept of space curvature which yield the same results like a full treatment with the
framework of general relativity theory. In addition to these calculations a number of other arguments can be
brought forward against the existence of space curvature.

• The Schwarzschild radius can be calculated using classical Newtonian escape velocity when also
assuming an universal speed limit c, i.e. c =

√
2GM/r gives the Schwarzschild radius when

rearranging for radius r. This is a smoking gun that is hard to dismiss on technical grounds.

• If gravity really means that an object in free fall just follows its geodesic equation, then obstructing
that object in its path should eliminate the gravitational effect on it, because there should be no force
or pressure that pushes it against the obstruction. Since this is not the case gravity has to be a force,
despite what is universally proclaimed nowadays.

• Why and how exactly mass bends space is an unresolved mystery. General relativity theory is
incomplete regarding that subject.

• Shrinking particles are conceptually equal to proper volume decreasing inside a gravitational field,
which provides an alternative notion for proper volume that does not require curved space.

• The theory of general relativity does not explain the gravitational constant G itself, which may be an
emergent constant since it seemingly can be explained in terms of all the masses present in our
observable universe (2).

• The observable universe turns out to be a black hole, or at least it is close to being one, when
calculating the mass of the observable universe using ordinary Cartesian space and the observed
average energy density (2). The fact that we do not observe strong space curvature in our vicinity
thus speaks against the notion of a curved space.

• A refractive index for space, which implies a variable speed of light, can be used to explain
gravitational light bending and refraction usually implies a physical medium with changing properties.

• The so called Shapiro delay can also be calculated using a refractive index for space, since it has the
same causes as gravitational light bending.

• The perihelion precession of planets can be explained as an effect of variable mass alone, as shown
in section 4.3. Thus one of the strongest experimental evidence for curved space has an alternative
explanation.

• A number of gravitational effects only require gravitational time dilation to be explained, like the
gravitational redshift of light and GPS time delay. These effects therefore don’t provide support for the
notion of a bent space since time dilation can exist independent of curved space.

• The rotation curves of spiral galaxies, and other anomalies, indicate that something is not right with
the framework of general relativity theory. The issue at hand might not be to find dark matter or dark
energy, but a systemic problem with general relativity theory itself.

• The similarity between Macken’s wave equations for classical Newtonian gravity and the electric force
are indicating a wave based medium of space.

• Newtonian gravity can be obtained for the surface of a Schwarzschild black hole using the Bekenstein-
Hawking entropy, the Unruh temperature and the equipartition theorem (1), as originally shown by Eric
Verlinde using a model of a holographic and entropic gravity.

• The equivalence principle, which general relativity rests on, may not hold true in all situations, as
discussed in section 6.4.

• There seems to be a link between the strong force and gravity. A side effect of this is that the proton’s
true mass appears to be the Planck mass ml from the perspective of classical Newtonian gravity.

• The incompatibility of contemporary quantum physics with general relativity theory may indicate that
bent space is not a sensible physical concept.

That list can probably be prolonged, which supports the idea that it is sensible to question the underlying
assumptions of general relativity theory and to explore how the gravitational effects derived from general
relativity theory can be described without having to assume space curvature or a unified space-time.

Unbeknownst to many people Einstein did not dismiss the notion of an aether, even after introducing general
relativity. In a talk that he gave at the university of Leiden in 1920 Einstein focused on the history of the notion
of an aether. During the final remarks of that talk he said that special relativity even demands the existence of
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an aether to enable the existence of light clocks and rulers. General relativity, according to Einstein himself,
can also be interpreted as describing an aether. Einstein back then only insisted on the limitation that an
aether must not be composed of flowing corpuscles, like it was common with the notions of an aether at
that time. The wave based quantum gravity concept presented in this paper fulfils this requirement since the
proposed gravity waves are not producing a overall net flow of the medium of space, the idea is rather that
of a modulation of the aether’s standing wave.

In this paper spin ½ particles are considered to be dynamic self sustaining entities made of space, or
made of the substance of space itself, instead of them being something that is merely positioned in space
and fundamentally different in its essence from space (1)(3)(4)(5). This notion was not discussed in this
paper, as it was not the focus here. However, this unified view on particles and space should fit nicely with
the notion of dynamically changing physical properties inside what is commonly called a gravitational field
as there must be an immediate relation between particles and space to enable such dynamics. How that
mechanism works exactly, and what really constitutes time, is not clear yet, though.

In case space is filled with oscillators and/or waves, as it was discussed in this paper, space is inherently
energetic and subsequently it also makes sense to assume that some kind of gravitational temperature
exists. Such a measure already exists for the horizon of Schwarzschild black holes in the form of the Hawking
temperature and interestingly it is possible to extend that notion to spin ½ particles and gravitational fields,
as already discussed in (1) and (3).

8 Conclusions
From what was presented in this paper it can be concluded that it is possible to find an alternative formulation
for gravity that does not require a curved space-time by transferring the effects that general relativity
describes into the physical quantities of time, length, energy, mass, etc. Subsequently, these quantities
become relative in the sense that they are dependent on a position in a gravitational field. It was shown
that for a local observer inside a weak gravitational field the shifts in the physical quantities mostly remain
clandestine and the physical laws stay invariant. The aforementioned gravitational shifts only become readily
apparent when physical processes take place over larger distances or in the vicinity of massive objects, like
with the gravitational redshift of light and gravitational time dilation. One local manifestation, though, is
the gravitational potential energy that was shown to be an effect of variable mass - something Newtonian
physics lacked a concrete physical mechanism before. The gravitational effects of rotating masses were not
considered in this paper, but it should also be possible to find classical descriptions for them. The dynamic
notion of gravity which was presented in this paper ultimately calls for a dynamic foundation to provide the
required variability in the various physical quantities, which might be realizable through the presented wave
based quantum gravity, and it indicates the comeback of some kind of aether which can be the substrate for
microscopic quantum effects and ordinary macroscopic effects as well as cosmological effects.

For convenience the Γ scaling factors which were derived in this paper for various physical quantities are
summarized in the table below.

Quantity Near← Far Approximation
Force (local) 1 1

Time period Γ 1 + 1GM/(rc2)

Frequency 1/Γ 1− 1GM/(rc2)

Energy 1/Γ 1− 1GM/(rc2)

Length element 1/Γ 1− 1GM/(rc2)

Velocity 1/Γ2 1− 2GM/(rc2)

Acceleration 1/Γ3 1− 3GM/(rc2)

Mass Γ3 1 + 3GM/(rc2)

Table 2: Scaling factors

Since the effect of gravity on time is physically real the other gravitational effects must also be physically real.
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Appendix A Natural Constants

A.1 Classical expressions

Light speed c = 2.9979× 108 m/s

Planck constant h = 2πℏ = 6.6261× 108 J/Hz

Gravitational constant G = 6.6743× 10−11 m3/(s2 kg)

Electric field constant ϵ0 = 8.8542× 10−12 F/m

Magnetic field constant µ0 = 1.2567× 10−6 mT /A

Fundamental charge e = 1.6022× 10−19 C

Sommerfeld constant α = e2/(2chϵ0) ∼= 1/137

Magnetic flux quantum ϕe = h/2e

Planck length ll =
√

ℏ/c×
√

G/c2 =
√

ℏG/c3 = 1.6162× 10−35 m

Planck mass ml =
√

ℏ/c×
√

c2/G =
√

ℏ c/G = 21.765 µg
Planck time tl =

√
ℏ/c×

√
G/c2 ×

√
1/c2 =

√
ℏG/c5 = ll/c = 5.3912× 10−44 s

Planck charge ±ql = ±e/
√
α = ±1.876× 10−18 C

Planck force Fl = c4/G = 1.21× 1044 N

A.2 Expressed using the Planck force

Gravitational constant G = Fl l
2
l /m

2
l

Electric field constant ϵ0 = Fl/(4πα) e
2/l2l = Fl/4π q2l /l

2
l

Magnetic field constant µ0 = 4πα/Fl l
2
l /(e

2c2) = 4π/Fl l
2
l /(q

2
l c

2)

A.3 Expressed as emergent properties

A.3.1 Expressed in base units of quantized spacetime

Light speed c = ll/tl
Gravitational constant G = c2 ll/ml

Sommerfeld constant α = e2/q2l
Electric field constant ϵ0 = e2/(2αch) = q2l /(2ch)

Magnetic field constant µ0 = 2αh/(e2c) = 2h/(q2l c)

Planck force Fl = cℏ/l2l

A.3.2 Expressed using cosmological values

Hubble constant H0
∼= 74.3 km/s/Mpc

Hubble radius rH = c/H0
∼= 1.25× 1026 m

Hubble mass mH
∼= 8.4× 1052 kg

Gravitational constant G ∼= (c2/2) rH/mH (note: effectively this is a rearranged Schwarzschild mass equation)
Planck length ll ∼=

√
ℏ/c×

√
rH/(2mH)

Planck mass ml
∼=

√
ℏ/c×

√
(2mH)/rH

Planck time tl ∼=
√

ℏ/c×
√

rH/(2mH) / c
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Appendix B Forces in terms of the Planck force
The main four fundamental forces reveal the following pattern when expressed in terms of the Planck force Fl,
aka the super force, for the special case of two spin ½ particles.

Force Formula
Strong Fl l2l /d

2

Electric αFl l2l /d
2

Magnetic αFl l2l /d
2 v1v2/c

2

Gravitational Fl l2l /d
2 m1m2/m

2
l

Table 3: Forces of spin ½ particles

The following notes apply to this table:

• The Planck force seems to be the reference for the main four fundamental forces and to be the
strongest possible force. This gives rise to the speculation that the Planck force was the first force in
our universe from which the other forces descended in some way.

• The depicted formula for the strong force is an approximation that is applicable in close vicinity to
a proton or neutron. Equation 6.2 denoted the special case of d = rc. The strong force may exist
for electrons too, but due to a substantially different particle size its effect seems to be practically
irrelevant for electrons.

• The relevance of the Sommerfeld constant α for electromagnetism is immediately obvious.

• The stated formulas for the electric and magnetic force do not apply to neutrons.

• The stated magnetic force is for the special case of two fundamental charges e moving in parallel to
each other, whereby the sine term of any involved cross product evaluates to 1.

• Distance d counts in multiples of the Planck length ll, i.e. 1/(d/ll). This circumstance supports the
notion that the Planck length is the smallest possible length in our universe.

Appendix C Newtonian gravity in terms of escape speed
Newtons gravitational force Fg = GM1M2/r

2 for two homogeneous spherical masses M with a distance r
between their centres can also be expressed in terms of escape velocity s =

√
2GM/r.

Fg =
1

4
Fl

s 2
1

c2
s 2
2

c2
(C.1)

This equation highlights the following points:

• Light speed c is the velocity limit in our universe, since s/c normalizes s with respect to c.

• The Newtonian gravitational force can never reach the Planck force Fl because of the factor 1/4. A
gravitational force stronger than Fl/4 requires additional gravitational effects not taken into account
by Newtonian gravity, like a (rapidly) rotating mass.

• The term s2/c2 can be seen as a comparison of gravitational potentials, because the units for squared
velocity and a gravitational potential are equal, i.e. m²/s² = J/kg.

• Subsequently, the gravitational potential limit in our universe is given by −c2, as described in more
detail in (2).

• The repeated division by c2 makes it immediately obvious why the gravitational force is relatively weak
when used in scenarios which don’t involve black holes.

In case that space is interpreted as a flowing medium with actual currents, as some aether theories propose,
the escape velocity s should denote the flow of that medium towards gravitational sources, which makes
sense since this is the velocity that an object would need to overcome to fully leave the region of influence of
a gravitational source. Moreover, a flowing medium could also account for the meaning of ∆ß as presented
in section 5.2. For rotating masses the escape speed should be greater than the static case described by
the presented formula for s.
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[7] Dehnen and Hönl and Westpfahl. (1960). Ein heuristischer Zugang zur allgemeinen Relativitätstheorie.
Annalen der Physik, Volume 461, Issue 7-8, Pages 370 - 406
http://doi.org/10.1002/andp.19604610705

[8] Krogh, Kris. (2006). Gravitation Without Curved Space-time.
https://doi.org/10.48550/arXiv.astro-ph/9910325

[9] Unzicker, Alexander. (2015). Einstein’s lost key.
ISBN 978-1519473431

[10] McCulloch, Michael Edward. (2024). Quantized Accelerations.
ISBN 979-8990282315

[11] Blair, David. (2012). Advanced Gravitational Wave Detectors.
ISBN 978-0521874298
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