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Abstract

The main process to solve the problem of quantum and gravity is

Mordern AG (global GLC) Derived AG (local GLC)

Complete Einstein’s dream Analytic stack (analytic AG)

M→M!

⃝-localizing

quantization of gravity
Grothendieck’s dream comes in

UFT

The Langlands duality from the M-theory is a part of U-duality,the M-
theory and its dynamics give us the global geometric Langlands corre-
spondence [15] simplified by combining math and physics.

D≤11-mod 1
2
(BunG) QCoh(LocSysǦ)

≤11F

where Ǧ is the Langlands dual group acting on the F-dual part of M-brane.
Generally,construction of the M-theory is based on the modern alge-

braic geometry with category theory.Studying the dynamics of the M-
theory is based on that with higher category theory (representation of
underlying space).The former gives an unification of superstring theories

(Superstring theoriestype) →retract (Stype) ∈ Mpre

Retracted from fibered category of superstring theories to stack of Lie
groupoids.And the latter gives us a well defined stackified flow which is
retracted from a non-solvable theory.Combing them,we successfully estab-
lish an experiment-free theory with left evolution

M-flow ≃ ⃝-flow, ⃝-sense ⇐ F

where ⃝ is the 2-nonexistence.In the end,derived algebraic geometry gives
us further support to summarize all things and we find the M!-theory is
the theory of everything originally proposed by Albert Einstein.

Preview. A pre M-theory is a geometric stack written by

Mpre = (ETSchSupGen
eff (M ),P(T),P,Π)

The M-theory M is a generalized super algebraic geometric stack

∆U = P(U)−1 : M → Mpre,rep
cons. ∨Mpre

cons.

We also put things into derived algebraic geometric n-stack and analytic
derived stack to achieve our final goal completing TOE which is a category
of no definition objects ⃝-Sense ≃ Def⇐!UFT.
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1 Introduction

1.1 In this paper

In the journey to the M-theory,we answered several questions,(1) the un-
derlying space for a theory with dualities (2) achieving to D + 1 spacetime (3)
D-brane in math (4) dualities (T-duality etc.) in math (5) property and geome-
try (6) general relativity with cosmological constant (7) unseen part of universe
(dark energy etc.)(8) evolution of universe (9) wave-particle duality in math
(10) what is an experiment-free theory (11) quantum collapse in math (12) uni-
fication of quantum and gravity etc.The settings we used are generalized super
simplicial derived algebraic and sequential.

The first part is to review works about string theory based on the two vol-
umes of books about string theory [2][3] written by Polchinski,the text about
conformal field theory [1] and and a complete derivation of [2] that is [4] by
Stany,including supersymmetry based on [7] and standard super algebraic gen-
eralized geometry based on [10].Purpose is to accumulate enough understandings
and intuitions.The second part is to develop a new formal mathematical the-
ory called modern super algebraic generalized geometry based on [12] written
by Olsson.The section 8 lets us exclude the verification of experiments and es-
tablish a bridge between superstring theories and modern AG.Standing on the
shoulders of Witten and Grothendieck,guided by our specific philosophy above
[8.1] supported by our new formalism,we are able to construct M-theory as
an experiment-free theory.Then,the dynamics of M-theory is closely connected
to geometric Langlands programme and we based on [17][18][19][20] by Den-
nis Gaitsgory.Also,we find there can be only one type of strings called étale
closed string [8.22],which is the key point to achieve unification of quantum and
gravity.The open string is just a homotopy weak form of closed string [12.92]
and derived algebraic geometry capturing the homotopic information naturally
comes in and we based on [21].After developing the above abstract objects,we
want to perform analytification which based on the theory of derived stack
based on [22] by Peter scholze and we put things into the analytic derived stack
[14.103] in the end.

1.2 Connection about fermions and bosons

Our discussion starts with connections between fermions and bosons.The
first is an equivalence of fermionic and bosonic operator on OPE see section
3.1 on 2-d conformal field theory,called bosonisation.CFT is a quantum field
theory with local conformal symmetry.2-d and conformal symmetry give strong
constraints on theories that give many good properties.We can easily see an ex-
ample by [1.21] in [4] and (1.31) in [2],for dimension D and weyl transformation
that is conformal given in [2.11] with parameter ω,the metric g

′

ab → eωgab and√
g =

√
|gab(σ)| which combine with a Ricci tensor gives

√
g′R

′
=
√
g[R−2(D−

1)∇2ω−(D−2)(D−1)∂ω ·∂ω].IfD = 2,we have δω[
√
g′R

′
] = −2√g∇2ω and the

term χ = 1/4
∫
τdσ
√
gR that is a topological term of string’s world-sheet in the
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action gives δωχ = −1/(2π)
∫
dτdσ

√
g∇a∇aω = −1/(2π)

∫
dτdσ

√
g∇a∂aω =

−1/(2π)
∫
dτdσ∂a(

√
g∂aω) where we used

√
g∇ava = ∂a(

√
gva) we will see it

in [3.16],that is zero because it is a total derivative, and we have this confor-
mal invariant term in 2-d.The second is an equivalence between fermions and
bosons that is supersymmetry that follows from a nontrivial term {QAα , Qα̇B} =
2σmαα̇Pmδ

A
B where QAα is a anticomutative operator with spinor index α and

inner space index A and Pm is a 4-momentum,of supersymmetry algebra (I) in
[7].We will see they are similar in [6.31],bosonisation is a trivial supersymmetry
on 2-d super CFT [3.48].

1.3 world-sheet and spacetime

We discuss all things under string frame work with ηµν=diag(-1,+1...),and
we need to understand the position on world-sheet (a, b) living in spacetime
(µ, ν).World-sheet is a 2-d surface with coordinates σa, a = 1, 2,We have a
canonical embedding from world-sheet coordinate into spacetime.

(σ1, σ2)→ X(σ1, σ2) ↪→ Xµ(σ1, σ2) = (0, ..., Xµ, ..., 0) ∈ RD [1.1]

In this case,we also call Xµ a spacetime point.Also,we have spacetime holomor-
phicity ψ, ψ̄ and world-sheet holomorphicity ψ, ψ̃,see below [5.44].

1.4 Represented by geometry and its topology

In this paper,we will ignore calculation of amplitude and focus on algebra
and geometry to some extent,because information of world-sheet just depends
on the geometry,and quantum fluctuation is just a property from the topology
of the boundary of the geometry (topological QFT).That is∫

[dXdψdg]e−S ∼= G ⊂M, gauge fixed by G /Gdiff×Weyl [1.2]

where M is a topological space and G is a classical super moduli space.We can
see it is lengthy [4.79] with tiny information by using analytic approach,also
this approach cannot be a foundation of a non-perturbative theory,thus we use
functorial approach to replace the classical analytic approach.This should be
started at two specific geometry we will get from physics,the first is about super
setting (SUSY),the second is about generalized setting (T-duality).

2 Conformal symmetry

We base on chapter 4 of [1] and chapter 2 of [2] and give detailed calcu-
lations.First,we do not distinguish tensor with field operator transforms like
a tensor and we define the conformal dimension h is the degree of covariance
which means if h is lager the object with h is more likely transform covari-
antly.Conformal map(transformation) is an bi(anti)holomorphic function f that
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maps the coordinate x → x
′
= f(x),such that it gives a conformal trans-

formation that is a tensor transformation with x-dependence as a rescaling
O′

(x′) = (∂xx
′
)−hO(x) = A(x)O(x).For a 2-tensor gµν(x)h = 2 with confor-

mal map x → x′ = x + ϵ where ϵ is an infinitesimal parameter,gives conformal
transformation

g
′

µν =
∂xα

∂x′µ

∂xβ

∂x′ν
gαβ

=
∂(x

′ − ϵ)α

∂x′µ

∂(x
′ − ϵ)β

∂x′ν
gαβ

= (δαµ − ∂µϵα)(δβν − ∂νϵβ)gαβ
= δαµδ

β
ν gαβ − (∂µϵ

αδβν + δαµ∂νϵ
β)gαβ + ◦(ϵ2)

= gµν − (∂µϵν + ∂νϵµ)

= (1− f(x)g−1µν )gµν = A(x)gµν

[2.1]

It gives ∂µϵν + ∂νϵµ = f(x)gµν that gives for gµν = ηµν = In

ηµν(∂µϵν + ∂νϵµ) = f(x)ηµνηµν

2∂ρϵ
ρ = f(x)D

f(x) =
2

D
∂ρϵ

ρ

[2.2]

Then,we add a ∂ρ to f(x) and by permutations of indices we get

−∂ρ∂ρϵν − ∂ρ∂νϵµ = −ηµν∂ρf
∂ν∂µϵρ + ∂ν∂ρϵµ = ηµρ∂νf

∂µ∂ρϵν + ∂µ∂νϵρ = ηνρ∂µf

[2.3]

Add them together and contract with ηµν ,we get

ηµν2∂µ∂νϵρ = ηµν(ηµρ∂νf + ηνρ∂µf − ηµν∂ρf)
2∂2ϵρ = δνρ∂νf + δµρ∂µf −D∂ρf
2∂2ϵν = (2−D)∂νf

[2.4]

And we act ∂2 to ∂µϵν + ∂νϵµ and change the indices we get

(∂2f)ηµν = ∂2(fηµν) = ∂2(∂µϵν + ∂µϵν) = ∂µ(2∂
2ϵν) = (2−D)∂µ∂νf

∂2fηµν = (2−D)
1

D
ηµνη

µν∂µ∂νf = (
2

D
− 1)∂2fηµν

(D − 1)∂2f = 0

[2.5]

Then we put f in,we get a constraint on the transformation parameter ϵ of the
conformal map x→ x′ = x+ ϵ(x)

(D − 1)∂2∂ · ϵ(x) = 0 [2.6]
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Also this constraint classifies different conformal transformations in different
dimension and we discuss in the following.

For D=1, it is trivial case which means all smooth maps are conformal
maps.For D ≥ 3,we get ∂2f = ∂µ∂νf = 0 from the first line of [2.5].Then,for
[2.6] we get a linear differential equation

∂ρ∂ν∂
µϵµ = ∂µ(∂ρ∂νϵµ) = ∂µ

(
∂

∂xρ
∂

∂xν
ϵµ

)
= 0µ0µ

ϵµ = aµ + bµνx
ν + xνxρ cµνρ = cµρν

[2.7]

When ϵµ = aµ,it shows a translation xµ → x′µ = xµ + aµ is conformal.And
we put [2.7] into ∂µϵν + ∂νϵµ = f(x)gµν in [2.2] and focus on the b-dependent
terms,we get

∂µ(bνµx
µ) + ∂ν(bµνx

ν) = (1/2)∂ρ(bρνx
νηµν)

bµν + bνµ =
2

D
bρνδ

ν
ρηµν =

2

D
bρρηµν

[2.8]

For µ, ν = 0, 1 we have b01+b10 = η01 = 0 which means that bµν is antisymmetric
it is like a rotation matrix.Thus,it shows a rigid rotation x → x′µ = Rµνx

ν for
Rµν ∈ SU(D) is conformal.And The trace bρρ that is a number multiplying on x
shows a dilation xµ → x′µ = bxµ is conformal.Then,we put [2.7] into the first
line of [2.4] we get

2∂µ∂ν(cρστx
σxτ ) = (ηµρ∂ν + ηνρ∂µ − ηµν∂ρ)

2

D
∂λc

λ
τσx

τxσ

cρµν =
1

D
(ηµρc

λ
λν + ηνρc

λ
λµ − ηµνcλλρ)

cµνρ = ηµρbν + ηµνbρ − ηνρbµ for bµ ≡
1

D
cλλµ

[2.9]

Then,we put it back we get ϵ
[c]
µ = cµνρx

νxρ = bνx
νxµ + bρx

ρxµ − bµx2.And it
shows the transformation x→ x′µ = xµ+2(b · x)xµ− bµx2 which called SCT is
conformal.Because ϵ is infinitesimal for doing the expansion [2.1],the coefficients
we discussed above are on the infinitesimal level, it means bµ → 0 with ◦(b2)
for SCT,we can adjust to

x′µ → xµ + 2(b · x)xµ − bµx2 ≈ xµ + 2(b · x)xµ − bµx2 − 2(b · x)bµ

≈ (xµ − bµx2)(1 + 2(b · x))

≈ xµ − bµx2

1− 2(b · x)
≈ xµ − bµx2

1− 2(b · x) + b2x2

[2.10]

We use ≈ to represent a reverse Taylor expansion,and we end with a form finite
SCT transformation for bµ is finite.Next,we use this reverse expansion trick to
see where is the Weyl transformation we mentioned above.We also start with
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SCT on the infinitesimal level and we ignore the index

A(x) = (∂xx
′)−2 = (∂x(x+ 2(b · x)x− bx2))−2 = (1 + 4(b · x)− 2(b · x))−2

=

(
1

1 + 2(b · x)

)2

≈ (1 + 2(−b · x) + ◦(b2, b3...))2

= (1 + (−2b) · x+

∞∑
n=2

(−2b · x)n

n!
)2 ≈ (e−2b·x)2

= e2ω(x) where ω(x) = −2b · x
[2.11]

For ω(x) is a local parameter of Weyl transformation.Thus,we find the Weyl
transformation is a typical form of SCT transformation that is conformal.We
have finished the discussion of (1.2.19)-(1.2.21) in [2].

Now,we observe that the conformal transformations we classified above form
conformal groups and we set up category CG with groups of conformal invariance
as the objects Ob(CG).By Cayley’s theorem,for U ∈ X an affine scheme

Ob(CG) ∼= Sym(CD) = {f : CD → CD|f ∈ C∞t=(θ−tan−1(x/y)) = limC∞(U)}
[2.12]

where U is open set and C∞ is a sheaf of C-algebra of holomorphic functions.t
is an ideal for t ∈ U .Simply speaking,conformal symmetry is a symmetry that
maintaining the angles.We can see definitions and details in section 7.Above
all,conformal symmetry is a natural symmetry for a theory consider general
relativity and gauge field theory,and it becomes a local symmetry after gauge
fixing in string theory,to see more details about global scale in QFT and local
scale in string theory and their meanings on theories around 3.26 in [4].Generally
speaking,the local scale invariance contained in local conformal symmetry means
the string theory is effective in the whole energy scale,but the QFT is effective
under a typical effective energy scale.In this case,compared to QFT (effective
theory),the string theory tells us how to understand somethings but not only
describing somethings (QFT just gives us descriptions of quantum world).

3 Super Virasoro algebra

3.1 Operator product expansion

Before we discuss the affine lie algebra,we want to introduce superconformal
algebra [3] for a consistent string theory that is an extension of Virasoro algebra
to the level of superpartners which is also an example of simple Lie algebra.By
definition from (13.1) in [1],a simple Lie algebra g (V, [, ]) is a vector space V
with commutator as the binary operation [, ] : g × g → g satisfying Jacobi
identity which is equivalent to say the following diagram commutes
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g × g × g g × g

g × g g

a

b c

d

with a = 1× [, ], b = [, ]× 1, c = [, ], d = [, ]× 1− ([, ]× 1) ◦ (1× f)(g× g× g) for
the flipping f : g × g → g × g.And a vector in V is a generator of the algebra.

Follow from chapter 2 om [2],we first to see how we get Virasoro algebra from
the normal field operator under 2-d CFT by complex analysis.On a world-sheet
(2-d region),we have for spatial direction σ1 and time direction σ2

z = σ1 + iσ2 z̄ = σ1 − iσ2 σ1 =
z + z̄

2
σ2 =

z − z̄
2i

[3.1]

By the vector transformation ∂z(z̄) = ∂z(z̄)σ
1∂1 + ∂z(z̄)σ

2∂2,we get

∂ =
1

2
(∂1 − i∂2) ∂̄ =

1

2
(∂1 + i∂2) ∂1 = ∂ + ∂̄ ∂2 = i(∂ − ∂̄) [3.2]

where ∂z = ∂, ∂z̄ = ∂̄,and by coordinates transformation we have

d2z = dzdz̄ =

∣∣∣∣det(∂1z ∂2z
∂1z̄ ∂2z̄

)∣∣∣∣ dσ1dσ2 =

∣∣∣∣det(1 i
1 −i

)∣∣∣∣ dσ1dσ2 = 2d2σ [3.3]

Because of uncertainty principle,when two fields get closed to each other,there
will be a singularity on the correlation function,we can easily see for a scaler X

0 =δ⟨X⟩ = δ

δXµ(z, z̄)

(∫
DXe−S(z,z̄)Xν(z′, z̄′)

)
= ⟨δS⟩+ ⟨ηµνδ2(z − z′, z̄ − z̄′)⟩

= ⟨
(
∂

∂

∂(∂Xµ)
+ ∂̄

∂

∂(∂̄Xµ)

)
1

2πα′
∂Xµ∂̄XµX

ν(z′, z̄′)⟩

+ ηµν⟨δ2(z − z′, z̄ − z̄′)⟩
⟨[∂∂̄Xµ(z, z̄)]Xν(z′, z̄′)⟩ = −πα′ηµν⟨δ2(z − z′, z̄ − z̄′)⟩

∂∂̄Xµ(z, z̄)Xν(z′, z̄′) = −πα′ηµνδ2(z − z′, z̄ − z̄′)

[3.4]

where SX(z, z̄) = (1/2πα′)
∫
d2z∂Xµ∂̄Xµ.And this singularity emerges in form

of delta function.Under the algebraically closed field C,we can further analyze
the delta function to a form that we can directly see the coordinates depen-
dence.We start at divergence theorem for a 2-d closed region M and let Q = 0∫

M

d2σ(∂1Q− ∂2F ) =
∫
M

d2σ(−∂2F ) = −
∫
M

d2σi(∂ − ∂̄)(F z + F z̄)

= −1

2
i

∫
M

dzdz̄(∂F z − ∂̄F z̄)

= −1

2
i

∮
∂M

(eiπ/2dzF z̄ + eiπ/2dz̄F z)

= −1

2
i

(
i

∮
∂M

dzF z̄ − i
∮
∂̄M

dz̄F z
)

[3.5]
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In the third line,we put a π/2 clockwise phase rotation because after applying
divergence theorem the integration direction is outwards but we need a counter-
clockwise direction to perform contour integral.Then from the second and the
last equation of [3.5] we get two separate parts∫

M

d2z∂̄F z̄ =
1

i

∮
∂M

dzF z̄
∫
M

d2z∂F z =
1

i

∮
∂̄M

dz̄F z [3.6]

then,we use [3.6] to solve the function
∫
dz2δ2(z, z̄) = 1∫

M

d2z∂̄
1

2πz
=

1

2πi

∮
∂M

dz
1

z
=

∫
M

d2z∂
1

2πz̄
=

1

2πi

∮
∂̄M

dz̄
1

z̄
= 1 [3.7]

where we use F z̄ = 1/2πz, F z = 1/2πz̄ and Cauchy theorem.Then we get

δ2(z − z′, z̄ − z̄′) = 1

2π
∂̄

1

z − z′
=

1

2π
∂

1

z̄ − z̄′
[3.8]

Then,we transform a Cartesian integral to 2-d complex complex case σ1 → z,the
subtile point is two operations integration and changing variable commute

(σ1 → z) ◦
(∫ )

σ1

=

[∫
◦(σ1 → z)

]
z

[3.9]

Then,we use [3.9] to calculate the following integral(∫
dσ1

1

σ1

)
σ1→z

=

∫
∂σ1
∂z

dz
1

z
=

∫
1

2
dz

1

z

lnz =
1

2

∫
dz

1

z
where z ̸= 0

ln|z|2 = lnz + lnz̄ =

∫
dz

1

z

[3.10]

Next,we put (1/2π)∂∂̄ on the two sides and perform [3.8]

1

2π
∂∂̄ln|z − z′|2 =

∫
∂dz∂̄

1

2π(z − z′)
= δ2(z − z′, z̄ − z̄′) [3.11]

Finally,we sub [3.11] in [3.4] we get

∂∂̄Xµ(z, z̄)Xν(z′, z̄′) = −πα′ηµν 1

2π
∂∂̄ln|z − z′|2

Xµ(z, z̄)Xν(z′, z̄′) = −α
′

2
ηµν ln|z − z′|2

Xµ(z)Xν(z′) = −α
′

2
ηµν ln(z − z′) Xµ(z̄)Xν(z̄′) = −α

′

2
ηµν ln(z̄ − z̄′)

[3.12]

Now,the normal wick contraction carrying the nontrivial information of con-
tacting of fields in the correlation function is analyzed further to see directly its
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coordinate-dependence in 2-d CFT,we also call this operation product expansion
OPE.Because we consider supersymmetry,we need to have periodic fermions in
the 2-d CFT with Lψ(z) = (1/2π)ψµ∂̄ψµ of holomorphic fermion and similar

Lψ̃(z̄) = (1/2π)ψ̃µ∂ψ̃µ of antiholomophic fermion we will see details later.And
similarly,we get

δLψ

δψµ
(z)ψν(z′) = −ηµνδ2(z − z′)

1

4π

[
∂̄

∂

∂(∂̄ψµ)
(−∂̄ψµψµ)−

∂

∂ψµ
(ψµ∂̄ψ

µ)

]
(z, z̄)ψν(z′, z̄′) = − 1

2π
∂̄
ηµν

z − z′

− 1

2π
∂̄(ψµ(z)ψν(z′)) = − 1

2π
∂̄
ηµν

z − z′

ψµ(z)ψν(z′) =
ηµν

z − z′
similarly ψ̃

µ
(z̄) ψ̃ν(z̄′) =

ηµν

z̄ − z̄′
[3.13]

3.2 Conformal invariance

After we analyses the wick contractions in C,we want to analyze more things
in normal QFT to support further calculations in 2-d CFT.First is Noether’s
theorem that claims a symmetry corresponds a conserved current and we fol-
lows from chapter 2.3 in [2] with detailed calculations.In QFT,a transformation
ϕ′(σ) = ϕ(σ) + ρ(σ)ϵ(σ) with infinitesimal parameter ϵ appears as a symmetry
in the field theory means it gives a total derivative and be invariant on the level
of path integral.We can easily see this by setting ρ(σ) = 1,and for [dϕ]e−S[ϕ]

[dϕ′]e−S[ϕ
′] = [dϕ+

∂ϵ(σ)

∂ϕ
dϕ]e−S[ϕ+ϵ(σ)] = [dϕ]e−S[ϕ]−ϵ(σ)∂S[ϕ]+◦(ϵ

2)

= [dϕ]e−S[ϕ]e−ϵ(σ)∂S[ϕ] = [dϕ]eS[ϕ](1− ϵ(σ)∂S[ϕ])
= [dϕ]e−S[ϕ] − ∂([dϕ]e−S[ϕ]ϵ(σ)S[ϕ])
= [dϕ]e−S[ϕ]

[3.14]

Now,if ρ(σ) is not constant and let S[ϕ] = (1/2π)
∫
dd−1σd(iσ)

√
gja(σ) where

we did wick rotation,for preserving the symmetry on the field theory we need

0 = ⟨− i

2π

∫
ddσϵ(σ)ρ(σ)∂a(

√
gja(σ))⟩ = ⟨ϵ(σ)

2πi

∫
ddσρ(σ)

√
g∇aja(σ)⟩ [3.15]

which follows from the following equation and we use result ln(detM) = tr(lnM)
for a matrix M from linear algebra.

∂a(
√
gja(σ)) =

√
g∂aj

a(σ) + ∂a
√
gja(σ) =

√
g∂aj

a(σ) + ∂aln(
√
g)
√
gja(σ)

= [
√
g∂a +

1

2

√
g∂a(ln|g|)]ja(σ) =

√
g[∂a +

1

2
tr∂a(gcd)]j

a(σ)

=
√
g[∂a +

1

2
gcd∂a(gcd)]j

a(σ) + 0

11



=
√
g[∂a +

1

2
gcd∂a(gcd)]j

a(σ) +
1

2
[gcd∂cgad − gcd∂cgad]

=
√
g[∂a +

1

2
gcd∂a(gcd)]j

a(σ) +
1

2
[gcd∂cgad − gcd∂dgca]

=
√
g[∂a +

1

2
gcd(∂cgad + ∂agcd − ∂dgca]ja(σ)

=
√
g(∂a + Γcca)j

a(σ) =
√
g∇aja(σ)

[3.16]

Then we get the Noether’s theorem for a conserved current ja that is

∇aja = 0 [3.17]

For getting an expression of conserved current,we solve the exercise 2.5 in [2]

δL = ϵ∂aK
a =

∂L

∂ϕ
δϕ+

∂L

∂(∂aϕ)
δ∂aϕ

=
∂L

∂ϕ
δϕ+ ∂a

(
∂L

∂(∂aϕ)
δϕ

)
− ∂a

∂L

∂(∂aϕ)
δϕ

=

(
∂L

∂ϕ
− ∂a

∂L

∂(∂aϕ)

)
δϕ+ ∂a

(
∂L

∂(∂aϕ)
δϕ

)
= ∂a

(
∂L

∂(∂aϕ)
δϕ

) [3.18]

where we chose a simple case under a unit gauge (3.3.3) in [2] which is ĝab = δab
that means ∂ĝ = Γ = 0 and δL = ϵ∂aK a with L (ϕ(σ), ∂aϕ(σ)),we also assume
vanishing of equation of motion.Then,we put [3.17] in to get ja

∇aja = ∂aj
a = 0 = ∂a

(
∂L

∂(∂aϕ)
ϵ−1δϕ

)
− ∂aK a

ja =
∂L

∂(∂aϕ)
ϵ−1δϕ−K a

[3.19]

We derived [3.15] with no insertion,if we insert a operator to the path integral
⟨A ⟩,we can recalculate it like what we did in [3.4] and set ρ(σ) = 1

0 = δ⟨A ⟩ = δ⟨ ⟩(σ)A (σ0) + ⟨δA ⟩
ϵ

2πi

∫
ddσρ(σ)

√
g∇aja(σ → σ0)A (σ0) = −δA (σ0)

∇aja(σ → σ0)A (σ0) = g−1/2δd(σ − σ0)
2π

iϵ
δA (σ0)∫

M

d2σ∂aj
a(σ → σ0)A (σ0) =

2π

iϵ
δA (σ0)

[3.20]

we put a delta function two sides in the second equation and integrated the
third equation where we used unit gauge gave

√
ĝ = 1.Then,we analyze the final

12



equation of [3.20] in complex coordinates which is similar to [3.5]∫
M

d2σ(∂1j
1 + ∂2j

2)A (σ0) =

∫
M

1

2
d2z[(∂ + ∂̄)j1 + i(∂ − ∂̄)j2](σ)A (σ0)

=
1

2

∫
M

d2z[∂(j1 + ij2) + ∂̄(j1 − ij2)](z, z̄)A (σ0)

= i

∫
∂M

[dz
1

2
(j1 − ij2)− dz̄ 1

2
(j1 + ij2)]A (z0, z̄0)

= i

[∫
∂M

dzj(z) +

∫
∂̄M

dz̄ȷ̃(z̄)

]
A (z0, z̄0)

[3.21]

Then we sub [3.21] in [3.20] with z → z0, z̄ → z̄0 we get

1

2πi

∫
∂M

dzj(z)A (z0, z̄0) +
1

2πi

∫
∂̄M

dz̄ȷ̃(z̄)A (z0, z̄0) =
1

iϵ
δA (z0, z̄0)

Resz→z0j(z)A (z0, z̄0) + Resz̄→z̄0 ȷ̃(z̄)A (z0, z̄0) =
1

iϵ
δA (z0, z̄0)

[3.22]

Now,we get the complex version of Ward identity [3.22].
Then,we can talk about conserved current of symmetry and see how to

get conformal invariance by using Ward identity in string theory.For a string
theory,we know a 1-d string sweeps through a spacetime and gives a 2-d sur-
face called world-sheet.Thus,we have translation of the whole world-sheet in
spacetime called spacetime translation and translation in the world-sheet called
world-sheet translation.Spacetime translation is simple reflecting property of
spacetime around the motion of strings that is δXµ(σ) = ϵρ(σ)aµ and for
SX(σ1, σ2) = (1/4πα′)

∫
d2σ∂aXµ∂aXµwe have

δSX(σ1, σ2) = ∂a
∂S

∂(∂aXµ)
δXµ =

2

4πα′

∫
d2σ∂a∂

aXµϵρ(σ)aµ [3.23]

And we perform [3.15] we get current aµj
µ
a of spacetime translation invariance

ϵ

2πi

∫
d2σ∂a

iaµ
α′
∂aX

µ =
ϵaµ
2πi

∫
d2σ∂ajµa

jµa =
i

α′
∂aX

µ

[3.24]

Specific properties of string theory reflecting on that of 2-d world-sheets or 2-
d world-sheets collect specific information about string theory.In this case,we
want to discuss the current of world-sheet translation invariance.First,X is a
scalar field that is h = 0,from the tensor transformation above [2.1] we get
X ′µ(σ′a) = Xµ(σa),then for the world-sheet translation δσa = ϵva

Xµ(σa) = X ′µ(σ′a) = X ′µ(σa + ϵva) = X ′µ(σa) + ∂aX
′µ(σa)ϵva

δXµ = X ′µ(σa)−Xµ(σa) = −∂aX ′µ(σa)ϵva = −ϵva∂aXµ(σa)
[3.25]

13



where we used a trick that is for δX → 0,∂δX = ∂(X ′ − X) ≈ 0 that gives
∂X ′ ≈ ∂X.And we know the Lagrangian is also a scaler by Lorentz invariance,so
we just change Xµ to L in [3.25] we get δL = −ϵva∂aL = ϵ∂aK a for [3.19]
that gives K a = −vbδabL ,then we get the current of spacetime translation
invariance

ja =
L

∂(∂aXµ)
ϵ−1δXµ −Ka

=
2

4πα′
∂aX

µ(−ϵvb∂bXµ)− (−vbδab
1

4πα′
∂cX

µ∂cXµ)

=
1

2πα′
vb
[
− 1

α′

(
∂aX

µ∂bXµ −
1

2
δab∂cX

µ∂cXµ

)] [3.26]

And this gives us the energy-momentum tensor if we extract the differentiable

or finite term by using the normal ordering defined as ⟨: XX :⟩ = ⟨XX⟩−⟨XX⟩

Tab = −
1

α′
:

(
∂aX

µ∂bXµ −
1

2
δab∂cX

µ∂cXµ

)
: [3.27]

for ∇a : ja := (1/2πα′)∇avbTab = 0.We see above (5.32) in [1],the traceless-
ness of the energy-momentum tensor shows the corresponding symmetry invari-
ance,that is ∇avbTab = ∂avbδab(δ

abTab) = vbδab(δ
ab∂aTab) = 0 for this case

which gives us two equations

δabTab = δab∂aTab = 0 [3.28]

Now,we also want to analyze this tracelessness in 2-d complex case,we need the
tensor transformation of δab for a, b = 1, 2 to gab for a, b = z, z̄ with hδab = −2
we have

gzz = gz̄z̄ =
∂z∂z

∂σa∂σb
δab =

∂z∂z

∂σ1∂σ1
δ11 +

∂z∂z

∂σ2∂σ2
δ22 = 12 + i2 = 0

gzz̄ = gz̄z =
∂σa∂σb

∂z∂z̄
δab =

∂z∂z̄

∂σ1∂σ1
δ11 +

∂z∂z̄

∂σ2∂σ2
δ22 = 12 − i2 = 2

[3.29]

Thus,the first term of [3.28] gives δabTab → gabTab = gzz̄Tzz̄ + gz̄zTz̄z = 0 that
is Tzz̄ = Tz̄z = 0.The second term gives δab∂aTab = δabδac∂cTab = [∂aTaa](σ)→
∂a(σ)[Taa(z, z̄)] = ∂1Tzz + ∂2Tz̄z̄ = (∂ + ∂̄)Tzz + i(∂ − ∂̄)Tz̄z̄ = 0 that is ∂̄Tzz =
−∂Tzz, ∂Tz̄z̄ = ∂̄Tz̄z̄ and we can also let [∂aTaa](σ) → [∂aTaa](z, z̄) = 0 that
is ∂Tzz = ∂̄Tz̄z̄ = 0,combing two cases we get ∂̄Tzz = ∂Tz̄z̄ = 0.Then,we
combine above solutions of [3.28] and we get the following properties of the
energy-momentum tensor in 2-d CFT

Tzz̄ = Tz̄z = 0

T (z) = Tzz, T̃ (z̄) = Tz̄z̄
[3.30]

where T (z) is purely holomorphic and T̃ (z̄) is purely anti-holomorphic.Then,we
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want to use a trick to analyze [3.27] in complex case

Tab(z, z̄) = gab(δ
abTab)(σ) = gab(g

abT ′ab)(z, z̄) = T ′ab(z, z̄)

= − 1

α′
:

(
∂aX

µ∂bXµ −
1

2
gab∂cX

µ∂cXµ

)
:

[3.31]

notice that Mab = ((1/2)δabδ
ab)Mab ̸= (1/2)δab(δ

abMab) where associativity
breaks for left δab−action.And we see [3.31] directly follows from [3.30] with

T (z) = − 1

α′
: ∂Xµ∂Xµ : T̃ (z̄) = − 1

α′
: ∂̄Xµ∂̄Xµ : [3.32]

Now we ignore prefactor of the current under [3.27] and change the vector vb to
the biholomorphic function v(z) with i from wick rotation,we have currents

j(z) = iv(z)T (z) ȷ̃(z̄) = iv(z)∗T̃ (z̄) [3.33]

these are currents of conformal invariance in the corresponding free scalar field
Lagrangian.Then,we can apply the Ward identity [3.22] to reproduce [3.25] for
conformal transformation of the field Xµ

δvX
µ(w, w̄) = iϵResz→wiv(z)

(
− 1

α′
∂Xν∂Xν

)
(z)Xµ(w) + h.c.

= −ϵv(z)Resz→w∂Xν(z)δµν 2∂z

(
−1
α′
−α′

2
ln(z − w)

)
+ h.c.

= −ϵv(z) 1

2πi

∫
dz

1

z − w

∣∣∣
z→w

∂Xµ(z) + h.c.

= −ϵv(w)∂Xµ(w)− ϵv(w)∗∂̄Xµ(w̄)

[3.34]

And this is an infinitesimal conformal transformation follows from the conformal
map f(z) = z + ϵv(z) for the definition above [2.1].

Also,because of the bijective map v(z),the currents [3.33] are also bijective,in
this case the equation [3.22] gives us an correspondence of a conformal transfor-
mation of a operator with OPE of energy-momentum tensor δA ∼ TA which
means conformal invariance gives a strong constraint on TA OPE along this
correspondence.And we want to see how this constraint reflects on TA OPE
for a general operator A (z, z) and similarly for antiholomorphic part.We notice
that OPE is to collect all singular terms in contractions that is

j(z)A (0, 0) = iv(z)T (z)A (0, 0) = iv(z)

∞∑
n=0

A (n)

zn+1
[3.35]

and we put this in [3.22],we get conformal transformation for general operator

δA (0, 0) = −ϵv(z)Resz→0

∞∑
n=0

A (n)

zn+1
+ h.c.

= ϵv(z)Resz→0

∞∑
n=0

(−1)n+1

n!
∂(n)

A (n)

z
+ h.c.

15



= −ϵ 1

2πi

∮
C

dz

z

∞∑
n=0

1

n!
∂(n)v(z)A (n) + h.c.

= −ϵ
∞∑
n=0

1

n!
[∂nv(z)A (n)(0, 0) + ∂̄nv(z)∗Ã (n)(0, 0)]

[3.36]

where A (n) is the coefficients of 1/zn+1 in [3.35].Now,we want to study the

tensor operator O′(z′, z′) = (∂zz
′)−h(∂zz

′)−h̃O(z, z) we defined above [2.1],for
z′ = z + ϵv(z) and we focus on the holomorphic part we have

O′(z′) = ∂z(z + ϵv(z))−hO(z) = O′(z + ϵv(z)) = O′(z) + ϵv(z)∂O′(z)
(1 + ϵ∂v(z))−hO(z) = O′(z) + ϵv(z)∂O(z)
O(z)− hϵ∂v(z)O(z) = O′(z) + ϵv(z)∂O(z)

δO(z) = −hϵ∂v(z)O(z)− ϵv(z)∂O(z)

[3.37]

compare it with [3.36],we get O(1) = hO,O(0) = ∂O which gives the TO OPE

T (z)O(0, 0) = h

z2
O(0, 0) + 1

z
∂O(0, 0) [3.38]

and this gives us clear expression about the meaning of an operator transforms
like a tensor or a tensor operator will satisfy the TO OPE like [3.38].The con-
formal invariance preserve only for tensor operator,we can see [3.64] the TXB is
not a tensor operator and for non-tensor transformation we need to quantify
the degree of breaking conformal invariance by central charge c on 1/2z4.

3.3 Commutator expression

In math,a Lie bracket LYX = [Y,X] for two vector fields X,Y ∈ g quantifies
the difference in differentiation order between these two differential operators
by definition and it is also a vector field δYX ∈ g quantifies how X transforms
along the vector Y .Thus,we want to analyze our commutators to reflect clearly
above information and support further calculations in SCFT.First,we set this
order of commutators to time ordering T in physics and we indeed have a radial
time order t = eσ

2

after we perform a conformal map z = e−iw = eσ
2

e−iσ
1

where w = σ1 + iσ2,with a good property that is State-Operator Isomorphism
in 2-d CFT from 2.64 in [4].We first put a combination of states with time tk
on a eigenstate that is j1(t1)j2(t2) − j1(t3)j2(t2)|h⟩ = T [j1, j2](t)|h⟩ for t3 <
t2 < t1 with current ji.The z-plane is a disc,we can set the isomorphism to be
a contour map

∮
Ck
dzi(1/2πi) : ji(tk) 7→ Qi(Cj) that is conserved charge with

C3 < C2 < C1

T [j1, j2](t)|h⟩z1→z2 = [j1, j2](t2)|h⟩ ∼= [Q1, Q2]{C2} = T [Q1, Q2](t)z1→z2

= [Q1(C1)Q2(C2)−Q1(C3)Q2(C2)]z1→z2 = [Q1(C1)−Q1(C3)]z1→z2Q2(C2)

=
1

2πi

[∮
C1

j1(t1)−
∮
C3

j1(t3)

]
z1→z2

dz1Q2(C2)

16



=

[∑
C1

Resj1(t1)−
∑
C2

Resj1(t3)

]
z1→z2

Q2(C2)

=

(
1

2πi

∮
(C1−C3)≈0,z2

dz1

)
j1(t1)Q2(C2) = Resz→z2j1(t1)Q2(C2)

[3.39]

z1 → z2 means we let the first operator closed to the second one on time
and position to open the contaction and we performed contour deformation
at the fourth line by Residue theorem.Then we end with the expressions of
commutators with a contour C2

[Q1, Q2]{C2} = {Q1, Q2}{C2} =
∮
C2

dz2
2πi

Resz1→z2j1(z1)j2(z2) [3.40]

where Q{C} = (1/2πi)
∮
C
dzj,and we also have similar anticommutator expres-

sion for fermionic operator.Also,we have similar expression for antiholomorphic
part

[Q̃1, Q̃2]{C2} = {Q̃1, Q̃2}{C2} =
∮
C2

dz̄2
2πi

Resz̄1→z̄2 ȷ̃1(z̄1)ȷ̃2(z̄2) [3.41]

where Q̃{C} = −(1/2πi)
∮
C
dz̄ȷ̃.Then we compare [3.40] and [3.41] with [3.22]

without the contour C2 we directly get

δQA (z2, z̄2) = iϵ[Q,A (z2, z̄2)] δQ̃A (z2, z̄2) = iϵ[Q̃,A (z2, z̄2)] [3.42]

with obvious Lie bracket structures.

3.4 Superconformal algebra

Virasoro algebra is a simple Lie algebra about Laurant coefficients of bosonic
energy-momentum tensor,fermions come in because of consideration of super-
symmetry and in this case we need to extend previous algebra to a larger one
containing two types of states which is Super Virasoro algebra based on super-
conformal algebra.First,for an operator O(z) with conformal dimension h there
exists a laurant expansion or series in z-plane

O(z) =
∞∑

m=−∞

Om
zm+h

Om =

∮
C

dz

2πiz
zm+hO(z) [3.43]

Next,we want to get bosonic and fermionic energy momentum tensor from the
world-sheet superstring action S = SX + Sψ

S =
1

2π

∫
d2zL =

1

4π

∫
d2z

(
2

α′
∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
[3.44]

with hS = hX = 0, h∂ = h∂X = 1, h∂̄ = h∂̄X = −1, hψ = 1
2 , hψ̃ = − 1

2 .Then,we

classify TB , T̃B as the currents of conformal symmetry with same commuta-
tive multiplication and TF , T̃F as that of superconformal symmetry with mixed
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commutative multiplication in C,we get following expressions

TB(z) =
∂L

∂(∂̄aXµ)
ϵ−1v−1δXµ +

∂L

∂(∂̄aψµ)
ϵ−1v−1δψµ

TB(z) = −
1

α′
∂Xµ∂Xµ −

1

2
ψµ∂ψµ T̃B(z̄) = −

1

α′
∂̄Xµ∂̄Xµ −

1

2
ψ̃µ∂̄ψ̃µ

[3.45]

where we used conformal variance [3.34] same for fermions and bosons

TF (z) = i
√
2α′

∂L

∂(∂̄aψµ)
ϵ−1v−1δXµ

TF (z) = i(1/α′)1/2ψµ∂Xµ T̃F (z̄) = i(1/α′)1/2ψ̃µ∂̄Xµ

[3.46]

where ∂ ∈ V0 for V = V0 ⊕ V1 which is a super vector space in 1.1 [10] and
adding prefactor for simplicity.we can set the currents to be

jη = η(z)TF (z) ȷ̃η(z̄) = η∗(z̄)T̃F (z̄) [3.47]

with anticommutative parameter η.Then we can get the superconformal trans-
formation from [3.22]

δηX
µ(z0, z̄0) = iϵResz→z0η(z)i(2/α

′)1/2ψµ(z)∂Xµ(z)X
µ(z0) + h.c.

= −ϵ(2/α′)1/2Resz→z0η(z)ψµ(z)(−α′/2)
1

z − z0
+ h.c.

= (α′/2)1/2ϵ[η(z0)ψ
µ(z0) + η(z0)

∗ψ̃µ(z̄0)]

δηψ
µ(z0) = iϵResz→z0η(z)i(2/α

′)1/2∂Xµ(z)ψµ(z)ψ
µ(z0)

= −ϵ(2/α′)1/2Resz→z0∂Xµ(z)
1

z − z0
= −(2/α′)1/2ϵη(z0)∂Xµ(z0)

δηψ̃
µ(z̄0) = −(2/α′)1/2ϵη(z0)∗∂̄Xµ(z̄0)

[3.48]

Now,we get conformal transformation δv [3.34] and superconformal transforma-
tion δη [3.48].Superconformal algebra is an algebra with these two transforma-
tions which means they closed under commutation relation.For instance

[δη1 , δη2 ]X
µ(z) = δη1δη2X

µ(z)− δη2δη1Xµ(z)

= ϵ2(α
′/2)1/2η2(z)δη1ψ

µ(z)− ϵ1(α′/2)1/2η2(z)δη2ψµ(z)
= ϵ1ϵ2[−η2η1 + η1η2](z)∂X

µ(z) = ϵ[2η1(z)η2(z)]∂X
µ(z)

= δvX
µ(z) where v(z) = −2η1(z)η2(z)

[3.49]

Formally,An superconformal algebra is a Z2 graded set Hom(Asc, Asc) we will
see in [7.8],for a super vector space Asc = A0 ⊕A1,the element is tuple (δv, δη)
with a binary operation [, ] : Asc ⊗ Asc → Asc with Z2-grading (δv1 , δη1) ⊗
(δv2 , δη2) 7→ (([δv1 , δv2 ], [δη1 , δη2 ]), ([δv1 , δη2 ], [δη1 , δv2 ])) ∈ Asc,which is a simple
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Lie algebra.We want to claim that supersymmetry exists in a compactified di-
mension we will see details later,thus we want to study the Xµψµ SCFT on a
circle.We can set following boundary condition

w = σ1 + iσ2 ∼= w + 2π = (σ1 + 2π) + iσ2 [3.50]

which gives periodicity 2π on spatial dimension σ1.And this classify fermions to
R and NS that induce two distinct Hilbert spaces called sectors

Ramond (R) : ψµ(w + 2π) = e2πiνψµ(w) , ν = 0

Neveu-Schwarz (NS) : ψµ(w + 2π) = e2πiνψµ(w) , ν =
1

2

[3.51]

similar to ψ̃µ(w̄) with −ν̃ ,because of the invariance of periodicity on Sψ(w),let
us set aψ(w) = ψ(w + 2π) and we end with a2 = 1 that is a = ±1∫

d2(w + 2π)ψµ(w + 2π)∂w̄ψµ(w + 2π) = a2
∫
d2wψµ(w)∂w̄ψµ(w) [3.52]

For fully remaining Poincaré invariance in action,Xµ(w) = Xµ(w + 2π),we can
easily see if we put antiperiodicity on Xµ and for an infinitesimal parameter ϵ

Xµ(σ1 + 2π − ϵ) = −Xµ(σ1 + 2π)

Xµ(σ1 + 2π)− ϵ∂Xµ(σ1 + 2π) = Xµ(σ1)

−Xµ(σ1) + ϵ∂Xµ(σ1) = Xµ(σ1)

ϵ∂Xµ(σ1) = 2Xµ(σ1)

[3.53]

which gives nontrivial translation δXµ = −2Xµ in [3.25] which is not a total
derivative and breaks the translation invariance.Then,we put periodicity in [3.46]

TF (w + 2π) = e2πiνTF (w) T̃F (w̄ + 2π) = e−2πiν̃ T̃F (w̄) [3.54]

Under the periodicity condition we can expand ψµ in exponential Fourier series

ψµ(w) = i−1/2
∑
r∈Z+ν

ψµr e
irw, ψ̃µ(w̄) = i−1/2

∑
r∈Z+ν̃

ψ̃µr e
−irw̄ [3.55]

We need to transform w to z-plane that exists vertex operators we did in 3.3.

ψµ(z) = (∂wz)
−hψψµ(w) =

√
∂z(ilnz)ψ

µ(w) = i1/2z−1/2ψµ(w) [3.56]

then we put [3.55] in [3.56] and get Laurent expansions correspond to [3.43]

ψµ(z) =
∑
r∈Z+ν

ψµr
zr+1/2

, ψ̃µ(z̄) =
∑
r∈Z+ν̃

ψ̃µr
z̄r+1/2

[3.57]

And we can now understand clearly [3.43] is actually an exponential Fourier
expansion equipped with a tensor transformation of w-plane to z-plane.The
expression of Laurent coefficients are

ψµr =

∮
C

dz

2πiz
zr+1/2ψµ(z), ψ̃µr = −

∮
C

dz̄

2πiz̄
z̄r+1/2ψ̃µ(z̄) [3.58]
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Also,for vector fields ∂X, ∂̄X,we have following Laurent expansions with pref-
actor about string lenth scale

√
α′

∂Xµ(z) = −i
(
α′

2

)1/2 ∞∑
m=−∞

αµm
zm+1

, ∂̄Xµ(z̄) = −i
(
α′

2

)1/2 ∞∑
m=−∞

α̃µm
z̄m+1

[3.59]
with Laurent coefficients

αµm = i

(
2

α′

)1/2 ∮
C

dz

2πiz
zm+1∂Xµ(z), α̃µm = −i

(
2

α′

)1/2 ∮
C

dz̄

2πiz̄
z̄m+1∂̄Xµ(z̄)

[3.60]
By using [3.40] we can get commutation relations of Laurent coefficients in the
Xµψµ SCFT

{ψµr , ψνs }{C2} = {ψ̃µr , ψ̃νs }{C2} =
∮
C2

dz2
2πi

Resz1→z2z
r−1/2
1 z

s−1/2
2 ψµ(z1)ψ

ν(z2)

=

∮
C2

dz2
2πiz2

zr+s2 ηµν = ηµνδr,−s

[αµm, α
ν
n]{C2} = [α̃µm, α̃

ν
n]{C2}

=

(
−2
α′

)∮
C2

dz2
2πi

Resz1→z2z
m
1 z

n
2 ∂z1X

µ(z1)∂z2X
ν(z2)

=

(
2

α′

)∮
C2

dz2
2πi

Resz1→z2∂z1z
m
1 z

n
2 ∂z2X

µ(z1)X
ν(z2)

=

(
2

α′

)∮
C2

dz2
2πi

Resz1→z2mz
m−1
1 zn2

(
α′

2

ηµν

z1 − z2

)
= mηµνδm,−n

[3.61]

Then,we can Laurent expand our energy momentum tensors [3.45] and [3.46]
with hTB = 2, hTF = 3/2

TB(z) =

∞∑
m=−∞

Lm
zm+2

, T̃B(z̄) =

∞∑
m=−∞

L̃m
z̄m+2

TF (z) =
∑
r∈Z+ν

Gr
zr+3/2

, T̃F (z̄) =
∑
r∈Z+ν̃

G̃r
z̄r+3/2

[3.62]

Now we focus on the holomorphic part for simplicity and the reverse expansions

Lm =

∮
C

dz

2πiz
zm+2TB(z), Gr =

∮
C

dz

2πiz
zr+3/2TF (z) [3.63]

The Laurent coefficients close under commutation relation to give an algebra
which is super Virasoro algebra or Ramond and Neveu-Schwarz algebra.We
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first calculate OPEs of energy-momentum tensors which collect singular terms
of single,double and higher contractions,for TB = TXB + TψB

TXB (z)TXB (w) =
1

α′2
∂zX

µ(z)∂zXµ(z)∂wX
ν(w)∂wXν(w)

=
4× 1

α′2
∂z∂wX

νXν∂zX
µ(z)∂wXµ(w) +

2× 1

α′2
∂z∂wX

µXµ∂z∂wX
νXν

=
4

α′2
−α′

2

1

(z − w)2
[∂w + (z − w)∂2w]Xµ(w)∂wXµ(w) +

2

α′2
α′2ηµνηµν
4(z − w)4

=
D

2(z − w)4
+

2TXB (w)

(z − w)2
+
−2
α′

1

2
(∂2wX

µ∂wXµ + ∂wX
µ∂2wXµ)(w)

=
D

2(z − w)4
+

2TXB (w)

(z − w)2
+
∂wT

X
B (w)

z − w

[3.64]

for fermionic part we need to notice the anticommutation relation

TψB(z)T
ψ
B(w) =

1

4
ψµ(z)∂ψµ(z)ψ

ν(w)∂ψν(w)

=
1

4
[−ψ(z)ψ(w)∂ψ(z)∂ψ(w) + ψ(z)∂ψ(w)∂ψ(z)ψ(w) + ∂ψ(z)ψ(w)ψ(z)∂ψ(w)

− ∂ψ(z)∂ψ(w)ψ(z)ψ(w)− ψ(z)ψ(w)∂ψ(z)∂ψ(w) + ψ(z)∂ψ(w)∂ψ(z)ψ(w)]

=
1

4

[
− 1

z − w
∂ψ(w)∂ψ(w) +

1

(z − w)2
(∂ + (z − w)∂2)ψ(w)ψ(w)

− 1

(z − w)2
(1 + (z − w)∂)ψ(w)∂ψ(w) + 2

(z − w)3
(1 + (z − w)∂ +

(z − w)2

2
∂2)

× ψ(w)ψ(w) + 2

z − w
ηµνηµν
(z − w)3

− ηµνηµν
(z − w)2

1

(z − w)2
]

=
1

4

[∂ψ(w)ψ(w)
(z − w)2

− ψ(w)∂ψ(w)

(z − w)2
+

2

(z − w)2
∂ψ(w)ψ(w)− 2

z − w
∂ψ(w)∂ψ(w)

+
1

z − w
∂2ψ(w)ψ(w) +

1

z − w
∂2ψ(w)ψ(w) +

D

(z − w)4
]

=
D/2

2(z − w)4
− 1

(z − w)2
ψµ(w)∂ψµ(w)−

1

2(z − w)
(∂ψµ∂ψµ + ψµ∂2ψµ)(w)

=
D/2

2(z − w)4
+

2TψB (w)

(z − w)2
+
∂wT

ψ
B (w)

z − w
[3.65]

where ∂ψ(z) = ∂zψ(z) and ψ(w)ψ(w) = 0, ∂2ψ(w)ψ(w) = −ψ(w)∂2ψ(w).Also,
we used tylor expansion.From the sentence below [3.38] and the above results,we
find cTXB = D, cTψB

= D/2 so the central charge of the whole energy momentum
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tensor c = cTB = 3D/2.Then

[Lm, Ln]{C2} =
∮
C2

dw

2πi
Resz→wz

m+1wn+1TB(z)TB(w)

=

∮
C2

dw

2πi
Resz→wz

m+1wn+1
[ c

2(z − w)4
+

2TB
(z − w)2

+
∂wTB
z − w

]
=

∮
C2

dw

2πi
Resz→wz

m+1wn+1

[
−c
12
∂3z − 2TB(w)∂z + ∂wTB(w)

]
1

z − w

=

∮
C2

dw

2πi
Resz→w

wn+1

z − w

[ c
12
∂3zz

m+1 + 2∂zz
m+1TB(w) + ∂wTB(w)z

m+1
]

=

∮
C2

dw

2πi

[ c
12

(m3 −m)wm+n−1 + (2(m+ 1)TB(w)− TB(w)∂w)wm+n+1
]

=

∮
C2

dw

2πiw
(m− n)wm+n+2TB(w) +

∮
C2

dw

2πiw
wm−(−n)

c

12
(m3 −m)

= (m− n)Lm+n +
c

12
(m3 −m)δm,−n

[3.66]

where we reformulate [3.63] and we performed Cauchy theorem.Then

TF (z)TF (w) = i2
2

α′
ψµ(z)∂zXµ(z)ψ

ν(w)∂wXν(w)

= − 2

α′
[ψµ(z)ψν(w)∂zXµ(z)∂wXν(w) + ψµ(z)ψν(w)∂zXµ(z)∂wXν(w)

+ ∂zXµ(z)∂wXν(w)ψ
µ(z)ψν(w)]

= − 2

α′

[ ηµν

z − w
−α′

2
ηµν∂z∂wln(z − w) +

ηµν

z − w
(∂w + (z − w)∂2w)

×Xµ(w)∂wXν(w) +
−α′

2
ηµν∂z∂wln(z − w)(1 + (z − w)∂w)ψµ(w)ψν(w)

]
= − 2

α′

[−α′ηµνηµν
2(z − w)3

+
1

z − w
∂wX

µ(w)∂wXµ(w) +
α′

2(z − w)
ψµ(w)∂ψµ(w)

]
=

2c

3(z − w)3
+

2TB(w)

z − w
[3.67]

And the commutation relation of corresponding Laurent coefficients

{Gr, Gs}{C2} =
∮
C2

dw

2πi
Resz→wz

r+1/2ws+1/2TF (z)TF (w)

=

∮
C2

dw

2πi
Resz→wz

r+1/2ws+1/2
[ 2c

3(z − w)3
+

2TB(w)

z − w

]
=

∮
C2

dw

2πi
Resz→wz

r+1/2ws+1/2
[2c
3

1

2
∂2z + 2TB(w)

] 1

z − w

=

∮
C2

dw

2πi
Resz→w

1

z − w
ws+1/2

[ c
3
∂2z + 2TB(w)

]
zr+1/2
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= 2

∮
C2

dw

2πiw
wr+s+2TB(w) +

∮
C2

dw

2πiw

c

3

(
r2 − 1

4

)
wr−(−s)

= 2Lr+s +
c

12
(4r2 − 1)δr,−s

[3.68]

Finally,the OPE of the cross terms is

TB(z)TF (w) = i

(
1

α′

)1/2 [
− 1

α′
∂Xµ∂Xµ −

1

2
ψµ∂ψµ

]
(z)[ψν∂Xν ](w)

= −2× i
(

1

α′

)3/2

∂zX
µ(z)∂wXν(w)∂zXµ(z)ψ

ν(w)− i1
2

(
1

α′

)1/2

×[
− ψµ(z)ψν(w)∂zψµ(z)∂wXν(w) + ∂zψµ(z)ψ

ν(w)ψµ(z)∂wXν(w)
]

= −2× i
(

1

α′

)3/2

∂z∂w
−α′

2
δµν ln(z − w)(∂w + (z − w)∂2w)Xµ(w)ψ

ν(w)

− i1
2

(
1

α′

)1/2 [
− ηµν

z − w
∂wψµ(w)∂wXν(w) + ∂z

δνµ
z − w

(1 + (z − w)∂w)

× ψµ(w)∂wXν(w)
]

= i

(
1

α′

)1/2
1

(z − w)2
∂wXν(w)ψ

ν(w) + i

(
1

α′

)1/2
1

z − w
∂2wXν(w)ψ

ν(w)

+ i
1

2

(
1

α′

)1/2
1

z − w
∂wψ

ν∂wXν(w) +
1

2
i

(
1

α′

)1/2
1

(z − w)2
ψν(w)∂wXν(w)

+
1

2
i

(
1

α′

)1/2
1

z − w
∂wψ

ν(w)∂wXν(w)

=
3

2(z − w)2
TF (w) +

1

z − w
∂wTF (w)

[3.69]

and the commutation relation of corresponding Laurent coefficients

[Lm, Gr]{C2} =
∮
C2

dw

2πi
Resz→wz

m+1wr+1/2TB(z)TF (w)

=

∮
C2

dw

2πi
Resz→wz

m+1wr+1/2
[ 3

2(z − w)2
TF (w) +

1

z − w
∂wTF (w)

]
=

∮
C2

dw

2πi
Resz→wz

m+1wr+1/2
[
− 3TF (w)

2
∂z + ∂wTF (w)

] 1

z − w

=

∮
C2

dw

2πi
Resz→ww

r+1/2 1

z − w

[3TF (w)
2

∂z + ∂wTF (w)
]
zm+1

=

∮
C2

dw

2πi

[
(m+ 1)wm+r+1/2 3TF (w)

2
− ∂wwm+r+3/2TF (w)

]
=

∮
C2

dw

2πiw

m− 2r

2
TF (w)w

m+r+3/2 =
m− 2r

2
Gm+r

[3.70]
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Now,we finish the commutation relations of the Laurent coefficients of energy-
momentum tensor of Xµψµ SCFT and they indeed close.For integer r, s the
algebra is called Ramond algebra and for half-integer r, s the algebra is called
Neveu-Schwarz algebra.Then we want to verify the Jacobi identity [X, [Y,Z]] +
[Z, [X,Y ]] + [Y, [Z,X]] = 0 for X,Y, Z ∈ g.For parity |X| = |Y | = |Z| = 0 ∈ Z2

0 = [Lm, [Ln, Lp]] + [Lp, [Lm, Ln]] + [Ln, [Lp, Ln]]

= (n− p)[Lm, Ln+p] + (m− n)[Lp, Lm+n] + (p−m)[Ln, Lp+m]

= [(n− p)(m− n− p) + (m− n)(p−m− n) + (p−m)(n− p−m)]Lm+n+p

+
c

12
[(n− p)(m3 −m) + (m− n)(p3 − p) + (p−m)(n3 + n)]δm,−(n+p)

=
c

12
[(n− p)(−(n+ p)3 + n+ p) + (−2n− p)(p3 − p) + (2p+ n)(n3 + n)]

[3.71]

Thus,Lm individually forms a algebra and gives a Lie algebra structure called
Virasoro algebra.Also,if we let v = 1/2 for antiperiodic fermions that gives half
integer r, s in [3.63] and gives a form that the TF transform like TB .

To see the last point above clearly,we want to perform only supersymme-
try transformation on our theory for avoiding the holomorphic parameter in
[3.48].Actually,we want to find a low energy effective field theory (LEE) of cor-
responding string theory [3.44] which will be in a similar form of (3.11-3.12) in
[7] .Also,we open the interaction of strings for completeness.And we based on
the chapter 3 in [2] and chapter 10 in [3] in the following.

We will see opening the interaction in string theory corresponds a perturba-
tion in path integral of a curved spacetime metric.The way to put interacting
objects on world-sheet in w-plane is to put vertex operators in z-plane.So,we
find the vertex operators for bosons and fermions,we used [3.58] and [3.60]

αµ−m = i

(
2

α′

)1/2 ∮
C

dz

2πiz
z−(m−1)∂Xµ(z) = i

(
2

α′

)1/2

∂mXµ(0)

− i∂|0; k⟩ = k|0; k⟩ ⇒ |0; k⟩ ≡ 1 =: eik·X(0,0) :

[3.72]

where m ≥ 0 and k is world-sheet momentum.For fermionic states,we need first
analyze the spectrum of NS and R.NS ground state where r = Z+ v, v = 1/2 is

ψµr |0⟩NS = 0, r > 0 [3.73]

For R ground state,ψµo forms a Clifford algebra,we can set Γµ ∼= 21/2ψµ0

{Γµ,Γν} = {
√
2ψµ0 ,

√
2ψν0} = 2{ψµ0 , ψν0} = 2ηµνI [3.74]

ψµr ψ
ν
0 |0⟩R = ({ψµr , ψν0} − ψν0ψµr )|0⟩R = 0 for r > 0 means ψµ0× : VR0

→ VR0

which gives us a representation of Clifford algebra Γ × VR0 → VR0 .We want
to give details of the spin representation in various spacetime dimension µ =
0...d.First we need to know several concepts,we represent elements of Clifford al-
gebra by linear transformations that are Dirac matrices of corresponding vector
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space and a spinor is an object that transforms under the corresponding spin
representation.For even dimension d = 2k + 2 we can form linear combinations

Γ0± =
1

2
(±Γ0 + Γ1), Γa± =

1

2
(Γ2a ± iΓ2a+1), a = 1, ...k [3.75]

The only nontrivial commutation relation is

{Γa+,Γb−} = 1

4

(
{Γ2a,Γ2b}+ {Γ2a+1,Γ2b+1}

)
= δab [3.76]

Also we can find the property

(Γ0−)2 = (Γa+)2 = (Γa−)2 =
1

4
[(Γ2a)2 − (Γ2a+1)2 + i{Γ2a,Γ2a+1}] = 0 [3.77]

We can form a matrix ζ =
∏k+1
a=0 Γ

a− up to constant,then

Γa−ζ = 0, for all a = 0, ...1 [3.78]

makes ζ to be a ground state spinor and Γa− to be annihilation operator which
gives a representation ρ for ζ ∈ Vζ satisfy [4.7] for sa = ±1/2, s ≡ (s0, ...sk)

MatDirac × Vζ → Vζ , (Γk+)sk+1/2..(Γ0+)s0+1/2 × ζ 7→ ζ(s) ∈ Vζ [3.79]

with the Dirac representation ρ : gSO(d) → End(Vζ) = MatDirac that is group

of gamma matrices,then we get dimρ(gSO(d)) = dim(MatDirac) = 2k+1.We can

view ζ(s) as generators of representation of Clifford algebra [3.74].For seeing
more connections,we want to derive supersymmetry algebra in the following
section based on the text [7] and show that the representation we got above is
actually isomorphic to a representation of supersymmetry algebra by regard-
ing [3.75] as a compactification of dimension 2a and 2a + 1 which follows from
normalization which means the radial lenth is 1 and we have a compact space.

4 Supersymmetry algebra

4.1 Representation of Lorentz group SO(1,3)

We start at the representation of SO(4) which we start from U(n) with
dim(U(n)) = n2 for n× n unitary matrices.And for U ∈ U(n), U−1 = U∗

|detU |2 = detU(detU)∗ = detUdetU(U∗) = detUdet(U−1) = detU/det(U) = 1
[4.1]

Thus,we can write detU = eiθ = 1 for SU(n),this equation fixes the polar
coordinates and total degree of freedom loose one which means dim(SU(n)) =
n2−1.Then we get dim(SU(2)) = 22−1 = 3.In this case we know the Lie group
SU(2) is a manifold unit S3.On the S3,we have symmetry group SO(4), and
elements are rotations that can connect two points on the three sphere. Thus,
we get a natural map SU(2) × SU(2) → SO(4), (p1, p2) 7→ M which sends a
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pair of points on sphere to a rotational transformation,which is not injective.For
Z2 symmetry which sends (p1, p2) to (−p1,−p2), we have short exact sequence
0 → Z2 → SU(2) × SU(2) → SO(4) → 0.But the surjection lets us claim that
their Lie algebras are isomorphism, gSO(4)

∼= gSU(2) ⊕ gSU(2).To see this we
follow [5], we can originally choose Ji,Ki for SO(4) with indices i, j = 1, 2, 3,
totally six dimensions for 3 rotations and 3 translations.

[Ji, Jj ] = i

3∑
k=1

ϵijkJk, [Ji,Kj ] = i

3∑
k=1

ϵijkKk, [Ki,Kj ] = i

3∑
k=1

ϵijkJk [4.2]

Based on these,we can form a linear combination J±,i =
1
2 (Ji ±Ki),with

[J+,i, J−,j ] = [
1

2
(Ji +Ki),

1

2
(Ji −Ki)] =

1

4
{[Ji, (Ji −Kj))] + [Ki, (Ji −Kj)]}

=
1

4
{[Ji, Jj ]− [Ji,Kj ] + [Ki, Jj ]− [Ki,Kj ]}

=
1

4
{[Ji, Jj ] + [Jj ,Ki] + [Ki, Jj ]− [Ki,Kj ]}

=
1

4

{
i

3∑
k=1

ϵijkJk + [Jj ,Ki]− [Jj ,Ki]− i
3∑
k=1

ϵijkJk

}
= 0

[J+,i, J+,j ] = [
1

2
(Ji +Ki),

1

2
(Jj +Kj)] =

1

4
{[Ji, (Jj +Kj)] + [Ki, (Jj +Kj)]}

=
1

4
{[Ji, Jj ] + [Ji,Kj ] + [Ki, Jj ] + [Ki,Kj ]}

=
1

4
{2[Ji, Jj ] + [Ji,Kj ]− [Kj , Ji]} =

1

4
2 {[Ji, Jj ] + [Ji,Kj ]}

=
1

2

{
i

3∑
k=1

ϵijkJk + i

3∑
k=1

ϵijkKk

}
=

1

2
i

3∑
k=1

ϵijk[Jk +Kk] = i

3∑
k=1

ϵijkJ+,k

[J−,i, J−,j ] = [
1

2
(Ji −Ki),

1

2
(Jj −Kj)]

=
1

4
{[Ji, (Jj −Kj)] + [−Ki, (Jj −Kj)]}

=
1

4
{[Ji, Jj ]− [Ji,Kj ]− [Ki, Jj ] + [Ki,Kj ]}

=
1

4
{2[Ji, Jj ]− [Ji,Kj ] + [KJ , Ji]} =

1

4
{2[Ji, Jj ]− [Ji,Kj ] + [Ji,Kj ]}

=
1

4
2 {[Ji, Jj ]− [Ji,Kj ]} =

1

2
i

3∑
k=1

ϵijk(Jk −Kk) = i

3∑
k=1

ϵijkJ−,k

[4.3]

Again,Lie bracket describes the differences in the order of differentiation between
two differential operators on manifolds.Translate it to physics,the commutator
describes if there is a contact term when two fields are closed to each other.In this
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case,the 2nd and 3rd commutator in [4.3] give closure of Lie algebra with dimen-
sion 3 separately,so J+,i, J−,igive two copies of gSU(2),and the 1st commutator
means there is no contact between these copies that means they are individual
to each other.Thus,gSO(4)indeed splits and is isomorphic to gSU(2) ⊕ gSU(2).

And one copy has irreducible representation indexed by j and have dimension
(2j+1).Recall that we have a 2-1 map SU(2)×SU(2)→ SO(4), thus we need to
know what type of representation does the SU(2)× SU(2) descent to.Theorem
5.7.4 in [5] told us SU(2)× SU(2) is indexed by non negative half-integer j1, j2
have dimension (2j1+1)(2J2+1) when J1+J2 is integer it descents to ordinary
representation,otherwise it descents to spin representation.Thus we have lowest
spin representation that is (j1, j2) = (1/2, 0) or (0, 1/2).And these give us two
objects that transformed under the spin representation called spinors.

For SO(1, 3),there is a Wick rotation Ki → iKi [Ki,Kj ] = −i
∑3
k=1 ϵijkJk

in [4.2],so their Lie algebras are same over C.We use the above isomorphism
below, and use C denote complexification map.

CgSO(1,3)
∼= CgSO(4)

∼= CgSU(2) ⊕CgSU(2)

∼= gSL(2,C) ⊕ gSL(2,C) ∼= gSL(2,C) ⊕ igSL(2,C)
∼= CgSL(2,C)

[4.4]

we have used CgSU(2)
∼= gSL(2,C) and perform contour rotation again.Then

after restriction to real, we get gSL(2,C) ∼= gSO(1,3), in this case we find the spin
group of Lorentz group that is SL(2,C) → SO(1, 3) and along the map the
representation of SO(1,3) descents from the representation of SL(2,C),which is
same as that of SO(4).

SL(2,C)× V1 V1

SO(1, 3)× V2 V2

4.2 Spinors and Pauli matrices

Because of above,we know that the spinors of SO(1, 3) can be viewed as ob-
jects transformed under representation of SL(2,C).We focus on the lowest spin
representation (1/2, 0)(0, 1/2) and each has dimension 2.Thus,we get [7](A.1)
for M ∈ SL(2,C)

ψ′α =Mα
βψβ ψ

′
α̇ =M∗α̇

β̇ψβ̇

ψ′α =M−1β
αψβ ψ

′α̇ = (M∗)−1
β̇

α̇ψ
β̇

[4.5]

The spinors with undotted indices transform under the (1/2,0), and with dotted
indices transform under the (0,1/2),and the dimension of the spinor is equal to
the dimension of corresponding representation is 2 here that explain the two-
components indices α, β = 1, 2.And the transformation matrices need to be
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Hermitian,that can be Pauli matrices with (σm)2 = I

σ0 =

(
−1 0
0 −1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

) [4.6]

4.3 Derivation of SUSY algebra

We can construct two operator QAα and Qα̇B ,A,B are indices for inter-
nal space.The first indexed by undotted 2-components index transforms under
(1/2,0), and the second indexed by dotted 2-components index transforms un-
der (0,1/2), so the product of these two operator transform under (1/2, 0) ⊕
(0, 1/2) = (1/2, 1/2).As we see above, (1/2,1/2) has dimension 2 × 2, thus we
conclude that QAαQα̇B ∝ P with P a 2× 2 matrix which has dimension 4.Then
we need to find the expression of P and this is the case we need to use Pauli
matrices.We consider a combination σmPm with Pm a 4-vector

σmPm = σ0P0 + σ1P1 + σ2P2 + σ3P3

=

(
−1 0
0 −1

)
P0 +

(
0 1
1 0

)
P1 +

(
0 −i
i 0

)
P2 +

(
1 0
0 −1

)
P3

=

(
−P0 + P3 P1 − iP2

P1 + iP2 −P0 − P3

) [4.7]

In this case,we find properties of the combination.Firstly,σmPmis an 2× 2 com-
plex matrix.Secondly,(σmPm)12 = (σmPm)∗21, this gives σmPm = (σmPm)†

which shows it is Hermitian and by any choice of real Pm we can express any Her-

mitian matrix in the form σmPm.Now,we can guess QAαQα̇B
?
= σmPmC

A
B .Our

aim is to express the anticommutator {QAα , Qα̇B},we only have two questions
left,the first one is does σmPm has same spinor indices as the product?and the
second one is if the anticommutator is hermitian or not.For the first one,we
know given a 2 × 2 hermitian matrix we can obtain others by SL(2,C),we let
P = σmPm, and M ∈ SL(2,C), this is P ′ =MPM†,then we use [4.5] we get

P ′ = σmP ′m =MPM† =MσmPmM
† =Mα

β σ
mPm(Mα

β )
†

=Mα
β (σ

mPm)†(Mα
β )
† =Mα

β [M
α
β (σ

mPm)]†
[4.8]

We can regard [4.8] as a test equation,if we plug the spinor indices that are same
as that of {QAα , Qα̇B},the equation maintains,then we can conclude that σmPm
indeed agree on spinor indices.That is we do σm → σmαα̇,then from [4.8] we get
for the left hand side σmαα̇P

′
m and for the right hand side

Mα
β [M

α
β (σ

m
αα̇Pm)]† =Mα

β (σ
m
βα̇Pm)† =Mα

β (Pm)†(σmβα̇)
† =Mα

β Pm(σmβα̇)
†

= P ′mM
α
β (σ

m
βα̇)
† = P ′mM

α
β (σ

m
β̇α

)T = P ′mM
α
β σ

m
αβ̇

= P ′mσ
m
ββ̇

= (P ′m)†(σm
ββ̇

)† = [(σm
ββ̇

)P ′m]† = σm
ββ̇
P ′m

[4.9]
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Then,by changing index β to α,the right hand side indeed agree with the left
hand side.Therefore,we conclude thatσm inP can be equipped with lower indices
σmαα̇.Thus,we can express QAαQα̇B = σmαα̇PmC

A
B .In this case,we get

{QAα , Qα̇B} = QAαQα̇B +Qα̇BQ
A
α = σmαα̇PmC

A
B + σmα̇αPmC

B
A

= σmαα̇Pm(CAB + CBA)
[4.10]

And the verification of the anticommutator is Hermitian

{QAα , Qα̇B}† = (QAαQα̇B +Qα̇BQ
A
α )
† = (QAαQα̇B)

† + (Qα̇BQ
A
α )
†

= ((QαQα̇)
AT

B)
∗ + ((Qα̇Qα)B

AT)∗ = [((QαQα̇)
T)∗]AB + [((Qα̇Qα)

T)∗]B
A

= [(Qα̇)
T((Qα)

T]∗AB + [(Qα)
T(Qα̇)

T]∗B
A
= (Qα̇Qα)

∗A
B + (QαQα̇)

∗
B

A

= [(Qα̇)
∗(Qα)

∗]AB + [(Qα)
∗(Qα̇)

∗]B
A
= (QαQα̇)

A
B + (Qα̇Qα)B

A

= QAαQα̇B +Qα̇BQ
A
α = {QAα , Qα̇B}

[4.11]

Also,each product is Hermitian.Thus,CAB , C
B
A in [4.10] are all Hermitian.And

a theorem told us any hermitian matrix can be diagonalized by a unitary ma-
trix.Then,we use an unitary transformation U to diagonalize CAB , C

B
A,that is

[{QAα , Qα̇B}, U ] = 0 which is {QAα , Qα̇B}U = U{QAα , Qα̇B},then

{QAα , Qα̇B} = U{QAα , Qα̇B}U−1 = Uσmαα̇Pm(CAB + CBA)U
−1

= σmαα̇Pm(UCABU
−1 + UCBAU

−1)

= σmαα̇Pm(δAB + δAB)

= 2σmαα̇Pmδ
A
B

[4.12]

Now,[4.12] gives the only nontrivial term in Supersymmetry algebra.

4.4 Properties of SUSY

One property is that equal number of fermions and bosons are contained
in the supersymmetry representation.We have a fact that a non-vanishing cor-
relator need to have even number of fermions and the first loop amplitude we
consider in string theory is the torus that will give periodicity of boundary.We
know on world-sheet we have one direction for time,anticommutative fields on
the periodic time direction will give antiperiodic time-ordering in path inte-
gral.Thus,an operator (−1)F with F the world-sheet spinor number is needed
to correct the time-ordering,gives −1 for each fermionic operator.Thus,we put
{QAα , Qα̇B} on a periodic world-sheet or world-sheet in compactified dimensions
withA,B counts for the dimensions with periodicity and (−1)F must be acted
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on for correct calculation of path integral.In this case we apply trace

tr[(−1)F {QAα , Qα̇B}] = tr[(−1)F (QAαQα̇B +Qα̇BQ
A
α )]

= tr[−1QAα (−1)FQα̇B + (−1)FQα̇BQAα )]
= tr[−1QAα (−1)FQα̇B ] + tr[(−1)FQα̇BQAα )]
= tr[−1QAα (−1)FQα̇B ] + tr[QAα (−1)FQα̇B)]
= tr[−1QAα (−1)FQα̇B +QAα (−1)FQα̇B)] = 0

0 = tr[(−1)F {QAα , Qα̇B}] = tr[(−1)F 2σmαα̇PmδAB ] = 2σmαα̇Pmδ
A
Btr[(−1)F ]

[4.13]

We performed [4.12] in the second equation.For non-vanishing momentum,[4.13]
reduces to tr[(−1)F ] = 0,this gives us that the number of fermions and number
of bosons are equal in compact space.

The second property is states of representation SUSY algebra.For seeing
clearly,we need to boost the momentum to rest frame that is Pm → Pm =
(−M, 0, 0, 0),thus

σmαα̇Pm = σ0
αα̇P0 =

(
−1 0
0 −1

)
αα̇

P0 = −1
(
1 0
0 1

)
αα̇

(−M)

=M

(
1 0
0 1

)
αα̇

=Mδαα̇

[4.14]

In this frame,SUSY algebra [4.12] becomes

{ 1√
2M

QAα ,
1√
2M

Qα̇B} = δαα̇δ
A
B , {QAα , QBβ } = {Qα̇B , Qβ̇B} = 0 [4.15]

we can define aAα = 1/
√
2MQAα , (a

A
α )
† = 1/

√
2MQα̇A to get a rescaled algebra

{aAα , (aBβ )†} = δαβδ
A
B [4.16]

Similar to [3.78] we introduce Clifford vacuum for supersymmetric field theory

aAαΩ
(n) = 0, for allA,α [4.17]

with Ω(n) = aA1
α1
...aAnαn |ψRQFT ⟩,each distinct operator at most has one copy and

⟨ψRQFT |ψRQFT ⟩ = 1, ψ|ψRQFT ⟩ = Qα̇A|ψRQFT ⟩ = (aAα )
†|ψRQFT ⟩ = 0.n can

have 2N choices for A = 1...N .For the normalization Ω
(n)
norm = CΩ(n),the subtile

thing for getting C is that we need to write [4.16] into a 2N × 2N matrix

aAα =

(
aA1 0
0 aA2

)
(aAα )

† =

(
(aA1 )

† 0
0 (aA2 )

†

)
[4.18]
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This gives us diagonal commutation relation

{aAα , (aBβ )†}diag = {
(
aA1 0
0 aA2

)
,

(
(aB1 )

† 0
0 (aB2 )

†

)
}

=

(
aA1 0
0 aA2

)(
(aB1 )

† 0
0 (aB2 )

†

)
+

(
(aB1 )

† 0
0 (aB2 )

†

)(
aA1 0
0 aA2

)
=

(
aA1 (a

B
1 )
† 0

0 aA2 (a
B
2 )
†

)
+

(
(aB1 )

†aA1 0
0 (aB2 )

†aA2

)
=

(
{aA1 , (aB1 )†} 0

0 {aA2 , (aB2 )†}

)
=

(
δ11δ

A
B 0

0 δ22δ
A
B

)
=

(
δAB 0
0 δAB

)
[4.19]

And we call it diagonal supersymmetry algebra.And clearly from the bijection
[4.18],{aAα , (aBβ )†}diag ∼= {aAα , (aBβ )†}.Now,we can use this form to calculate C

forA = B,we get {aAα , (aAβ )†}diag = δ2A2A ,for n = 2A and by induction we get

1 = (Ω(n)
norm)

†Ω(n)
norm = (CΩ(n))†CΩ(n) = C2(Ω(n))†Ω(n)

= C2⟨ψRQFT |(aA1
α1
...aAnαn )

†aA1
α1
...aAnαn |ψRQFT ⟩

= C2⟨ψRQFT |(aAnαn )
†...(aA1

α1
)†aA1

α1
...aAnαn |ψRQFT ⟩

= C2⟨ψRQFT |(aAnαn )
†...(aA2

α2
)†(δ2A2A − aA1=2A

α1
(aA1=2A
α1

)†)aA2
α2
...aAnαn |ψRQFT ⟩

= C2⟨ψRQFT |(aAnαn )
†...(aA2

α2
)†(δ2A2A)a

A2
α2
...aAnαn |ψRQFT ⟩

− ⟨ψRQFT |(aAnαn )
†...(aA2

α2
)†aA2

α2
...aAnαn (a

A1=2A
α1

(aA1=2A
α1

)†)|ψRQFT ⟩
= C2(δ2A2A)⟨ψRQFT |(aAnαn )

†...(aA2
α2

)†aA2
α2
...aAnαn |ψRQFT ⟩

= C2(δ2A2A)⟨ψRQFT |(aAnαn )
†...(aA3

α3
)†(δ2A−12A−1 − a

A2=2A−1
α2

(aA2=2A−1
α2

)†)

× aA3
α3
...aAnαn |ψRQFT ⟩

= C2(δ2A2A)(δ
2A−1
2A−1)⟨ψRQFT |(a

An
αn )
†...(aA3

α3
)†aA3

α3
...aAnαn |ψRQFT ⟩

= C2(δ2A2A)(δ
2A−1
2A−1)...(δ

1
1)⟨ψRQFT |1|ψRQFT ⟩

= C2(2A)(2A− 1)...(1)

= C2(2A)!

[4.20]

Therefore, we get normalisation constant C = 1√
(2A)!

= 1√
n!
.And now we can

build consistent states based on the Clifford vacuum.

Ω(n)λ0+
n
2

(α1,A1)...(αn,An)
=

1√
n!
(aA1
α1

)†...(aAnαn )
†Ω(n)λ0 [4.21]

where λ0 is the spin.And states [4.21] generate the representation of supersym-
metry algebra,called supermultiplet.Above all,we can see a representation of
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supersymmetry algebra is that of Clifford algebra [3.79] on compactified dimen-
sions.For each n,we have 2N choices,thus statistically for each n we have C2N

n

choices with n = 0, ..., 2N .Thus,we get the dimension (number of states) of the
supersymmetry representation

dimΩ =

2N∑
n=0

(
2N
n

)
= 22N = (dim(CΩ))2 = 22k = (dimρ(gSO(d))/2)

2 [4.22]

where CΩ is defined by aA = aA1 + iaA2 .We see that the k compactified part of
representation [3.79] is actually a supersymmetry representation with N internal
dimensions for N = k in [3.75].With 22N−1 integer spin states and 22N−1 half-
integer spin states.And we list below several cases of supermultiplet below, each
tuple shows the corresponding states in the representation.

N = 1, dim(CΩ) = 21, (λ0, λ0 +
1

2
)

N = 2, dim(CΩ) = 22, (λ0, λ0 +
1

2
, λ0 +

1

2
, λ0 + 1)

N = 4, dim(CΩ) = 24, (λ0,
4 λ0 +

1

2
,6 λ0 + 1,4 λ0 +

3

2
, λ0 + 2)

[4.23]

4.5 Component fields

We want to change the supersymmetry algebra to a version with fields for
constructing supersymmetric field theory.Firstly,we introduce the anticommut-
ing parameters ξ, η.., and satisfy

{ξα, ξβ} = {ξα, Qβ} = ... = {ξα, Pm} = 0 ξQ = ξαQα, ξQ = ξα̇Q
α̇

[4.24]

In this case,the nontrivial term becomes

[ξQ, ξQ] = [ξαQα, ξα̇Q
α̇
] = ξQξQ− ξQξQ = ξξQQ− ξξQQ

= ξξ(QQ+QQ) = ξξ{Q,Q} = ξξ2σmPm

= 2ξασmαα̇ξ
α̇
Pm

[4.25]

Notice that we need to be vary careful about the spinor indices,but sometimes
we ignore indices for simplicity.Then,we introduce a component multiplet that
is a set of fields(A,ψ ...) with the infinitesimal supersymmetry transformation

δξA = (ξQ+ ξQ)×A, δξψ = (ξQ+ ξQ)× ψ [4.26]

32



The × means undefined multiplication.And satisfy

[δη, δξ]A = δηδξ − δξδη = δη(ξQ+ ξQ)A− δξ(ηQ+ ηQ)A

= (ηQ+ ηQ)(ξQ+ ξQ)A− (ξQ+ ξQ)(ηQ+ ηQ)A

= ηQ(ξQ+ ξQ)A+ ηQ(ξQ+ ξQ)A− ξQ(ηQ+ ηQ)A− ξQ(ηQ+ ηQ)A

= ηQξQA+ ηQξQA+ ηQξQA+ ηQξQA

− ξQηQA− ξQηQA− ξQηQA− ξQηQA
= [ηQ, ξQ]A+ [ηQ, ξQ]A+ [ηQ, ξQ]A+ [ηQ, ξQ]

= 0 + 2ησmξPmA− 2ξσmηPmA+ 0 = 2(ησmξ − ξσmη)PmA

= 2(ησmξ − ξσmη)(−i∂m)A = −2i(ηασmαα̇ξ
α̇ − ξασmαα̇ηα̇)∂mA

[4.27]

The last line is for scalar field,A ∝ eiPmxm and ∂m = ∂
∂m , −i ∂∂mA = −i(ipm)A =

PmA.This means the supersymmetry transformation closes.And supersymmetry
transformation needs to transform tensor field to spinor field and vice versa.For
tracking the field produced we need to do dimension analysis,we have

Qψ ∝ F + ∂nA, [Q] =
1

2
[ψ] =

k

2
[∂n] = n[∂] = n k ∈ Zodd

with [F ] =
1

2
+
k

2
n =

1

2
+
k

2
− l [A] = l l ∈ Z

[4.28]

[ ] is for mass dimension and F is an auxiliary field.By the guidance of [4.28],we
can set

δξA =
√
2ξαψα, δξψα = i

√
2σmαα̇ξ

α̇
∂mA+

√
2ξαF [4.29]

we can verify closure similarly to [4.27] for closure on ψ

[δη, δξ]ψα = i
√
2σmξ∂m(δηA) +

√
2ξ(δηF )− i

√
2σmη∂m(δξA)−

√
2η(δξF )

= i(−2∂mψ)(ησmξ − ξσnη) +
√
2(ξδηF − ηδξF )

= i(σmαα̇σ
nα̇β∂nψβ)(η

βσmβγ̇ξ
γ̇ − ξβσmβγ̇ηγ̇) +

√
2(ξδηF − ηδξF )

= i(δβασ
mα
α̇ σnα̇β∂nψβ)(η

βσmβ
γ̇ξγ̇ − ξβσmβ γ̇ηγ̇) +

√
2(ξδηF − ηδξF )

= −i(σmαα̇ σmβ
γ̇σnα̇β∂nψβ)(η

βδβαξγ̇ − ξβδβαηγ̇) +
√
2(ξδηF − ηδξF )

= −i(σmαα̇ σmβ
γ̇)(ξγ̇σ

nα̇βηβδβα − ηγ̇σnα̇βξβδβα)∂nψβ
+
√
2(ξδηF − ηδξF )

= −i(δαβ δ
γ̇
α̇)(ξγ̇σ

nα̇βηα − ηγ̇σnα̇βξα)∂nψβ +
√
2(ξδηF − ηδξF )

= −i(ξα̇σnα̇αηα − ηγ̇σnα̇αξα)∂nψα +
√
2(ξδηF − ηδξF )

= −i(ξσmη − ησmξ)∂mψα +
√
2(ξδηF − ηδξF )

[4.30]
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And for closure on A

[δη, δξ]A = δηδξA− δξδηA =
√
2ξδηψ −

√
2ηδξψ

=
√
2ξ(i
√
2σmη∂mA+

√
2ηF )−

√
2η(i
√
2σmξ∂mA+

√
2ξF )

= −2i(ησmξ − ξσmη)∂mA+ 4ξηF

[4.31]

For closure and maintaining the similar form of 1st term in [4.30],we have

δξF = i
√
2ξσm∂mψ [4.32]

Then,from Dirac equation (3.39) in [8] we get below for i = 1, 2, 3

−mψL = i(−∂0 − σi∂i)ψR = i(σ0∂0 − σi∂i)ψR = iσm∂mψR [4.33]

we can let F = −mA∗,and [4.32] becomes

i
√
2ξσm∂mψ = −mδξA∗ = −m

√
2ξψ [4.34]

we exactly get the Dirac equation [4.32] in periodic dimensionsψL = ψ,ψR = ψ
in this case.Which means we get a right form of [4.32] and we can view the
closure has guaranteed by the field equation [4.32].And we call A,ψ, F with
supersymmetry transformations δξA, δξψ, δξF closing the chiral or scalar mul-
tiplet.

Then,we can use above to construct the following supersymmetrically invari-
ant action LSUSY = L +mLm

L0 = i∂nψσ
nψ +A∗2A+ F ∗F

Lm = AF +A∗F ∗ − 1

2
ψψ − 1

2
ψψ

[4.35]

We can see the variation

δξL0 = i∂nδξψσ
nψ + i∂nψσ

nδξψ + δξA
∗2A+A∗2δξA+ δξF

∗F + F ∗δξF

= i∂n(−i
√
2ξσm∂mA

∗ +
√
2ξF ∗)σnψ + i∂nψσ

n(i
√
2σmξ∂mA+

√
2ξF )

+
√
2ξψ2A+A∗2

√
2ξψ − i

√
2∂mψσ

mξF + F ∗i
√
2ξσm∂mψ

= −
√
2(−σmσn∂m∂n)A∗ξψ −

√
2(−ξψ)σmσn∂m∂nA

+
√
2ξψ2A+

√
2A∗ξ2ψ

+ i
√
2ξ∂nF

∗σnψ + i
√
2∂nψσ

nξF + i
√
2ξσm∂mψF + i

√
2F ∗ξσm∂mψ

= −
√
2(−− ηmn∂m∂n)A∗ξψ −

√
2ξψ(−− ηmn∂m∂n)A

+
√
2ξψ2A+

√
2A∗ξ2ψ

− i
√
2ξF ∗σn∂nψ + i

√
2∂mψσ

mξF − i
√
2∂mψσ

mξF + i
√
2ξF ∗σm∂mψ

= −
√
2A∗ξ2ψ −

√
2ξψ2A+

√
2ξψ2A+

√
2A∗ξ2ψ + 0 = 0

[4.36]
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We have performed partial derivative and ξσnψ = −ψσnξ.And for unbar part

δξLm(A,F, ψ) = δξAF +AδξF − ψαδξψα

=
√
2ξαψαF +Ai

√
2ξσm∂mψ − ψα(i

√
2σmαα̇ξ

α̇
∂mA+

√
2ξαF ) = 0

[4.37]

Then,easily we can find the field equations

0 = ∂n
∂L

∂(∂nψ)
− ∂L

∂ψ
= ∂n

∂

∂(∂nψ)
(i∂nψσ

nψ)− ∂

∂ψ
(−m1

2
ψψ)

= iσn∂nψ −
1

2
(−mψ −mψ) = iσn∂nψ +mψ

0 = F +mA∗

0 = ∂n
∂L

∂(∂nA∗)
+
∂L

∂A∗
= ∂n

∂

∂(∂nA∗)
(A∗2A)− ∂

∂A∗
(mA∗F ∗)

= ∂n
∂

∂(∂nA∗)
(A∗ηmn∂m∂nA)−mF ∗ = ∂n

∂

∂(∂nA∗)
(−∂nA∗ηmn∂mA)−mF ∗

= −ηmn∂m∂nA−mF ∗ = 2A+mF ∗

[4.38]

Next,we want to proof a good property LSUSY =: LSUSY : which means the
path integral of the interacting Lagrangian is regular,the interactions counter-
act with each other,the interactions of bosons counteract that of fermions ex-
actly.And we perform Dyson-Schwinger equation

0 =

∫
[dψ(z, z)]

δ

δψ
[exp(−S)ψ(z′, z′)]

=

∫
[dψ(z, z)]{exp(−S)δS

δψ
ψ(z′, z′) + exp(−S)δ2(z − z′, z − z′)}

=

∫
[dψ(z, z)]exp(−S){[iσn∂nψ +mψ](z, z)ψ(z′, z′) + δ2(z − z′, z − z′)}

=
〈
i∂nψ(z

′, z′)σnψ(z, z)
〉
+
〈
mψ(z, z)ψ(z′, z′)

〉
+
〈
δ2(z − z′, z − z′)

〉
[4.39]

Following the same method of [4.39] and use the field equations [4.38],We finally
get〈

i∂nψ(z
′, z′)σnψ(z, z)

〉
+
〈
mψ(z, z)ψ(z′, z′)

〉
= −

〈
δ2(z − z′, z − z′)

〉〈
i∂nψ(z, z)σ

nψ(z′, z′)
〉
+ ⟨mψ(z, z)ψ(z′, z′)⟩ = −

〈
δ2(z − z′, z − z′)

〉
⟨F ∗(z, z)F (z′, z′)⟩+ ⟨mA(z, z)F (z′, z′)⟩ = −

〈
δ2(z − z′, z − z′)

〉
⟨A∗(z, z)2A(z′, z′)⟩+ ⟨mA∗(z, z)F ∗(z′, z′)⟩ = −

〈
δ2(z − z′, z − z′)

〉 [4.40]
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And for the 2nd term in [4.40]〈
i∂nψ(z, z)σ

nψ(z′, z′)
〉∗

+ ⟨mψ(z, z)ψ(z′, z′)⟩∗ = −
〈
δ2(z − z′, z − z′)

〉∗〈
−i∂nψ(z, z)σnψ(z′, z′)

〉
+
〈
mψ(z, z)ψ(z′, z′)

〉
= −

〈
δδ(z − z′, z − z′)

〉∗〈
iψ(z′, z′)σn∂nψ(z, z)

〉
+
〈
mψ(z, z)ψ(z′, z′)

〉
= −

〈
δδ(z − z′, z − z′)

〉〈
−i∂nψ(z′, z′)σnψ(z, z)

〉
+
〈
mψ(z, z)ψ(z′, z′)

〉
= −

〈
δ2(z − z′, z − z′)

〉〈
i∂nψ(z

′, z′)σnψ(z, z)
〉
−
〈
mψ(z, z)ψ(z′, z′)

〉
=
〈
δ2(z − z′, z − z′)

〉
[4.41]

Then use 1st term in [4.40] minus final equation in [4.41],we find

⟨mψ(z, z)ψ(z′, z′)⟩ = −
〈
δ2(z − z′, z − z′)

〉
[4.42]

Same procedure above for consider all field equations,we get OPE〈
mψ(z, z)ψ(z′, z′)

〉
= ⟨mψ(z, z)ψ(z′, z′)⟩ = −

〈
δ2(z − z′, z − z′)

〉
⟨mA(z, z)F (z′, z′)⟩ = ⟨mA∗(z, z)F ∗(z′, z′)⟩ = −

〈
δ2(z − z′, z − z′)

〉 [4.43]

And other OPEs vanish.The subtile point is that a spinor field has 2-component
index that means it has 2 degree of freedom compared to a bosonic field which
has 1 degree of freedom thus ⟨mψψ⟩L = 2 ⟨mψ(z, z)ψ(z′, z′)⟩.Thus,

: LSUSY : = LSUSY − ⟨L ⟩L

= LSUSY − ⟨AF ⟩L − ⟨A
∗F ∗⟩L +

1

2
⟨ψψ⟩L +

1

2

〈
ψψ
〉

L

= LSUSY − δ2 − δ2 +
1

2
2δ2 +

1

2
2δ2 = LSUSY

[4.44]

Also,[4.44] tells us that the number of degree of freedom of bosons is indeed
equal to that of fermions in a supersymmetry invariant action.

4.6 Superspace and Superfields

The supersymmetry algebra with anticommuting parameters [4.24] is a Lie
algebra,we can verify the axioms

[aξQ+ bξQ, ξQ] = a[ξQ, ξQ] + b[ξQ, ξQ]

[ξQ, ξQ] = [ξQ, ξQ] = [Pm, Pm] = 0

[Pm, [ξQ, ξQ]] + [ξQ, [ξQ, Pm]] + [ξQ, [Pm, ξQ]] = 0

[ξQ, ξQ] = −[ξQ, ξQ]

[4.45]

we can define a corresponding group element by using the linear combination
of basis (Pm, Q,Q) that expand the parameter space (x, θ, θ) of a multiplicative
group with element

G(x, θ, θ) = ei{−x
mPm+θQ+θQ} [4.46]
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Because of Jacobi identity,we use Hausdorff’s formula eAeB = eA+B+ 1
2 [A,B] to

multiplication of two group elements.We find

G(0, ξ, ξ)G(xm, θ, θ) = ei{ξQ+ξQ}ei{−x
mPm+θQ+θQ}

= ei{−x
mPm+(ξ+θ)Q+(ξ+θ)Q}+i2 1

2 [ξQ,θQ]+i2 1
2 [ξQ,θQ]

= ei{−x
mPm+(ξ+θ)Q+(ξ+θ)Q−(−i 12 2ξσ

mθ)Pm+(−i 12 2θσ
mξ)Pm}

= G(xm + iθσmξ − iξσmθ, θ + ξ, θ + ξ)

[4,47]

Notice that G(0, ξ, ξ) is the only nontrivial multiplication element from the
observationG(xm1 , 0, 0)G(x

m
2 , θ, θ) = G(0, 0, 0)G((x1 + x2)

m, θ, θ).This multi-
plicative group can naturally induce an additive group with element (xm, θ, θ)
with multiplication (xm1 , θ1, θ1)(x

m
2 , θ2, θ2) = (xm1 + xm2 , θ1 + θ2, θ1 + θ2) which

makes ((xm, θ, θ),+) ∼= (R × R × R,+),we can find a subgroup of it descents
from the group [4.46] based on super Lie algebra [4.45] by

G(0, ξ, ξ)×G(xm, θ, θ) G(xm + iθσmξ − iξσmθ, θ + ξ, θ + ξ)

(0, ξ, ξ) × (xm, θ, θ)

D × (xm, θ, θ)× (xm, θ, θ) (xm + iθσmξ − iξσmθ, θ + ξ, θ + ξ)

a

≃ ≃

b

Because elements G(0, ξ, ξ) forms a subgroup,the first line in the diagram induce
a group action.If group action is a property,the natural isomorphism in the
diagram descents the group action of a to that of b,that means we get a natural
group action induced by the last line in diagram from [4.46] over [4.45].[

D × (xm, θ, θ)
]
× (xm, θ, θ)→ (xm, θ, θ)

d× (x1, x2, x3)× (xm, θ, θ) 7→ (xm + dx1, θ + dx2, θ + dx3)
[4.48]

which meansGD = (
[
D×(xm, θ, θ)

]
,+) ⊂ ((xm, θ, θ),+),is a subgroup.Then,the

group axiom of inverse gives,for d ∈ D , x ∈ (xm, θ, θ) the inverse (dx)−1 =
x−1d−1 exists which means for any x ∈ GD ,d−1 exists to make d−1x ∈ (xm, θ, θ).
Next,we want to find out the elements in D .By the following calculation[

ξα
(

∂

∂θα
− iσmαα̇θ

α̇ ∂

∂xm

)
+ ξα̇

(
∂

∂θα̇
− iθασm

αβ̇
εβ̇α̇

∂

∂xm

)]
(xm, θ, θ)

=

(
−ξαiσmαα̇θ

α̇ ∂

∂xm
xm − ξα̇iθασmαβ̇ε

β̇α̇ ∂

∂xm
xm, ξα

∂

∂θα
θα, ξα̇

∂

∂θα̇
θα̇

)
=
(
−iξασmαα̇θ

α̇ − (−iθασm
αβ̇
εβ̇α̇ξα̇), ξ

α, ξα̇

)
=

(
−iξασmαα̇θ

α̇
+ iθασm

αβ̇
ξ
β̇
, ξα, ξα̇

)
[4.49]
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and compare it with [4.48] we get d = ξQ+ ξQ ∈ D ,which are also differential
operators.

ξQ+ ξQ = ξα
(

∂

∂θα
− iσmαα̇θ

α̇
∂m

)
+ ξα̇

(
∂

∂θα̇
− iθασm

αβ̇
εβ̇α̇∂m

)
[4.50]

Thus,if x, y ∈ (xm, θ, θ) for x ̸= 0 that means x is nontrivial,we have

d−1x = y ⇒
∫
x... = y ⇒ dy = x ̸= 0 ∀ y [4.51]

In this case,[4.51] tells us the group GD is a Lie group which is a differentiable
manifold and the space parametrized by (xm, θ, θ) ∈ GD is also a differen-
tial manifold,we call this superspace which is a supermanifold here.For com-
pletion,we need to verify the commutation relation of operators in [4.50] indeed
agree with the superalgebra [4.12].And we can verify the supersymmetry algebra

{Qα, Qα̇} =
(

∂

∂θα
− iσmαα̇θ

α̇
∂m

)(
∂

∂θ
α̇
− iθασαβ̇mεβ̇α̇∂m

)
+

(
∂

∂θ
α̇
− iθασαβ̇mεβ̇α̇∂m

)(
∂

∂θα
− iσmαα̇θ

α̇
∂m

)
=

∂

∂θα
∂

∂θ
α̇
− i ∂

∂θα
θασ

αβ̇mεβ̇α̇∂m − iσ
m
αα̇θ

α̇
∂m

∂

∂θ
α̇
− σmαα̇θα̇∂mθασαβ̇mεβ̇α̇∂m

+
∂

∂θ
α̇

∂

∂θα
− iσmαα̇

∂

∂θ
α̇
θ
α̇
∂m − iθασαβ̇mεβ̇α̇∂m

∂

∂θα
− θασαβ̇mεβ̇α̇∂mσ

m
αα̇θ

α̇
∂m

= −i ∂

∂θα
θαε

αβσβ̇β
mεβ̇α̇∂m − iσ

m
αα̇∂m + iσmαα̇∂m

∂

∂θ
α̇
θ
α̇
+ iεαβσβ̇α

mεβ̇α̇∂m
∂

∂θα
θα

= −i ∂

∂θα
εαβθασ

β̇
β
mεβ̇α̇∂m − iσ

m
αα̇∂m + iσmαα̇∂m + iσβ̇α

mεβ̇α̇ε
αβ∂m

∂

∂θα
θα

= i
∂

∂θβ
θασ

β̇
β
mεβ̇α̇∂m − iσ

β̇
α
mεβ̇α̇ε

βα∂m
∂

∂θα
θα

= iδβασ
β̇m
β εβ̇α̇∂m − iσ

β̇m
α εβ̇α̇∂mε

βα ∂

∂θα
θα = iσmαα̇∂m + iσβ̇mα εβ̇α̇∂m

∂

∂θβ
θα

= 2iσmαα̇∂m = −2σmαα̇Pm
[4.52]

for Pm = −i∂m.We can see in the diagram above [4.48],the [4.50] is a left
multiplication,we want to shift it to right multiplicationDα, Dα̇

Dα(←) =
∂

∂θα
+ iσmαα̇θ

α̇
∂m Dα̇(←) = − ∂

∂θ
α̇
− iθασmαα̇∂m [4.53]

with anticommutation relations that are right multiplicative version of [4.52]

{Dα, Dα̇} = −2iσmαα̇∂m {Dα, Qβ} = 0 [4.54]
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other anticommutators vanish.Now,we can introduce superfields living in the
superspace.For component fields (f...χα̇...d)(x) in a theory,a superfield is a func-
tion of degree 0 of sipinor index in superspace that can be expanded in a power
series over all θ, θ index-contractions with the component fields with certain
indices.

F (x, θ, θ)(α,α̇) =f(x) + θαϕα(x) + θ
α̇
χα̇(x)

+ θαθαm(x) + θ
α̇
θα̇n(x) + θασmαα̇θ

α̇
νm(x)

+ θαθαθ
α̇
λα̇(x) + θ

α̇
θα̇θ

αψα(x) + θαθαθ
α̇
θα̇d(x)

[4.55]

Higher powers of θ, θ vanish,because it will contain repreated θα, θ
α̇
.This con-

struction gives us that the supersymmery transformation of superfield is that of
component field [5.3].

δξF (x, θ, θ) =δξf(x) + θαδξϕα(x) + θ
α̇
δξχα̇(x)

+ θαθαδξm(x) + θ
α̇
θα̇δξn(x) + θασmαα̇θ

α̇
δξνm(x)

+ θαθαθ
α̇
δξλα̇(x) + θ

α̇
θα̇θ

αδξψα(x) + θαθαθ
α̇
θα̇δξd(x)

≡(ξQ+ ξQ)F (x, θ, θ)

[4.56]

In this case,we get the following properties for a constant a.

(ξQ+ ξQ)(F1 + F2) = (ξQ+ ξQ)F1 + (ξQ+ ξQ)F2

(ξQ+ ξQ)(aF ) = a(ξQ+ ξQ)F
[4.57]

that matches the definition of linear transformation,which means we can rep-
resent elements of supersymmetry algebra as linear transformations of super-
fields.Thus,superfields form a linear representation of the supersymmetry alge-
bra.But the representation space consisting of superfields is highly reducible.For
this,the problem of studding supersymmetry representation to that of finding
solution space of vanishing of differential equations of superfields.

DΦ = DΦ† = 0 chiral or scalar superfields

F = F † vector superfields
[4.58]

Another way to construct a superfield is applying exp(θQ+θQ)× to a component
multiplet A,with undefined multiplication ×.

F (x, θ, θ) = e(θQ+θQ) ×A =

∞∑
n=0

((ξQ+ ξQ)×)n

n!
A

= A+ (ξQ+ ξQ)×A+
1

2
((ξQ+ ξQ)×)2A+ ...

[4.59]

with transformations δξF (x, θ, θ) = (ξQ+ ξQ)F ̸= (ξQ+ ξQ)×F with the first
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equation from [4.50].We can find out the undefined multiplication by

(ξQ+ ξQ)e(θQ+θQ)×

=

[
ξα
(

∂

∂θα
− iσmαα̇θ

α̇
∂m

)
+ ξα̇

(
∂

∂θα̇
− iθασm

αβ̇
εβ̇α̇∂m

)]
e(θQ×+θQ×)

=

[
ξα
(

∂

∂θα
− iσmαα̇θ

α̇
∂m

)
+ ξα̇

(
∂

∂θα̇
− iθασm

αβ̇
εβ̇α̇∂m

)]
eθQ×eθQ×e−θσ

mθPm

=
[
ξQ×−ξσmθPm + ξQ×+θσmξPm

]
eθQ×eθQ×e−θσ

mθPm

=
(
ξQ×+ξQ×−ξσmθPm + θσmξPm

)
e(θQ+θQ)×

[4.60]

the expression for the undefined multiplication is

(ξQ+ ξQ)× = (ξQ+ ξQ) + ξσmθPm − θσmξPm [4.61]

4.7 Chiral superfields

Chiral superfields are characterized by the condition [4.58],they correspond
to chiral multiplets [4.23] for N = 1,with Φ ∈ (−1/2, 0),Φ† ∈ (0, 1/2).For Φ
with coordinate-dependence,the solution on coordinate space is

ym = xm + iθσmθ and θ [4.62]

Thus,the solution of the superfield is Φ(ym, θ) with

Φ(ym, θ) = A(ym) +
√
2θψ(ym) + θθF (ym) [4.63]

We give spinor field ψ a
√
2 for convenience.And tylor expansion gives

Φ = A(xm + iθσmθ) +
√
2θψ(xm + iθσmθ) + θθF (xm + iθσmθ)

= A(x) + iθσmθ∂mA(x)−
1

2
θσmθθσnθ∂m∂nA(x)

+
√
2θψ −

√
2iθβσm

ββ̇
θ
β̇
θα∂mψα + θθF (x)

= A(x) + iθσmθ∂mA(x)−−
1

2

1

2
θθθθηmn∂m∂nA(x)

+
√
2θψ −

√
2i
1

2
εαβθθσm

ββ̇
θ
β̇
∂mψα + θθF (x)

= A(x) + iθσmθ∂mA(x) +
1

4
θθθθ2A(x)

+
√
2θψ − i√

2
θθ∂mψσ

mθ + θθF (x)

[4.64]

We have used [7](B.13)(B.14).The right multiplications [4.53] are x-fields,we
want express it in y-space,and notice that they are first-order derivative opera-
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tors.

Dα(x
m) = Dα(y

m − iθσmθ) = Dα(y
m)− iθσmθ ∂

∂ym
Dα(y

m)

= Dα(y
m)− iθσmθ ∂

∂ym

(
∂

∂θα
+ iσmαα̇θ

α̇ ∂

∂ym

)
= Dα(y

m) + iσmαα̇θ
α̇
θα

∂

∂θα
∂

∂ym
+ ◦

(
∂

∂ym

)2

= Dα(y
m) + iσmαα̇θ

α̇ ∂

∂ym
+ ◦

(
∂

∂ym

)2

=
∂

∂θα
+ 2iσmαα̇θ

α̇ ∂

∂ym

Dα̇(x
m) = Dα̇(y

m − iθσmθ) = Dα̇(y
m)− iθσmθ ∂

∂ym
Dα̇(y

m)

= Dα̇(y
m)− iθσmθ ∂

∂ym

(
− ∂

∂θ
α̇
− iθασmαα̇

∂

∂ym

)
= Dα̇(y

m) + iθασmαα̇
∂

∂ym
+ ◦

(
∂

∂ym

)2

= − ∂

∂θ
α̇

[4.65]

Same method for DΦ† = 0 gives us things about conjugation.And we list them
below.

y† = xm − iθσmθ and θ [4.66]

which is solution in coordinate space.And the corresponding superfield is

Φ† = A∗(y†) +
√
2θψ(y†) + θθF ∗(y†)

= A∗(x)− iθσmθ∂mA∗(x) +
1

4
θθθθ2A∗(x)

+
√
2θψ(x) +

i√
2
θθθσm∂mψ(x) + θθF ∗(x)

[4.67]

And differential operators expressed in y†-space

Dα =
∂

∂θα
Dα̇ = − ∂

∂θ
α̇
− 2iθασmαα̇

∂

∂y†m
[4.68]

Products of superfields are always superfields,products of chiral superfields Φ
are always chiral superfields

Dα̇(ΦiΦj ...) = Dα̇ΦiΦj ...+ΦiDα̇Φj ...+ ... = 0 [4.69]

But products of superfields with conjugations are not chiral superfields.

Dα̇(ΦiΦ
†
j ...) = Dα̇ΦiΦ

†
j ...+ΦiDα̇Φ

†
j ... ̸= 0 [4.70]

41



Thus,we can construct following product chiral superfields.

ΦiΦj = [Ai(y) +
√
2θψi(y) + θθFi(y)][Aj(y) +

√
2θψj(y) + θθFj(y)]

= Ai(y)Aj(y) +
√
2θAi(y)ψj(y) + θθAi(y)Fj(y) +

√
2θψi(y)Aj(y)

+
√
2θαψiα(y)

√
2θβψjβ(y) +

√
2θαψiα(y)θ

αθαFj(y)

+ θθFi(y)Aj(y) +
√
2θαθαθ

αψjα(y)Fi(y) + θαθαθ
αθαFi(y)Fj(y)

= Ai(y)Aj(y) +
√
2θ[ψi(y)Aj(y) +Ai(y)ψj(y)]

+ θθ[Ai(y)Fj(y) +Aj(y)Fi(y)] + 2(−1

2
θθεαβ)ψiαψjβ

= Ai(y)Aj(y) +
√
2θ[ψi(y)Aj(y) +Ai(y)ψj(y)]

+ θθ[Ai(y)Fj(y) +Aj(y)Fi(y)− ψiψj ]

[4.71]

ΦiΦjΦk = {Ai(y)Aj(y) +
√
2θ[ψi(y)Aj(y) +Ai(y)ψj(y)]

+θθ[Ai(y)Fj(y) +Aj(y)Fi(y)− ψiψj ]}[Ak(y) +
√
2θψk(y) + θθFk(y)]

= Ai(y)Aj(y) +
√
2θ[ψiAjAk + ψj +AkAi + ψkAiAj ](y)

+θθ[FiAjAk + FjAkAi + FkAiAj − εαβ(ψiαψjβAk + ψjαψkβAi + ψkαψiβAj)]

= Ai(y)Aj(y) +
√
2θ[ψiAjAk + ψj +AkAi + ψkAiAj ](y)

+θθ[FiAjAk + FjAkAi + FkAiAj − ψαψβAk − ψαψβAi − ψkαψβAj ]
[4.72]

Φ†iΦj |θθθθ = θθθθ[F ∗i Fj +
1

4
A∗i2Aj +

1

4
2A∗iAj ] + (−iθσnθ∂nA∗i )iθσmθ∂mAj

− iθθθα̇ψiα̇(−θ
β̇
σmβ
β̇
∂mψjβ) + iθθ(−∂mψiα̇σmα̇α θα)θβψjβ

= θθθθ[F ∗i Fj +
1

4
A∗i2Aj +

1

4
2A∗iAj ]−

1

2
θθθθ∂nA

∗
i ∂mAj

+ iθθ(−ψiα̇)(
1

2
εα̇β̇)σmβ

β̇
∂mψjβ + iθθ(−∂mψiα̇σmα̇α )(−1

2
εαβ)ψjβ

= θθθθ[F ∗i Fj +
1

4
A∗i2Aj +

1

4
2A∗iAj −

1

2
∂nA

∗
i ∂mAj

− i

2
ψiσ

m∂mψj +
i

2
∂mψiσ

mψj ]

[4.73]

Notice that Φ†iΦi|θθθθ is chiral.

Dα

(
Φ†iΦi|θθθθ

)
=

∂

∂θα

(
θθθθ[F ∗i Fi +

1

4
A∗i2Ai +

1

4
2A∗iAi −

1

2
∂mA

∗
i ∂mAi]

)
= θθθα[F ∗i Fiα +

1

4
A∗i2Aiα +

1

4
2A∗iAiα −

1

2
∂mA

∗
i ∂mAiα]

= 0

[4.74]
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Because the symmetric vectors with antisymmetric indices vanish.Now,we are
ready to build supersymmetric Lagrangian of chiral superfields.

First,recall that calculating path integral is about summing over all Feyn-
man diagrams.And superficial degree of divergence D is a quantity about UV
divergence that for D > 0.

Di = [diagrami]−
∞∑
n=3

Vn[gn] [4.75]

Vn is number of vertices and [gn] is the mass dimension of the vertex in the
diagrami.And this leads to the definition of renormalizability.A theory is renor-
malisable means there are finite diagrams with D > 0 ⇔ [gn] ≥ 0.[L ] = 4 for
4-dimensional case tells us the mass dimension of product fields in the Lagragian
must be equal or less 4 to give a renormalisable theory.

Now we can use the terms with appropriate mass dimensions in above chiral
superfields to build the most general renormalizable Lagrangian.

LGD =

4∑
[superfield]=0

L[superfield] =

4∑
d=[superfield]=0

(c4−d)× superfieldd

= Φ†iΦi|θθθθ.c +
[(

1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk + λiΦi

) ∣∣∣∣
θθ.c

+ h.c.

]
[Φ†iΦi|θθθθ] = 0, 1 [Φi|θθ] = 2 [ΦiΦj |θθ] = 3 [ΦiΦjΦk|θθ] = 4

[4.76]

where we use LGD to show it is a Lagrangian on the supermanifold and the .c
means the component of the restriction and the fraction and symmetric-index
coupling are for symmetrization to cancel double counting.For ΦiΦj case

1

2
m[AiFj +AjFi] =

1

2
mij [AiFj +AjFi] = mijAiFj [4.77]

And use [4.64][4.67][4.73],changing basis from y to x does not change Lagrangian

Φ(x) \ (θ.c) = A(x) +
√
2θψ(x) + θθF (x)

⇒ Φi(y)...|θθ.c = Φi(x)...|θθ.c
Φ†Φj |θθθθ(x) = Φ†Φj |θθθθ(y)− θσ

mθ∂[Φ†Φj |θθθθ(y)]...

= Φ†Φj |θθθθ(y) + ◦(θ
αθα, θ

α̇
θ
α̇
...)

= Φ†Φj |θθθθ(y)

[4.78]

The two sides are same on form,we can do a reparametrisation x↔ y.Thus,we
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get LGD (x) = LGD (y). In terms of component fields

LGD = F ∗i Fi +
1

4
(A∗i2Ai +2A∗iAi)−

1

2
∂nA

∗
i ∂mAi

+
i

2
(−ψiσm∂mψi + ∂mψiσ

mψi) +

[
1

2
mij(AiFj +AjFi − ψiψj)

+
1

3
gijk(FiAjAk + FjAkAi + FkAiAj)

+
1

3
gijk(−ψiψjAk − ψjψkAk − ψkψiAj) + λiFi + h.c.

]
= F ∗i Fi +

1

4
(A∗i2Ai +A∗i2Ai) +

1

2
A∗i2Ai

+
i

2
(∂mψiσ

mψi + ∂mψiσ
mψi) +

[
mij(

1

2
2AiFj −

1

2
ψiψj)

+ gijk(
1

3
3FiAjAk −

1

3
3ψiψjAk) + λiFi + h.c.

]

= i∂mψiσ
mψi +A∗i2Ai + F ∗i Fi +

[
mij

(
AiFj −

1

2
ψiψj

)
+ gijk(FiAjAk − ψiψjAk) + λiFi + h.c.

] [4.79]

We can use δL
δF and δL

δF∗ to find equations of auxiliary fields.

0 = ∂m
∂LGD

∂(∂mF )
=
∂LGD

∂F
= F ∗i δ

k
i + λiδ

k
i +mijAiδ

k
j + gijkAiAj

= F ∗k + λk +mikAi + gijkAiAj

0 = ∂m
∂LGD

∂(∂mF ∗)
=
∂LGD

∂F ∗
= Fk + λ∗k +m∗ikA

∗
i + g∗ijkA

∗
iA
∗
j

[4.80]

And we put [4.80] in [4.79]

LGD |Fk = F ∗kFk +mikAiFk + gijkAiAjFk + λkFk

+m∗ikA
∗
iF
∗
k + g∗ijkA

∗
iA
∗
jF
∗
k + λ∗kF

∗
k

= F ∗kFk − (−mikAi − gijkAiAj − λk)Fk − (−m∗ikA∗i − g∗ijkA∗iA∗j − λ∗k)F ∗

= F ∗kFk − F ∗kFk − FkF ∗k = −F ∗kFk = −V (Ai, A
∗
j )

LGD = i∂mψiσ
mψi +A∗i2Ai −

1

2
mikψiψk −

1

2
m∗ikψiψk

− gijkψiψjAk − g∗ijkψiψjA∗k − V (Ai, A
∗
j )

[4.81]

V (Ai, A
∗
j ) = F ∗kFk is the potential term.The reason of expressing in terms of

component fields is that [4.76] is clear on chiral superfields but now we can
clearly see the kinetic,mass and potential terms in [4.81].
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Note that constant a is the superfield F (x, 0, 0) = f(x) in [4.55] with f(x) =
a and satisfy Dα̇a = Dαa = 0,so it is a chiral superfield.Thus Φi + a is chiral
superfield and we can get another Lagrangian made of chiral superfields by shift
Φi → Φi + a.The shift on Lagrangian [4.76] of terms on θθ.c is

1

2
mij(Φi + ai)(Φj + aj) +

1

3
gijk(Φi + ai)(Φj + aj)(Φk + ak) + λi(Φi + ai)

=
1

2
mijΦiΦj +

1

2
mij(aiΦj + ajΦi) +

1

3
gijkΦiΦjΦk +

1

3
gijk(aiΦjΦk + ajΦkΦi

+ akΦiΦj) +
1

3
gijk(aiajΦk + ajakΦi + akaiΦj) + λiΦi + ◦(a, a2, a3)

=
1

2
mijΦiΦj + gijkakΦiΦj +

1

3
gijkΦiΦjΦk + λiΦi +mijajΦi + gijkajakΦi

[4.82]

And then we get following coupling constants in the shifted Lagrangian

g′ijk = gijk

m′ij = mij + 2gijk

λ′i = λi +mijaj + gijkajak

[4.83]

This is a good property,if the previous potential had a minimum at Φi = −ai
then we can shift it to the origin Φ′i = −ai + ai = 0 and with shifted couplings
calculated by [4.83].

In addition,we find supersymmetry algebra is invariant under multiplication
of supercharge by a phase factor Q′ = e−iαQ,thus [4.25] gives

[θQ, θQ]′ = e−iαeiα2θσmθPm = [θQ, θQ] [4.84]

We see that it is invariant on algebra,and we call it R-invariance.In the algebra
[4.25],we can let the anticommutative parameter absorb the phase factor

[θQ, θQ]′ = [θ(e−iαQ), θ(eiαQ)] = [(e−iαθ)Q, (eiαθ)Q] [4.85]

Then we get R-transformation on the anticommuting parameter R : θ → e−iαθ.
Notice that the R-transformation is invariant on supersymmetry algebra but
not necessarily on θ.c in Lagrangian.thus we get a constraint on renormalizable
Lagrangian [4.76] that is being R-invariant,this needs to let us define a unify
quantity to superfields called R-character n to capture and cancel the effect
of R-transformation on the parameters in the chiral superfields.In this case R-
transformation acts on chiral superfields is

RΦ(θ, x) = e2inαΦ(e−iαθ, x)

RΦ†(θ, x) = e−2inαΦ†(eiαθ, x)
[4.86]

We can put it on the component fields in [4.78] as this is the case we have used
in building the Lagrangian.Now,Φ(θ, x) = Φ(x)/(θ.c, x)

RΦ(θ, x) = e2inαA(x) +
√
2e2inαe−iαθψ + e2inαe−iαθe−iαθF (x) [4.87]
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Then we get

R :A→ e2inαA

ψ → e2i(n−
1
2 )α

F → e2i(n−1)αF

[4.88]

In this case,we shift the effects of R-transformation to the R-character of each
superfield and assign the R-character to each component of the superfield.And
in our Lagrangian [4.81],the phase factors of kinetic terms cancel on the con-
jugate pair.Thus,the R-invariance is a constraint on the mass term and poten-
tial term.Thus the Lagrangian has R-invariance only if the total R-characters
of products superfields of mass and potential terms need to be integer.For
instance,we use ψiψjAk in a mass term of [4.81],the R transformation gives

e2i(ni−
1
2 )ψie

2i(nj− 1
2 )ψje

2inkαAk as [4.88].This term is R-invariance only if ni −
1
2 + nj − 1

2 + nk = ni + nj + nk − 1 ∈ Z,that is just ni + nj + nk ∈ Z.

4.8 Vector superfields

Vector superfield satisfies [4.58]

V = V † [4.89]

which means a vector superfield needs to contain conjugate pair.Also,it should be
understood as the power serious expansion of θ, θ over all θ, θ index-contractions
with component fields with certain indices.

V (x, θ, θ) = C(x) + iθαχα − iθ
α̇
χα̇(x)

+
i

2
θαθα[M(x) +N(x)]− i

2
θ
α̇
θα̇[M(x)− iN(x)]− θασmαα̇θ

α̇
νm(x)

+ iθθθ
α̇
[
λα̇ +

i

2
σmαα̇ ∂mχα(x)

]
− iθθθα

[
λα(x) +

i

2
σmα̇α ∂mχα̇(x)

]
+

1

2
θαθαθ

α̇
θα̇

[
D(x) +

1

2
2C(x)

] [4.90]

The component fields C,D,M,N and νm must all be real for forming conju-
gation pairs.The vector field νm can be entire multiplet.The particular combi-
nations of components fields in θθθ.c, θθθ.c and θθθθ.c follow from the chiral
superfield Φ + Φ† from [4.64],[4.67] and it satisfy Hermitian condition [4.89].

(Φ + Φ†) = (Φ† +Φ) = (Φ + Φ†)† [4.91]

So it is a vector superfield of addition of a Hermitian pair of a chiral superfield.

Φ + Φ† = A+A∗ +
√
2(θψ + θψ) + θθF + θθF ∗ + iθσmθ∂m(A−A∗)

+
i√
2
θθθσm∂mψ +

i√
2
θθθσm∂mψ +

1

4
θθθθ2(A+A∗)

[4.92]
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we have used− i√
2
θθ∂mψσ

mθ = − i√
2
θθ(−θσm∂mψ).In [4.92],there is a gradi-

ent i∂m(A − A∗) as coefficient of θσmθ.This leads us define a supersymmetic
generalisation of a gauge transformation(or phase transformation) on [4.90].

V → exp

{
i

V

[
(A−A∗)− i

∫
(A+A∗ + θθF + θθF ∗)dz2

+
1√
2
θθθσmψ +

1√
2
θθθσmψ +

1

4
θθθθ∂m(A+A∗)

]}
V

= V + i∂m

[
(A−A∗)− i

∫
(A+A∗ + θθF + θθF ∗)dz2

+
1√
2
θθθσmψ +

1√
2
θθθσmψ +

1

4
θθθθ∂m(A+A∗)

]
1

V
V

= V +Φ+ Φ†

[4.93]

Indeed this is gauge transformation and the V +Φ+Φ† is also a vector superfield
by [4.91] as V ,thus this is a supersymmetric generalisation.And from [4.90] in
that particular combinations with [4.92] formed from [4.93],we clearly get

C → C +A+A∗

χ→ χ− i
√
2ψ

M + iN →M + iN − 2iF

νm → νm − i∂m(A−A∗)
λ→ λ

D → D

[4.94]

under this supersymmetric gauge transformation.

5 Classification of superstring theories

5.1 Spinors in various dimensions

Now,we have used a whole section for basics of SUSY,because we need to
accumulate enough physics intuition for further study.We continue our discus-
sion at the last of section 3.For generalized case,the generator of Lorentz algebra
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[4.2] in various dimension d with signature (d− 1, 1) is Σµν = −i/4[Γµ,Γν ] with

i[Σµν ,Σσρ] =
−i
16

[
[Γµ,Γν ], [Γσ,Γρ]

]
=

i

16

[
[Γµ,Γν ],ΓσΓρ

]
− i

16

[
[Γµ,Γν ],ΓρΓσ

]
=
−i
16

[Γ4[µνσρ]−[ρσνµ] + Γ4[νµρσ]−[σρµν] + Γ4[ρσµν]−[νµσρ] + Γ4[σρνµ]−[µνρσ]]

=
−i
16

[(2ηµν − ΓνΓµ)ΓσΓρ − (2ηρσ − ΓσΓρ)ΓνΓµ] + ...

=
−i
16

[2ηµνΓσΓρ − 2ηρσΓνΓµ − Γν(2ηµσ − ΓσΓµ)Γρ + Γσ(2ηρν − ΓνΓρ)Γµ]...

=
−i
16

[2ηµνΓ2[σρ] − 2ηρσΓ2[νµ] − Γν2ηµσΓρ + Γσ2ηρνΓµ + Γ4[νσµρ]−[σνρµ]]...

=
−i
16

{
2
(
[ηΓ2]µνσρ − [ηΓ2]ρσνµ − [ΓηΓ]νµσρ + [ΓηΓ]σρνµ

)
+ (2ηνσ − Γ2[σν])Γ2[µρ] − (2ησν − Γ2[νσ])Γ2[ρµ]

}
+ ...

=
−i
16

{
...+ 2ηνσ(4iΣµρ + Γ2[ρµ])− 2ησν(4iΣρµ + Γ2[µρ])

}
+ ...

=
−i
16

{
16iηνσΣµρ + Γ4{µ,ν}σρ − Γ4{ρ,σ}νµ − Γ4ν{µ,σ}ρ + Γ4σ{ρ,ν}µ

+ Γ4{ν,σ}ρµ − Γ4{σ,ν}µρ
}
= [ηΣ]νσµρ + [ηΣ]µρνσ − [ηΣ]νρµσ − [ηΣ]µσνρ

+ ◦(Γ4) ∝ Γ4[µν,σρ]+[σρ,µν]
+ Γ4[µσ,νρ]+[νρ,µσ]

+ Γ4[µρ,σν]+[σν,µρ]

= [ηΣ]νσµρ + [ηΣ]µρνσ − [ηΣ]νρµσ − [ηΣ]µσνρ

[5.1]

with the observation from the commutator decomposition

[f1f2, f3f4] = f1{f2, f3}f4 − f1f3{f2, f4}+ {f1, f3}f2f4 − f3{f1, f4}f2 [5.2]

We showed the details [5.1] for completeness without explanation for simplic-
ity.And exactly we see the algebra closes and represents Lie algebra gSO(d−1,1).
From [3.75] and apply [5.1] we can see the generators Σ2a,2a+1 commute,and we
can use it to define an operator

Sa = iδa,0Σ2a,2a+1 = iδa,0
−i
4
(Γ2aΓ2a+1−Γ2a+1Γ2a−2)− 1

2
= Γa+Γa−− 1

2
[5.3]

which let ζ(s) in [3.79] be its eigenstate with eigen value sa,for instance

SaΓ
a+ζ = (Γa+Γa− − 1

2
)Γa+ζ = (Γa+(1− Γa+Γa−)− 1

2
Γa+)ζ =

1

2
Γa+ζ [5.4]

We want to generalize Γ5 to various dimension which leads us to define Γ =
i−k

∏d−1
µ=0 Γ

µ that is

Γ = i−k
k∏
a=0

Γ2aΓ2a+1 = −
k∏
a=0

(−2Γa+Γa− + 1) = 2k+1
k∏
a=0

Sa [5.5]
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with eigenvalue 2k
∏k
a=0 sa = ±1,we can diagonalize Γ to Γss′ =

∑
ss′ ζ

(s)†Γζ(s
′)

by the eigenvalues that are +1 for even sa = −1/2 and −1 for odd sa =
−1/2.And the two states with eigenvalue as chirality split representation of
Lorentz algebra to two Weyl representations over C we discussed in [4.4].For
superstring case d = 10 and for the representation ρ.

32Dirac ∈ ρ(gSO(10)),= 16+ 16′ ∈ ρ(gSU(5))⊕ ρ(gSU(5)) [5.6]

denote as their dimensions 2k+1 and 2k for d = 2k + 2 and subscript Dirac
denotes the Dirac representation [3.79].Also,for the matrix form below [5.5],we
get Γ∗ss′ = Γss′ and Γ = (

∑
s ζ

(s)†)−1Γss′(
∑

s′ ζ
(s′))−1 that means Γ∗ = Γ up

to changing basis,and we get Sa is real from [5.5],then Γa± is real that means
Γ2a+1 is imaginary in [3.75] which differ from the remainders that are real,thus

we collect them to form a subgroup B with B1 =
∏d−1

2a+1=3 Γ
2a+1, B2 = ΓB1

B = {B1, B2,Γ...}, B2
1 = (−1)

∑d−1
2a+1=3(a−1), B2

2 = {±1}, B2B1 = {±Γ} [5.7]

and for anticommutation [Γµ∗,Γν ] = 0,we find the following conjugacy classes

Γµ ∼B1 (−1)kΓµ∗, Γµ ∼B2 (−1)k+1Γµ∗, Σµν ∼B={B1,B2} −Σ
µν∗ [5.8]

dividing the gamma matrices group MatDirac ⊂ Mat(C),satisfying Clifford alge-
bra [3.74].We can reformulate [5.8] and we get

BΣµν = ΣµνB ⇒ [Σµν , B] = 0 [5.9]

Thus,for Dirac representation ρ : gSO(2d/2) → MatDirac [3.79] with injective ρ

ρ−1(B) ⊂ Z(gSO(d)) = {z ∈ gSO(d)|zy = yz,∀y ∈ gSO(d)} [5.10]

the center of the Clifford algebra.And we want to use a theorem 7.20 in [11]
that is ρ is injective if and only if Z(G) = Ker(ρ) = {e},which means ρ−1(B) =
{egSO(d)

}{ρ−1(B1), ρ
−1(B2)},then we get B = {eMatDirac} by the injectivity.In

this case,we get the property that the Dirac representation is self-dual.

Mat∗Dirac = MatDirac/B = MatDirac/{e} = MatDirac [5.11]

Also,we can put conjugate action on chirality matrix Γ

Γ ∼B (−1)kΓ∗, keven self-dual, kodd dual to other [5.12]

which give property of Weyl representation.In this case,we have an notation

(d = 4, k = 1),4Dirac = 2+ 2̄(= 2′) (d = 10, k = 4),32Dirac = 16(= 1̄6) + 16′

[5.13]
B need to consistent with Lorentz transformation see example [4.5],which means
it contains the spinor index and preserve index contraction and notations are
same with section 4.From [5.9] in explicit index form,we have

Bα̇
αΣµνα̇α = Σµνα̇α Bα̇

α ⇒ Bα̇
α = ζ∗α̇(ζα)

−1 ⇒ ζ∗α̇ = Bα̇
αζα [5.14]
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And we end with a Majorana condition.Following from [5.7],we have

B∗1B1 = (−1)kB2
1 = (−1)

k(k+1)
2 , B∗2B2 = (−1)k+1(−1)

d(d+1)
2 B2

1 = (−1)
k(k−1)

2

[5.15]
Condition [5.14] can be translated to (ζ∗)∗ = B∗Bζ ⇒ B∗B = 1.In this
case,if kmod4 = 0, 3 B1 is open,if kmod4 = 0, 1 B2 is open in the Ma-
jorana condition.B1, B2 are physically equivalent,we can see the equivalence
above [5.11] in mathematical structure.If we regard B as a map,[5.14] induces
a self-dual representation.Majorana condition is open on Weyl spinor only if
kmod4 = 0, dmod8 = 2 which is in self-dual Weyl representation [5.12].In
this case,this Majorana-Weyl condition is open on the spinors in the space-
time (D=10) and world-sheet (d=2) of superstring theory.There is a duality
between Majorana and Weyl,in superstring theory the two sides of the duality
preserve,and one or two is closed for other case.We can see the duality by the
chirality projection operators P± = (1± Γ)/2

ζ ′Weyl = P+χ =
1 + Γ

2
χ, (

χ

2
)′Maj =

1

2
(ζ +B∗ζ∗) =

1 +B∗B

2
ζ = ζ ′Weyl [5.16]

where we used a fact that a Weyl or Majorana spinor is the object transformed
under Weyl or Majorana representation.The −ΓµT satisfy Clifford algebra,we
can consider charge conjugation in various dimension in Dirac representation

Cµ = τµ
2k×2k ⊗

(
0 −1
1 0

)
, with τνγµ

2k×2k(τ
ν)−1 = γµT [5.17]

for µ, ν = 0...d− 3,then the charge conjugation on Γµ gives

CνΓµ(Cν)−1 = Cγµ ⊗
(
−1 0
0 1

)
C−1

= (τγτ−1)µ ⊗
[(

0 −1
1 0

)(
−1 0
0 1

)(
0 1
−1 0

)]
= γµT ⊗

(
1 0
0 −1

)
= γµT ⊗

(
1 0
0 −1

)T
= −ΓµT

[5.18]

by induction we get a C for various dimension with CΓµC−1 = −ΓµT the
antihermiticity and hermiticity of Γµ in various dimension

Γµ† = Γνηµν = −Γ0Γµ(Γ0)−1 = γ0γµ(γ0)−1 ⊗ [σ3σ3(σ3)−1]

= γ0γµ(γ0)−1 ⊗
(
−1 0
0 1

)
, with γ0(γ0, γµ, ̸=0)(γ0)−1 = (−γ0, γµ, ̸=0)

[5.19]

where we showed details with [4.6] and we do not explain for simplicity.And we
combine [5.18] and [5.19],we get

Γµ∗ = (−Γ0Γµ(Γ0)−1)T = (Γ0)−1
T
(−ΓµT )Γ0T = Γ0CΓµC−1(Γ0)−1

= −CΓ0Γµ(Γ0C)−1 = CΓ0Γµ(CΓ0)−1
[5.20]
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where we used Γ0C = −CΓ0,Γ0 = (Γ0)−1 = Γ0T .We can compare this with
[5.8] and use (Γ0)2 = 1,we find clear expression for [5.17]

C = B1Γ
0, k = 2n, C = B2Γ

0, k = 2n+ 1, n ∈ Z [5.21]

And we easily to calculate the conjugacy of Lorentz generator with [3.74]

CΣµνC−1 =
−i
4
BΓ0(ΓµΓν − ΓνΓµ)(Γ0)−1B−1

=
−i
4
B[(−ΓµΓ0 + 1)Γν − (−ΓνΓ0 + 1)Γµ](Γ0)−1B−1

= BΣµνB−1 = −Σµν∗

[5.22]

5.2 Spinor product decomposition

There is a natural antisymmetrization from wedge algebra to tensor algebra∧
(V )p = T (V )/b→ T (V )µ, Ap∧Bq 7→

(p+ q)

p!q!
A[µ1...µpBµp+1...µp+q ] =

∑
n≥0

[n]

[5.23]
where T defined in [7.17] with a normal vector space V here,and b is graded
ideal generated from anticommutative relation.[n] means a set of antisymmet-
ric n-tensor.Subscript p, q for forms and µ for degree of tensors.This antisym-
metrization makes the wedge algebra isomorphic to a tensor subalgegra.And
isomorphism induces an isomorphism on basis,which means we can use a ba-
sis in tensor subalgebra to generate the wedge algebra,which is spinor product
decomposition.A spin presentation is a wedge algebra which means we can con-
struct product wedge algebra by [3.79] and all elements in this product algebra
can be decomposed in tensors which is a [0]-module for [0] be a field

∧
(Vζ∗)×

∧
(Vχ) = tr

({
k∏
a=0

(Γa+)sa+1/2ζ

}
×

{
k∏
b=0

(Γa+)sb+1/2χ

})

= tr

{∑
sa,sb

(
k∏
a=0

(Γa+)sa+1/2
k∏
b=0

(Γa+)sb+1/2

)
α̇α

ζ∗α̇χα

}

= tr

{∑
sa

(
k∏
a=0

(Γa+)sa+1/2

)
α̇α

Bβ̇βΓ
0β

β̇
ζ∗α̇χα

}

∼= Span(
{
ζ∗α̇C(Γ[a1+Γa2+...Γak+1+])α̇αχ

α
}
)

= Span(
{
ζCΓ[µ1Γµ2 ...Γµµ]χ

}
) =

µ∑
n=0

[n]
[5.24]

where the upper [ ] means fully antisymmetrized product as in [5.23] and C ∈ [0]
also is charge conjugation [5.21].And we applied opinion in [7.18] and isomor-
phism [5.23],and the prefractor for canceling double counting was abosorbed in
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constant C,also we changed of basis from a = 0, ..., k to µ = 0, ..., d.This fin-
ishes (B.1.32) in [3],and we do not explain more for simplicity.Because Poincare
duality on homology inherits to Hodge duality on tensors,and the tensor repre-
sentation reduces.We can clearly see Hodge star from [5.5]

i−k(ϵµ1...µdΓµ1...µd) = d!i−kΓ0Γ1...Γd−1 = d!Γ

i−k(−1)
s(s−1)

2 ϵµ1...µdΓµs+1...µdΓµ1...µs = d!Γ

− i−k(−1)
s(s−1)

2 Γµ1...µs(ϵ
µ1...µdΓµs+1...µd) =

d!

Ads
Γ

(Γµ1...µs)
−1Γ = −

√
−1s(s−1)i−k d!/(d− s)!

d!
ϵµ1...µdΓµs+1...µd

Γµ1...µsΓ = − i
−k+s(s+1)

(d− s)!
ϵµ1...µdΓµs+1...µd

[5.25]

where we set Γµ1,...,µm = Γ[µ1Γµ2 ...Γµm],and we get Hodge star ∗ = ×Γ.For
even dimension d = 2k + 2,Γ is a non zero constant,thus s-tensors are Hodge
dual to a new copy of (d − s)-tensors.But in odd dimension d = 2k + 3,we set
Γd = ±Γ that means they are Hodge dual to same copy because they are linearly
dependent in [5.25] now.In this case,we have decompositioin

d = 2k + 3 2k+1 × 2k+1 =

k+1∑
n=0

[n] + ∗
d∑

n=k+2

[n] = [0] + [1] + ...+ [k + 1]

d = 2k + 2 2k+1
Dirac × 2k+1

Dirac =

d∑
n=0

[n] =

k+1∑
n=0

[n] +

(
∗

d∑
n=k+2

[n]

)′
= [0]2 + [1]2 + ...+ [k]2 + [k + 1]

[5.26]

An observation is the setting Γd = ±Γ is actually a dimension reduction condi-
tion and a d-dim spin representation naturally lives in that of higher dimension

r : Γ0...Γd = Γ0...ΓdΓ = Γ0...Γd(Γd+1 = Γ) ∈ Γ0...ΓdΓd+1 [5.27]

By using the dimension reduction we construct a reduction r consists of chi-
rality matrix [5.5] and projection [5.16],r ∼ Γ2,which means we can reduce 2
dimensions to form this combination in representation.the [5.24] separates to∧
d

(Vζ∗)×
∧
d

(Vχ) = 2k+1 × 2k+1 r
=
∧
d−2

(P±Vζ∗(Γ))×
∧
d−2

(P±Vχ(Γ))

= Pr
r

[∧
d−2

(Vζ∗)×
∧
d−2

(Vχ)

]
rr′

(CΓΓ) = tr(P(
∧
...×

∧
...))((−1)k+n+1ΓCΓ)

= (−1)k+n+1Γr
Pr

[∧
d−2

(VΓζ∗)×
∧
d−2

(VΓχ)

]
rr′

= 2k × 2k + 2k′
× 2k′

+ 22k × 2k′

[5.28]
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where we define matrix projection Prr′ with r, r′ = ± and P++ = P+P+ which
means the first part in product has chirality 1 and the second has also 1 and we
used [5.18] n for n-tensor.And Γ+−

P = 1× (−1).Clearly,the dimensionality agree

in [5.28].The orthogonality gives constraint on [5.28] that is (−1)k+n+1Γrr′

P =
1.Which gives a constraint to classify the decomposition in tensors [5.26].

2k × 2k =
{

[1] + [3] + ...+ [k + 1]++, k even
[0] + [2] + ...+ [k + 1]++, k odd

2k′
× 2k′

=
{ [1] + [3] + ...+ [k + 1]−−, k even

[0] + [2] + ...+ [k + 1]−−, k odd

2k × 2k′
=
{

[0] + [2] + ...+ [k]+−, k even
[1] + [3] + ...+ [k]+−, k odd

[5.29]

5.3 Decomposition under subgroups

Notice that for [4.4] in various dimension that is SO(2l)→ SU(l)×SU(l),the
decomposition of representation of the right product is to set 2l = 2k+2, k = l−1
in [5.29].Above case is trivial,the representation of two sides are same.But,we
can use that to study decomposition under typical subgroups

SO(2k + 2)→ SO(2l + 2)× SO(2k − 2l) ∼=ρ (SU(l + 1)× SU(k − l))2 [5.30]

We can only focus on one sector of product,and set k + 1→ k in [5.28]

(2k)2 = (2k-1 + 2k-1
′
)2 ⇒ 2k = 2k-1 + 2k-1

′

= Pr
rρ(gSU(l+1−1)×SU(k−l−1))

2k = 2l × 2k-l-1 + 2l′ × 2k-l-1′
, 2k′

= 2l′ × 2k-l-1 + 2l × 2k-l-1′

[5.31]

Next,we want to study SO(2n)/U(1) → SU(n),we know ρ(gSU(n)).Recall we
have a ground state condition [3.78],we can regard it as a local conserved current
[3.17] by a map Γa− → ∂,and it is invariant under U(n) rotation,M∂ζ =M0 = 0
for M ∈ U(n).In this case,it does gives a conserved quantity,that is global on
the orbit of U(n).Also,conserved law gives ζ ∈ [0].For this,we can define a U(1)
charge by just (1/2πi)

∮
ζdz = −n.From [3.75] over C,|Γa+|2 = 1/2,we can

assign detΓa+ = 1 and make them into SU(n),In this case,a decomposition
under SO(2n) → SU(n) × U(1) is just a charge decomposition on the original
SU(n),and from [5.24],[n + 1] is based on [n] added by a Γµ with charge of
SU(n).And we know expression of ζ above [3.78],we get charge of Γa− is −n/n =
−1 which means charge of Γa+ is +1.In this case,we have enough reasons to
assign charge of Γµ +2 from Γa+ = (1/2)(Γ2a + iΓ2a+1).Then we get

2n = [0]−n + [1]2−n + ...+ [n]n, under (Γµ, ζ) ∈ SU(n)× U(1) [5.32]

In this case we have 23 = [0]−3+[1]−1+[2]1+[3]3,this tensor with charge need to
have a modified Hodge duality that is ordinary version with charge conjugation

∗C : ρ(gSU(n)×1)→ ρ(g1×SU(n)), [n− 1]n−2 7→ [1]n−2 [5.33]
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Notice the subscript.By using [5.33] we have further classification

23 = [0]−3 + [0]3 + [1]−1 + [1]1, 22 = [0]3 + [1]−1, 2̄
2
= [0]−3 + [1]1 [5.34]

where we use reality [0] = [0] and 4, 4̄ should have opposite total charge.

5.4 Fermionic state with bosonisation

Now,we can continue from [3.74].Dirac representation [3.79] can be used to
construct R ground state in D = 10,that is an eigenstate of Sa [5.3]

|s0, s1, ..., s4⟩R =

4∏
a=0

(Γa+)sa+1/2ζ = |s⟩R, sa = ±1

2
[5.35]

Because of the discussion above [4.13],we need an operator eπiF and the world
sheet fermion number is defined mod 2.We can see it anticommute with ψ

eπiFψ =
∑
n

(πi)nFn

n!
ψ =

∑
n

(πi)n

n!
ψ(F + 1)n = ψeπi(F+1) = −ψeπiF [5.36]

For [3.61] we have Clifford algebra {
√
2ψµr ,

√
2ψλ−r}{C2} = 2ηµλ apply to the

original Lorentz generator above [5.1],we get Σµλ = −i/2
∑
r∈Z+v[ψ

µr , ψλ−r].In

this case we can define F =
∑4
a=0 Sa,we can see with [5.3]

2S1ψ
1±
r = S1(ψ

2
r ± iψ3

r) =
−i
2

∑
s

(ψ2
sψ

3
−s − ψ3

−sψ
2
s)(ψ

2
r ± iψ3

r)

=
−i
2

∑
s

[−ψ2
sψ

2
rψ

3
−s − ψ3

r + ψ3
−sψ

2
rψ

2
s ± iψ2

r ∓ iψ2
sψ

3
rψ

3
−s ± iψ3

−sψ
3
rψ

2
s ] =

−i
2∑

s

[−ψ3
r + ψ2

rψ
2
−sψ

3
−s − ψ3

r − ψ2
rψ

3
−sψ

2
s ± iψ2

r ± iψ3
rψ

2
sψ

3
−s ± iψ2

r ∓ iψ3
rψ

3
−sψ

2
s ]

=
−i
2
[(ψ2

r ± iψ3
r)(ψ

2
sψ

3
−s − ψ3

−sψ
2
s)]± (ψ2

r ± iψ3
r)

= 2ψ1±
r S1 ± 2ψ1±

r = 2ψ1±
r (S1 ± 1)

Fψ1±
r =

4∑
a=0

Saψ
1±
r = S1ψ

1±
r + ψ1±

r

4∑
a=0,̸=1

Sa = ψ1±
r

4∑
a=0

Sa ± ψ1±
r

= ψ1±
r (F + 1)

[5.37]

where we use this notation in [3.74] and [3.75] and the subtile point is we need
to individually treat the case δr,s, δr,−s ̸= 0 in [3.61].And indeed the world sheet
fermion number operator counts the number.For closed string from [3.58],NS-NS
states have integer spin,R-R states the two half-integers add to a integer,R-NS
and NS-R have half-integer spin.
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We can apply state-operator isomorphism [3.72] for NS fermionic state [3.73]

ψµ−r =

∮
C

dz(−1)r−1/2

(r − 1/2)2πi
∂r−1/2z−1ψµ(z) =

1

(r − 1/2)!
∂r−1/2ψµ(0) [5.38]

where we used [3.58] and partial integral.And we now we need a version of [3.36]
for superconformal variance.We start with [3.62]

TF (z)A =
∑
r

z−r−3/2
∮
C

dz

2πi
zr+1/2TF (z)A =

∑
r

z−r−3/2Gr ·A (0, 0) [5.39]

and compare it with [3.35] we get r = n− 1/2 and A (n) = Gn−1/2 ·A (0, 0) and

δηA (z, z̄) = −ϵ
∞∑
n=0

1

n!

[
∂nη(z)Gn−1/2 + (∂nη(z))∗G̃n−1/2

]
·A (z, z̄) [5.40]

And for R sector vertex operators,because ψµ(z) ∝ z−1/2 in [3.57] there is a
brunch cut.It is complicate to solve in bosonic case,when we make orbifold twist
state that also gives a brunch cut in 8.5 of [2],this is an inspiration to [7.31]
that orbifold can give effect like bunch cut.But now,we can use bosonisation to
simplify all things.

For setting α′ = 2 in [3.12] we get H(z)H(0) = lnz for scalar H(z).We have

: eiH(z) :: e−iH(0) : = exp(
α′

2
k1k2lnz) : e

ik1·H(z)eik2H(0) :

= e−lnz : (1 + z∂)eiH(0)e−iH(0) :=
1

z

: eiH(z) :: eiH(0) : =: e−iH(z) :: e−iH(0) := ◦(z)

[5.41]

where k1 = 1, k2 = −1 and we used Taylor expansion.The matter contractions
without self-contractions in scattering amplitude of S2 (6.2.17) in [2] gives us
expectation value of such exponentials in general〈∏

i

eikiH(zi)
〉
=
∏
i<j

(zi − zj)kikjδd(
∑
i

ki) [5.42]

The delta function is momentum conservation that gives constraint on k1, k2
for [5.41].And for fermionic part,we form two Majorana-Weyl fermions by linear
combination of ψ1,2(z) in D = 10 spacetime we discussed below [5.15].

ψ = 2−1/2(ψ1 + iψ2), ψ̄ = 2−1/2(ψ1 − iψ2) [5.43]

And the OPEs are

ψ(z)ψ̄(0) =
1

2
(ψ1(z)ψ1(0)− ψ1(z)iψ2(0) + iψ2(z)ψ1(0) + ψ2(z)ψ2(0))

=
1

2
(
η11

z
− iη

12

z
+ i

η21

z
+
η22

z
) =

1

z

ψ(z)ψ(0) = ψ̄(z)ψ̄(0) = ◦(z)

[5.44]

Now from the equivalence of OPE,we claim that ψ(z) ∼= eiH(z), ψ̄(z) ∼= e−iH(z).

and for world-sheet antiholomphic part,ψ̃(z̄) ∼= eiH̃(z̄), ˜̄ψ(z̄) = e−iH̃(z̄)
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6 D-brane and algebraic generalized geometry

6.1 A physics intuition to D-brane

We want to develop details of a special geometric object in string theory
which is Dp-brane,for further application.And we based on chapter 8 in [2],a

note [4] and chapter 13 in [3].For a pure gauge Λ(x25) = eiAx
25 ∼= eiAx

25

ei2πRA

A25 → eiθA25 = eiθ(−i∂lnΛ) ∼= eiθei2πRA(−i∂lnΛ) = ei(θ+2πRA)A25 = A25

[6.1]
with periodicity of toroidal compactification x25 ∼= x25 + 2πR and [6.1] is for
fixing the global gauge from the toroidal setting by a constant θ.And toroidal
setting induces a loop path of U(1) charge,which gives Wilson line to the gauge
field living in the spacetime,a measurable quantity about magnetic field

Wq = eiq
∮
dx25A25 = e−iq(θ/2πR)

∮
dx25

= e−iqθ [6.2]

which is invariant under a local gauge transformation A→ eiα(x
25)A

Wq =Wqe
i
∮ ∑∞

n=1 i
nα(x25)ndx25

=Wqe
i
∫ 2πR
0

f(x25)dx25

=Wqe
i[g(x25)]2πR0 [6.3]

where we used toroidal setting for x25 = 0, 0 ∼= 2πR.A field operator is iso-
morphic to a state made from path integral see details in section 3.3.In this
case,adding a U(1) gauge field gives a modification on path integral,and we end
with non-linear sigma model coupled to a U(1) gauge field AM∫

[dX]e
−

∫
dτ

(
1
2 Ẋ

M ẊM+m2

2

)
δ(
−q∂tAM

2π
)

=

∫
[dX]e−Sσ

∫
[dX]e−i

∫
dτq∂tAMX

M

=

∫
[dX]e−(Sσ−

∫
dτiqAM Ẋ

M )

[6.4]

where t denotes Minkowski time.The contour rotation t → it and the vector
∂it = ∂itt∂t = −i∂t.In this case the canonical momentum PM = ∂∂itXML =

∂−i∂tXML = −∂iẊML = ∂vM (−L ) with Minkowski velocity vM = iẊM .And
the Minkowski Hamiltonian is H = vMpM + L ,we get

pM = vM + qAM = vµ + vd + qAd, Aµ = 0, Ad =
−θ
2πR

H = vMvM + vMqAM −
1

2
(vMvM +m2)− qAMvM =

1

2
(pµp

µ + v225 +m2)

[6.5]

where we used µ for non-compact space and d for compact space and now we
discuss d = 25.See [3.55],field operator can be expressed in Fourier serious,so

periodicity on field gives that on Fourier serious,eipdx
d ∼= eipd(x

d+2πR)in mo-
mentum space,which gives quantization on compact space pd = l/R, l ∈ Z,and
we have v25 = (2πl + qθ)/2πR.In BRST quantization in section 4.4 in [2],H
vanishes physical states and gives mass-shell that means mass m̃2 = −pµpµ
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shifted by θ from initial mass m2 in [6.5].In strong interaction,we have a con-
served quantity that is color which is extra degree of freedom for SU(n) gauge
theory means the representation must forms a closed loop along the world-
sheet boundary to match the degrees for gluing free string world-sheets to a
whole interaction world-sheet,this let us introduce Chan-paton factor on open
string boundary and the representation matrix is λaij ∈ U(n) with constraint

tr(λaλb) = δab.The gauge boson Ad can be generated by open string vertex
operator ∂Xeik·Xλij from [3.72],and we naturally have a diagonalization of Ad
from that of λij ∈ U(n).Which means

Ad = −
θij
2πR

= −UθijU
−1

2πR
= − 1

2πR
diag(θ1, θ2, ..., θn)ii [6.6]

In BRST,the initial mass m2 = (1/α′)(N − 1) for N the total level of oscillator

(m̃2)ii =
(2πl + tr(diag(q1θ1, ..., qnθn)ii)

2

4π2R2
+m2 =

(2πl +
∑
i qiθi)

4π2R2
+

1

α′
(N − 1)

[6.7]
we want to study ∆(m̃2)ji = (θj − θi)

2/(4π2R2) when q = 1, l = 0, N =
1,counting difference of energy between different color degree of freedom.We
see if θi ̸= θj we have discrete dynamics that induces breaking of gauge group

U(n)→ U(r1)× ...× U(rs),

s∑
i=1

ri = n [6.8]

for ri equal θ.This gauge group breaking spontaneously breaks the vacuum
expectation value.Which directly means the vacuum which is the underlying
geometry that the open strings boundaries attaching on can be spitted to dif-
ferent geometric objects letting open strings attach,with corresponding dynam-
ics.Which is an abstract explanation to D-brane.To see concretely,we need to
apply T-duality,and this directly gives us meaning of D-brane with underlying
generalized geometry.And we will see the non-trivial meaning of the insertion
of delta function in [6.4],which actually a Dirichlet boundary condition.

6.2 T-duality with algebraic generalized geometry

The mass formulae for d compactified dimension for closed string is

m2 =
ndn

d

RdRd
+
wdw

dRdR
d

α′
+

2

α′
(N + Ñ − 2), K = (n,w) [6.9]

then a T-duality T for an ordered pair K is

TK = (w, n), TR =
α′

R
= R′, T(pL, pR) = (pL,−pR) [6.10]
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where the winding number w is easily calculated from [3.59]

2πRdwd =

∮
oriented

(dXd(z) + dXd(z̄)) =

∮
(dz∂Xd + dz̄∂̄Xd)

= −i
(
α′

2

)1/2
2π

2π

∮
(dz

∞∑
m=−∞

αdm
zm+1

+ dz̄

∞∑
m=−∞

α̃dm
z̄m+1

)

= 2π(α′/2)1/2(αd0 + α̃d0)

[6.11]

The spacetime momentum pd is calculated below [3.41] from current [3.24]

pd =
1

2πi

∮
(dzjd−dz̄ȷ̃d) = 1

2πα′

∮
(dz∂X−dz̄∂̄X) = (2α′)−1/2(αd0−α̃d0) [6.12]

where we have pd = nd/Rd below [6.5] and combine two equations we get

pdL = (2/α′)1/2αd0 =
nd

Rd
+
wdRd

α′

pdR = (2/α′)1/2α̃d0 =
nd

Rd
− wdRd

α′
, (n,w) ∈ (Z,Z)

[6.13]

And m2 = (1/2)(pdLpLd + pdRpRd) + (2/α′)(N + Ñ − 2)) in [6.9].The discrete
pair is to describe properties(energy etc.) generated by underlying geome-
try(vacuum).We need a reverse quantization to study underlying geometry,that
is {(n,w)} = (Z,Z)→ (R,R).In this case

{(nd, wd)} = Z(d,d) → R(d,d) = Rd ⊕ (Rd)∗ [6.14]

Actually,generalized geometry is a field in differential geometry which is a math-
ematical structure describing LEE with O(d, d,R) of string theory with T-
duality group O(d, d,Z) [9].But we want to use this idea of Double field theory
and develop on our algebraic language.

A generalized module M̂ is a graded module over a field k,M̂ =M⊕M∗,with
a structure mapT ∈ O(d, d, k).A free generalized module is a generalized module
M̂ ∼= k(d,d) with k(d,d) is a k-module generated by (x1, ..., xd, x′1, ..., x′d).

T =

(
0 Ad×d

Bd×d 0

)
2d×2d

, T :M ⊕M∗ →M∗ ⊕M [6.15]

A generalized ringed space X̂,see AG basics in section 7.2,is a topological space
X with a structure sheaf ÔX ,which is

X̂ = (X, ÔX), ÔX(X̂) = k[x1, ..., xd, x′1, ..., x′d] [6.16]

A generalized function f̂ = f ⊕ f∗ is a element in the section of generalized
ringed space,with f ∈ k[x1, ..., xd], f∗ ∈ k[x′1, ..., x′d].Now,we want to find the
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coordinates in[6.16].By using T-duality [6.10] on spacetime point Xd(z, z̄) with
expression (2.7.4) in [2],we have

TXd(z, z̄) = T(Xd
L(z) +Xd

R(z̄)), xd0 = xdL + xdR
∼=OPE x

d
L − xdR

= T

xd0 − iα′2 (pdLlnz + pdRlnz̄) + i

(
α′

2

)1/2 ∑
m ̸=0

(
αdm
mzm

+
α̃dm
mz̄m

)
= Xd

L(z)−Xd
R(z̄) = X ′

d
(z, z̄), m→ −m

[6.17]

In this case,we get the coordinates in [6.16] if we Xd ∼= xd, X ′
d ∼= x′d.Now we

need to study the property of this coordinates,we use [3.2]

∂d⊥X
d(z, z̄) = ∂1X

d(z, z̄) = (∂ + ∂̄)(Xd
L(z) +Xd

R(z̄))

= (∂ − ∂̄)(Xd
L(z)−Xd

R(z̄)) = −i∂2X ′
d
(z, z̄) = −i∂dX ′

d
(z, z̄)

[6.18]

where we described the whole dimension with the d dimension compacitfied as a
tube with (d, d⊥) similar to a world-sheet made from an open string wipe around
with (σ2, σ2⊥ = σ1).The [6.18] tells us a Neumann boundary condition which is
trivial in ordinary coordinates is T-dual to a Dirichlet boundary condition which
is non-trivial on dual coordinates.And this Dirichlet condition fixes a position on
X ′d and reduce one degree of freedom in T-dual space,leaving with dim (D− 1)
hyperplane called D(D − 1)-brane.For getting an expression for X ′,we need

∆X ′
d
ij = [X ′

d
(z, z̄)]σ

1=π,i
σ1=0,j =

∫ π

0

dX ′
d
=

∫ π

0

dσ1∂1X
′d = −i

∫ π

0

dσ1∂2X
d

= −i
∮

i

2
(
1

z
dz − 1

z̄
dz̄)(z∂ − z̄∂̄)Xd(z, z̄)

= −1

2

∮
oriented

(dz∂Xd + dz̄∂̄Xd +
z̄

z
dz∂̄Xd − z

z̄
dz̄∂Xd)

= −1

2
2π(α′/2)1/22(2α′)1/2pd = −2πα′∆vd = −2πα′

2π∆ldij − θdj + θdi
2πRd

= −(2π△ldij + θi − θj)R′

[6.19]

This is difference of two endpoints of open strings on D-brane,where we used
[3.59] in [1] with z = e−i(σ

1+iσ2)and αm = α̃m and αd0 = (2α′)1/2pd for open
string attaching on.Also,we applied [6.11] and quantization of momentum in the
sense of [6.7].And we get the expression of dual coordinates for ∆ldij = 0

X ′
d
ii = θiiR

′ = −2πα′Ad,ii [6.20]

where we used [6.6].Which directly gives understanding about the delta function

in [6.4].That is ∂tAd = 0 ⇒ ∂tX
′d = 0 when t towards along d,which is only
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a Dirichlet condition in that field theory,but in string theory we have more
properties based on this.

An interesting thing is in [6.16],because of Dirichlet boundary condition we

have ∂dx
′d = 0 gives a point x′ = (c1, ..., cd) with integration constant c,which

corresponds to a prime ideal (x′ − (c1, ..., cd)).This motivates us to develop
generalized scheme.Also,from [6.20],actually a point in dual space corresponds
a family of D-brane in the undual space.And we want to enlarge the dimension
d = D to the whole theory.

An affine complex pre generalized scheme is a generalized locally ringed space

(Spec(C[x′1, ..., x′D]), (C∞[xd+1, ..., xD]⊕ C∞[x′1, ..., x′d])C(D−d,d)) [6.21]

where C∞[xd+1...xD] is a sheaf of complex smooth functions on the D-brane
and C∞[x′1, ..., x′d] is sheaf of complex smoothe functions on the corresponding
T-dual fixed space to the D-brane.

And a pre M-brane MT is the above pre scheme with typical limit d = D

(MT,P) = ((Spec(C(0,D)), · ⊕ C∞[x′1, ..., x′D]),P)

= ((Spec(C(0;D,∗)), · ⊕ C∞[(x∗ = 0), x′1, ..., x′D]),P)

∼= (((Spec(C(D,∗))⊕(0,D+D) (Spec(C(∗,D))),P)

∼=P(T) (Spec(C(D,∗))× Spec(C(∗,D)),P)

= (Proj(RD+1),P)

[6.22]

where ∗ is an enhancing dimension and P(T) is for fusing the two D dimensional
affine schemes to a D+1 dimensional projective scheme,and we call this opera-
tion T-fusion,which should be a natural property of generalized geometry.And
T-fusion works similarly in (D +D, 0).With a highly nontrivial presheaf P on
it now and we will see later.See definition below [12.12] explaining [6.22].

Then,we want to discuss orientifold.We start with unoriented string theory
which is a collection of unoriented world-sheets with a gauging world-sheet par-
ity Ω ∈ PSL(2,C) acting on,we can do it because the Möbius transformation is
conformal.This collection with Chan-paton factors reduces to that of operator
Ω = +1 on initial states.And Ω : σ1 → (2)π − σ1 for (closed) open string

Ωz = Ωe−i(σ
1+iσ2) = eσ

2

e+iσe−i2π = z̄

ΩXd
L(z) = xdL − i

α′

2
pdLlnz + C

∑
m ̸=0

∮
dzzm∂zX

d

mz
= Xd

L(z̄)
[6.23]

where we put trivial constant to C and used [3.60] and [6.11].In this case,we get

ΩXd(z, z̄) = Xd
L(z̄) +Xd

R(z) = Xd(z̄, z)

ΩX ′d(z, z̄) = (ΩXd(z, z̄))′ = (Xd
R(z) +Xd

L(z̄))
′

= Xd
R(z)−Xd

L(z̄) = −X ′d(z̄, z)
[6.24]

where we used [6.17].And we see an unoriented string theory in the dual space
is living on an orientifold (X ∼= −X) × (z ↔ z̄),which is just a unoriented
world-sheet embedded into an orbifold spacetime.
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6.3 D-brane in superstring theory

Now,we can enter the case of consistent string theory.T-duality reflects right
moving parts both of bosons and fermions as supersymmetry.if we let d = 9

T(X ′9R (z̄), ψ̃′9R(z̄)) = (−X9
R(z̄),−ψ̃9

R(z̄)), T(Γ4+,Γζ(s)) = (Γ4−,−ΓTζ(s))
[6.25]

we applied first tuple in [3.75] and [5.5].For the R-R field translating into the
product representation [5.24] guided by [6.23]

T(V̄ Γµ1...µp Ṽ ) = V̄ Γµ1...µpΓ9ΓṼ =
{ ∃ µp = 9
∀ µp ̸= 9

=
{ V̄ Γµ1...9...µp−1Γ9ΓṼ = V̄ (−Γµ1...µp−1)ΓṼ = V̄ (−ΓΓµ1...µp−1)†Ṽ

V̄ Γµ1...µpΓ9ΓṼ = V̄ Γµ1...µp9ΓṼ = V̄ (−ΓΓµ1...µp9)†Ṽ

[6.26]

And we quotient an equivalence relation of Hodge duality [5.25],we get

T(C9, Cµ, Cµν9, Cµνλ) = (C,Cµ9, Cµν , Cµνλ9) [6.27]

which are non trivial T-duality on antysymmetric tensor in IIA to those in
IIB.And for general case with T-duality on m dimensions on R-R state

TR−R =
∏
m

βm, βm = ΓΓm, βmβn = eπiF̃βnβm [6.28]

with spacetime fermion number F̃ of R-states and an observation,m = n, F̃ = 0
and we have for m ̸= n,ΓΓmΓΓn = ΓΓm(−ΓnΓ) = −ΓΓnΓΓm.Where

F̃ = 0,ΓmΓm = −1 F̃ = 3mod 2 = 1,Γm,Γn,ΓmΓn [6.29]

And T2Ṽα = eπiF̃Ṽα with an observation βmβmṼα = eπi(F̃+1)(−1)Ṽα where

F̃ = 1; ΓmΓmṼα = −Ṽα F̃ = 4mod 2 = 0; Ṽα,Γ
mṼα,Γ

nṼα,Γ
mΓnṼα [6.30]

And IIA and IIB superstring theories are T-dual.
The type I unoriented string theory made from acting [6.23] on type II

oriented theory.The interesting thing is take R→ 0 in [6.10] let us focus on the
phenomenon in the bulk of T-dual space away from the orientifold boundary
[6.24].The existing state is NS+, R+ in type I theory,which means T-dual on
one dimension gives NS+, R+, R̃− by [6.25],that form type IIA theory in the
local bulk.IIA theory is also dual to IIB,thus locally in the bulk of non-compact
like dual space,it is a type II theory.Also,in this bulk,for a D-brane away from
unoriented or reflected boundary,the superpartners are

∂Xµ, Ad,ii ∼=SUSY ψµ, ψd e−ϕ/2Θα ∼=Bos Vα [6.31]

on the level of vertex operator.Where Bos denotes bosonisation,which we can
see it is a way to compensate the bosonic and fermionic degrees of freedom for
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[4.13],a way to construct superpartner.And for a theory with one compactified
dimension d around [4.22],we have operators Qdα, Q̃

d
α̇ with internal index d cor-

responds to d = 10, N = 1 supersymmetry.But the conserved supercharge is the
total charge Qdα + Q̃dα̇,we can easily see by method around [3.41]

Qdα + Q̃dα̇ =
1

2πi

(∮
C

dzjdα −
∮
C̄

dz̄ȷ̃dα̇

)
=

1

2πi

(∮
C

dzjdα +

∮
C

dz̄ȷ̃dα̇

)
=

1

2πi

∮
C

(dzjdα +Ω−1dz̄Ωȷ̃dα̇) =
1

2πi

∮
dz(jdα +Ωȷ̃dα̇)

[6.31]

where we used corformal invariance [6.23],which exactly obeys [3.17]

∂(jdα(z) + Ωȷ̃dα̇(z̄)) = ∂(jdα + ȷ̃dα̇)(z) = ∂jdα − ∂jdα = 0 [6.32]

because,the directions of the flows are opposite.And in T-dual space by [6.28],it
is Q′dα + (βdQ̃′d)α̇ which acts on T-dual spacetime point X ′d and makes the
scattering amplitudes of type II closed strings from D-brane invariant under
supersymmetry.From another version of [6.18] from [3.2]

∂dX
d(z, z̄) = ∂2(X

d(z) +Xd(z̄)) = i(∂ − ∂̄)(Xd(z) +Xd(z̄))

= i(∂ + ∂̄)(Xd(z)−Xd(z̄)) = i∂1X
′d(z, z̄) = i∂d⊥X

′d(z, z̄)
[6.33]

In this case,we can discuss translation invariance for T-dual space that is

Xd(σ + ϵ) = Xd(σ) + ϵ∂dX
d(σ)⇒T X ′d(σ) + iϵ∂d⊥X

′d(σ) [6.34]

Local translation invariance breaks because the current ∂d⊥X
′d(σ) is not a total

derivative,it cannot be integrated out.To quantify the total nonconservation of
momentum,we can put [6.34] back to T-dual bosonic part of action [3.44]

∆P total
d (z) = δϵ

∂S′dX
∂(∂X ′d)

∣∣∣
z
= ∂∂X′d

{
1

2πα′

∫
M

d2z∂X ′d∂̄(X ′d + iϵ∂d⊥X
′
d −X ′d)

}
=

iϵ

2πα′

∫
d2z∂̄∂d⊥X

′
d =

1

2πα′

∫
∂M

dz∂d⊥X
′
d1

[6.35]

where we used split Stoke’s theorem [3.6].The explanation is subtle,around the
T-dual spacetime point on the D-brane or along the closed boundary ∂M ,the
original global momentum splits to infinite many local pieces with interval be-
tween them (1/2πα′)∂d⊥X

′
d.This is a spontaneously breaking that the global

translation invariance splits into infinite many local degenerate states.Which
means local Feynman diagram has a leg of emitting a infrared Goldstone bo-
son with [6.35] as its vertex operator.And this should have a superpartner by
supersymmetry [4.29] in T-dual space,with degeneracy∫

∂M

dz∂d⊥ψ
′
d =

∫
∂M

dzV ′dα =

∫
∂̄M

dz̄βdṼ
′
dα = 2πi(βdQ̃′d)α̇ [6.36]
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which is global goldstino.Over all,Goldstone with goldstino correspond to spon-
taneously broken supersymmetry of dimension d below [6.32] to degenerate
states,one corresponds to a half.A point is translation invariance indeed be in-
volved in supersymmetry.We can see from [4.29]

δ2ξX
µ = δξξ

αψµα = ξασaαα̇ξ̄
α̇∂aX

µ ⇒ δ2ξ = δϵ, ϵ = ξασαα̇ξ̄
α̇ [6.37]

with ignorance of pointless prefactor,which is similar to [3.49].Recall the gen-
eralized module below [6.14] and global translation invariance maintained in
ordinary space [6.34],the broken supersymmetry is just a half of supersymmetry
totally in the generalized module.Which means we have Qdα + Q̃dα̇ is unbroken
and assigned to one state with Q′dα +(βdQ̃′d)α̇ in T-dual space,which is vacuum

X ′d = X ′d|z,z̄, ∂d⊥X
′d = βdṼ

′
dα = 0 with ∂dX

′d = 0 [6.38]

And we call this vacuum in T-dual space the BPS state,which is a point on the
D-brane with the Dirichlet condition,carring the conserved charge.It also means
D-brane is not the real vacuum,it carries charges.

7 Standard super algebraic geometry

Motivation

One problem that prevent us to achieve unification is the problem of vac-
uum,string theory also cannot describe the phenomenon of vacuum.We claim
that this is because we use analytic approach to study quantum gravity or
unification problem.To solve this thing,we need to use functorial approach in-
stead and follow the Grothendieck’s philosophy.We can simply consider a scheme
W = Spec(C[z, z̄]) with a sheaf X of C-algebra of C∞ functions that is a sheaf
of scalar fields.A derivation of degree 1 is following for specific open set U ∈W

D ≡ D1/D2 : X (U)→ X (U), X(z, z̄) 7→ ∂X(z, z̄) [7.1]

Based on this we can form spectrum of kinetic terms as

W = SpecU (D(X (W ))), IL ∈ W for L ∈ X (W ) [7.2]

where the ideal of Lagrangian is IL = (L − tr(DX ⊗ D̄XT )) for existence of
trace.Then,we can define a presheaf of world-sheets F that is

F : UL 7→ F (UL ), UL =W \ V (X)

F : IL 7→
∫
[dX]e−

∫
d2zL , F ∈ F (UL )

[7.3]

And for a diff×weyl group action Gd×w×W →W.The free bosonic string theory
is a category of (W/Gd×w,F ) which is non-trivial for string theory because 1-d
object has geometric property.In this case,we can reconstruct string theory by
using algebraic geometry with functorial approach.Thus,we indeed need super
algebraic geometry to develop such structure for consistent string theory.And
we based on the text [10].Also,we need to consider T-duality,which means the
geometry needs to be equipped with generalized setting.
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7.1 Super linear algebra

A super Lie algebra g is an object of category of super vector spaces with
contaction [ , ] : L ⊗ L → L and (super)commutation cL,M : L ⊗M → M ⊗ L
with ab 7→ (−1)|a||b|ba, a ∈ L, b ∈ M .And super bracket defined by a, b ∈ L
[a, b] = (−1)[ , ] ◦ cL,L(ab) with Jacobi identity defined on L⊗ L⊗ L

0 = [ , ]2 ◦ [(xyz) + (123) ◦ (xyz) + (123)2 ◦ (xyz)]
= [ , ]2 ◦ [(xyz) + (−1)|y||z|+|x||z|(zxy) + (−1)|x||y|+|x||z| ◦ (xyz)]

[7.4]

with (123)2 = (132) ∈ S3.For a super algebra A we can form a left A-module
M by A ⊗M → M ,which is a super vector space,the morphism of A-modules
M,N that is ϕ : M → N, am 7→ aϕ(m) let us have category of A-modules.And
the tensor product for a commutative A defined by ⊗ :M ×N →M ⊗N which
is universal by the unique map M ⊗ N → A, (ma) ⊗ (bn) 7→ ab ∈ A with M
a right A-module and N a left A-module.Then we can define Ap|q = A ⊗ kp|q
with the Z2-grading,

(Ap|q)0 = (A0 ⊕A1)⊗ (k
p|q
0 ⊗ kp|q1 )

(Ap|q)1 = (Aq ⊕A0)⊗ (k
p|q
0 ⊗ kp|q1 )

[7.5]

with kp|q is a free k-module generated by the basis {e1, ..., ep, ϵ1, ..., ϵq}.And a
free A-module M is an A-module such that M ∼= Ap|q that is

A⊗M ∼= A⊗A⊗ kp|q ⇒ A⊗ kp|q ∼−→M

M0 = spanA0
{e1, ..., ep} ⊕ spanA1

{ϵ1, ..., ϵq}
M1 = spanA1

{e1, ..., ep} ⊕ spanA0
{ϵ1, ..., ϵq}

[7.6]

And morphism T : Ap|q → Ar|s of free A-modules,follows from the linear trans-
formation T : kp|q → kr|s,for ϵ1 = ep+1...,we have T (ei) = tjiej for j = 1, ..., r+s
and for i = 1, ..., p+ q,Then the matrix of the transformation in M(Ap|q) is

T(r+s)×(p+q) ∈ Hom(Ap|q, Ar|s),= tij =

(
T1 T2
T3 T4

)
[7.7]

With sub matrices r × p even T1,s × q even T4 and r × q odd T2,s × p odd
T3.And T transforms coordinates.In category of A-modules,Hom set is set of
parity preserving maps.For setting grading,we need Hom = Hom0 ⊕ Hom1 set
with even map as T above,odd map is parity reversing on each sub matrices.For
a simple case,Hom(Ap|q, Ap|q) for maps T in the set

T even ∈ M(Ap|q) = Hom0(A
p|q, Ap|q), T odd =

(
T1 T2
T3 T4

)
[7.8]

with all sub matrices formed by even elements.And we have a super Lie alge-
bra Mat(Ap|q) which is a super vector space Hom(Ap|q, Ap|q) with commutator
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defined by [T, S] = TS − (−1)|T ||S|ST for S, T ∈ Mat(Ap|q).And we can define
super trace to be

str(T even) = tr(T1)− tr(T4), str(T odd) = tr(T1) + tr(T4) [7.9]

with str(TS) = (−1)|T ||S|str(ST ).And we can collect the automorphisms in
Hom(M,M) to form a group GL(M) called special GL group of automorphisms
of M.

An observation is M(Ap|q) is a super linear algebra that cannot define normal
det,we need generalize it to Berezinian.First we have a natural map A → Ā =
A/JA for an ideal JA ⊂ A.And we got a induced map

M(Ap|q)→ M(Āp|q) = Hom(Ap|q, Ap|q)→ Hom(Āp|q, Āp|q)

= A⊗Hom(kp|q, kp|q)→ Ā⊗Hom(kp|q, kp|q)
[7.10]

an element of A corresponds to an matrix in the form of [7.7] in M(Ap|q).If
we have an invertible matrix T ∈ M(Ap|q),it corresponds to an invertible el-
ement a ∈ A which means ab = IA for a b ∈ A and above map send ab to
(a+ JA)(b+ JA) = ab+ J = IA + JA = IĀ,which means if T is invertible then
we get T̄ ∈ M(Āp|q) is invertible.And for the reverse,if a T̄ is invertible,we get
(a+JA)(b+JA) = IĀ that is ab = IĀ−JA,on the level of matrices is TS = I+N
for S,N ∈ M(Ap|q) and N corresponds to the ideal JA.Then,TS = I means
TSNr = INr+Nr+1 for Nr+1 = 0 and N is indeed nilpotent when r is enough
for all times if and only if JA is an ideal generated by odd elements by anti-
commutativity.Thus,we get T is invertible if and only if T̄ is invertible for odd
JA.Also,T̄ is invertible means T1, T2 with even elemtents are invertible.Which
gives us a proposition1.5.1[10]that is for T ∈ M(Ap|q),then T is invertible if and
only if T1, T4 is invertible.In this case,we define Berezinian on an invertible T

Ber(T ) = det(T1 − T2T−14 T3)det(T4)
−1 = det(T4 − T3T−11 T2)

−1det(T1) [7.11]

Now,we want to study properties of Ber(T ).First,we have a set G with elements
S, T ∈ GL(Ap|q) such that Ber(ST ) = Ber(S)Ber(T ) for all T ,because of the
uniqueness of inverse,it is equivalent for all T−1,clearly I, T−1 ∈ G and for
all S, P ∈ G,we can find a T = P,Ber(SP−1P ) = Ber(S)Ber(P−1)Ber(P ) =
Ber(SP−1)Ber(P ) if P ∈ GL(Ap|q) that means SP−1 ∈ G and G is a subgroup
of GL(Ap|q),but now P = G.Thus,G is a subgroup of GL(Ap|q) if and only if
G = {p ∈ G|p ∈ GL(Ap|q)} = GL(Ap|q).At the same time,G must be a subgroup
because for all T is equivalent for all ST ,so S−1 ∈ G for S ∈ G which is the
only one we need to check in group axioms.Thus,Ber is multiplicative

Ber(ST ) = Ber(S)Ber(T ), ∀S, T ∈ GL(Ap|q) [7.12]

And [7.12] let Ber become a homomorphism GL(Ap|q) → GL.(A1|0).For T ∈
GL(Ap|q),there exists a decomposition of T(

T1 T2
T3 T4

)
=

(
1 0
T 1

)(
H1 0
0 H2

)(
1 S
0 1

)
=

(
H1 H1S
TH1 TH1S +H2

)
[7.13]
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induces a decomposition GL(Ap|q) = UHV ,for subgroups U,H, V ⊂ GL(Ap|q)

U =

{(
1 0
T 1

)}
, H =

{(
H1 0
0 H2

)}
, V =

{(
1 S
0 1

)}
[7.14]

And we see that there is a relation between determinant and trace in [3.16].Now
there is also a relation between Ber and str.We want to study this relation around
the identity,in this case we need to set up an algebraic infinitesimal system,ϵ is
infinitesimal means a localization A→ A[ϵ]/ϵ2,for I+ ϵT ∈ GL((A[ϵ]/ϵ2)p|q),the
inverse (I + ϵT )−1 = (I − ϵT ) which is an algebraic Taylor expansion denotes ≃

Ber(I + ϵT ) = det(1 + ϵT1 + ◦(ϵ2))det(1 + ϵT4 + ◦(ϵ2))−1

≃ det(1 + ϵT1)det(1− ϵT4) ≈ det(eT1)det(e−T4)

= etr(T1)etr(T4) ≃ (1 + ϵtr(T1))(1− ϵtr(T4)) = 1 + ϵstr(T )

[7.15]

where we used reverse Taylor expansion above [2.11] and normal relation above
[3.16].Based on this we can get cyclic property

Ber(1 + ϵSTP ) ≃ (1 + ϵtr((STP )1))(1− ϵtr((STP )4))
= (1 + ϵtr(S1T1P1 + S2T3P1 + S1T2P3 + S2T4P3))

× (1− ϵtr(S3T1P2 + S4T3P2 + S3T2P4 + S4T4P4))

= 1 + ϵtr(P1T1S1 + P2T1S3 + P2T3S4 + P4T2S3)

− ϵtr(P1T3S2 + P3T2S1 + P3T4S2 + P4T4S4)

= 1 + strPTS = 1 + ϵstr(STP )

⇒ str(PTS) = str(STP )

[7.16]

For a super vector space V ,we naturally define a tensor superalgebra

T (V ) =
⊕
n≥0

V ⊗n, T (V )0 =
⊕
n even

V ⊗n, T (V )1 =
⊕
n odd

V ⊗n [7.17]

induces an universal enveloping superalgebra (UESA) of a super Lie algebra g

U(g) = T (g)/I, I = (i(X)⊗ i(Y )− (−1)|X||Y |i(Y )⊗ i(X)− i([X,Y ])) [7.18]

for X,Y ∈ g with immersion i : g → T (g).And we define π : T (g) → U(g),for
i−1(I) = 0 ∈ g.We can find morphisms ξ : g → A such that ξ(i−1(I)) = 0A,in
this case,ξ′ = ξ−1 ◦ i : T (g)→ A,then we get σ = ξ−1 ◦ i ◦ π−1 : U(g)→ A.And
the universal property follows from that i(g) is uniquely generate T (g) which
means σ is unique.By the universality,for a representation of super Lie algebra g
that is ρ : g→ End(V ),it uniquely extends to ρ′ : U(g)→ End(V ) follows from
ξ(i−1(I)) = 0V⊗V ∗ .And because of the commutation in [7.18],a basis of U(g) is1,

r∏
i=1

j(Xki)

r+s∏
j=r+1

j(Xkj )
∣∣∣ki ∈ Kordered Xkieven, Xkjodd, X ∈ g

 [7.18]
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where j = π ◦ i we defined above.And we have a similar corollary to ordinary
case above [5.10],that is ρ : g→ U(g) is injective because of the immersion i.and
easily,we can split [7.18] by Z2 grading,I = I0 ⊕ I1 = I |X||Y |=1 ⊕ I |X||Y |=0

U(g) ∼= U(g0)⊗
∧

(g1) = (T (g0)/I0)⊗ (T (g1)/I1) [7.19]

directly see from [7.18].
Next,we want to use graded and filtered superalgebra that are defined in

definition 1.6.8 in [10] which are just ordinary case with grading.For a filtered
superalgebra A =

⋃
n≥0A

n for An−1 ⊂ An,we have associate graded superalge-

bra Gr(A) =
⊕

n≥0A
n/An−1.Also,for a graded superalgebra A =

⊕
n≥0An,we

have associative filtered superalgebra Fi(A) =
⋃
n≥0(

⊕
n≥0An/An−1).because

we cannot define the grade of the monomial tensors of I in [7.18],in U(g),we
need to start with filtration.By the definition we have for n = r + s in [7.18]

Gr(U(g)) =
⊕

0≤m≤n

(
(T (g)m/T (g)m−1)/I

)
⊂ T0 ⊕

⊕
1≤m≤n

(
Tm ∩

∏
ki∈K

j(XKi)
)

[7.20]
where Tm is span of monomial tensors with degree m.Gr(U(g)) is commutative
because the nontrivial term which expressed in Lie bracket we explained above
[3.39] is also a vector field of degree m+ p− 1 for X,Y with degree m, p,that is
modded by the filtration setting in [7.20].In this case,the operation Gr for Lie
algebra can be called as free collection or closing the contaction that is

Gr(I) = I free = I(i(X), i(Y ), i([X,Y ]) = 0), X, Y ∈ g [7.21]

Next,we define a symmetric algebra to be Sym(V ) = T (V )/I freeV .When m =
1 in [7.20],we find Gr(U(g))1 = (T0 ⊕ T0g)/T0 = T0g and also by definition
Sym(g)1 = (T0 ⊕ T0g)/I free1 ,we have I free = T0,in this case,we find an injective
homormorphism Sym(g) → Gr(U(g)),and the basis generating them are based
on
∏
ki
(XKi) which means this need to be surjective.Thus,it is an isomorphism

Gr(U(g)) ∼= Sym(g) [7.22]

which gives the graded UESA geometric property,the corresponding physical
understanding is the geometry was broken down at the contaction point.And,we
can also see that the (anti)commutation as information collected in I indeed be
the property of underlying space but not on the fields living in the space.

7.2 Standard super algebraic gen. geometry

Now,we can apply the super linear algebra to standard algebraic geometry.A
sheaf F is a functor from the opposite category of open sets or topological spaces
X satisfying gluing property.The stalk Fx of the sheaf F for a point x ∈ X is

Fx = limF(U) = (
∏
i

si,
⋃
Ui)/ ∼=x, ∀x ∈ Ui ⊂ X [7.23]
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Ui ∼x Uj ⇔ Ui ∩ Uj and ∼=x≡ Ui|V ∼= Uj |V , si|V = sj |V , V ⊂ Ui ∩ Uj .A point
in stalk is an equivalent class of sections around the fiber of x and Ui \ {x} is
open.And OX denotes the sheaf of algebra of regular functions.A ringed space
M = (|M |,F) with topological space |M | and F the sheaf of commutative
ring.A morphism of ringed space uniquely induce a fiber product which means
ϕ : M → N,= (|ϕ|, ϕ∗),where ϕ∗ : ON → ϕ∗OM and (ϕ∗ON )(U) = ON (ϕ(U))
for an open set U ⊂ |M |.A locally ringed space is a pair (|M |,F) such that
∀x ∈ |M |,Fx is a local ring.Local ring has a good property with unique maximal
ideal like irreducibility.In this case,Fx is local everywhere means a point on base
corresponds a point on the section.For any commutative ring,we define SpecA to
be the spectrum of the ring,that consists of all prime ideals in A.A closed point in
this spectrum is a prime ideal,a closed set V (S) = {p ∈ SpecA|S ⊂ p} consists of
closed points.An open set Uf = SpecA\V (f) = SpecAf = SpecA[f−1], f ∈ A.In
this case,we define Zariski topology on SpecA and it is an topological space.For
a commutative ring A,we define a B-sheaf Uf 7→ OA(Uf ) = Af .And now we
use definition 2.2.10 and proposition 2.2.11 in [10],a B-sheaf with B a base of
open sets in a topological space,is an assignment U 7→ F(U),∀U ∈ B satisfying
sheaf axioms.And a B-sheaf uniquely extends to a sheaf F on the topological
space.For extending to a sheaf OA,we only need to check gluing property

h

f

∣∣∣
Uf∩Ug

=
h

f

1

g
=
h

g

1

f
=
h

g

∣∣∣
Uf∩Ug

,
h

f
∈ OA(Uf ),

h

g
∈ OA(Ug) [7.24]

In this case,it indeed extends to OA called structure sheaf on SpecA.And the
unique maximal ideal is (f) in the stalk OA,(f) which means we have a locally
ringed space SpecA = (SpecA,OA).

An affine scheme is a locally ringed space isomorphic to SpecA.A scheme X
is a locally ringed space,locally isomorphic to an affine scheme.An observation
is a scheme is a solution space.For instance,a prime ideal in a polynomial ring
express a solution in D+1 dimensions of a polynomial in D dimensions just from
linear algebra.On the other hand,we have a function-solution correspondence

a function in D-dim space←→ a solution in (D + 1)-dim scheme

y = k[x1, ..., xD] ←→ (0) = (k[y, x1, ..., xD])
[7.25]

Next,we want to introduce projective scheme with dimension d,which covered by
(d− 1)-dim affine schemes.LetM =

⊕
i≥0Mi be graded commutative k-algebra

over a field k andMi is homogeneous elements of degree i.We define ProjM to be
set of all homogeneous prime ideals.Closed that V (I) = {p ∈ ProjM |I ⊂ p}.The
open set is Wf = ProjM − V (f) = SpecM(f−1)0,the subscript means the set
of homogeneous primes in degree 0.For a basis x0, ..., xD with degree 1 elements
generating ideal in M ,then the projective scheme is covered by Wx0 , ...,WxD .

We define an assignment Uf → M̃(Uf ) =Mf forMf an Af -module we want
it to be a B-sheaf,we only need to check gluing property based on [7.24]

h

f
m
∣∣∣
Uf∩Ug

=
h

f
m

1

g
=
h

g
m

1

f
=
h

g
m
∣∣∣
Uf∩Ug

∈ AfgM, m ∈M [7.26]
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actuallyM can be a cotangent space easily generated by Grassmann coordinates

M ∼=
∧

(θ) = Span((θ1, ..., θD)), θi = dxi

with d(lnf) = (∂x0 lnf)dx0 + ...+ (∂xD lnf)dx
D, ∀ f ∈ A

d(lnf) ∈ AfM, d(lng) ∈ AgM, d(lnf) + d(lng) = d(lnfg) ∈ AfgM

[7.27]

And the above B-sheaf uniquely extends to a sheaf M̃ on SpecA,which is an OA-
module that is a sheaf of A-modules.For a sheaf F on a scheme X,of OX -module
is quasi-coherent,if F|Ui ∼= M̃i that is a OAi-module for {Ui = SpecAi}i∈I
covering X.In the topological space,we can naturally retract OX(U)-modules to
OX(U) and to U on the UZar [9.79].

A super ringed space S = (|S|,OS) is a Z2 graded ringed space with a graded
structure sheaf,OS,0 is ordinary sheaf of algebra of regular function on |S| and
Os,1 is an Os,0-module.A super space is a super ringed space S with the property
that the stalk Os,x is local ring for all x ∈ |S|.A supermanifold M = (|M |,OM )
of dimension p|q is a superspace that is locally isomorphic to Rp|q which is just
a superspace with smoothness setting.Exactly,Rp|q = (Rp, C∞Rp [θ1, ..., θq])

C∞Rp [θ
1, ..., θq](Rp)0 =

{
f0 +

∑
even |I|

fIθI
∣∣I = {i1 < · · · < im}

}
C∞Rp [θ

1, ..., θq](Rp)1 =
{ ∑

odd J

fJθJ
∣∣J = {j1 < · · · < ir}

} [7.28]

where θI = θi1θi2 ...θim , i = 1, ..., q and |I| counting for the total parity and reg-
ular functions f0, fI ∈ k[x1, ..., xp].Which gives a formal definition for the super-
manifold descents from the supersymmetry algebra below [4.51].The smoothness
means we descents the information of free collection into a geometric object by
our opinion around [7.22] and now we see the commutation relation is a prop-
erty of the supermanifold and fields living on this geometric object naturally
follow its property.A superscheme is a superspace S with (|S|,OS,0) is ordinary
scheme and OS,1 is a quasi-coherent OS,0-module.

An abelian category is a category of Abelian groups,with the zero object
being the identity and binary biproduct as the binary operation,morphisms
are homomorphisms with kernel and cokernel.The commutativity based on the
comutativity of Abelian groups reflecting by normality of all monomorphisms
and epmorphisms.Clearly,we can form an Abelian category of R-modules with a
ring R,denote by ModR.For a module M ∈ ModR,it is flat means the functor of
tensor product of modules (−)⊗RM : ModR → ModR is an exact functor.M is
called faithfully flat means faithfulness of homomorphism as a property preserve
by (−)⊗RM and fit with corresponding commutative square of category

g−1 : HomR(N,N
′)→ HomR(N ⊗RM,N ′ ⊗RM) [7.29]

where g :M →M ⊗M∗⊗N ∈ N ,M is faithfully flat means the M is flat and g
is injective.The flatness is just like regularity.A morphism of schemes f : X → Y
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is flat means for all point x ∈ X,the map of the stalks O(f)x : OY,f(x) → OX,x is
flat which means OX,x is a flat OY,f(x)-module.And f is faithfully flat means it is
also surjective which means injectivity on morphsims on the level of sections by
the structure of morphsm of ringed spaces below [7.23].An remark is morphisms
of affine schemes Spec(R′) → Spec(R) are (faithfully)flat if and only if R′ is a
(faithfully)flat R-module.From a R-module M ,we have an observation that is a
map M → Rs,m =

∑
s rsas 7→ (r1, ..., rs),property of finite generating reflects

on s is an integer,because infinity is not integer.Which is a surjection reflecting
on exact sequence is Rr → Rs → M → 0 and if this exact sequence exists,we
call M is of finite presentation(of Rs).If A→ B is a ring homomorphism,we call
B is of finite presentation over A if there exists a surjection π : A[x1, ..., xs]→ B
with ker(π) is a finitely generated ideal in A[x1, ..., xs].We can understand by
first isomorphism theorem,B = im(π) ∼= A[x1, ..., xs]/ker(π),the set of cosets
is finitely generated if and only if ker(π) is finitely generated.A quasi-coherent
sheaf F on a scheme is called locally finitely presented if for every open subset
U = Spec(A) ⊂ X,the section F(Spec(A)) is a finitely presented A-module.If X
is locally noetherian,then the quasi-coherent sheaf is locally finitely presented,if
and only if it is coherent.A morphism of schemes f : X → Y is locally of finite
presentation if for every U = Spec(B) ⊂ Y and Spec(A) ⊂ f−1(Spec(B)),A is
of finite presentation over B.A morphism f : X → Y is of finite presentation
if f is locally of finite presentation and quasi-compact and quasi-seperated.A
morphism of schemes is quasi-seperated if X×Y X → X is quasi-compact.Easily
speaking,we have finiteness setting on the number of fibers and each fiber and
the pullback along fibers.

Now,we are able to define étale morphism of schemes which has very good
property like locally isomorphism also see below [9.89] for a motivation.Let
f : X → Y be a morphism of schemes.We call f formally étale(formally
smooth,formally unramified) if for every affine Y -schemes Y ′ → Y and every
closed embadding i : Y ′0 ↪→ Y ′ defined by nilpotent ideal JA,the following map
is bijective(smooth,injective).

◦i : HomY (Y
′, X)→ HomY (Y

′
0 , X) [7.30]

The f is étale(smooth,unramified) if it is also locally of finte presentation.To
understand above,we need an observation that is if x2 = 0, x ̸= 0, d(x2) =
d0 = 0 = 2xdx ̸= 0,which is a contradiction,that means if ΩX/S = 0 for a
S-scheme,and df = 0 ∈ ΩX/S must give f is a constant and fs ̸= 0 for some
integer s,this gives a corollary that ΩX/S = 0 if and only if the functions on
the scheme X cannot be nilpotent.And ΩX/S = 0 just for excluding the relative
ramification over C.An interesting thing is we focus on nilpotent ideal because
the brunch cut which forms discrete space,but if we put superscheme in we find
nilpotent ideal can be generated by all odd elements.Intuitively,this nilpotence
should also correspond to a discrete space structure over C.In (8.5.1) in [2],we see
an orbifold strucure which is a reflection of space Xµ ∼= −Xµ,and by discussion
around [7.22],if we just absorb the anticommutation to the space

(△∧□) ◦ (θ1θ2) = (−□ ∧△) ◦ (θ1θ2) and θ1θ2 ∼= Xµ [7.31]
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This is exactly an orbifold structure which forms a discrete space,this inspire us
to regard the orbifold as the correspondence to the nilpotence from the odd ele-
ments.We want to use definition in [13] to define orbifold as a groupoid associat-
ing with the next chapter.A groupoid is constructed by a pair (G0, G1, s, t) with
G0 a set of objects and G1 a set of arrow,with structure maps s, t : G1 ⇒ G0,for
f ∈ G1, f : x→ y, s(f) = x, t(f) = y and all these are categorized into category
structure.A Lie groupoid is a groupoid with G0, G1 are smooth manifolds and
structure maps are smooth and submersions.The intersection of source and tar-
get fiber at a point x ∈ G0,(G1)x = s−1(x)∩t−1(x) is a Lie group called isotropy
of G1 at x.A Lie groupoid is proper if the diagonal map (s, t) : G1 → G0 ×G0

is proper.It is étale if the structure maps are local diffeomorphisms.An orbifold
groupoid Gorb is a proper étale Lie groupoid which is equivalent to be a proper
Lie groupoid with all isotropies are discrete spaces.In this way,a category of
orbifolds is a differentiable stack denoting as Ψ

Ψ ∼= |Gorb
0 /Gorb

1 |, x ∼= y ⇔ s(g) = x, t(g) = y [7.32]

where x, y ∈ Gorb
0 , g ∈ Gorb

1 and we will see the verification in the next sec-
tion.[7.32] means it is an orbit space from quotient of the equivalence rela-
tion.And we can reformulate [7.31] just for f : Xµ → −Xµ ∈ Gorb

1 , s(f) ∼=
t(y).And we claim that for C-superscheme S over C,S1 = (|S|,OS,1) ∈ Ψ.We
define a C-superscheme to be a complex superscheme locally generated by

Cp|q = (Cp, C∞Cp [θ1, .., θq, θ̄1, ..., θ̄q]), Γ(Cp|q) = C[zµ, z̄µ, θσ, θ̄q] [7.33]

where z1 = z11 + iz12 , θ
1 = θ11 + iθ12, (θ

1)2 = θ1θ̄1 = 0.Notice that this bar θ for
conjugation is not overline θ in section 4 which has overline for denoting another
Weyl copy,because we want to keep notation same as in section 3.And [7.33] are
just complex case of [7.28].

Notice that algebraic supergeometry is for super setting for both considering
fermions and bosons without the constraint on their number.Supersymmetry
directly reflects by agreement on number counting see [4.13].In this case we
use the terminology super algebraic geometry denoting the algebraic geome-
try with SUSY and generalized setting.Actually,we can call it supersymmetric
geometry,but we want to be same with superstring theory.For develop a super-
symmetric AG,we can start at the work by Renaud Gauthier [14],he extends
Z2-module to Z2-bigraded-module to consider number counting on the string
world-sheet,that is M = Mi0 ⊕Mi1 = (M00 ⊕M01) ⊕ (M10 ⊕M11) and i for
denoting the coordinates we used for σi.And σi corresponds to anticommutative
coordinates θi because of supersymmetry gives a correspondence between X(σ)
with ψ(θ).But we see we can add more dimensions in [7.33],in this case we want
to generalized 1-d string to Dp-brane.

A symmetric superscheme of dimension d = 2n+ 1 is a superscheme gener-
ated by R2n−1|2n−1 with supermap δA.A symmetric C-superscheme of dimension
d = 2n is a C-superscheme generated by Cn|n for n ≥ 0,∈ Z with supermap on
the underlining super ring R on the compact dimension indexed by A.

δA = δA0 ⊕ δA1 : (zA, θA)→ (θA, zA), z ∈ R0, θ ∈ R1 [7.34]
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Notice that we have a C winding [3.79] which becomes a compactification by
normalization of physical states and we see this gives an equivalence of super-
symmmetry representation [4.22].In this case we use geometric part of compact-
ification geoc for only C winding and physical part of compactification phyc for
physics consideration.And we define a termiology that is a supersymmetry exact
compactification is susyc = phyc ◦ geoc,which is not toroidal compactification
etc..This is a setting for naturalness.Thus,for symmetric C-scheme of even di-
mension,we naturally have complete exact compactifications.But for symmetric
superscheme of odd dimension we leave with one dimension do not be compact-
ified exactly which means we do not have full supermaps for a odd dimension
symmetric superscheme.We want to apply the fact below [7.25] that is a pro-
jective scheme of dimension d is covered by d − 1 dim affine schemes,and for
considering the odd dim brane exists in superstring theory,we need a constraint
that all symmetric superschemes are isomorphic to projective schemes or sym-
metric exists in universe as a projective scheme.And another constraint that is
all symmetric C-superschemes are isomorphic to affine schemes or a symmetric
C-superscheme lives in universe as an affine scheme.In this case,an projective
symmetric superscheme of dimension d naturally has supermaps from the affine
symmetric C-superschemes covering it of dimension d− 1.And exact supersym-
metry compactification also restrict their dimension need to be in superstring
theory D = 10,that is 0 ≤ d ≤ 10.

Now we want to combing these super settings with the former generalized
settings for T-duality in section 6.A M-brane (M ,P) is a pre M-brane [6.22]
from the T-fusion of two D = 10 dimensional affine generalized symmetric C-
superschemes,which is a 11 dimensional projective symmetric superscheme,with
a highly nontrivial sheaf P of properties with a clear form [9.15].And we want
to use a section to discuss a theory with properties,which should be the correct
way to the unification.

8 Experiment-free programme

Introduction and motivation

Every thing is actually about property,every property is actually about ge-
ometry.we can regard generating of quarks pair by vacuum as a process of dis-
playing properties from the underlying geometry.

We claim that we can construct a theory with complete elimination of ex-
periments.And this follows from a philosophy that is non-existence must exist
which means we cannot understand a thing exists but we can understand a thing
does not exist without explanation.Thus,achieving an experiment-free theory is
to create a non-existing theory,for a theory does not exist we can explain the
existence of such a theory without any doubts and experiments.This leads us to
construct a theory of properties that for quantifying the extent of existence.And
we call the process following from the philosophy and leads to such a theory,the
experiment-free programme which is based on modern algebraic geometry which
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we developed in section 9.

8.1 Fundamental settings

Definition1.1 A property P is a relation P ⊆ {(x, y)|x, y ∈ X},a point or
a thing is a trivial relation x = y, x, y ∈ X.In this case,a thing is a property.

Definition1.2 A category of property CP over C is a fibered category,with
objects are P -properties for P ∈ C,and a morphism is a fiber product

{(x1, x2)× (x2, y2)} {(x2, y2)}

{(x1, y1)} P

[8.1]

where (x1, y1)× (x2, y2) = (x1x2, y1y2).For instance,for two properties >,=,we
have the fiber product {(x1x2, y1y2)|x1x2 ≥ y1y2} over a field P .Morphisms
of categories CP ,CR of properties over C are functors.a morphism of functors
is a base preserving natural transformation.In this case,we have a 2-category
HOMC(CP ,CR),for functors g, g′,the natural transformation α : g → g′,the
morphism αP : g(P)→ g′(P) is a identity morphism in CR.

Corollary1.3 A normal commutation is a property {(x, y)|xy = yx}.An
anticommutation is a property {(x, y)|xy = −yx}.A (super)commutation above
[7.4] is a property of a Z2-graded super ring A

{(x, y)|xy = (−1)|x||y|yx, ∀x, y ∈ A} [8.2]

The T-duality [6.10] is a property on the generalized module

{(Xd, X ′d)|X ′d = TXd, ∀ d ∈ D} [8.3]

Definition1.4 A geometry is a singular simplex σn : △n → X,where X is a
topological space.And △n is an algebraic normalized n-simplex

△n = Spec(R[∆n]), R[∆n] = R[x1, .., xn+1]
/(

1−
∑
i

xi
)

[8.4]

which is an n-dim affine scheme.The simplex σ0 : △0 → X is a point in X.
Definition1.5 A category of geometries G over C that is a category of topo-

logical spaces,is a fibered category.The objects are simplexes and a morphism is
fiber product,for X ∈ C and △n ×△m = △n+m

△n × △̃m △̃m

△n X

σ̃m

σn

[8.5]

Corollary1.6 A family of open strings so in X is a geometry [so] : △1 → X
and a family of closed string sc in X is a geometry [sc] : ∂△2 → X with
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boundary operator from ∂2∆n = 0

∂∆n =
∑
i

(−1)i[x1, ..., xi−1, xi+1, ..., xn+1] [8.6]

Then,we can formalize open and closed string by algebraic topology.As ∆n forms
a basis for Rn,we have a simplicial group Sn(X) = (Z∆n → X,+) which is free
Abelian.And the subscript means it forms chain complex

· · · −→ Sn+1(X)
∂n+1−→ Sn(X)

∂n−→ Sn−1(X) −→ · · · [8.7]

Then,by taking long exact sequence we get simplicial homology group

Hn(X) =
Zn(X)

Bn(X)
, Zn(X) = ker(∂n)(X), Bn(X) = im(∂n+1)(X) [8.8]

In this case we can see strings s in topological space X are elements of H1 with
closed string sc ∈ Z1(X) and open string so ∈ B1(X).Similarly,we have the
super simplicial homology group follows from the Z2-graded chain complex [8.7]
denoting as Hn(X),and superstrings are classified by H1.

Corollary1.7 A supergeometry is a geometry sn : △n = Spec(A[∆n])→ X
for a super ring A,with Z2-grading

sn : Spec(A0[∆
n])⊕ Spec(A1[∆

n])→ X [8.9]

which gives a formal definition for superscheme below [7.28]
Definition1.8 A superscheme is a superspace (X ,OX ) with topological

space X a admitting structure s [8.9] and structure sheaf dicussed below [7.28].
Proposition1.9 A family of open superstrings in X is a supergeometry

so = s1.And a family of closed superstrings in X is a supergeometry sc = ∂s2.
Corollary1.10 A generalized geometry is a geometry

gn : △n = Spec(R[∆n])→ X, R = R⊕R∗ [8.10]

Definition1.11 A D-string sD is a D1-brane with T-dual space point above
[6.21].In this case,a family of D-strings in X is a generalized geometry g1.

Definition1.12 A super generalized geometry is following

(g⊕ s)n : Spec(NA[∆
n])→ N , NA = (A0 ⊕A1)⊕ (A0 ⊕A1)

∗ [8.11]

which gives us the definition of generalized superscheme from definition1.8.
Corrollary1.13 From the natural property of generalized geometry below

[6.22],the T-fusion extends a pair of [8.11] to a M-brane M with specific limit

Spec(NC[∆
D]) = Spec(C[∆D])R ⊕ Spec(C∗[∆D])R′

∼= Spec(C[x1, .., xD])R ⊕ Spec(C[x′1, ..., x′D])R′

= Spec(C[x1, .., xD])R→0 ⊕ Spec(C[x′1, ..., x′D])R′→∞

= · ⊕ Spec(C[x′1, ..., x′D]) = · ⊕ Spec(C(0,D))

(Spec(NC[∆
D]),Spec(NC[∆

D]))R→0

∼= (Spec(C(0;D,∗)), · ⊕ Spec(C(0;∗,D)))

∼= Spec(C(0;D,∗))⊕(0,D+D) Spec(C(0;∗,D)) ∼=P(T) M

[8.12]
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where the subscripts are set for the radius in [6.10] and we will discuss in the
definition1.15.Also,[8.12] gives formal definition to M-brane.

Definition1.14 A M-brane M with D = 10 is a projective symmetric gen-
eralized superscheme admitting the structure P(T) ◦ ((g⊕ s)D)2 that is

(Spec(NC[∆
D]),Spec(NC[∆

D]))→ (N ,N )→M [8.13]

And we see the supersymmetry naturally exists from C[x1, ..., xD] = CD|D.And
if we both have super and generalized settings,we ignore to denote symmetry
because it naturally fit in.

Also,there is a subtile point,recall that the normalization in [8.4],actually
the right hand side of the first line in [8.12] is normalized,in this case,we cannot
operate the radius,this is answered by the following definition.

Definition1.15 A spontaneous regularity breaking is the normalized radius
spontaneously breaks to those of double spaces in generalized geometry.(

1−
∑
i

xi
)
NC[∆D])

=
(
R−

∑
i

xi
)
C[∆D]

×
(
1/R−

∑
i

xi
)
C∗[∆D]

[8.14]

where we set α′ = 1 in [6.10].And R→ 0 actually means R→ h− ϵ to let it be
unobservable and R′ almost counts whole T-dual space now.

8.2 Algebraifold A and equivalence of categories

From an observation that a manifold is a continuous extension of a geomet-
ric object,we want to define an algebraifold for a continuous extension of an
algebraic structure.

Definition2.1 An algebraifold A in topos T on the big étale site Et(X),is
a locally ringed space locally isomorphic to a category AUUϵ with hAi ∈ AS/U
and Y/U ϵ ∈ AS/U ϵ in category of algebraic spaces for an étale cover U ∈ Et(X)

AA = {h(Ai|U) → (Y/U ϵ/U )→ h(Aj |U)}i,j∈I → U [8.15]

where Ai ∈ AS/U ⊂ T on étale U -scheme Ui in Cov(X).And the evolution of
relative properties is given by [9.130].If U = Spec(R),we must have an étale
cover and it factors through an algebraic infinitesimal system

U = Spec(R)
et←− Spec(M/ϵ2)

et←− Spec(M), M/ϵ2 = (RM)/ϵ2 = R(M/ϵ2)
[8.16]

see [7.15] and we are in big étale site.In this case,U ϵ = Spec(R+ ϵm)

Y/U ϵ/U = T |Et(U)→ Hom(T |Et(U), B|(Spec(R+ ϵm))), ϵm ∈M/ϵ2 [8.17]

with the following diagram commutes,with infinitesimal transition f ϵU

AS/U AS/U ϵ/U
∼= AUUϵ AS/U ϵ

U U ϵ/U U ϵ

(
√

∆Uϵ/U )∗

fϵU

[8.18]
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Proposition2.2 A function is a property {(x, y)|y = f(x)}.In this case,a
sheaf is a category of properties.An algebraic space A over S-scheme U is equiv-
alent to a fibered category of relative properties CA and admits an étale pre-
sentation X → A over S.Which is equivalent to say for an étale equivalence
relation which is R ↪→ X ×S X and for étale projections s, t : R ⇒ X with
A = X/R ∼= CA with #CA = #(X/R).

Proposition2.3 If A ∈ T satisfies [9.6] and extra condition for generalized
geometry,we have a generalized superalgebraifold.

Theorem2.4 The category of properties is equivalent to the category of
geometries CP ∼= G over a same base P .

Proof. If P are equivalent properties that are equivalent relations,the cat-
egory of equivalent properties corresponds to an algebraifold AA ∈ G and a
property corresponds to a △n with ∂△n = 0.If P are properties that are not
equivalent relations,a property corresponds to a △n with ∂△n ̸= 0. 2

This proof is based on an observation that we can view a geometry with bound-
ary corresponds to a relation that is not equivalent of boundaries,a geometry
without boundary corresponds to a relation that is equivalent of boundaries.

Corollary2.5 by using the theorem2.4,a family of open string is a property
that is not equivalent,a family of closed string is an equivalent property.And
we know,the massless bosonic state of closed string gives the graviton which is
the source of gravity.In this case,a family of gravitons actually is an equivalent
property P ∼= [sc] : ∂△2 → X in corollary1.6,with the first oscillation level
reflected by the topology in X.

Theorem2.6 There is a natural existence of gravity in the structure con-
structed by algebraifolds A.

An interesting thing is if we view scheme [8.16] as a functor [9.7] we have

U ϵ Aϵ

hSpec(R+ϵm) Spec(Aϵ(U ϵ))

et [8.19]

then if A is a sheaf of super structure,R + ϵm ∈ S with S a symmetric super
R-module,we must have ϵm ∈ S0/(ϵ

2) orS1 because (x+ θ)2 = 2xθ ̸= 0,∀x, y ̸=
0, x(ϵ) ∈ S0/(ϵ

2), θ ∈ S1.Then we can form a linear combination

ϵm ∈M ⊕ 1 or 1⊕M∗ (ϵS0/ϵ
2)⊕ S1

∼=M ⊕M∗ [8.20]

If we let ϵ = ∂,m = Q, ϵm ∈ M ⊕ 1 with a conserved charge Q.This induces a
split of dynamics on the generalized superalgebraifold A = A⊕A∗

∂ ⊕ ∂∗ = ∂ ⊕ 1 + 1⊕ ∂∗ = ∂̂ ∈ A, ∂̂(Q⊕Q∗) ∈ ModA

∂̂(Q⊕Q∗) = ∂Q⊕Q∗ +Q⊕ ∂∗Q∗ ≡ ∂(Q⊠Q∗)
[8.21]

where ModA is the category of all A(U)-modules and from an observation that
is a moving object can be separated to movement and object itself,the con-
served quantity is reflected by the closure from the movement as an action of
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an algebraic structure on the object in the vector space.And we call ⊗ → ⊠ the
T-fusion like,which makes generalized algebraifold on pre M-brane [6.22] where
we loose the double setting because we T-fused the generalized geometry.

Theorem2.7 For a generalized superalgebraifoldA,the dynamics of one part
is open if and only if the dynamics of T-dual part is closed,with the conserved
current ∂(Q⊠Q∗) ∈ ModA,also this split of dynamics induces a split of modules
ModA = ModA⊕1 ⊠Mod1⊕A∗

8.3 Relative property and nonexistence

Definition3.1 A relative property is an étale equivalent property which
is an étale equivalent relation.On the scheme level,that is a monomorphism
R ↪→ X ×s X which preserves for T -points R(T ) ⊂ X(T ) × X(T ) and the
projections are étale R ↪→ X ×s X ⇒ X where S =

∐
Spec(NC[∆

10]).
Corollary3.2 By using the equivalence of categories in theorem2.4,an étale

equivalent property is a class of open strings in the scheme with the endpoints
gluing by étale morphism,from the notation we used in [7.32]

s(so)
et−→ t(so) ⇔ sc, (s(so), t(so)) = (s(soD), t(s

o
D)) [8.22]

we used definition1.11.Which means an an étale equivalent property can be a
class of closed strings or class of open strings with boundary attaching on a fixed
plane.In this case,setting of étale is the source of open strings with D-branes.

Theorem3.3 The only type of strings in all string theories is the type of
étale closed strings.The ordinary open string is just an ordinary closed string
split by étale morphism.We will discuss this in section 12 and 13.

proof. From the difference of endpoints of open string [6.19] we have X ′di =
X ′dj + θR′ which means X ′di = X ′di (X ′dj ),and X ′dj = X ′dj (X ′di ) then the relative

differential ΩX′d
i /X

′d
j

= 0,which means the X ′di → X ′dj is étale.

Definition3.4 A generalized super étale morphism is the étale morphism

along each grading.For instance,NA
et→ NB if and only if

A0
et→ B0, A1

et→ B1;A
∗
0

et→ B∗0 , A
∗
1

et→ B∗1 [8.23]

Definition3.5 A Dp-brane in super generalized geometry is a homotopy of
super generalized étale morphisms in the section of the coherent sheaf

Dp : (x′ − (X ′p+1
ii , ...X ′p+1

ii )) ∈M∗,×[0, 1]p
et−−→−−→
et

Spec(NA[x
1, ..., xD])

Dp ∈ Γ(Spec(C[x′1, ..., x′D]),
∏
d

C∞[x′1, ..., x′d]⊗C[x′...] M
D−d)

[8.24]

where we used [6.21],[8.11] and from discussion below [7.29],the sheaf is coherent
(C∞[xd+1...xD]⊕ C∞[x′1, ..., x′d])C(D−d,d) ∼=

∏
d C
∞[x′1, ..., x′d]⊗C[x′...] M

D−d.
Another interesting thing is we combine [8.2] and [8.3] to discuss super gen-

eralized property,the supersymmetry gives a Z2 symmetry on the pair and the
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T-duality also gives the symmetry on the it.This induces a spontaneous Z2

symmetry breaking for NA[x
1, ..., xD].

Definition3.6 A generalized super ring is the ring with structure

(A0 ⊕A1)⊕ (A0 ⊕A1)
∗ ∼=Bos (A0 ⊕A0)⊕ (A1 ⊕A1)

∗

= (A⊕A)0 ⊕ (A⊕A)∗1
[8.25]

where we used bosonisation [6.31].With super T-duality on it

Tδ : (A⊕A)0 ⊕ (A⊕A)∗1 → (A⊕A)∗1 ⊕ (A⊕A)0 [8.26]

Corollary3.7 A generalized super ring has the following decomposition

(A⊕A)0 ⊕ (A⊕A)∗1 =
1

2
((A⊕A)0 ⊕ (A⊕A)∗1) +

1

2
((A⊕A)∗1 ⊕ (A⊕A)0)

×ordered →
1

2
((A⊕A)0 × (A⊕A)∗1) +

1

2
((A⊕A)∗1 × (A⊕A)0)

[8.27]

Definition3.8 A spontaneous Z2 breaking on the generalized superscheme
X ⊕X ∗ level is the breaking of symmetric product scheme X0×sX ∗1 from [8.25]
to two ordered products from [8.27] of the underlying generalized super ring.

(X0 ×S X ∗1 )unself T =×ordered X0 ×S X ∗1 /Z2 + X ∗1 ×s X0/Z2 [8.28]

We will see a self T-dual case in [8.34].Following the breaking [8.28],we have a
classification of generalized super étale equivalent properties

R ↪→ X0 ×S X ∗1 ,=ordered R+ ↪→ X0 ×S X ∗1 /Z2,+R− ↪→ X ∗1 ×S X0/Z2 [8.29]

Which gives a field,that is F+ = {#R+} and F− = {#R−} with additive iden-
tity 0P(T)−1Q⊠Q∗ when R are properties on Spec(NC[x

1, ..., xD]).And the field
formed by étale equivalent properties on M we will discuss in [9.17].The subtile
point is the former identity need to be T-fused to identity on the M-brane that
we denote as 0Q⊠Q∗ which cannot be ordinary zero we will see.

Definition3.9 The local nonexistence locally on Spec(NC[x
1, ..., xD]) or M

is total number of étale equivalent properties is equal to 0P(T)−1Q⊠Q∗ = 0Q⊠Q∗ .∑
P(T)−1M

{#R}R =
∑
M

{#RM}R = 0P(T)−1Q⊠Q∗ = 0Q⊠Q∗ ̸= 0 [8.30]

Definition3.10 The nonexistence is the global nonexistence with total num-
ber of étale equivalent properties is equal to 0,with no relative effect (indepen-
dent of choices of reference frame).

8.4 Super generalized general relativity

Firstly,recall in double field theory,we have double copies of theories induced
by T-duality,and where we live in depends on how to choose the dynamics
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(can be generated by winding number or angular momentum),the dynamics of
one side must be closed when the dual side is open.And [8.21] is an algebraic
expression of this and such freedom has relative effect.Now,we want to study
relativity in super generalized geometry,which indeed makes sense based on the
theorem2.7,which means we can put relative motion frame (open dynamics) in
ModA⊕1 and corresponding rest frame (closed dynamics) to Mod1⊕A∗ .

Definition4.1 A motion is an étale equivalent property that is a set of pairs
{(x, y)|y = Lx,L ∈ SO(D − 1, 1)}.The general relativity is a fibered product
X ×S X ′ where X ′ is a reference scheme compared to X.An interesting thing is√

1− v2

c2
= R⇒ R2 = 1− v2

c2
⇒ 1 =

√
R2 +

v2

c2
[8.31]

which gives us a modified Lorentz correspondence

1× x ↔L γ(x− vt) ⇔
√
R2 +

v2

c2
x ↔ x− vt

R
[8.32]

Then,we compare [8.32] with [6.10] and we find Lorentz correspondence behaves
like T-duality,with now the coordinates of dual space is x′ = x+ vt,and denote
M ⊕M ′ as generalized Lotentz module and grading extends to further alge-
braic structure.We can see the super generalized general relativity is used for
explaining possibility in quantum theory [12.21].

Theorem4.2 There is a natural inclusion from a generalized Lorentz scheme
to generalized superscheme with the classification of relative properties

X ⊕X ′ X ×s X ′ R′

X0 ⊕X ∗1 X0 ×s X ∗1 R

[8.33]

The physics meaning of [8.32] is the source of Lorentz transformation or special
relativity is the compactness of underlying geometry.And the reference frame
lives in the T-dual space with radius 1/R = γ,when v changes the T-dual space
radius changes and the ordinary space is always unchanged.This means the two
parts in super generalized geometry in [8.11] are decoupled when v ̸= 0 that is
non-trivial case,which means they should be self T-dual,R′ ∈ C \ R≤1

Spec(NC[∆
D])dec ∼= Spec(C[x1, ..., xD])R=1

∐
Spec(C[x′1, ..., x′D])R′

∼=P(T) Spec(C[x1, ..., xD, ∗])
∐

Spec(C[∗, x1, ..., xD])R′∈Rnorm
>1
⊂M ,∐

P(T)−1

Proj(R[x1, ..., xD−1, ∗])⊕ Proj(R[∗, x′1, ..., x′D−1])
[8.34]

with trivial T-fusion.The explanation of [8.34] is given by combining physics
meaning of automorphism with derived obstruction theory,we will see in [12.65].
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And the black hole limit lets us construct T-fusion dimension for dimension
and combine [6.22],we have T-fusion hierarchy

Proj(NR[∆
D−1])dec ∼= Proj(R[x1, ..., xD−1])R=1

∐
Proj(R[x1, ..., xD−1])R′

∼=P(T) Proj(R[x1, ..., xD−1, ∗, ∗])
∐

Proj(R[∗, ∗, x1, ..., xD−1])R′∈Rnorm
>1
⊂M∐

P(T)−1

Spec(C[x1, ..., xD−2, ∗])⊕ Spec(C[∗, x′1, ..., x′D−2])

[8.35]

the R with imaginary radius T-fuse to C which is (R−)R′∈C\R ∼=P(T) (C−) and
similarly for others.Also,we use C for super complex number for simplicity.

Definition4.3 A black hole on D = 10 decoupled super generalized geome-
try relative to self T-dual ordinary part is

B̃H = Spec(C[x′1, ..., x′D])selfTR′∈C\R

⋂
· ⊕ Proj(R[∗, x′1, ..., x′D−1])R′ [8.36]

where we use the superscripts for self T-dual in decoupled case.
Remark4.4 We call the result theory that from viewing Lorentz correspon-

dence as T-duality and include it into decoupled super generalized geometry,the
super generalized general relativity.

Proposition4.5 We can understand above by putting [8.34] in [8.33],we get
another decomposition from the self T-dual

(X0 ×s X ∗1 )self T =decoupled (X0 ×s X0)M + (X ∗1 ×s X ∗1 )M + X̃ ∗1 ×s X̃ ∗1 [8.37]

and the tilde is for unseen part (black hole,dark energy etc.) because we are in
compact dimension with imaginary radius.And the decomposition [8.34] gives a
self T-dual classification of generalized super étale equivalent properties

R = R++
M + R−−M + R̃ [8.38]

where the subscript is for the relative properties on M-brane.Compared to dis-
cussion below [8.29],there is no a number counting for R̃ to construct a field
but easily we can quantify it by [8.30] with definition3.10

0 =
∑
{#R} =

∑
{#R++

M + #R−−M }+
∑
{#R̃} [8.39]

If we set it to cosmology constant Λ we have∑
{#R̃} = Λ = −0Q⊠Q∗ [8.40]

8.5 S-duality and U-duality on étale closed strings

Actually,[8.22] is the source of S-duality,an ordinary open string is dual to a
D-string with agreement on endpoints.We know open strings live on Dd-brane
which means they live in D − d dimensional spacetime,from [6.21]

S : C∞([xd+1, ..., xD]⊕ [x′1, ..., x′d])→ C∞([x′1, ..., x′d]⊕ [xd+1, ..., xD]) [8.41]
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If we mod the S-duality,we get the generalized algebra from the coset

C∞([xd+1, ..., xD]⊕ [x′1, ..., x′d]) + SC∞([xd+1, ..., xD]⊕ [x′1, ..., x′d]) [8.42]

Thus,we can regard S-duality as a fiber of T-duality on the generalized space
with SC∞ ̸= C∞S.For generalized space C(D,D),we have

S(D,D) End(Γ(Spec(C(D,D)))

T(D,D) End(Spec(C(D,D)))

[8.43]

where if we set D to one direction and D∗ to a prependicular direction,we find
S(1,1)

D,D⊥ ∈ SU(2, C∞C(1,1)) ⊂ SL(2,C(1,1)) where we set f(x′) ∼= x′.Now,we
want to consider a fibered product and use the generalized super ring [8.11]

End(Spec(C(D,D)))×M End(Γ(Spec(C(D,D))) End(Γ(Spec(C(D,D)))

End(Spec(C(D,D))) M

P(T)−1

P(T)−1

[8.44]
where we used T-fusion and recall the sheaf of properties on M-brane

End(Spec(C(D,D)))×M End(Γ(Spec(C(D,D))) =P(T) End(P(M )) [8.45]

Through the fiber product [8.44],we can define a new duality called U-duality

T×M S =P(T) U ∈ End(P(M )) [8.46]

Also,we can apply S-duality on the coherent version of [8.41] in [8.24]

S : C∞[x′1, ..., x′d]⊗C[x′...] M
D−d → C∞[x′d+1, ..., x′D]⊗C[x′...] M

∗d [8.47]

Then we can let C∞ = T : Spec(NC[x
′1, ..., x′D])Zar → GSTen,to the gener-

alized super tensor category based on [7.17] and super T-duality [8.26] with
Ob(GSTen) = Ob(GSTen0)⊕Ob(GSTen∗1)

Ob(GSTen0) =
⊕

0≤n≤D

M⊗n, Ob(GSTen∗1) =
⊕

0≤n≤D

M∗⊗n [8.48]

morphisms areM⊗n
⊗M∗⊗m

−−−−−→M∗⊗(n+m) andM∗⊗n
⊗M∗⊗m

−−−−−→M⊗(n+m).And we
apply [8.43],that means we should have a S-duality over the super T-duality

S :M⊗(D−d) →M∗⊗d, Tδ = S ◦ ∗ :M⊗d →M∗⊗d [8.49]

guided by [8.47] and the Hodge duality [5.25],we can express Hodge duality as

∗ = (Tδ ◦ S)GSTen [8.50]

which can be constructed by the dualities in superstring theory under super
algebraic generalized geometry.
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8.6 Stack generalized by dualities

For a stack p : F → C which is a category fibered in groupoids,for defining
global descent theory,the presheaf Isom(x, x′) on (C/X)op [9.48] is a sheaf.

Now,for a prestack F⊕F ∗ → C generalized by a duality,we want to study the
presheaf Isom(x, x′), x ∈ F (X), x′ ∈ F ∗(X).The corresponding fibered category
is p : D = (Isom(x, x′)(C/X)op)→ (C/X)op.For a X-scheme Y → X we have a

X-morphism (Y ′
f−→ Y )/X.We can define a category D((Y ′

g−→ Y )/X) with an
object (f,Θ),where we want to view f as a functor

f ∈ g∗Isom(x, x′)(Y → X) ↪→ HOM(C/X)(F (Y
′), F ∗(Y ′)) [8.51]

Then,the transition Θ is a natural transformation in D(Y ′ ×Y Y ′/X),that is
Θ : pr∗1f → pr∗2f such that the following diagram commutes

pr∗12pr
∗
1f pr∗12pr

∗
2f pr∗23pr

∗
1f

pr∗13pr
∗
1f pr∗13pr

∗
2f pr∗23pr

∗
2f

pr∗12Θ

pr∗23Θ

pr∗13Θ

[8.52]

where Θ is called descent data for the functor f .A morphism is given by [9.53].
Definition6.1 A stack generalized by a duality is a category F ⊕ F ∗ → C

fibered in groupoids with ordinary stack conditions,with the extra condition

D({(Wi
g−→ Y )/X}i∈I) ∼= D(Y → X) [8.53]

for all covering of X-scheme W ,which is a global descent theory for gluing
duality fusions in ordinary groupoid.So we have a global effective descent data
in fibered 2-category which is a stack of dualities.

HOM(C/X)(F, F
∗)→ (C/X) [8.54]

Now,recall that the fibered category as a functor and scheme as a functor below
[9.19],we need following fusion condition C/X ∼= X ∼= F ,which means

HOM⋃
X(C/X)(F, F

∗) ∼= HOM⋃
X X((C/X), F ∗)

= HOMC̃((C/X), F ∗) ∼= F ∗(X) ∼= F ∗(F )
[8.55]

where we used 2-Yoneda lemma [9.25],and we put it in [8.54]

p : (F ∗ → F )→
⋃
X

(C/X) = C̃ [8.53]

which is a stack of fusions of dualities.
Definition6.2 A fusion of a duality is an object of p(F ∗ → F ) ∈ C̃.
For instance,if we set X to be a M-brane,we have C̃ =

⋃
M (C/M ) ∼= (M ).In

this case,a T-fusion is F ∗(M )(F (M )) ∼=p(T) M .
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8.7 Preview of M-theory

In this paper,we regard the modern algebraic geometry as the mathematical
counterpart of M-theory,because we always follow a philosophy about everything
is a reflection of properties.And in this case,every process should be a process
of generating properties from the space or vacuum.Also,we have seen that ev-
ery property is an algebraic structure corresponds to a geometric structure,in
this case algebraic geometry should be a natural language.And we need a num-
ber counting for relative properties to achieve experiment-free.In the classical
method (differential geometry),the first limit is we cannot correctly define and
study the space or vacuum,the second limit is it can not provide a methodology
to study a process of generating properties.

Definition7.1 A prespace (prevacuum) is an object for generating prop-
erties.In this case,we have a completely different way to understand the vac-
uum.For instance,a sheaf F is a prespace because it can generate a property
(X,F (X)).Which enlarges the category of schemes to category of schemes with
sheaves.Notice that we need relative properties for nonexistence of M-theory
and we will see in [9.112] only a part of sheaves (algebraic spaces) are spaces.

Definition7.2 A preservation of universal property is a process admitting
a relative 2-property below [9.110] along a covering.For instance,if conservation
of positive energy is a relative property,positive energy is a relative 2-property.

Definition7.3 A space is a consistent prespace that guarantee preservations
of universal properties.

Also,modern algebraic geometry started at viewing scheme as a functor,the
physics meaning is the real vacuum meaning it is consistent,is not eventually
nothing,it indeed has information for generating properties.Also,modern alge-
braic geometry supports to construct a theory of moduli.And the theory of
moduli on the consistent site,unifying all superstring theories without verifica-
tion of experiment,the M-theory.With further development of our theory we will
give a full understanding of D+1-dim M-theory and D-dim superstring theories
in [13.9].And the full process can be seen in diagrams above [13.1].We will give
clear definition of M-theory at start and achieve the unification at end.

9 Modern super algebraic geometry I

9.1 The sheaf of properties P

Supersymmetry is a background for describing geometry of our world ade-
quately,and for the geometry,we want to apply modern AG based on the text
[12] based on Grothendieck’s philosophy that is points(closed sets) are not im-
portant,the importance is a collection of maps covering others(open sets),we
want to ignore points completely,this shift from study points to maps onto open
sets induce the generalization of standard AG.Which shifts the focus point from
a category of schemes (Sch,Hom) to a site (Sch,Cov).

A Grothendieck topology on a category C is a set Cov(X) = {{Xi → X}i∈I}
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for all X ∈ C
(i){V ∼= X} ∈ Cov(X)

(ii){Xi ×X Y → Y }i∈I ∈ Cov(X) ∀ {Xi → X}i∈I ∈ Cov(X), Y → X ∈ C
(iii){Vij → Xi → X}i∈I,j∈Ji ∀ {Xi → X}i∈I , {Vij → Xi}j∈Ji

[9.1]

A site is a category C with a Grothendieck topology.By the definition,a category
Op(X) of open sets U of scheme X is a site with classical topology that is
{Ui → U}i∈I ∈ Cov(X) with

⋃
i Ui = U .A small étale site et(X),is a category

of étale represented schemes X with objects are étale morphisms U → X we
discussed in [7.30] and the Grothendieck topology Cov(U) is classical and the
globalization

∐
i Ui → U is surjective.A big étale site Et(X) is based on the

strucuture of et(X) with more general topology that each Ui → U is étale with
surjective globalization,it has enough coverings.

For a site C,a presheaf is a functor F : Cop → Set.And it is a sheaf if it
satisfies

0→ F (U)→
∏
i∈I

F (Ui)⇒
∏
i,j∈I

F (Ui ×U Uj)→ 0, ∀U ∈ C

F (U) = F (
∐
i

Ui) ∼=
∏
i,j∈I

F (Ui)/F (Ui ∩ Uj)
[9.2]

which is an exact sequence for equalizer with a globalization
∐
i Ui → U for

a covering {Ui → U}i∈I .We can see an example [7.20] and the Gr operation
is actually a sheafification.And the key observation is we ignore points (closed
sets) and define sheaf only on open sets and their covering.

A topos T is an equivalent category of that of sheaves.Which is just a gener-
alization of sheaf on a scheme to a category of sheaves on a site of schemes.And
we denote topos on a small étale site Xet,also we use Set for the étale site of S
[9.79],if not clear we use tilde for topos.In this case,we can do categorical algebra
in topos equivalent to category of sheaves of sets to generate all sheaves of al-
gebraic structures (group,ring etc.).For example,we want to generate a sheaf of
generalized super ring.For A ∈ T topos of sets with final object.For the additive
Abelian group structure,the binary operation gives by composition of Homs

HomC(A,A)×HomC(A,A) HomC(A,A)

A×A A

m

m

[9.3]

and identity from a final object e

id : A→ {∗} ×A e−→ A×A m−→ A [9.4]

Associativity and commutativity are similar.Inverse is from the existence of limit

A
α=pr◦(1×A)
−−−−−−−−−−−→−−−−−−−−−−−→

β=id
A, A−1 = Eq(α, β) = {a ∈ A|α(a) = β(a)} = A [9.5]
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And the uniqueness of inverse is from the universal property of the equal-
izer.Similarly for multiplication,the only thing is multiplicative commutativity

A×A A(U)×A(U) ab

A×A A(U)×A(U) (−1)|a||b|ba

cA,A c c [9.6]

where c is the commutation in the superalgebra above [7.4].Around [7.22] and
[7.31],we extract the commutation as a property from fields to the underly-
ing geometry,but now,we further see this property comes from the underlying
topos.This is a natural consequence,because the super ring is generated by the
sheaf of super rings and the sheaf is generated by the topos on a site.The dis-
tributivity is from that of functions and we have generalized ring strucuture if
it admits a spontaneous regularity breaking A = A⊕A∗.A fact is different sites
can induce equivalent topoi see [9.82],thus,we regard topos as the lowest level
of logic of this generating process.

Now,we want to formalize the limit and colimit [7.23] in functorial ap-
proach.For a functor F : I → C the limit lim←−F : Cop → {hX → F} where
the representable functor hX = Hom(·, X) which is also called functor of points
of X and it is completely determined by the underlying rings that is for a cov-
ering {Xi → X}i∈I ,hX(Xi) = Hom(Spec(Ai), X).Also X ∼= Y ⇔ hX ∼= hY for
schemes.Similarly,the colimit lim−→F : C → {F → hX}.The Yoneda lemma is

(g : hX → F )←→ F (X) [9.7]

we find hX ↔ {idX : X → X} that is a point on scheme X corresponds a
permutation of points of X,this is a trivial case that means the identity functor
idX ∼= hX and is represented by the scheme X,or the X is a moduli space of
families of functions that keep identity globally.If a sheaf of curves F ∼= hX is
represented by scheme X,one point in X corresponds to a family of curves or
equivalent class of curves where F : (Sch/X)→ (F (T → X)),this good property
is from a point of scheme X is an ideal that is a subring I,then a natural T -point
is T = Spec(I) → X which corresponds to a correction to weirdness of Zariski
topology.

A ringed topos is a ringed space (T,Λ) for topos,see below [7.23].Functor of
sites f : C ′ → C is continuous if for every X ∈ C ′ we have {f(Xi)→ f(X)}i∈I
in Cov(f(X)),if f commutates with fiber products then f(X), f(Xi) ∈ C ′.And
most of times the continuous map f : C ′ → C preserves functorial structure on
their topoi f∗ : T → f∗T ′ with (f∗F )(X) = F (f(X)), X ∈ C ′,from∏
i,j

(f∗)(Xi ×X Xj) =
∏
i,j

F (f(Xi ×X Xj))
≃−→
∏
i,j

F (f(Xi)×f(X) f(Xj)) [9.7]

And f∗, f
∗ are adjoint function that is HomT (f

∗G,F ) ∼= HomT ′(G, f∗F ).If f
is not continuous,which means there will be mamy U ′ ∈ C ′ such that f(U ′) =
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U ,which means we need to change f∗ to f̂∗ where

(f̂∗G)(U) = lim−→
i∈I

G(f−1(U)) = G(lim−→
i∈I

f−1(U)), ∼=I≡ f(U ′i∈I) = U [9.8]

Then we combine with Yoneda lemma [9.7],we have

HomT (f
∗hX′ , F ) ∼= HomT ′(hX′ , f∗F )←→ f∗F (X

′) = F (f(X ′)) [9.9]

we find f∗hX′ is represented by f(X ′) that is f∗hX′ ∼= hf(X′).
Then,we want to talk about cohomology of sheaves.For a ring Λ ∈ T ,we de-

note ModΛ as category of Λ-modules.Now,we want to assign each sheaf a point
{xi → T}i∈I ,pt, Fi ∈ T ,which means Fi → x∗iF is injective.If Fi = Λi,then
x∗iF is a Λi-module which is included to an injective module Ii,then we have
xi∗x

∗
iF = F ↪→ xi∗Ii,the product of injective module is injecitve,we have

F ↪→ xi∗Ii also,we have F → x∗iFi is injective with F = Λ now we have
Fi ↪→ xi∗I.Above all ,we have Fi ↪→ Ii which means ModΛ has enough injec-
tives.Then,from the duality of HomModΛ(Λ, F ) and Λ⊗ F in Abelian group,we
have a left exact functor Γ(T,−) : ModΛ → Ab,then we have the right derived
functor Hi(T,−) from injective resolution of every sheaf.Now,for a site C we
have a trivial topos C/X,if F ∈ ModΛ is C-acyclic,we have Hi((C/X), F ) =
0.For a covering X = {Xi → X}i∈I ,from [9.1] the fiber product is still in cov-

ering,we can form super fiber product X i = X
i
0⊕X

i
1 with i = (i0, ..., ir) ∈ Ir+1

X
i
1 = (−1)σXσ(i0)

1 ×X X
σ(i1)
1 · · · ×XXσ(ir)

1 [9.10]

for X a superscheme.Then,we have super Čech cohomology complex

Cr(X , F ) = F (
∐
i

X
i
0 ⊕X

i
1) =

∏
i

F (X
i
0 ⊕X

i
1) [9.11]

where F is a pre sheaf of Λ-modules.With the inverse boundary operator [8.6].
Now,we want to consider super version,recall that anticommutation corre-

sponds to a change of orientation [7.31],thus we get super differential

dr(X
i
0 ⊕X

i
1) =

r+1∑
j=0

(−1)j ⊕ (−1)j+1(X
(i,∗)
0 )2 = X

(i,∗)
0 ⊕X(i,∗)

1 [9.12]

with generalized super Čech cohomology group

Ȟ
i
(X , F ) = Hi(C•(X , F ))⊕Hi(C•∗(X , F )) [9.13]

the generalized super Čech (co)homology group Ȟ
1
(X ,P) classifies M-branes

with generalized superalgebraifolds acting on.By Yoneda lemma we have

HomPModΛ(
⊕
i

Λ(hXi), F )
∼= HomPModΛ(

∐
i

hXi , F )
∼=
∏
i

F (Xi) = Cr(X , F )

[9.14]
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We see that from [7.26],we form a sheaf of modules from B-sheaf,now F is a
presheaf of Λ-module but

∏
i F forms a B-sheaf.Then,from [9.14],F is a sheaf

of
⊕

i Λ(hXi)-modules on scheme
∐
iXi.We can form a sheaf P

P : (C/X )/M →
( ⊕
i=(i0,i1),A

A{− ⊂ X i⊕X i∗}R⊕R∗ ⊗ (T ⊕T ∗)AAM
)

[9.15]

we call it the sheaf of properties on the M-brane,which is a sheaf of A-modules
we discussed in [8.21],and the tangent bundle

⊕
A(T ⊕T ∗)A = T ⊕T ∗.With the

commutative diagram for a generalized super étale equivalence relation

AA A

R⊕R∗ X i ⊕X i∗⊂

[9.16]

where a collection of data (A, ∂(Q⊠Q∗)M ) ∈P(M ),where

(Q⊠Q∗)M = dim(Ȟ
1
(M ,P)),

∑
M

[(Q⊠Q∗)M ] = 0Q⊠Q∗ [9.17]

counting for the number of equivalent properties.And the constraint [9.17] en-
sures that the M-theory is a nonexistent theory which is experiment-free.In this
case,we can get a field in the whole space from [9.17],denote as F++,−−

Q⊠Q∗ corre-

sponding to the notation in [8.28] and [8.38] with decomposition

F++,−−
Q⊠Q∗

∼=P(T)−1 [Z⊕ C⊕Q⊕ R⊕ (ZCQR)]+,−P(T)−1(Q⊠Q∗) [9.18]

from inverse T-fusion,corresponds to five D = 10 superstring theories.Notice
that the sheaf on the M-brane [9.15] it is a presheaf on the localized étale site
of M-brane,after discussion of descent theory,it become a sheaf globally [9.93].

9.2 Fibered category,2-Yoneda lemma and string-Space

Now,we want to discuss category as a moduli space.We know there is a
unique morphism connecting fiber products

w

u v

p(w) p(u) p(v)

ψ

y

λ!
g

p

p(λ) p(g)

[9.19]

We can see if we set y = p(λ)◦p,we have another fiber product with p◦λ = p(λ)◦
p,and a unique composition of two fiber products given by λ! to that with p◦g ◦
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λ = p(g)◦p(λ)◦p.These form a category F over category C that is a pair (F, p)
with p : F → C and morphisms are fiber products with universal property for
composition with each F (p(v)) = F/p(v) a category over p(v).We call (p : F →
C)/C a fibered category.Comapared to a scheme as a functor above[9.7],now
we have a category as a functor corresponds to the 2-Yoneda lemma.Now we
have a trivial fibered category id : C → C,for a functor g : C/X → C,we have
another fibered category (C/X → C)/C,the morphisms are functors C/X → F
over same C,if we collect them as objects and treat the natural transformations
as morphisms we can construct a 2-category HOMC((C/X), F ),and we have

HOMC(−, F ) F

C/X X/X

ξ [9.20]

which gives ξ : HOMξ((C/X), F )→ F (X).For seeing the structure

(ϕ : Y → X) ∈ C/X ϕ∗x ∈ F (Y ) ⊂ F

Y ∈ C

ηx

[9.21]

and ηx maps a trivial cartesian morphism of (C/X) to that of F over C

Y ′′ Y ′ Y

X

ϕ′′!

!

ϕ′

ϵ

ϕ

ηx(ϵ)−−−→
ϕ′′∗!x ϕ′∗x ϕ∗x

Y ′′ Y ′ Y

!

! ϵ

[9.22]

so the functor ηx is a morphism of fibered categories and gives η : x ∈ F (X), 7→
ηx ∈ HOMC((C/X), F ).Also,for f : x′ → x in F (X) we have

ηf (ϵ)−−−→
ϕ′′∗!x′ ϕ′∗x′ ϕ∗x′

ϕ′′∗!x ϕ′∗x ϕ∗x

! ϵ

! ϵ

[9.23]

so ηf is a morphism in the 2-category that gives η : f ∈ F (x), 7→ ηf .Combing
[9.22] and [9.23],we get a quasi-inverse η of functor ξ.Now from ξ ◦ η : x 7→
ηx 7→ id∗Xx

∼= x,we get idF (X)
∼= ξ ◦ η.Also,we have ξ : f 7→ f(idX) ∈ F (X) and

η : f(idX) 7→ ηf(idX) : C/X → ϕ∗f(idX),we are in category with pullbacks,thus
ηf(idX) : (C/X)→ f(ϕ∗ ◦ idX) = f(idX ◦ ϕ)) ∼= f(ϕ)

f(ϕ∗x) ∼= ϕ∗f(idX) f(idX) ∈ F (X)

ϕ∗x ∈ Y x ∼= idX ∈ X
ϕ

f f

ϕ∗idX idX

Y X
ϕ

[9.24]
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we also have idHOMC((C/X),F )
∼= η ◦ ξ.Therefore,we have 2-Yoneda lemma

HOMC((C/X), F ) ∼= F (X) [9.25]

Compared to Yoneda lemma,we can see (C/X) represented by scheme X,we
also know scheme X is represented by hX ,and in this case,we can view the
fibered category as a representable functor.If we let F = (C/Y ),we get a familiar
connection HOMC((C/X), (C/Y )) ∼= HomC(X,Y ).

A category fibered in sets over C is a fibered category p : F → C with iden-
tity morphisms as the only morphism in F (U), U ∈ C and F (U) is a set.Now
in HOMC(F,G) for G is a category fibered in sets,we have two objects f, g
and a morphism α : f → g, αx : f(x) 7→ g(x), x ∈ F .But only morphism in
G is identity morphism which means f(x) = g(x), f = g,thus,the 2-category
HOMC(F,G) with G fibered in sets loose its categorical structure and becomes
a set.And for g : V → U in category C,there is always a well-defined pull-
back map g∗ : F (U) → F (V ),it makes F : C → (F → C) behaves like a
presheaf.Conversely,for a presheaf F : Cop → Set,we know we just change the
morphism g−1 to inclusion and g∗ is the restriction on the level of sections,which
gives g∗ the pullback,then p : F (Cop)→ Cop is a category fibered in sets.Then

Γ : (presheaves on C) ∼= (categories fibered in sets over C) [9.26]

where we discussed category of categories fibered in sets.
A splitting of a fibered category p : F → C is a subcategory K ⊂ F with

(i) arrows in K are cartesian

(ii) f : U → V, v ∈ F (V ) induces a unique f : u→ v ∈ K(U)→ K(V )

(iii) idu ∈ K for u ∈ F (U), U ∈ C
[9.27]

And we denote split fibered category as (F,K).Then from

C/V C/U

F

v

g

u

α

[9.28]

The pairs in [9.28] (U, u) form a category F̃ ,a morphism is a pair (g, α) with
3-isomorphism α : v → u◦g.For a (W,w) and g′,there is a unique 2-isomorphism
α′ : w → v ◦ g′,let the following fit with axiom of fibered category

(C/W )/F
(g′,α′)−−−−→ (C/V )/F

(g,α)−−−→ (C/U)/F [9.29]

which means we have a fibered category of 3-catgories HOMC((C/U), F ), U ∈
C,that is F̃ = (HOMC((C/U), F )) with morphisms are 3-isomorphism,which is
3-category.From 2-Yoneda lemma,we have

F̃ = (HOMC((C/U), F )) ∼= (F (U)) = F, U ∈ C [9.30]

89



And the pair (F̃ ,K) is a split fibered category withK ⊂ F̃ follows from counting

all objects with the 3-isomorphisms choose to be 3-identities,actually F̃ is a 3-
category fibered in groupoid corresponding to an equivalent relation and if we
mod this equivalent relation on the set Ob(F̃ ) we have BOb(F̃ ) = (∗ → K)
which is a classfying stack.

A groupoid is a category with objects forming a group see around [9.3],which
is equivalent to say all morphisms are isomorphisms,it is transversal.A cate-
gory fibered in groupoids over a category C is a fibered category p : F → C
such that F (U) is a groupoind for all U ∈ C.Similar to that in sets above
[9.26],HOMC(F, F

′) is a groupoid for F, F ′ are categories fibered in groupoids.
One important construction of a groupoid in a category C with finite fiber

products is a collection of data

(X0, X1, s, t, ϵ, i,m) [9.31]

with s, t,X0, X1 we have discussed above [7.32],and inverse and composition are

ϵ : X0 → X1 i : X1 → X1, m : X1 ×s,X0,t X1 → X1 [9.32]

with s ◦m = s ◦ pr2, t ◦m = t ◦ pr1.Associativity us given by

X1 ×s,X0,t X1 ×s,X0,t X1 X1 ×s,X0,t X1

X1 ×s,X0,t X1 X1

id×m

m×id

m

m

[9.33]

Identity factors through ϵ,m given by

X1 ×s,X0 X0

X1 X1 ×s,X0,t X1 X1

X0 ×X0,t X1

id×ϵ

m

ϵ×id

[9.34]

Non-Abelianness factors through m, ϵ

X1 ×s,X0,t X1 X1 ×t,X0,s X1

X1 X1

m

ϵ×ϵ

m

ϵ

[9.35]

which induces the following inverse diagrams

X1 X1 ×t,X0,s X1

X0 X1

i×id

t m

m

X1 X1 ×t,X0,s X1

X0 X1

id×i

s m

m

[9.36]
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Now,we consider a category {X0(U)/X1(U)} whose objects are u ∈ X0(U),and

for a morphism ξ ∈ X1(U), : u′ → u,the composition u′′
η−→ u′

ξ−→ u given by
(η, ξ) ∈ X1(U)×t,X0,sX1(U),which is a groupoid over U .Following the diagram

{X0(W )/X1(W )} {X0(V )/X1(V )} {X0(U)/X1(U)}

W V U

g!

g∗!◦f∗!=(fg)!∗

g f

g∗! f∗!

[9.37]

we get a category fibered in groupoid p : {X0/X1} → C with objects are pairs
(U, u), U ∈ C, u ∈ {X0(U)/X1(U)}.A morphism is a pair (f, α) : (V, v)→ (U, u)
with an isomorphism α ∈ {X0(V )/X1(V )}, : v → f∗u.Also,the composition

w
β−→ g∗v

g∗(α)−→ (fg)∗u, (W,w)
(g,β)−−−→ (V, v)

(f,α)−−−→ (U, u) [9.38]

is ((f ◦ g), g∗(α) ◦ β) : (W,w)→ (U, u).
Definition8.1 A string-Space Spre is a Z2-graded category fibered in Lie

groupoids over a big étale site,where

Spre : Φ⊕Ψ∗ → ETSchSupGen(M ) [9.39]

of étale generalized superschemes over M-brane M .We also have super T-duality
Tδ : Φ⊕Ψ∗ → Ψ∗⊕Φ from [8.26].Where Φ is a category fibered in Lie groupoids

Φ : {X0/X1} → ETSchSupGen
0 (M ) and Ψ∗ : {ψ0/ψ1} → ETSchSupGen∗

1 (M ).
For Φ,the X0(X0) collects all bosonic étale closed strings s living in X0 and

a morphism w : si → sf is an étale morphism along the time-evolution,which
is a world-sheet.In this case,we collects all world-sheets made from the time-
evolution of these strings to X1(X0) with s(w) for initial states and t(w) for
final states.From discussion above [8.6],we see X0(X0) → X0,actually X0 is the
moduli space of these strings,a point U = Spec(R(∆1))→ X0 corresponds to a
class of étale closed strings,if we let G0 be the moduli space of world-sheets

X0(X0) X0

X1(X0) G0

rep →Tδ

ψ0(X ∗1 ) X ∗1

ψ1(X ∗1 ) G ∗1

rep [9.40]

where we combined super T-duality.These give them smoothness where we as-
sumed that the moduli spaces are differentiable.To verify the properness

X0(X0)×X0 X0(X0) X1 ×t,X0,s X1 X1

(s1, s2) (w1, w2) w1 ×glue w2

ϵ×ϵ m

[9.41]
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It just ends with an interactive world-sheet,and must be proper.Above all,the
definition7.1 is indeed consistent with Lie groupoid structure with properness
naturally comes from the physics.

The super T-dual part Ψ,we have already found in [7.32].Also,we need to
combine the facts we have discussed,we have R and NS sector for fermions
[3.51].From the classfication of string theories,we can group the vertex of étale
closed strings to ori = {(NS,NS),(R,R)} and orb = {(R,NS),(NS,R)},with

ori : ψψ̃ = −ψ̃ψ, orb : ψψ̃ = ψ̃ψ [9.42]

on the reflection point.These corresponds to two types of orbifolds,the first is
ordinary orientifold [6.24] and the second should correspond to orbifold [7.31] if
they are defined over unordered and ordered set

ori orb

(ψ, ψ̃) =unordered −(ψ, ψ̃) (ψ, ψ̃) =ordered −(ψ, ψ̃)

Ω

Ω

[9.43]

where,the ordered set is for orbifold and unordered set is for orientifold that is
unoriented on world-sheet.Also [9.43] induces the decomposition of super T-dual
part Ψ = Ψ⊕ Ψ̃ where the tilde part is for orientifolds.Which induces a further
decomposition of string-Space

(Φ⊕ Φ̃)⊕ (Ψ⊕ Ψ̃) ∼=Bos (Φ⊕ Φ)⊕ (Ψ̃⊕ Ψ̃)∗ [9.44]

with Ω-super T-duality on the string-Space

Tδ
Ω : (Φ⊕ Φ)⊕ (Ψ̃⊕ Ψ̃)∗ → (Ψ̃⊕ Ψ̃)∗ ⊕ (Φ⊕ Φ) [9.45]

For a category fibered in groupoids p : F → C,we can made another category
p/X : F/X → (C/X) which is also fibered in groupoids.And an object of F/X is
a pair (y, f : p(y)→ X), y ∈ F and a morphism is (g, p(g)), g : y → y′

p(g) : p(y′)→ p(y), f ′ = f ◦ p(g) [9.46]

And the functor p/X sends (y, f : p(y)→ X) to f ∈ C/X.For any f : Y → X

F (Y ) F/X(f : Y → X)

Y f : Y → X

≃

≃

[9.47]

the F/X is a category fibered in groupoids.Recall that the relation between
fibered category and presheaf [9.26],for a fiber F (X) ∼= F/X(idX),we have

Isom(x, x′) : (C/X)op → Set [9.48]
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for x, x′ ∈ F (X).For any morphism f : Y → X,with pullbacks f∗x, f∗x′

Isom(x, x′)(f : Y → X) = IsomF (Y )(f
∗x, f∗x′) [9.49]

where the set of isomorphisms is an object and a morphism is (g, g∗)

g∗ : Isom(x, x′)(f : Y → X)→ Isom(x, x′)(fg : Z → X) [9.50]

where Z
g−→ Y

f−→ X.If x = x′,the section is an automorphism group

Isom(idx)(f : Y → X) = AutF (Y )(idf∗x) [9.51]

Which means the presheaf becomes Aut(idx) : (C/X)op → Groups.

9.3 Descent theory and a pre M-theory Mpre

Descent theory of fibered category gives us a method to glue schemes (topol-
ogy and section) by different morphisms,which is a high dimensional represen-
tation of gluing axiom of sheaves.For a fibered category p : F → C,we can

define F (X
f−→ Y ) for each f ,the object is a pair (E, σ) with E ∈ F (X) and the

isomorphism σ : pr∗1E → pr∗2E in F (X ×Y X) as a data of gluing

X ×Y X X

X X ∩X ∈ Y

[9.52]

which is a high dimensional representation descending data to transition map.

σ|X∩X = pr∗1E|X∩X → pr∗2E|X∩X = f(E)|X rX,X−−−→
≃

f(E)|X [9.53]

where we want to abuse f with f∗ for simplicity.And following the diagram in
F (X ×Y X ×Y X) for the composition axiom of category

pr∗23σ ◦ pr∗12σ = pr∗13σ σ

σ σ

F (X ×Y X ×Y X) F (X ×Y X)

F (X ×Y X) F (X ×Y X)

pr12

pr13

pr23

[9.54]
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descending data to composition of isomorphisms on gluing area.A morphism in

F (X
f−→ Y ) is the morphism g : (E′, σ′)→ (E, σ) following the diagram

pr∗1E pr∗2E

pr∗1E
′ pr∗2E

′

σ

pr∗1g

σ′

Pr∗2g
′ [9.55]

And for a pair (E, σ) in the category F (X
f−→ Y ),the isomorphism σ is the

descent data for the object E.For a functor ϵ : F (Y )→ F (X
f−→ Y ),we have E0 ∈

F (Y ).And we can pullback it to the section on the fiber productX×YX → Y ,we
have σcan : pr∗1f

∗E0 → pr∗2f
∗E0 which is a canonical isomorphism.Then,ϵ sends

E0 to (f∗E0, σcan).In general,we want to study fibered category over a site with
covering which means we have a covering {Xi → X}i∈I ,we need F ({Xi → Y })
with objects as collections of data ({Ei}i∈I , {σij}i,j∈I), Ei ∈ F (Xi) and the
isomorphism is σij : pr

∗
1Ei → pr∗2Ej ,based on gluing axiom of sheaf

f(Ei)|f(Xi) f(Ej)|f(Xj) f(Ek)|f(Xk)
σij |f(Xi)∩f(Xj)

σik|f(Xi)∩f(Xk)

σjk|f(Xj)∩f(Xk)

[9.56]

translated to descent theory,we have

pr∗12pr
∗
1Ei pr∗12pr

∗
2Ej pr∗23pr

∗
1Ej

pr∗13pr
∗
1Ei pr∗13pr

∗
2Ek pr∗23pr

∗
2Ek

pr∗12σij

pr∗23σjk

pr∗13σik

[9.57]

and the isomorphims σij are descent data of {Ei}i∈I .Also,a natural functor is

F (Y ) F ({Xi → Y }) F (X
f−→ Y )

ϵi

ϵ

i [9.58]

The collection of morphisms {Xi → Y } is of effective descent for F if ϵ = i◦ϵi in
[9.58] induces an equivalence of categories.If ({Ei}, {σij}) ∈ i−1(F (X

f−→ Y )),we
call {σij} is effective.

For instance,if we have F (Q→ Y ) with Q =
∐
iXi,this scheme Q is trivially

coverd by these subschemes.If F (Y ) ∼= F ({Xi → Y }),it means a ({Ei, Ej}, σij)
maps to a ({f(Ei), f(Ej), ri,j}) ∈ F (Y ) such that

f(Ei)|f(Xi)∩f(Xj) ∼=rij f(Ej)|f(Xi)∩f(Xj) ⇒
∏
i

f(Ei)!|
∐
i

f(Xi) ∈ Y [9.59]
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Then the pullback along f : X → Y in [9.58]

{
∏
i

Ei,pr
∗idX} =

∏
i

F (Xi → Y ) = F (
∐
i

Xi → Y ) = F (Q→ Y ) [9.60]

Reversely,if we have F (Y ) ∼= F (Q → Y ) =
∏
i F (Xi → Y ) which means we

have a global section E ∈
∏
i F (Xi),such that

(f(E)|f(Xi))|f(Xi)∩f(Xj) = (f(E)|f(Xj))|f(Xi)∩f(Xj)
⇒ f(Ei)|f(Xi)∩f(Xj) ∼=rij f(Ej)|f(Xi)∩f(Xj)

[9.61]

along the pullback throgh {f : Xi → Y }i∈I ,we

{({Ei}, {pr∗f∗rij})} = F ({Xi → Y }) [9.62]

which gives a lemma with Q =
∐
iXi

F (Y ) ∼= F ({Xi → Y })⇔ F (Y ) ∼= F (Q→ Y ) [9.63]

giving an understanding of descend theory,the first equivalence of categories
for effective descent gives a glued scheme Q.Also,if f : X → Y is a morphism
such that ϵ induces an equivalence of categories,we call f is an effective descent
morphism for F .Next,we want to give several examples of such morphisms.

Descent for sheaves in a site. For a site C associated with topos (C/X )̃,a
morphism f : X → Y induces f : (C/X )̃→ (C/Y )̃ with pullback

f∗(F )(W → X) = F (W → X → Y ), F ∈ (C/Y )̃ [9.64]

Define category Sh with object (X,E), X ∈ C,E ∈ (C/X )̃.A morphism is a
pair (f, ϵ) : (X,E)→ (Y, F ) where f : X → Y, ϵ : E → f∗E and composition is
similar to [9.38].A point is sheaf is defined on a scheme,this sheaf is a presheaf
on a site see above [9.15],this induces the ideal about gluing sheaf

{sheaf E on X|X ∈ C} ⇔ A presheaf of sheaves on C,∼= p : Sh→ C [9.65]

where we used [9.26].This gives us a fibered category with Sh(X) = (C/X )̃.We
first have Sh(X → Y ) with objects are pairs (E, σ), E ∈ Sh(X), σ ∈ Sh(X×Y X)
satsifying the cocycle condition.Along g : X ×f,Y,f X → Y ,we have

f∗pr1∗σ, f∗pr2∗σ
−1 : f∗E → g∗pr

∗
2E, f∗pri∗

∼= g∗ [9.66]

By the fiber product,we have a inverse functor of ϵ above [9.56]

η : Sh(X → Y )→ Sh(Y ), (E, σ) 7→ Eq(f∗pr1∗σ, f∗pr2∗σ
−1) [9.67]

Composite functor η ◦ ϵ follows from E0 ∈ Sh(Y ), f∗f
∗E0 → g∗pr

∗
2f
∗E0

idSh(Y )
∼= η ◦ ϵ ⇔ η ◦ ϵ : E0|Y←X×YX

≃7→ Eq(E0 ⇒ g∗pr
∗
2f
∗E0) [9.67]
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And for the functor ϵ ◦ η : (E, σ) 7→ (f∗F, σcan), F = η(E, σ).We have

Sh(X) Sh(X ×Y Y ′)

Sh(Y ) Sh(Y ′)

restriction

f f

restriction

[9.68]

for an inclusion Y ′
⊂−→ Y ∈ {Y ′i → Y }i∈I .Which means it is equivalent to show

(E ∼= f∗F )|X×Y Y ′ ,if Y ′ = X,we see it is the pullback of an identity morphism

(E ∼= f∗F )|X×YX = g∗idSh(Y ) =∼=F (X×YX) [9.69]

Above all,we have the equivalence of categories and each f : X → Y in Cov(Y )
of C is an effective descent morphism for Sh

Sh(X → Y ) ∼= Sh(Y ) [9.70]

Next,we want to discuss sheaves of modules.For a scheme X,We need the cat-
egory (Sch/X) which is a fppf site with Cov(U) = {{Ui → U}i∈I} with each
Ui → U is flat and locally of finite presentation and the map

∐
i∈I Ui → U is

surjective.We have adequate properties of sheaves of modules on this site.
Descent for quasi-coherent sheaves. For a fppf site C = (Sch/S) with

scheme S.We have a presheaf of rings O : C → (Γ(T,OT )), T ∈ C,and this
fibered category (p : Γ(T,OT ) → C) ∼= (hT ) ∼= (Sch/X) because OT ∼= hT
is represented by T .Theorem 4.1.2 in [12] tolds us for any morphism X →
Y of category of Y -schemes with fppf or étale topology,hX is a sheaf.In this
case,we find our familiar structure sheaf OT below [7.23].Now,for a category of
quasi-coherent sheaves on S,denote as Qcoh(S),we have a presheaf Fbig of O-
modules,Fbig : (T → S) 7→ Γ(T, f∗F ) where f∗F is a quasi-coherent sheaf on T
by pullback.Then,we need to know a big Zariski site of a scheme S is a category
of S-schemes with Cov(U) for (U → S) be {{Ui → U}i∈I} for each Ui → U is
an open embedding and U =

⋃
i∈I Ui.In this case,Fbig is a sheaf on big Zariski

site because O is a sheaf.And we want to extend to fppf site,starting at a big
Zariski cover Spec(B)→ T = Spec(A),we have the short exact sequence

0→ OT (T )→ (B ← A)⇒ B ⊗A B → 0 [9.71]

from sheaf axiom [9.2] of sheaf of rings.If A→ B is faithfully flat,we have

0→ OT (T )⊗AM → B ⊗AM ⇒ (B ⊗A B)⊗AM → 0 [9.72]

from discussion above [7.29] for a flat A-module M .But [9.72] gives sheaf axiom
of Fbig with f∗F (T ) = OT (T ) ⊗A M .Also,Spec(B) → T is faithfully flat from
that on ring level,which means it is also a fppf cover.Therefore,(Fbig)T is a sheaf
for any quasi-coherent sheaf F on S and Fbig is a sheaf on fppf site.
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And by restriction of sheaf,we have (Fbig)S
≃−→ F ⇔ F |T

≃−→ Fbig,which
induces the definition of big quasi-coherent sheaf on S that is a sheaf F of O-

modules on C,FT = (Fbig)T and g∗FT
≃−→ FT ′ for every morphism g : T → T ′.In

this case,we have a fibered category in general

p : QCOH→ (schemes), QCOH((schemes)|Sfppf
) = Qcoh(Sfppf) [9.73]

And we claim that for each f : X → Y in Cov(Y ) of fppf site

QCOH(X → Y ) ∼= QCOH(Y ) [9.74]

Compared to [9.70],the extra thing is the preserving of quasi-coherence for
[9.67].We see above,fppf site can be viewed as an extension of Zariski site,in
this case,we have a Zariski covering Y =

⋃
i Yi, f

−1(Yi) ∈ X,=
⋃
j Xij with Yi

affine and Xij is quasi-compact through f .The morphism Xij → Yi and this
quasi-seperated cover gives us the diagram

QCOH(Xij

∐
Xij′) QCOH(Xij′)

QCOH(Xij) QCOH(Yi)

f∗ [9.75]

Follows from the fiber product we have an equivalence of categories

{Fi ∈ QCOH(Yi)} ↔ {{(f∗Fi)j}, {σjj′ : (f∗Fi)j
≃−→ (f∗Fi)j′}} [9.76]

{(f∗Fi)j} is an isomorphic class from σjj′ along f
−1.Then,we get

QCOH(Yi) ∼= QCOH(f−1(Yi)→ Yi) [9.77]

where we used the fact that the quasi-coherence preserves along the affine cover
and the isomorphism let us glue Xij through j,after gluing through i

QCOH(Y ) ∼= QCOH(X → Y )

{
∏
i

Fi} ↔ {{(
∏
j

(f∗Fi)j}, {αii′ : (f∗Fi)j
≃−→ (f∗Fi′)j}} [9.78]

where {{(f∗Fi)j}, {σjj′}} = {
∏
j(f
∗Fi)j} with cocycle condition and we re-

peated [9.75] for index i and we see the descent structure [9.54] becomes an usual
process to glue Zariski sheaf in [9.75] by using this quasi-separated cover,and
the extra quasi-coherence preserves because of fppf cover is Zariski.

Also,from the definition above [9.71],we find equivalence of categories

(S,OS)
≃−→ (SZar,OSZar)

≃−→ (Sfppf,OSfppf
), ffppf : U → S

(S 7→
∏
i

C∞(Ui))→ (Ui ⊂ S, 7→ C∞(Ui))→ (ffppf 7→ Γ(UZar, f
∗OZar))

[9.79]

Similarly for étale morphism f ,we get ringed topoi on small étale site.And based
on this ringed structure,we have equivalence of categories of quasi-coherent
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sheaves.For η : (Set,OSet)→ (SZar,OSZar) induced by fétale and a quasi-coherent
sheaf F ∈ Qcoh(SZar),we have η

∗F is a quasi-coherent sheaf on Set,sending fétale
to Γ(UZar, g

∗F ).And we can define a sheaf OSet
-module E is quasi-coherent if

E ∼= η∗F .Because product of A-modules is an A-module,we naturally have

Qcoh(UZar)×Qcoh(U ′
et)

Qcoh(SZar) ∼= Qcoh((U
∐
U ′)Zar) Qcoh(U ′Zar)

Qcoh(UZar) Qcoh(Uet)
η∗

η∗

[9.80]
then,for F ′ ∈ Qcoh(UZar), F ∈ Qcoh(U ′Zar) we have F ′ ∼= η∗η

∗F ′,by using this

HomSZar(F, F
′) ∼= HomU ′

Zar
(F, η∗η

∗F ′) ∼= Homf∗
et(U

′
Zar)

(η∗F, η∗F ′) [9.81]

which means the functor η∗ is fully faithful,then we have

η∗ : Qcoh(SZar) ∼= Qcoh(Sfppf)
≃−→ Qcoh(Set) [9.82]

which is an equivalence of subcategories of topoi TZar, Tfppf and Tet,which means
these sites can induce a same subtopos.With the diagram of sites in [9.82]

Set Sfppf SZar

et

fppf
[9.83]

If put [9.70],[9.74] and [9.82] together,we further have

QCOH(Set)
≃−→ QCOH(Sfppf)

≃−→ QCOH(SZar) ∼= QCOH(S) [9.84]

Then,we get a further definition above [9.80],that is E on Set is quasi-coherent
if and only if E restricts to each Si,et is quasi-coherent for an étale covering
{Si → S}i∈I ∈ Set.

Torsors and an example. A µ-torsor on a site C with µ a sheaf of groups,is
a sheaf T such that for every X ∈ C has a covering {Xi → X}i∈I the section
T (Xi) ̸= ∅ for all i and the action µ(X)T (X) is simply transitive.Which
means for all t ∈ T we can find a g ∈ µ to let t = gt′.We claim that this is
equivalent to say

(µ×T , · × ∪) ≃−→ (T ×T ,∪ × ∪), (g, t) 7→ (t, gt) [9.85]

Indeed,it is a homomorphism because

(g1, t1)(g2, t2) = (g1g2, t1∪t2)→ (t1∪t2, g1t1∪g2t2) = (t1, g1t1)(t2, g2t2) [9.86]

And eT ×T = (∅,∅) so ker = (e,∅) → (∅, e∅),= eµ×T which means it is
injective.And surjection follows from simply transitive action.A torsor (T , ρ)
with a left action ρ is trivial if it has a global section which means if s is a
global section ρ(s) = s,the uniqueness gives us

µ = stabµ(s)
φ,≃−−→ T = fixφ−1(s)(T ) [9.87]
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which gives a global section φ−1(s) of µ and let µ identifies T .Now,we want to
consider category of µ-torsors with a morphism satisfying the diagram

µ×T µ×T ′

T T ′

ρ

idµ×f

ρ′ [9.88]

We have seen in [9.3] that we can generate group structure by topos,also dif-
ferent sites can induce a same topos we should put torsors in topos but not
on sites.And we want to consider an example when µn(X) = {f ∈ O∗X |fn =
1}withX ∈ C,similarly to [9.83],we can consider category Tor(µn) on Xet.Let
Σn be the category of pairs (L, σ),where L is a graded OX -module of degree
1,also an invertible sheaf with trivialization σ : L⊗n → OX .A morphism is an
isomorphism on the level of line bundles and satisfies the diagram

OX

L⊗n L′⊗n

σ

ρ⊗n
σ

[9.89]

where ρ : L
≃−→ L′.For a pair (L, σ),we have a sheaf on Xet that is T(L,σ) send-

ing U
et−→ X to σ|U : L|U → OU satisfying idOU = σ|U⊗n ◦ σ|U⊗(−n).Putting a

constraint fn = 1 where f ∈ O∗U makes T(L,σ) a µn-torsor on étale site.And we
use étale here gives us a reason why we want to study étale morphism because
étale and Zariski sites induce equivalent of categories [9.82] and sometimes we
cannot find Zariski cover,but we have enough étale cover because C is alge-
braically closed.Now a subscheme of X = Spec(R) is U = Spec(R[T ]) from ring
extension R ⊂ R[t] and a Zariski cover of this scheme is Spec(R[T ]/f) where
f ∈ R[T ]∗,which is not for a structure µn-torsor living on because we are lack
of the above constraint,in this case we can use

UTn−f = Spec(R[T ]/(Tn − f))→ U ⊂ X, T(L,σ)|UTn−f = OUTn−f [9.90]

which naturally gives Tn = 1 ∈ OU (UTn−f ) which is in the section of graded
OX -module and this cover is étale because we need R = C for every f it can be
expressed as Tn and property of étale follows from

ΩR ΩA

R = C[T ] A = C[T ]/(Tn − f) ∼= ΩR

D

f

D [9.91]

with a derivation D : Tn 7→ nT (n−1) inducing isomorphism and ΩA/R =
0 follows from ΩA ∼= ΩR.Also,by descent of quasi-coherent sheaves,We find
the fibered category p : Tor(µn) → Xet is equivalent to a sheaf Tor(µn) by
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[9.26].And by [9.87],it is identified by µn.Then,we want to apply these things
we have developed to generalized superalgebraifold in [9.15] and string-Space.

Definition8.2 A consistent string-Space S is a string-space which is isomor-
phic to a stack TorA of A-torsors over the ETSchSupGen(M )

(S : Φ⊕ Ψ̃∗ → ETSchSupGen(M )) ∼= TorA [9.92]

with an action (ΓA)×(Φ⊕Ψ∗)→ (Φ⊠Ψ̃∗) making it to an ΓA-module.Descent
of quasi-coherent sheaves make it becomes a stack generalized by Ω-super T-
duality with corresponding fusion of duality.Which also means previous category
of sheaves is a category of sheaves of properties in [9.15] corresponding to the
string-Space can be descended to a sheaf of properties on M-brane

P(ETSchSupGen(M ))
≃−→P(M ) [9.93]

with the number counting [9.18] that becomes a consistent isomorphism

F++,−−
Q⊠Q∗

∼= ⊠[Z⊕ C⊕Q⊕ R⊕ (ZCQR)]+,−self TP(T)−1(Q⊠Q∗) [9.94]

A subtile corollary is we have a relative property which is étale equivalent

FR̃ = F++,−−
Q⊠Q∗ ×0Q⊠Q∗ F+,−self T

P(T)−1Q⊠Q∗ →induce R̃ [9.95]

corresponding to the notation in [8.38] with additive identity is the cosmological
constant we have seen in [8.40],with the further fiber product

F++,−−
Q⊠Q∗

∐
FR̃ FR̃

F++,−−
Q⊠Q∗ 0

[9.96]

Definition8.3 An universe evolution picture Π is the following diagram
which is the original description of evolution of our universe

0 F++,−−
Q⊠Q∗

∐
FR̃ F+,−self T

P(T)−1Q⊠Q∗
R̃

R̃

[9.97]

with arrows denoting the subtile directions of evolution.
Definition8.4 A pre M-theory Mpre is a geometric (based on simplicial

settings [8.11]) stack for which we express it in a collection of data

Mpre = (ETSchSupGen
eff (M ),P(T),P,Π) [9.98]

The subscript means coverings are effective descent morphisms [9.93] for P.
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9.4 Stacks (2-preschemes) and Yoneda duality

For a site C,a category fibered in groupoids p : F → C is a stack (we call
2-prescheme see [9.104]) if and only if the following conditions hold

(i) For any presheaf Isom(x, y) on C/X in [9.49] is a sheaf

(ii) For any covering {Xi → X},any data σ on [9.52] is effective
[9.99]

The (i) is for global descent of groupoid structures and (ii) is for that of fibers.To
interpret it,we first study two sections with overlap in topological space and how
can we topologically retract them will not affect the relative property above
[8.22] that is equivalent to a class of closed strings,the answer is

F (Xi ×X Xj)→retract R ⊂ F (Xi)×F (Xi∩Xj) F (Xj) [9.100]

where R is an equivalence relation.If only (i) satisfies it is a prestack.
Definition9.1 A spontaneously breaking of equivalence relation is

R ⊂ F (Xi)×F (Xi∩Xj) F (Xj)→breaking F (Xi)
∐

F (Xj) [9.101]

The information is contained in the equivalence relation (overlap) and breaks to
two degenerate states.But to achieve such retract in [9.100],we need F to be a
sheaf because F (X ×Y X) ∼= F (X)×F (Y ) F (X).Thus,we have a natural retract

(Fibered categories with global descent)→retract,overC (Prestacks) [9.102]

Notice that C does not neccesary preserves Ceff.We can apply [9.98] in,that is

(Superstring theorytype)→retract,over ETSchSupGen
eff (M ) (S

type) ∈Mpre [9.103]

where a type of theory is a fibered category and category of categories induced by
dualities.And global descent [9.93] glues these string-Spaces to a pre M-theory
which gives us the unification of superstring theories.Intuitively

retract : Fibcat.
≃−→ presheaf

Isom−−−→ sheaf −→ fibersgroup. → prestack [9.104]

Then to stack which is a method to make the global section of a scheme be
scheme-like,so we call a stack a 2-prescheme,we may regard the latter algebraic
stacks as 2-schemes.Secondly,stackification (retract) [9.104] let us focus on the
relative properties above [8.22] in the world.

Before we discuss algebraic space,we need to recap the Yoneda lemma be-
cause something we have not captured about representable functor.First,we have
a fibered category p : Schrep → Sch with étale topology where Schrep(X) = hX
and we claim that it is a stack,because hX is a sheaf we have global descent
[9.70],the only thing is to verify it is a category fibered in groupoid

T
≃↛ X →replace T

P 2

−−→ X [9.105]
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where (T → X) ∈ Sch/X ∼= hX .Follows from [9.105],we have the theorem.
Theorem8.5 Sch/X is a quasi-groupoid if and only if P 2 ≃∼= in RHS of

[12.19] and →∼=≃weak see double-weak diagram [12.85],which means if and only
if Sch/X admits a relative 2-property see below [9.113].

Theorem8.6 Sch/X admit a relative 2-property if and only if Ret∗Sch/X
is a category and objects have relative properties.But these are just natural
settings for [12.4],so Sch/X is a quasi-groupoid in LHS with ≃weak and we can
perform a weak version of stack (quasi-stack) on it.

Also,we have hX ∼= X by Yoneda lemma,which makes us put them into a
quasi-stack generalized by duality,and we call this as a Yoneda duality Y

p : Schrep ⊕ Sch→ C̃ [9.106]

with Y-fusion P(Y) : Schrep(Sch) ∈ C̃.An interesting thing is generalized super
version has LEE and High energy representation,that is

U (M )rep ⊕ (M )

Y (ETSchSupGen
eff (M ))rep ⊕ ETSchSupGen

eff (M )

W↔ P (X0/M )rep ⊕X0/M

P(T)

[9.107]

where W↔ P is wave-particle duality.

9.5 Relative 2-properties and algebraic spaces

Now,we are able to discuss algebraic spaces.A class of objects in a site C
is a subcategory S ⊆ C which is stable if for every U ∈ S,every covering
{Ui → U} ∈ S.If a stable class of objects with a global property P ,we call it
a stable property P of objects.For instance,in big Zariski site,we can collect all
coverings of an affine schemes U ∈ C to form a stable class,the locally noetherian
is global that is stable,because for every cover Spec(R)→ Spec(A) we have

· · · (br) (ar) (ar)max

· · · (b) (a) (a)max

[9.108]

for every ascending chain and A is a noetherian ring and R becomes an A-
module.For a site C,if a subcategory D ⊆ C contains all isomorphisms in C
and a morphism f ∈ D if and only if pullback of it is in D we call it a closed
subcategory of S.And if C = (C,Cov) is a site for each morphism f : X → Y
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in D if and only if

f∗Cov(Y ) Cov(Y )

X Y
f

∈ D [9.109]

which is a fibered product,we call the closed subcategory stable.And a stable
closed subcategory D ⊆ C is local on domain,if for every f ∈ D only if

Cov(X) Cov(Y )

Xi X Y
xi f

i∈I ∈ D [9.110]

Let DP denote the subcategory of C with the same objects and Hom changes
to HomP which is a hom set preserving the property P .Now we have

(i) ⇔ f∗Cov(Y ) ∈ HomP (−, X),Cov(Y ) ∈ HomP (−, X)

(ii) ⇔ Based on (i),Cov(X) ∈ HomP (−, X)
[9.111]

for every f ∈ DP , : X → Y .The property is stable if it satisfies (i),and is local
on domain if it satisfies (ii).In summary,by using the philosophy above [9.1] we
want to study a property of morphisms (morphisms preserving the property)
which shifts the focus point from C to Cov and we get CovP inherited from hom
set.Recall the definition above [8.1],now we shift to morphisms of properties

P X ×S X

P ′ Y ×S Y

≃ f×f [9.112]

And if we apply [9.110],we get P is local on domain ⇔ for every f ∈ C

P Cov(X)×S Cov(X)

P ′ Cov(Y )×S Cov(Y )

≃ f×f [9.113]

Definition9.2 A 2-property of relative properties P is a relation of stable rel-
ative properties P based on the site (C,CovCP ).A relative 2-property of relative
properties is a pair (P, P ′) with the strucuture in [9.113] at least on the level of
stable properties.For instance,the we have a 2-property from [8.50],(∗, (Tδ ◦S))
on the site GSTen and each is a stable relative property along coverings.

Corollary9.3 For find a general site for properties being stable,CovCP = Et.
Let f : F → G be a morphism of sheaves on Sch/S with the étale topology.f

is represented by schemes if for every S-scheme T and morphism T → G the
fiber product F ×G T is a scheme.If f is representable by schemes,we say f
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has (preserves) property if for every S-schemes T ,pr2 : F ×G T → T preserves
property P .Which means a relative 2-property on f by the structure [9.113]
and inherited from schemes level to represented sheaves level.For instance,if
f : hX → hY is a morphism with a relative 2-property P 2 on the (Sch/S,Et)

hX ×hY T T

hX hY

P 2

P 2

∼=
X ×Y T T

X Y

stab

P 2

stab

P 2

[9.114]

Because f is representable by schemes,hX ×hY T ∼= X×Y T .Which means every

X
P 2

−−→ Y ⇔ hX
P 2

−−→ hY on a stable site (Sch/S,CovCP ).Exactly

hX hY

X Y

representablepres.

stablepres.

[9.115]

And we also call a relative 2-property universal property see below [9.130].
Definition9.4 A general Covcons. is a collection of preservations of universal

properties,which means CovCP

∐
Rep is general,(hY → Y ) ∈ Rep.And we call a

site generalized by the covering which containing sheaves admitting preservation
of universal properties as extra objects,a general site denoting by cons..

We claim that for a sheaf F on Sch/S with étale topology,the diagonal
morphism is representable by schemes,then for any scheme T, T ′,the morphism
f : T → F is representable by schemes.Indeed,we have

T ×F T ′ T ×S T ′

F F × F

f
∐
g f×g

∆

[9.116]

where ∆∗(f × g) = f
∐
g and (f

∐
g)∗F = T ×F T ′ and because diagonal

morphism is representable by schemes,T ×F T ′ is a scheme which means any
morphism f : T → F with T a scheme is representable by schemes.

An algebraic space over S is a sheaf X : (Sch/S)op → Set on big étale site
with a diagonal morphism ∆ : X → X ×S X represented by schemes and there
exists an étale presentation that is a surjective étale morphism U → X from a
S-schemes giving a covering X → U ∈ Rep in a general Covcons..And we see
schemes over S are algebraic spaces over S.Let AS/S is a category of algebraic
spaces over S,we see from [9.115]

AS/S = ((Sch/S)cons.,ET
∐

Rep) [9.117]

where we use ET for coverings of ordinary big étale site.For a morphism of
schemes g : S′ → S,we have a category ASS′ with objects are pairs (X, f/S) with
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X ∈ AS/S and f : X → S′,a morphism is (t, ◦t−1) : (X ′, f ′/S) → (X, f/S).For

an algebraic space Y ∈ AS/S′,we have a functors

YS : (Sch/S)op → ((ϵ, Y (ϵ : T → S′))), fY/S : (YS → S′)/S [9.118]

with ϵ : T → S′ where T is a S-scheme making ϵ a S-morphism.First,T is a
scheme which is a sheaf over S′ and Y is a sheaf over S′ so YS is an étale
sheaf.Then,by ∆∗S′/S(fY/S × fY/S) = (fY

∐
fY ),we have

Y ×Y×S′Y (S′ ×S S′)×S′×SS′ S′

Y ×Y×S′Y (S′ ×S S′) YS

Y Y ×S′ Y YS ×S YS

S′ S′ ×S S′

∆YS

∆Y

fY/S×fY/S
∆S′/S

[9.119]
where Y is algebraic space,S, S′ are schemes and colored fiber products are
scheme because of representable diagonal morphisms.And the red product is
isomorphic to Y ×Y×S′Y (S

′×SS′)×YS×SYSYS .Thus,we find ∆YS is representable
by schemes.Next,we have an étale presentation U/S′ → Y corresponding to a
global section u ∈ Y (U/S′),which gives a global section (ϵ, u|(ϵ : U/S′)) in
YS(U/S),so we have an surjective morphism U/S → YS .From [9.119]

U Y

YS

et

√
∆S′/S [9.120]

which means U/S → YS is étale.Therefore,YS ∈ AS/S.Then,we claim that

AS/S′ ∼= ASS′, Y 7→ (YS , fY/S) [9.121]

Indeed,for a YS ∈ ASS′ with fY/S : YS → S,we can recover Y ∈ AS/S′

from (
√

∆S′/S)
∗fY/S .Also,from Y ∈ AS/S′,we can recover YS ∈ ASS′ along

(
√
∆S′/S)∗ ◦

√
∆Y ∗ with (

√
∆S′/S)∗ ◦

√
∆Y ∗(fY ) = fY/S .And the uniqueness

of pullback and pushforward gives the correspondence.
Now,for a relative property R and T,X ∈ (Sch/S,Et) we have

R×X×SX X X

R X ×S X

∆X [9.122]

which makes X to be a principle R-bundle,now we want to define a B-sheaf
that is an assignment T 7→ X(T ) because (T → S) ∈ Et(S) this extents to an
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étale sheaf X ∼= hX : (Sch/S)op → (Sch/X/S),then we have a hR-torsor hX

hX/hR = hX/R ∼= X/R ∈ AS/S [9.123]

An interesting thing is X,X/R ∈ (Sch/S)cons. gives a double counting of rela-
tive propertyR,so we have reason to regard this as a problem similar to gauge
fixing.In this case,actually the site should be general in a pre M-theory [9.98]

ETSchSupGen,cons.
eff (M ) = (ETSchSupGen

eff (M ))rep ⊕ ETSchSupGen
eff (M ) [9.124]

Because we cannot distinguish representable sheaves and schemes by Y-duality
[9.106] the problem of a pre M-theory cannot be consistent is because we want to
do number counting of relative properties to achieve nonexistence in [9.97],but
we know algebraic spaces can also be in site with relative properties,so we cannot
have a consistent number counting on the site which can be general.

Theorem9.5 A number counting of relative properties is not unique and
depends on the underlying site.

Remark9.6 Combing with definition3.10,the nonexistence for pre M-theory
is local because it changes with the number countings of relative properties.

Definition9.7 The M-theory is consistent if and only if there is an unique
number counting of properties to achieve nonexistence.Which is equivalent to
say a pre M-theory is M-theory if and only if it is experiment-free.

Theorem9.8 A number counting of generalized super relative 2-properties
is unique on the site ETSchSupGen,cons.

eff (M ).
Proof. The general site is from Y-duality as a part of U-duality,we get these

properties after U-fusion [9.148].The number counting of each generalized super
relative 2-property is 0,thus there is no double counting problem,which means
this number counting is unique,(FQ⊠Q∗)rep ⊕ (FQ⊠Q∗) ∼=P(Y) 0 !. 2

Back to algebraic spaces as sheaf quotients [9.123].To verify the axioms below
[9.113],we have seen it is an étale sheaf.And let Y = X/R,based on [9.119]

RU U ×S U

R X ×S X

j×j(j×j)∗

RU ×U×SU U U

R×X×SX X X

j [9.125]

where a Zariski morphism j : U ↪→ X and induces j̄ : U/RU → Y .Also,we have
RU ↪→ R induced by the cover,which gives the diagram

RU s(t−1(j−1 ◦ f)(T )) U/RU

R f(T ) Y

s
t

□j

s
t

et j̄ [9.126]

where we work étale locally f : T
et−→ X, j−1 ◦ f : (T → U)/X.And we can see

j̄ is representable by open embedding through étale T -points.For seeing ∆Y is
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representable by schemes,we need to gather information in [9.116] and [9.122]

R×X×SX X X Y

R X ×S X X

∆ [9.127]

for a general étale covering f : X → Y ,and we get R ∼= X ×Y X.Then,for W,S
affine schemes W → Y ×S Y where we work Zariski locally

R Y Y ×Y×SY W F ′

X ×S X Y ×S Y W W ′

∆∗(f/S×f/S)

∆

f/S×f/S
et et
et

[9.128]

where ∆∗(f/S × f/S) = f
∐
f ,it follows that

F ′ = Y ×Y×SY W ×W W ′ ∼= Y ×Y×SY W ′ ∼= R×X×SX W ′ [9.129]

NowW is affine and also need to be quasi-compace which meansW ′ is affine,the
diagonal morphism from F ′ makesW ′ be separated.Also diagonal morphism is a
monomorphism and F ′ need to be an separated scheme.For a ((Sch/S)cons.,Et)
the coverings Et(S) induces a category of local relative properties,for example,an
étale morphism X → S induces a relative property X ×S X localized by this S-
scheme.Based on this local relative property,a S-morphism induces a sub relative
propertyR by [9.127],if we add a further étale morphism and change the notation

· · · X ′′/... (X ′′/...)/...

X ′′ X ′ X

X ′′ ×X X ′′ X ′′ ×X′ X ′′ X ′′ ×S X ′′ X ′′ X

· · · Y ×S Y · · ·
[9.130]

where we find Et induces an evolution of relative properties,relative properties
was transferred along morphisms in coverings and may be same and may be
changed and back to classfy X ′ and X by sheaf quotient of X ′′ by corresponding
relative property.This also gives us an understanding of why we regard relative
2-property as universal property.Formally,we use [9.104]

Fibcat. of stacks of rel.properties→retract stack of rel.2-properties [9.131]
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And we will see it in the generalized super case,this retract is U-fusion.And this
chain as ∞-category is truncated by physics.

Now,back to math,apply [9.130] in [9.128] we classify F = F ′/(F ′ ×F F ′)
where F = Y ×Y×SY W .If we denote g : F ′ →W ′,we have

F ′ F ′ ×F F ′

W ′ W ′ ×W W ′
g

∆F ′/F

∆∗
F ′/F

∆W ′/W

∆∗
W ′/W

[9.132]

which is F → W is monomorphism g∗ is well defined and makes [9.132] carte-
sian.Because scheme W ′ is an algebraic space and F ′ is a scheme,F ′ ×F F ′ is a
scheme with étale topology.Now,we repeate [9.126] but focus on F ′

s(t−1(U ′)) U ′/R′U ′

F ′ F ′/R′

j̄ [9.133]

where we denoted R′ = F ′ ×F F ′ and a quasi-compact open subscheme U ′ ⊂
F ′,which is cartesian and s(t−1(U ′)) is an quasi-compact open subset of F ′.In
this case,we put [9.133] back to [9.128],we get

s(t−1(U ′)) ∼= U ′/R′U ′ ×W W ′ [9.134]

Then,if s(t−1(U ′)) is a scheme,U ′/R′U ′ is a scheme then F is scheme.Now,the
set s(t−1(U ′)) is a set of quasi-affine schemes and W ′ is quasi-compact and
quasi-seperated,which means by Zariski’s main theorem

s(t−1(U ′)) F ′ W ′
j ∆ (∆ ◦ j)−1(W ′′,⊂W ′) ⊂ s(t−1(U ′)) [9.135]

By definition, (∆ ◦ j) is quasi-affine.With a fibered catgegory

((∆ ◦ j)−1W ′′ →W ′′) (W ′′)

Aff Sch

p

p

[9.135]

By global descent of quasi-affine morphisms over fppf coverings in 4.4.17 in
[12] and also for étale coverings,or just by knowing that gluing affine schemes
follows from gluing structure sheaves on them by using [9.70].Thus,we have a
glued affine scheme s(t−1(U ′)).Back to [9.28] the diagonal morphism of Y =
X/R is representable by schemes.The last thing is étale surjection,we claim
that a natural étale presentation is X → X/R,the quotient let it be already
epimorphism of étale sheaves.For a morphism T → Y and it factor through X
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we have the cartesian square with ∆∗X/Y (f ×Y id) = f/Y

T ×Y X X ×Y X X

T X Y

f×Y id

et

∆∗
X/Y (f×Y id)

∆X/Y [9.136]

because diagonal morphism of Y is representable,X ×Y X is scheme by [9.116]
so ∆X/Y is étale and X → Y is étale.By definition below [9.116],X/R is an alge-
braic space and comes into ((Sch/S)cons.,Et

∐
Rep).Now,an algebraic space X

can have stable relative property from étale presentation in general site with cov-

erings adimitting preservations of relative 2-properties,U
P 2

−−→ X.Also,by [9.115]
morphisms of algebraic spaces admit preservations of relative 2-properties.

Algebraic spaces are fppf sheaves. For an algebraic space X|S which is
an algebraic space X over a scheme S,that is an étale sheaf and at least a fppf
presheaf.If we put fppf topology in,we claim that

q : X|Sfppf
≃−→ X|Sfppf [9.137]

where X is a fppf sheaf.Definition 5.4.7 in [12] tells us a morphism X → S
over S is quasi-separated if the diagonal ∆X/S is quasi-compact.So,we want to
assume ∆X/S is quasi-compact,in this case,for a fppf morphism U → S

U ×X U U ×S U

X X ×S X

∆∗
X/S(f×Sf) f×Sf

∆X/S

[9.138]

where ∆∗X/S(f ×S f) = f
∐
f and define f by X(U).Because,X is an algebraic

space,U ×X U is a fppf sheaf recall that below [9.70] and X is a separated
presheaf.Also,the diagonal morphism is monomorphism,so q is injective with
X = U ×X U .To see surjectivity of q is to verify if s ∈ X(U) is in the image of
q and it suffices to consider U is quasi-compact,in this case,we can decompose
the separated presheaf X =

⋃
iXi such that

limiXi|Sfppf, Xi(U) = (limiXi)(Sfppf)|Ui [9.139]

they are locally matching,because U is quasi-compact we may therefore also
assume that X is quasi-compact.For an étale presentation X0 → X

U ×X X0 X0 Xi

Ui X

et

q

s̃i

si

[9.140]
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where we used a fppf covering {Ui → X}i∈I ,we find q adimits a section q̃ :
s̃i ◦ s−1i ,where we want to apply the descent of morphisms admits a section in
4.2.9 in [12],which gives us for X = U ×X U is a quasi-compact fppf sheaf

(U ×X X0)({Xi → X}) ∼= (U ×X X0)(X) [9.141]

where we used property of quasi-compact,separated,scheme is fppf sheaf and
fppf presheaf is locally a fppf sheaf.And surjectivity is given by [9.141].Thus,we
get a result [9.137] that is consistent to [9.79].

9.6 Generalized super relative 2-properties with U-fusion

Now we have one duality that hasn’t been applied but living in M-theory
that we discussed in section 8.5,which is U-duality.From [8.28],we have

(X0 ×S X ∗1 /Z)⊠T (X ∗1 ×S X0/Z) ⊂ (X0 ×S X ∗1 )self T [9.142]

where we T-fused them see below [8.21] and [8.37].After T-fusion,the theory
becomes self T-dual and self S-dual that is meaningless to perform further fusion
of these dualities.Fortunately,we have U-duality on the level of M-brane.Guided
by the evolution picture [9.97],A U-fusion is the following process

P(U) : (X0 ×S X0)M 7→ (X0 ×S X0)M ⊠U (X̃ ∗1 ×S X̃ ∗1 ) [9.143]

we need to perform it on two copies first,and an U-fusion is

P(U)(X0 ×S X ∗1 )self T

= (X0 ×S X0)M ⊠U (X̃ ∗1 ×S X̃ ∗1 )⊕ (X ∗1 ×S X ∗1 )M ⊠U (X̃ ∗1 ×S X̃ ∗1 )

= [(X0 ×S X0)M ⊕ (X ∗1 ×S X ∗1 )M ]⊠U (X̃ ∗1 ×S X̃ ∗1 )

= (X0 ⊠ X ∗1 ×X0 ⊠ X ∗1 )M ⊠U (X̃ ∗1 ×S X̃ ∗1 )
∼=P(U) (X1 ×M X1)⊠U (X̃ ∗1 ×M̃

X̃ ∗1 )

[9.144]

where we preserved the parity.An observation is our universe is evolving and
decaying at same time,and the U-duality is a duality of flipping them

U : (X1 ⊕X1) ∨ (X̃ ∗1 ⊕ X̃ ∗1 )→ (X̃ ∗1 ⊕ X̃ ∗1 ) ∨ (X1 ⊕X1) [9.145]

Guided by [9.145],the general generalized super site [9.124] should be

ETSchSupGen
eff (M )repΛ ∨ ETSchSupGen

eff (M )−Λ [9.146]

with changing to vee meaning that these two copies are overlapping with each
other.Also,they are characterized by cosmological constant see [8.40] because

the identity is unique.In this case, M̃ = M rep.Then the U-fusion of [8.38] is

(P(U)R)unselfU = (X1 ×M X1)⊠U (X̃ ∗1 ×M̃
X̃ ∗1 ) = RM ⊠U R̃M rep [9.147]

110



and end with generalized super raltive 2-properties.The number counting is
subtile that is counting for zero

#(RM ⊠U R̃M rep) =
∑
{#R++

M + #R−−M }+
∑
{#R̃} = Λ− Λ = 0 [9.148]

each generalized super relative 2-property counting zero which means it is inde-
pendent of choice of M in different sites.which gives the uniqueness of number
counting.Based on U-fusion,we can consider a further site which is general

ETSchSupGen,cons.
eff (M rep

Λ ∨M−Λ) [9.149]

The 0 in [9.148] can be seen from the global zero section of sheaf of (co)homology
on M in [13.10] fused from [9.17].

10 Modern super algebraic geometry II

10.1 Invariants and quasi-coherent sheaves on (Sch/X)cons.

For a groupoid in schemes s, t : G ⇒ X0
f−→ T with f is a morphism of

algebraic spaces is called invariant if f ◦ s = f ◦ t.A theorem 6.2.2 in [12] is

s(t−1(x)) ∈ U

X1 X0 Y Zt
s

f ′

f

!

[10.1]

where f, f ′ are invariant morphisms to affine schemes with s, t are finite and
flat and U is an affine open subset.Now,we want to study topological properties
of algebraic spaces.For a quasi-separated algebraic space X over S,we have an
étale presentation U → X with U a scheme.See around [9.90] if we set g :
Spec(K) → X,it factors through U ,because we can choose K to be a finite
separable field extension over the underlying ring of étale cover,denote as gU .If
g is epimorphism then im(gU ) → X is also epimorphism.We can assume U is
quasi-compact because im(gU ) ⊂ V which is a quasi-compact connected open
subset of U .Repeat [9.116] we have

U ×X U U ×S U

X X ×S X

∆∗
X/S(g×Sg) g×Sg

∆X/S

[10.2]
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where ∆∗X/S(g×S g) = g
∐
g.So U ×X U is quasi-compact because the diagonal

morphism is quasi-compact see below [9.137].Also,we can pullback

Spec(K)×X U U ×X U

Spec(K) U

f∗id×X id id×X id

f

[10.3]

where f∗id×X id = f×X id.Now,Spec(K)×X U is quasi-compact and étale over
Spec(K),thus,it can be a finite disjoint union of spectra of field extensions of
K.The epimorphism pr2 : Spec(K)×X U → U gives U also a similar structure
of disjoint union.But connected means glued affine schemes which means glued
structure sheaves,so U is a spectrum of a field.Thus,we can replace U with
Spec(K) being the étale presentation of X.And the Spec(K) ×X Spec(K) is
quasi-compact and étale over Spec(K) which is also a disjoint union.Corollary
6.2.14 in [12] tells us if there exists a finite flat surjection Y → X of constant
rank with Y is an affine schemes,then X is also an affine scheme.Fitting in this
case,X is affine and by Spec(K)×X Spec(K)⇒ Spec(K)→ X ∼= Spec(L)

Spec(K)
et−→ X ∼= Spec(Eq(K ⇒ Γ(R,OR))) = Spec(K)/R [10.4]

where R = Spec(K)×X Spec(K) and we used [9.130]

Spec(K) X = Spec(K)/R

R Spec(K)×S Spec(K) Spec(K)

[10.5]

Notice that X is quasi-separated for R =
∐

Spec(K(x)) ∼= Spec(
⊗

LK(x)),as
we have global descent over fppf coverings that is finitely presented morphisms
[9.135].By definition below [9.137] ∆X/S is quasi-compact and we have

R Spec(K)×S Spec(K)

X X ×S X
∆X/S

[10.6]

which means R is quasi-compact,so we can have effective decent to glue the
disjoint union to an affine scheme

Aff({Spec(K(xi))→ R}xi∈R) ∼= Aff(R) [10.7]

with trivial projection here p = id.Also [10.4] gives us k-points of algebraic space
X similarly to schemes,then we can define topological space

|X| = {li : Spec(ki)→ X}i∈I/ ∼, l1 ∼ l2 : Spec(k1) ∼=/X Spec(k2) [10.8]
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The closed set is |Y | ⊂ |X| from a closed subspace Y ⊂ X.And
∐
i Spec(ki) is

a scheme by [10.7] if X is quasi-separated over S.For such an algebraic space
X/S,let Y → X be an étale presentation with Y a scheme,so Spec(k)×l,X Y →
Spec(k) is étale so Z = Spec(k) ×l,X Y =

∐
z∈Z Spec(k(z)) which is a glued

scheme with each a spectrum of a residue field of a point z ∈ Z.Let h = pr2 :
Spec(k(z)) 7→ Spec(k(h(z))) ⊂ Y and T =

∐
h(z)∈Y Spec(k(h(z))).Now we have

T ⊂ Y T/R

R T ×X T T ⊂ Y

[10.9]

If we let Z ×Spec(k(x)) Z → R ⊂ h(Z ×X Z) ⊂ T ×X T ⊂ Y ×X Y with R being

the scheme-theoretic image and by [10.9] R = T ×T/R T ,we have

Spec(k) T/R X

l

g l′ [10.10]

Also,R is pullback of Y ×X Y along T/R→ Y ,so T/R→ X is monomorphism
see below [9.138].Also g in [10.10] is epimorphism,by [10.4],T/R is a spectrum
of a field.Then a point l factors through a point l′ with T/R = Spec(k′) for X
is quasi-separated.Actually,[10.10] gives a categorical structure of |AS/S|

|f | : |X| → |Y |, (Spec(k)→ X) 7→ (Spec(k)→ Y ) [10.11]

which also gives functorial strucutre of | | : AS/S → |AS/S| and we have

|f−1(Z)| |Z|

f−1Z Z

|f |−1

| |

f−1

| | [10.12]

for a closed subspace Z ⊂ Y ,making |f | become a continuous map of topological
spaces.Conversely,a morphism f has a property if morphism of underlying topo-
logical space |f | has a property.We have seen that for quasi-separated algebraic
spaces,the source s(|X|) is a glued scheme below [10.8] and so it is consistent
with discussion below [9.114] that is the a property of morphism of algebraic
spaces is from that of projective morphism of schemes.

For an quasi-separated algebraic space X/S with S an affine scheme,for an
étale cover U → X,it induces a relative property U ×X U ↪→ U ×S U see [9.130].

RW = R×U×SU (W ×S W ) W ×S W

R = U ×X U U ×S U

[10.13]
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By a base change along W ⊂ U and we get an open embedding W/RW →
X follows from X = U/R.Also,X is quasi-separated,we can let U be quasi-
compact.Now,for a groupoid in scheme s, t : R ⇒ U with W (n) ⊂ U is the
largest open subset over t with rank n.We have

R×s,U,t R R

R U

m

pr1 t

t

R×s,U,t R R

R U

pr2

pr1 t

s

[10.14]

with m : R ×s,U,t R → R see [9.32],so we can see t−1(W (n)) = s−1(W (n)) =

R
(n)
W which is the largest open subset over pr1,that reduces the groupoid to a

subgroupoid R
(n)
W ⇒ W (n),an invariant map W (n) → X

(n)
W ⊂ X follows from

that for each n and along these invariant maps,the subgroupoids descent to
X(n) ⊂ X that gives us an invariant map f

R U X(n) =
⋃
W X

(n)
W Xt

s f i [10.15]

and union ofX
(n)
W ’s with each the largest is a dense open subset inX.By theorem

[10.1],X(n) is an affine scheme with i a dense open embedding.Globally,for S is
a scheme,X(n) is a scheme.

Definition10.1 A Et
∐

Rep is a general Cov with Rep a collections of cov-
erings of representable sheaves admitting preservations of relative 2-properties
from Et which is a big étale topology of schemes.

{Yi → Y }i∈I ∈ Et
∐

Rep⇔ Yi, Y ∈ AS/X,
∐
i∈I

Yi →surj. Y [10.16]

where we put the topology on Sch/X and becomes (Sch/X)cons..A fact of [9.79]
is for a full subcategory Et′(X) ↪→ Et(X),like what we do for a sheaf,that in-

duces a morphism of topoiXet′
≃←− Xet,sometimes we are easier to define sheaves

on Et′(X),in that case it is XZar and is easy to define structure sheaves.Now,we
want to let Et′(X) = Et(X)|Y→X ∼= Et(Y ) ↪→ Et(X) which gives us equiv-
alence of topoi Xet

∼= Yet.Now for an algebraic space X we have U ×X U ⇒
U → X with an étale presentation and associated relative property,also we have
pr12,pr23,pr13 : U ×X ×XU → U ×X U .Recall the descent theory [9.52] and
[9.54],we can define category (R⇒ U)et with objects are pairs (FU , ϵ) with FU
an étale sheaf on U and ϵ : s∗FU

≃−→ t∗FU and pr∗23ϵ ◦ pr∗12ϵ = pr∗13ϵ given by

(U ×X U)×t,U,s (U ×X U)×s,U.t (U ×X U) (U ×X U)×s,U,t (U ×X U)

(U ×X U)×s,U,t (U ×X U) U ×X U

id×m

m×id

m

m

[10.17]
which is the associativity [9.33] of groupoid axioms.By [9.10],we have

(R⇒ U)et ∼= Uet
∼= Xet [10.18]
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Now,if these are trivial topoi,[10.18] give us a global descent theory over étale
coverings to glue the relative properties generated by [9.130].Now,we can dis-
cuss,category of OX -modules in Xet,that is equivalent to category of pairs
(MU , ϵ) ∈ (R ⇒ U)et,with MU is a sheaf OU -module on Uet.Also,a sheaf of
modules OX -module M is quasi-coherent if there MU is quasi-coherent sheaf on
U for an étale presentation U → X of an algebraic space X.And if X is locally
noetherian from scheme level [9.108],then M is called coherent sheaf if MU is
coherent.And if X is a scheme by [9.79],we get the usual notions.If MU is a
quasi-coherent sheaf we get get another one by

V ×X U U

V X

p2

p1 MV
∼= p1∗p

∗
2MU ∈ Qcoh(Vet) [10.19]

where we used [9.74] and [9.83].And this gives usM is quasi-coherent (coherent)
on X (locally noetherian) if and only if for every étale morphism V → X,MV

is a quasi-coherent (coherent) sheaf on V .

10.2 Algebraic stacks and the M-theory M
A morphism of stacks f : X → Y is representable by algebraic spaces if for

every scheme U and morphism y : U → Y ,the fiber product

X ×Y ,y U U

X Y

[10.20]

is an algebraic space.A lemma 8.1.3 in [12] tells us if f above is already repre-
sentable,then every algebraic space V ,the fiber product V ×Y X is an algebraic
space.

A stack X /S is an algebraic stack if it satisfies

(i) The diagonal is representable, ∆X /S : X →X ×S X

(ii) A smooth presentation that is a smooth surjection

with an algebraic space X, X →X

[10.21]

Definition10.2 The M-theory M is a pre M-theory satisfies

(i) It admits a reverse U-fusion called U-breaking

P(U)−1 : M→Mpre.rep.
cons. ∨Mpre.

cons.

which is representable by generalized super relative 2-properties

(ii) A smooth presentation from general M-brane in [9.149]

M rep
Λ ∨M−Λ →M

[10.22]
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where M rep
Λ ,M−Λ are M-branes which are U-dual to each other,that are also

generalized super algebraic spaces in the generalized super site [9.149].
Theorem10.3 The M-theory M is an algebraic stack in super algebraic

generalized geometry,called generalized super algebraic geometric stack.
Proof. Indeed,combining the definition

M rep
Λ ∨M−Λ →M→Mpre.rep.

cons. ∨Mpre.
cons. [10.23]

which gives us grading by U-duality,with each pre M-theory

(M rep
Λ →Mpre.rep.

cons. ) ∨ (M−Λ →Mpre.
cons.) [10.24]

and each pre M-theory has a smooth presentation.Also from (i) in [10.22]

M×... (X̃ ∨ X ) X̃ ∨ X (X̃0 ⊕ X̃ ∗1 ) ∨ (X0 ⊕X ∗1 )

M Mpre.rep.
cons. ∨Mpre.

cons. Srepcons. ∨ Scons.
P(U)−1 P(Tδ)−1

[10.25]

where X̃ ∨X denoted as generalized super relative 2-properties [9.144],and Scons.
is the consistent string-Space [9.92] over the general site [9.149] and P(Tδ)−1

means at least the super T-breaking [9.45].Also,the fiber product has grading
by U-duality,with each an generalized super algebraic space

X̃ ∼= Mpre.rep.
cons. ×∆rep

T ,Srep
cons.

(X̃0 ⊕ X̃ ∗1 ) [10.26]

where X̃ is an algebraic space in generalized super site and X̃0 ⊕ X̃ ∗1 is a gener-
alized super scheme above [8.28].Similarly for the U-dual part,we have

X ∼= Mpre.
cons. ×∆T,∆Scons. (X0 ⊕X ∗1 ) [10.27]

So the settings of the M-theory make each pre M-theory an generalized super
algebraic stack.With the U-breaking of diagonal morphism of the M-theory

∆U = P(U)−1 = ∆rep
T ⊠U ∆T = P(T)−1rep ∨ P(T)−1 [10.28]

Thus,we find each of the two copies in [10.24] is an algebraic stack.Then

M×Mpre.rep.
cons. ∨Mpre.

cons.
(X̃ ∨ X ) ∼= (M×Mpre.rep.

cons.
X̃ ) ∨ (M×Mpre.

cons.
X ) [10.29]

where we used [10.25] and the fiber product is equivalent to a generalized super
algebraic space follows from [10.30].Thus,P(U)−1 is representable by generalized
super algebraic spaces which satisfying the (i) in [10.21]. 2

Similarly to algebraic space [9.116],for any scheme U → X to an algebraic
stack is representable by algebraic spaces

U ×X T U ×S T

X X ×S X

∆∗
X /S(u×t) u×t

∆X /S

[10.30]

116



where T is a scheme,which makes the smooth presentation make sense.Further
than stack in [9.99],now the sheaf is an algebraic space by

Isom(x1, x2) X ×S X

X X ×S X

∆∗
X /S(x1×Sx2) x1×Sx2

∆X /S

[10.31]

where the X → X is an smooth presentation and the Isom sheaf [9.49] is on
(Sch/X)op now.Similarly to [10.19],we can get another smooth presentation by
an étale covering X ′ → X and an exercise 5.G in [12] tells us if Isom(x1, x2) is
an alegbraic space over X if and only if for an étale cover the pullback of the
sheaf is an algebraic space,which means

f∗Isom(x1, x2) Isom(x1, x2)

X ′ X X
et

f ,et et

[10.32]

where f∗Isom(x1, x2) = Isom(f∗x1, f
∗x2),which also implies the global descent

of sheaves [9.10] but now these sheaves are algebraic space.Thus,the diagonal
∆X /S is representable if and only if for every smooth presentation X →X with
X an algebraic space,the corresponding Isom sheaf is an algebraic space.Also,if
we use algebraic spaces in [10.30],the fiber product is algebraic space.

Now,we can define a stack [X/G] with X an algebraic space and G a smooth
group scheme,which has objects that are triples (T,T , π) with T a scheme and
T is a GT -torsor above [9.85] which is an sheaf on the big étale site.We have

G×S T T X ×S T

G S X

[10.33]

over this base,we have an action by GT = G×S T

GT ×T (X ×S T ) X ×S T

GT T

[10.34]

which makes X ×S T a GT -torsor.Also notice that we work on a general site
which means schemes can be representable sheaves.And this define a morphism
π : T → X×S T a GT -equivaraint morphism of sheaves on (Sch/T )cons..A mor-
phism of triples is a pair (f/S , f

b
/S) : (T

′,T ′, π′)→ (T,T , π) with S-moprhism

117



f/S : T ′ → T and f b/S is an isomorphism of GT ′ -torsors,such that

T ′ f∗/ST

X ×S T ′

π′

fb/S

≃

f∗
/Sπ

[10.35]

the diagram commutes.The [9.70] gives us a global descent theory and it is a
groupoid because of the sense of [9.100],for a global glued sheaf T ,we have

(T |X×ST ′)|X×ST ′∩f∗
/S

(X×ST )
∼= f∗/S((T |X×ST )|f/S∗(X×ST ′)∩X×ST ) [10.36]

Thus,it is a stack from [9.104].Now,we want to define a Isom sheaf

I = Isom((T1, π1), (T2, π2)), (T ′ → T )→ (T1|T ′ → T2|T ′) [10.37]

on (Sch/T )cons.,which is compatible with π.Now,we assume Ti is globally de-
fined (trivial),and we can perform gauge-fixing σi : Ti

∼= GT ,the equivariant
morphism is πi : GT → X×ST ,Then,[10.37] becomes (T ′ → T )→ (GT ′ → GT ′)
induced by right multipilcation mg by g ∈ G(T ′),with GT ′ = GT |T ′ ,and satisfies

GT ′ GT ′

X ×S T

π1

mg

≃

π2
[10.38]

Similarly to [10.31],we have a cartesian diagram

I ∼= Isom(π1(e), π2) GT ×T GT

XT XT ×T XT

∆∗
XT /T

(π1(e)×Tπ2) π1(e)×Tπ2

∆XT /T

[10.39]

where XT = X ×S T ,π1(e) = π2(·g) and ∆∗XT /T (π1(e)×T π2) = π1(e)
∐
π2,also

notice that we used the trivialness of the torsors.Because X is an algebraic space
∆X/T is representable by schemes,∆XT /T is also representable by schemes,which
means I is a scheme.Back to [10.33],if we change T to X and [10.34] becomes

GX ×X (X ×S X) X ×S X

GX X

[10.40]

this let us define a map (TX , ρ) : X → [X/G] with GX -equivariant morphism
ρ : TX → X ×S X,which gives us

T X

T [X/G]

(TX ,ρ)

(T ,π)

[10.41]
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T is the fiber product follows from combining [10.34] and [10.40]

GT ×T (X ×S X) X ×S X

GT ×T (X ×S T ) X ×S T

GT T

[10.42]

which makes GX -torsor become a GT -torsor,and denote a GT ×S GX -torsor
as T .Recall,that G is a smooth group scheme over S so GT is a smooth over
T ,and T is trivial and étale over T,which means X → [X/G] is a smooth
surjection.Thus,[X/G] is an algebraic stack.A proposition 4.5.6 in [12] tells us

(Principle G-bundles on X) ∼= (µ-torsors on X) [10.43]

when G is affine and we can apply it to [10.41],we get

(

P X

T

π

)→retract [X/G](T ) [10.44]

where P is a principle G-bundle on T .Also,recall that we mentioned a stack
below [9.30],now we regard a relative property as G over S,then the correspond-
ing classifying stack of G is BG = [S/G],where we put a point T → S into
a point [S/G](T ),and by using [10.44] and [9.87],an element corresponds to an
equivalence class of groups in the sections of hG.Then,we want to discuss

W = Y ×Z X X

Y Z

c

d

[10.45]

which is the fibered product of algebraic stacks,it is a stack because this is
fibered product of sheaves see above [9.102].An element of a point W can be

expressed as A = (x, y, σ) with x ∈X , y ∈ Y and σ : c(x)
≃−→ d(y),we can have

Isom(A,A′) T ×S T

W W ×S W

∆∗
X /S(A×SA

′) A×SA′

∆X /S

[10.46]

Because the triples and A ∼= A′,we can decompose it to

Isom(x, x′) T ×S T

X X ×S X

x×Sx′

∆X /S

Isom(y, y′) T ×S T

Y Y ×S Y

y×Sy′

∆Y /S

[10.47]

119



and a fiber product connecting them

c(x) c(x′)

d(y) d(y′)

≃

≃ ≃

≃

Isom(c(x), d(y′)) T ×S T

Z Z ×S Z

c(x)×Sd(y′)
∆Z/S

[10.48]

Each Isom sheaf is an algebraic space,in [10.47] and [10.45].Equate with [10.46]

Isom((x, y, σ), (x′, y′, σ′)) Isom(x, x′)× Isom(y, y′)

Isom(c(x), d(y′)) Isom(c(x), d(y′))× Isom(c(x), d(y′))

c×d

∆

[10.48]

where we used the gluing axiom of sheaves

Isom(c(x), d(y′))× Isom(c(x), d(y′))

= Isom(c(x) ∼= d(y′), c(x) ∼= d(y′))

= Isom(c(x), c(x′))× Isom(d(y), d(y′))

[10.49]

And fiber product in [10.48] is an algebraic space,so diagonal morphism in [10.46]
is representable see below [10.32].Now,we want to find a smooth presentation
for [10.45].If c is representable,we can form a diagram

Y ′′ ×Y ′ (Y ′ ×Y ×Z X T ) Y ′ ×Y ×Z X T T

Y ′′ Y ′ Y ×Z X X

Y Y Z

x pr2

f

et

c

y d

[10.50]
with étale surjective Y ′′ → Y ′ and y a smooth presentation of Y .Also

Y ′ ×Y ×Z X T ∼= Y ×Y T [10.51]

so pr2 is smooth.Similarly,f is smooth follows from

Y ′′ ×Y ′ (Y ′ ×Y ×Z X T ) ∼= Y ′′ ×Y ×Z X T [10.52]

because composition of a smooth morphism and a étale morphism is smooth.In
this case,f gives it a smooth presentation.Thus,the fiber product of algebraic
stacks is still an algebraic stack.For general case,we let z becomes a smooth
presentation,by above [10.30],Z ×S X is an algebraic space

Z ×Z X Z ×S X

Z Z ×S Z

∆∗
Z/S(z×Sc) z×Sc

∆Z/S

[10.53]
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so the fiber product is an algebraic space which means we have an étale presen-
tation z′ : Z ′ → Z ×Z X ,similarly to [10.50] we have

W = Y ×Z X X Z ×Z X

Y Z Z

c

d
z

[10.54]

let the z′′ : Z ′′ → Z is a smooth surjection and repeat the method in [10.50],we
get a smooth presentation d∗z∗(z

′ ◦ z′′) :W → W .
Now,we back to the M-theory [10.22],it U-breaks to two algebraic pre M-

theories which are U-dual to each other,with smooth presentation [10.24] from
M-branes.By using [X/G] above [10.33] we have

Mpre.rep.
cons. = [M rep

Λ /Ǧ] ∨ [M−Λ/G] = Mpre.
cons. [10.55]

with U-duality flipping them

U : [M rep
Λ /Ǧ] ∨ [M−Λ/G] ↔ [M−Λ/G] ∨ [M rep

Λ /Ǧ] [10.56]

which naturally gives us Langlands dual group Ǧ for a group scheme G,which
makes Langlands duality become a natural result of the M-theory.

10.3 Quasi-coherent sheaves on algebraic stacks

For an algebraic stack X /S,an X -space is a pair (T, t) with T an algebraic
space and a morphism t : T → X .A morphism is (f, f b) : (T ′, t) → (T, t) with
f : T → T ′ and an isomorphism f b : t′ → t ◦ f and the composition is given by

T ′′ T ′ T

X

g

t′′

f

t′
t

[10.57]

(g, gb) ◦ (f, f b) = (g ◦ f, g(f b)) with g(f b) : t′′ → t ◦ f ◦ g.And we denote the
category of X -spaces AS/X ,also the category of X -schemes (T, t) ∈ Sch/X
is a full subcategory.By 2-Yoneda lemma [9.25]

X (T ′) ∼= HOMAS((AS/T ′),X ) [10.58]

thus,f b is a 2-isomorphism in the 2-category X (T ′).For two morphisms of al-
gebraic stacks f : Y → X and f ′ : Y ′ → X ,an X -morphism is (g, σ) with
g : Y → Y ′ and σ : f → f ′ ◦g which is a 2-isomorphism.Collection of such mor-
phisms forms a 2-category HOMX (Y ,Y ′),a morphism is is an 2-isomorphism
λ : g → g′ such that λ ◦ σ = σ′

Y Y ′

X

g

g′

f

f ′

λ

[10.59]
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If f, f ′ are representable morphism of algebraic stacks [10.20],we have

Y ×X U Y ′ ×X U U

Y Y ′ X

!

t t′ h

f ′

[10.60]

follows from [9.19],where U is an algebraic space.And back to [10.57],we have

(f, f b)! : (Y ×X U)→ Y ′ ×X U, λ = f ′∗h∗f
b! : g = f ′∗h∗t→ g′ = h∗f

[10.61]
which is a unique morphism in X -space.And in this case,we have an unique
2-ismorphism which makes HOMX (Y ,Y ′) be a set.We can therefore define
relative space over X ,RS/X with objects are representable morphism of al-
gebraic stacks and a morphism is an isomorphism class of (g, σ).Also,by the
representibility we have AS/X ↪→ RS/X .

In this case,we can define a localized site which is the lisse-étale site

(T, t) ∈ Lis-Ét(X ) ∼= (Ét(T )→X ) ⊂ AS/X [10.62]

for an algebraic stack X and a smooth morphism t : T → X .A covering is
{(fi, f b) : (Ti, ti) → (T, t)} over an étale covering (for preserving smoothness)
{fi : Ti → T}.And we denote Xlis-ét as the topos on the site.Also,we can
view this as a smooth presentation Ét(T ) → X .Similarly to [10.19],a presheaf
F ∈Xlis-ét is a sheaf if and only if for every (T, t), F |T is a sheaf.In this case,we
define OX sending (T, t) to Γ(T,OT ).Then,we can see clearly about Xlis-ét as

(({F(T,t)}, {ρ(f,fb)})), ρ(f,fb) : f
−1F(T,t) → F(T ′,t′) [10.63]

see [10.57],with f is étale,ρ(f,fb) is an isomorphism.Also,

Xlis-ét
∼= (HOMSh(Sh/F(T,t)),X )) ∼= (X (F(T,t))) [10.64]

with Sh is the category of sheaves [9.65] over a general site.With

Sh/F(T,t)
∼= Sh(T/X ) ∼= (AS/(T/X ))̃ [10.65]

For understanding [10.64],first for any composition below [10.57],we have the
following diagram by global descent theory over étale covering for Sh [9.70]

g−1f−1F(T,t) g−1F(T ′.t′)

(fg)−1F(T,t) F(T ′′,t′′)

g−1ρ
(f,fb)

≃ ρ
(g,gb)

ρ
(g◦f,g(fb))

[10.66]

which makes Xlis-ét be a fibered category,and similarly to [10.58]

F(T,t)|T

f−1(F(T,t)) ∼= F(T ′,t′)|T ′ X

≃ [10.67]
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which make Xlis-ét be category fibered in groupoid.And the global descent theory
of Xlis-ét is given from X → AS,that is

X ({F(T ′,t′) → F(T,t)}) X (F(T,t))

X ({T ′ → T}) X (T )

≃

≃

[10.68]

We then find that the topos on Lis-Ét(X ) (on an algebraic stack) is a stack

Xlis-ét
∼= (p : X → ((T/X )̃)) [10.69]

For a sheaf of rings Λ on Lis-Ét(X ) (globalize on the X ) in Xlis-ét (localized on
every (T, t)),a sheaf Λ-module is cartesian if for every (f, f b) : (T ′, t′)→ (T, t)

f∗F(T,t) = f−1F(T,t) ⊗f−1Λ Λ′(T ′,t′)
∼= F(T ′,t′) [10.70]

where for the fibered category (especially X ),we use cartesian product because
scheme is representable sheaf and we can regard an algebraic stack as a rep-
resentable sheaf and for concrete elements we use the pushforward as the left
evolution.Similarly to [10.19],a sheaf OX -module is quasi-coherent if F is carte-
sian and for every (T, t),F(T,t) is quasi-coherent on T .An algebraic stack X is

locally noetherian if an only if it localizes to every (T, t) along the site Lis-Ét(X )
with T is locally noetherian.Then,a quasi-coherent sheaf F on locally noetherian
2-scheme X (globalized along Lis-Ét(X )) is coherent if each F(T,t) is coher-
ent.The F on the algebraic stack is understood by descent from a glued F(T,t)

by global descent theory of stack.And we denote the category on an algebraic
stack (2-scheme) QCoh(X ).Then,we want to treat [10.62] in detail.

For a smooth presentation X →X with a (Z, z) ∈ Lis-Ét(X ),we have

Z ′ Z ×X X X

Z X

s

f
p x

z

[10.71]

where p is smooth from smooth x,and a étale morphism f : Z ′ → Z factors
through an étale morphism s.In this case,we have

x∗ ◦x∗(z) ◦ s∗ ◦ f∗ : Z → X →X , F(Z,z)
∼= (x∗(z) ◦ s∗ ◦ f∗)∗F(X,x) [10.72]

For a quasi-coherent sheaf F on X ,and for every Z we give a index i

X/X = lim
i
Zi/X , F(X,x) = Fcolim

i
(Zi,zi)

∼= colim
i

F(Zi,zi) [10.73]

the F(T ′,t′) is quasi-coherent,then F(X,x) is quasi-coherent,also if F(X,x) is quasi-
coherent,then every F(T ′,t′) is quasi-coherent,then we get for a smooth presen-
tation from a scheme X,a cartesian sheaf OX -module is quasi-coherent (coher-
ent) if and only if F(X,x) is quasi-coherent (coherent) on X.If X /S is Deligne-
Mumford stack which is an algebraic stack with étale presentation,we can con-
sider Ét(X ) ⊂ Lis-Ét(X ) with objects (T, t),where t is étale morphism from
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algebraic spaces and we write the associate topos Xét.Similarly to the case of
algebraic spaces below [10.16],the inclusion induces a restriction of ringed topoi

Ét(X ) ↪→ Lis-Ét(X ), (Xlis-ét,OX )→ (Xét,OXét
) [10.74]

Similarly to [9.82],for a Delign-Mumford stack X

r∗ : QCoh(Xlis-ét)
≃−→ QCoh(Xét) [10.75]

For an étale morphism f :W →X with W a scheme from [10.71]

T

W X

smo
t

smo

et

[10.76]

A restriction Lis-Ét(X )|W ∼= (id, f∗)(Lis-Ét(X )) = Lis-Ét(W ),which means
Wlis-ét

∼= Xlis-ét|W ,then we have WZar ↪→ Lis-Ét(W ),which induces equivalence
on topoi see below [10.16].Thus,we can let W be an affine scheme.In this case,a
sheaf M in Xét is quasi-coherent which means M |W is quasi-coherent.Then for
every smooth r : T → W ,r∗(M |W ) ≃ M |r∗W is quasi-coherent sheaf which
means M is also a quasi-coherent sheaf in Xlis-ét,so we have M ∼= r∗r

∗M for
M in Xlis-ét,and for quasi-coherent N in Xlis-ét,we know étale morphism is
smooth,we have r∗r∗NT ∼= r∗NW ∼= NT because N is cartesian [10.70].

For instance,let G a finite group scheme over S,we want to describe étale
topos of BG.The site for the classifying stack is G-Ét(S) with objects étale
morphisms T → S with a G-action,from G ×S T ′ → G ×S T ,a morphism is a
pair (f, g) : T ′ → T, g ∈ G with pr1∗pr

∗
2(f)

∼= g,which is g-equivariant

G×S T ′ G×S T

G

pr∗2(f)

g−1f(gt) = g−1pr2∗pr
∗
1ggt = f(t) [10.77]

A composition is (f ◦ f ′, gg′).A collection of morphisms {(fi, gi) : T ′ → T}i∈I
is a covering in G-equivariant étale site G-Ét(S) if {T ′ → T}i∈I is an étale cov-

ering.There is a functor Y : G-Ét(S)
≃−→ Ét(BG), T/S → T/BG which defined

by a trivial G-torsor.Define OG−S sending every T/S to Γ(T,OT ) and we can
discuss OG−S-module.We have a functor Ét(S)→ G-Ét(S), idT 7→ (idT , idG),we
know from [10.77] an G-equivariant morphism is equivalent to a group ac-
tion,thus for a OG−S-module,the inverse functor gives us an OS-module with
morphisms f : T ′ → T behaves like a left group action.In this case

QCoh(BG) ∼= Qcoh(S) with left G-action [10.78]

10.4 Ind-coherent sheaves on AlStk

This starts at that F representing the fibered category p : F → C [9.19] is a
category of categories F (X), X ∈ C,which means adding with DG setting F is a
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(∞, 1)-category.And we base on [17],[18],[19],[20].Another view of quasi-coherent
sheaves on algebraic stack is following

Y ∈ AlStk

S ∈ AS DGCat

Kan

smooth
[10.79]

which is a left Kan extension for AlStk→ DGCat with AlStk category of alge-
braic stacks.Which gives us

QCohco(Y ) = ProQCoh(Y ) ≃Kan colim
S→Y

QCoh(S) [10.80]

And a DG category is a category (C,
⊕

nHomn(Al, Bl+n)) where C is a category
with DG objects.The graded hom set is additive with translation functor d :
X 7→ X[1],for f : Al → Bl+n a moprhism,dfl given by the diagram

Al flAl

Al+1 Bl+n+1

fl

d d

fl+1

[10.81]

for n ∈ Z,this is a ∞-category with dfl a 2-morphism.In this case

H.1(Al, Al+1) H.1(Bl+n, Bl+n+1)

Homn(Al, Bl+n) ≃ Homn(Al, Bl+n)[1]
f

[10.82]
where Homn(Al, Bl+n)[1] = Homn(Al[1], Bl+n[1]),for every f ,we have such tri-
angular.Notice that df : Homn(−,−)→ Homn+1(−,−),∈ Hom1(−,−) and this
DG category is triangulated [17].Now,we can view 0 ∈ Z as an zero object of
C,for every (g : Xn → Ym) ∈ C with f : m/n → Xn,we have f∗g : m/n → 0
which means every morphism admits a kernal and cokernal and it is exact if and
only if it is coexact,which means DG category is a stable (∞, 1)-category which
is triangulated by [10.81].Then,we can discuss t-structure on DG category.

Now,let Y be an algebraic stack and a morphism Ỹ → Y with (n+1)-folded
algebraic stack Ỹ .Its Čech nerve Ỹ • makes QCohco(Ỹ

•) become a cosimplicial
category.we can discuss descent theory of QCohco,for an étale covering (at least
fppf [9.74])Ỹ • → Y

QCohco({Ỹ • → Y })≥−∞ ≃ QCohco(Y )≥−∞ [10.83]

Because the colimit commutes with the tensor product let us have a functor ΩY

QCohco(Y1) QCohco(Y2)

QCoh(Y1) QCoh(Y2)

ΩY

f∗

ΩY

f∗

[10.84]
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which is well defined on the level of fibered category.Let Y is a quasi-compact
algebraic stack with an affine diagonal,for a smooth presentation X → Y with
X an algebraic space,we have Y = [X/G] with G is a finite group scheme.If
it is eventually connective and almost of finite type,the functor ΩY induces an
equivalence of category.By using this theorem,we have

QCohco(Y ) ≃ QCoh( colim
[X/G](Si)

[X/G](Si)) = colim
i

QCoh(Yi) [10.85]

Now let Y is the case in [10.85] the quasi-coherent sheaves are almost finitely
presented above [7.30].To see this,the extra condition is preserve of t-structure.In
the setting above [10.93],it suffices to show that for ≥ 0 case.For Y ≃ colim

i∈I
Yi

which let us see Zariski locally,and the transition map is fij : Yi → Yj .Pullback

along Yi → Y ,we have Ỹ •i = Ỹ • ×Y Yi.In this case,Ỹ m ≃ colim
i∈I

Ỹ mi ,and

fmij : Ỹ mi → Ỹ mj .Attaching with quasi-coherent sheaves,we have from [12.14]

QCohco(Y ) ≃ lim
i∈Iop

QCoh(Yi), QCohco(Ỹ
m) ≃ lim

i∈Iop
QCoh(Ỹ mi ) [10.86]

where we rewrite the colimit to limit with a flipping of order.With right adjoint
(fij)

R
∗ , (fij)

R
∗ .For ϕ : [m]→ [n],∈ ∆,and we have

gϕ : Ỹ n → Ỹ m, gϕi : Ỹ ni → Ỹ mi [10.87]

Also,cosideration of transition fij ,we have a commutative square,based on this

QCoh(Ỹ mi ) QCoh(Ỹ mj )

QCoh(Ỹ ni ) QCoh(Ỹ nj )

(fmij )∗

(gϕi )
∗ (gϕj )

∗

(fnij)∗

[10.88]

which is cartesian,which gives us a 2-isomorphism

(gϕi )
∗ ◦ (fmij )R∗ → (fnij)

R
∗ ◦ (g

ϕ
j )
∗ [10.89]

because of the uniqueness of global section from the global descent theory in
[9.74],as we work Zariski locally and the fppf cover preserves sheaves property
and its quasi-coherence.Thus,we focus on ≥ 0 and get a well-defined functor

∆× I → (QCoh≥0co → (Ỹ •• )), (m, i) 7→ QCoh≥0co (Ỹ mi )≥0 [10.90]

Also,we can rewrite the fibered category

QCoh≥0co → (Ỹ •• ) = lim
m∈∆

lim
i∈Iop

QCoh(Ỹ mi )≥0 [10.91]

Then,we have a diagram as Ỹ •i over Yi above [12.40]

QCoh≥0co → (Ỹ •• ) lim
m∈∆

lim
i∈Iop

QCoh(Ỹ mi )≥0

QCohco(Y )≥0 lim
i∈Iop

QCoh(Yi)
≥0

≃

≃

[10.92]
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by using the theorem above [10.93],the insi is t-exact the vertical arrow pre-
serves t-structure, and combine with [10.68] then we get the descent [10.83].
For Ci ∈ DGCat,let C = colimit

i
Ci with insi : Ci → C.Suppose each Ci has

a t-structure which gives an orientation and along C≥0i [−n],Ci is closed under
filtered colimits.Also,we assume Fi,j : Ci → Cj is t-exact.We let insi be right

t-exact which means insi(C
≤0
i ) ⊂ C≤0.For i ∈ I,the index set I is filtered,then

insi is t-exact.To verifies it,first a ∞-category Cat is presentable if and only if

(i) Cat ≃ P (C,R), C is a small ∞-category,R ∈ Map(PreStk(C))

(ii)P (C,R) is full subcategory of PreStk(C),generated by F

under colimit if C with R is a set of isomorphisms of ∞-gpds

[10.93]

where F ∈ PreStk and the freely generated under colimit see [7.20] that is a
filtered colimit.Now,let the Grothlex be the category of presentable stable ∞-
categories with right complete t-structure and t-exact colimit preserving func-
tors.For category of presentable stable ∞-categories prL

(C,C≤0) 7→ C≤0 ↪→ ∞-Catlax → prL [10.94]

with the (co)limit-preserving functors as the morphisms and the lax means
D(X) × D(Y ) = D(X × Y ).The prL has all small limits,forgetful functors
∞Cat→ prL and all small colimits prL →∞-Catop,there exist a H-T duality on
it see [14.68],C ⊗D ≃ HOMprL(C,D).Over this,we can have ComAlg(prL,⊗)
and ModC(pr

L) with objects are C-linear presentable ∞-categories.A spectrum
is an infinite sequence {Xi}i≥0 of pointed topological spaces with homotopy
equivalence Xi ≃ ΩXi+1.A spectrum is a spectrum object of ∞-category S of
pointed spaces and we denote the ∞-category of spectra as Sp(S) = Stab(S)
which is the stabilization.Now,back to [12.18],the functor of presentable ∞-
categories admits preserving of filtered colimits.Then we have C ≃ Stab(C≤0),and

Stab preserves colimits.So insi : Ci → C≤0 → C is t-exact from insi(C
≥0
i ) ⊂

C≥0.And for c ∈ C,we have an adjunction

c ≃ colimit
i∈I

insi ◦ insRi (c) [10.95]

insRi is the right adjoint of a right t-exact functor,which is left t-exact,which

means insRi (c) ∈ C≥0i for c ∈ C≥0,which means C≥0 is generated by colim-

its of essential images of C≥0i along insi.A t-structure should be viewed as an
orientation structure of an algebraic sequence.

Now,we can apply above to QCoh(S) ∈ DGCat has a t-structure.And for
affine Y -schemes S we have QCohco(Y )≤0 is generated by colimits of essential
images of QCoh(S)≤0,we then get a corollary A.2.7 in [20]

(a)The t-strucuture on QCohco(Y ) commutes with filtered colimits.

(b)∀S/Y , insi : QCoh(S)→ QCohco(Y ) is t-exact.
[10.96]
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For Vect = QCoh(Spec(k)),we can let ≤nDGAff denote for the category of
≤ n-folded affine schemes

≤nDGAff = (ComAlg(Vect≥−n,≤0))op [10.97]

We can see clearly from an affine scheme dgaff over k-module

dgaff≤n = Spec(k-mod) = (Spec(k-mod/(x≤n)))

= Spec(Ok-mod(Spec(k-mod/(x≤n))))op

= Spec(Ok-mod(Spec(k-mod≥−n,≤0)))op

[10.98]

Now,for the category of DGCat,we can glue by Stab below [12.18]

DGAff ≃ Stab((≤nDGAff)) = lim
n
(≤nDGAff) [10.99]

Let ≤nDGAffft ⊂ ≤nDGAff be the full subcategory of n-coconnective affine
schemes almost of finite type (quasi-compact and locally of finite type).By fil-
tered colimits see [7.20],we have ≤nDGAff ≃ Pro(≤nDGAffft).We also denote

DGAffaft = lim
n
(≤nDGAffft) ⊂ AffSch [10.100]

to be the full subcategory of affine schemes almost of finite type (of finite type
after each connective truncation).In this case,we can define

AlStkaft ≃ lim
n
(≤nAlStkft),

≤nPreStkft ≃ Funct((≤nDGAff)op,∞-Grpd))

[10.101]
Back to [10.79],we can have the following left Kan extension

S ∈ (≤nDGAff)op

S0 ∈ (≤nDGAffft)
op DGCat

≤nIndCoh!kan

≤nIndCoh

[10.102]

Similarly to [12.2],we have after taking limit in [12.49]

IndCoh!(S) = colim
S0→S

IndCoh(S0) [10.103]

Now,from [12.48] we find the underlying ring k-mod/(x≤n) ≃ k-mod/(x≤n+1).In
this case,we have a 2-isomorphism ≤nIndCoh! ≃≤n+1 IndCoh!,then by 2-Yoneda
lemma [9.25] we have a (∞,2)-groupoid

∞-Grpd(≤n+1DGAff) ≃ HOM(≤nDGAff/≤n+1DGAff,∞-Grpd)

∞-Grpd((<∞DGAff)op) ≃ HOM(colim
n

≤nDGAff,∞-Grpd)
[10.104]

for colim
n

≤nDGAff = lim
n
(≤nDGAff)op with [12.51],we have an embedding

Kan : (<∞DGAff)op ↪→ (PreStk)op [10.105]
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which can be used for right Kan extension Kan∗ with colimop

lim
S→Y ,S∈<∞DGAff

IndCoh!(S) = IndCoh!(Y ) [10.106]

The good thing is we shift the Y to category of Y -spaces AS/Y see [10.57].

p : IndCOH(∞,1) → DGAffft/(AlStkaft)
op, IndCOH(Y ) 7→ DGAffft/Y

[10.107]
where we combined with [12.52],which is a fibered category fibered ind-ly in
categories of coherent sheaves,quasi-coherent to coherent is from the settings
of finite type and ind-completion see above [7.30] and [9.108].Now,let Y be
an algebraic stack with a smooth presentation S → Y we have,for an étale
morphism S′ → S.From the global descent theory [12.39]

IndCoh(S′ ×S Y ) ≃ Coh(S′)×Coh(S) IndCoh(Y ) [10.108]

The ind means filtered colimits on dgAlg≥0 and filtered limits on DGAff≥0,the
reason why we use filtration is because the free collection [7.21] and [11.32] to
get good space [11.33].In this case,we can define monoidal structure

IndCoh!(S)× IndCoh!(S)→ IndCoh!(S × S)→ IndCoh!(S) [10.109]

which lifting the [12.1] to

ComAlg(DGCat) = DGCatSymMon

(PreStk)op DGCatIndCoh!

[10.110]

10.5 Representation of affine Lie algebra over Ran

Sec 4.1 in [18]. For a prestack Y ,we have a new prestack Ydr by [10.57] for
C = DGAffcl,red. through étale coverings which is a ∞-groupoid,by [9.25]

YdR = Y (S) ≃ HOMC(C/S,Y ) = DGAffcl,red./Y [10.111]

where cl and red denote for closed reduces schemes.We have

D-mod(Y ) = QCoh(Ydr) ≃ QCoh(DGAffcl,red./Y (S)) [10.112]

gives us way to define functor of points of the prestack.Also,

Ran(X) = Hom(DGAffcl,red., S)→ X ≃ DGAffcl,red./X [10.113]

where we used [9.7] and it is a prestack.Also,follows from [10.111]

Ran(X)dR = DGAffcl,red./Ran(X) ≃ Ran(X) [10.114]
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By the descent of affine morphisms [9.135],we are able to discuss global section
S ×X =

∐
x,with a étale point x : (clS)red → X,let x ∈ Γx be a set of points

S ×X \ Γx
et−→open S ×X [10.115]

this is a concrete way to shift Zariski glued schemes to étale glued schemes
and gives us a way to see around x by formal completion to formal scheme
along different topology.Similarly to [9.3],the Ran can be viewed as a sheaf
DGAffcl,red./X ∈ X̃et.And by using [9.3],we can easily generate a semi group∐

: Ran(X)× Ran(X)→ Ran(X), x1 × x2 7→ x1
∐

x2 [10.116]

From [9.82] and below [10.16],we have a weak contractibility of Ran space

QCoh(x)
≃−→
p∗

QCoh(Ran(X)) [10.117]

where p : Ran→ x is a projection.Now,for a quotient stack Y = [x/Ǧ],attaching
with YRan(X) = [Ran(X)/Ǧ],a S-point of it is a pair

YRan(X)(S) = (x, y) x : S → Ran(X), y : (Xx)dr ×Sdr
S → Y [10.118]

where Xx is the formal scheme.Let x = {xi}i∈I

YRan ×Ran(X) xi xi

YRan(X) Ran(X)

p∗ [10.119]

decompose YRan(X) and (Xx)dr.For smooth presentation f : Ran(X)→ YRan(X)

YRan(X) ×YRan(X)
YRan(X) Ran(x)×X Ran(x)

YRan(X) Ran(X)

f∗∆
∗
Ran/X

∆∗
Ran/X

f∗

[10.120]

the fiber product is equivalent to

YRan(X) ×YRan(X)
YRan(X)

≃−→ YRan(X) ×Ran(X) Ran(X)×X Ran(X) [10.121]

the reverse gives us a restriction for Xx ∈ Ran(X),we have p∗y∗(Xx) ∈ YRan(X)

p∗y∗∆
∗
Ran/X : YRan(X) ×YRan(X)

YRan(X) → YRan(X) [10.122]

where f∗ = p∗y∗.Based on this we have a natural tensor categorical structure

p∗y∗∆
∗
Ran/X : QCoh(YRan(X))⊗QCoh(YRan(X))→ QCoh(YRan(X)) [10.123]
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In this case,we can define the category of representation of Ǧ over Ran space.

Rep(Ǧ)Ran(X) = QCoh([Ran(X)/Ǧ]) [10.124]

which gives a good space to let representations living on.Guided by [10.44]

LocSysǦ Ran(X)

[Ran(X)/Ǧ] Ran(X)

[10.125]

where Ǧ is a group scheme over X.Where the stack of Ǧ-local systems is the
stack of principle Ǧ-bundle on Ran(X) in the classfying stack of Ǧ.Thus

LocSysǦ ×X Ran(X) [Ran(X)/Ǧ]

LocSysǦ

ev

p∗y∗∆
∗
Ran/X

[10.126]

where we used [10.122] and [10.123].Then,we have

LocSpec
Ǧ

: QCoh([Ran(X)/Ǧ]) ≃ Rep(Ǧ)Ran(X)
≃−→ QCoh(LocSysǦ) [10.127]

see [9.82],they generated same topos.
For a group scheme Gα over S ∈ Ran(X) with a index set Aop,we have

L+(G) = lim
α∈Aop

Gα ≃ AS/L+(G) [10.128]

The reason we do this because we work over étale site (at least fppf),we want to
glue group schemes and [12.73] by étale morphsms.For every Gα,we can discuss
quasi-coherent sheaves on the algebraic stack

Rep(Gα) = QCoh([pt/Gα]), Rep(L+(G))pre = lim
α∈Aop

Rep(Gα) [10.129]

see [10.69] and pt = T/S.By [12.28] we let f : S → XI ∈ Ran(X) with a group
scheme G/X,we have a the following diagram and let S ×X G = Gα0

S ×X G G×X XI G

S XI X
f

[10.130]

Which gives us S ×X G ≃ S ×XI (G×X XI).Also in the topos

Rep(G)→ Rep(G×X XI)→ Rep(S ×X G) [10.131]

131



Letting α0 be an initial object is equivalent to let XI be an initial object in
the localized site Ran(X),and the closed and reduced setting [12.24] makes
Rep(G×X XI) be compactly generated.Then

Rep(L+(G))pre = lim
I

Rep(S ×XI (G×X XI)) [10.132]

which is compactly generated.We see the topos on the stack is a stack [10.69]
which means [12.62] is a unretracted version of the stack of representations.

Rep(L+(G))preretracted ≃ QCoh([pt/L+(G)]) = Rep(L+(G)) [10.133]

11 Dynamics (Stackified) of the M-theory

Introduction

A complete physics theory not only constructs fields but also describes the
dynamics of these fields.Now,we have complete the first part for the M-theory
based on schemes (from regular functions),now for the dynamics,we need to
based on DG schemes (from differential equations) see the former sections about
Lagrangian,energy-momentum tensor etc..Similarly for schemes,we also need
generalized super settings for correctly describe our world.We will see that solv-
ing the dynamics of M-theory is equivalent to solving the Geometric Langlands
conjecture.We can find the basics in the former section and the section 12.1
about DG settings.

11.1 2-nonexistence and M-flow

Definition11.1 A DG generalized superscheme DGX is a generalized super-
scheme X = X0 ⊕X ∗1 with a Z2-graded DG OS -algebra given by [4.53],which is
a ring denoting as O•X = O•X0

⊕O•X∗
1
,such that OS → H0(O•S) is surjective we

used the notation for super simplicial cohomology group see below [8.8].Put it
back to [8.12],we have a DG-M-brane denoting as DGM after super T-fusion.

Compared to notation in [9.73],for DG schemes,we use QCoh(DGS) for de-
rived category Qcoh(DGS) with unbounded cohomologies,which is a DG cate-
gory.Now,for a category Coh(DGS),we have a DG category IndCoh(DGS) with
objects are functors F : I → Coh(DGS) see above [9.7] which is an ind-
completion.Because t-structure is compatible with F ,which means we have

ΥS : IndCoh(DGS)→ QCoh(DGS), ΥS ∈ DGCatcont [11.1]

which is a t-exact functor.Now,we can back to generalized super algebraifold A

A-Mod ∼= IndCohrep(DGX )→ QCohrep(DGX )→ ProCohrep(DGX ) [11.2]

see below [8.20] and Pro means it is from pro-completion.First,we perform a
Y-duality which makes representable sheaves to schemes in a big étale site

Y : ProCohrep(DGX )→ EtProCoh(DGX rep) ⊂ ETSchSupGen
eff (M rep

Λ ) [11.3]
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Performing Y-duality on two sides and A-Mod becomes a fibered category

p : IndCohrep(DGX ) ∨ ProCohrep(DGX )
→ EtProCoh(DGX rep) ∨ EtIndCoh(DGX rep)

[11.4]

Because U-duality is a generalized super relative 2-property

IndCohrep(DGM ) ProCohrep(DGM )

EtProCoh(DGM rep) EtIndCoh(DGM rep)

∨

∨ U ∨

∨

[11.5]

where we performed super T-fusion and gives the meaning of overlap we men-
tioned below [9.146].Now,we are facing a subtile thing that is the U-dual parts
originally behave like [10.55] that only connection should be the U-duality,but
now [11.5] means they are twisted with each other,the explanation is following.

Definition11.2 The 2-nonexistence⃝ is the absolute nonexistence based on
existing of global nonexistence,with total number of generalized super relative
2-properties vanishes.Which is from vanishing of existence of nonexistence

(FQ⊠Q∗)rep ⊠ (FQ⊠Q∗) + F̂ = 0− 0 = |Max⃝ [11.6]

and it indicates the maximal length of chain of vanishing relative properties.If

(FQ⊠Q∗)rep ⊠ (FQ⊠Q∗) = (FQrep⊠Q∗rep)⊠ (FQ⊠Q∗) [11.7]

In this case,we get an overlapping counting field

F̂ = (FQrep⊠Q∗)⊠ (FQ⊠Q∗rep) [11.8]

Theorem11.3 The M-theory indeed have dynamics but not canceling by U-
fusion,the existence of the dynamics of the M-theory is to cancel the existence of
the global nonexistence to give a nonexistence on the level of generalized super
relative 2-property, which is the 2-nonexistence ⃝.

In this case,studying the dynamics of the M-theory is equivalent to study
the overlapping of two U-dual pre M-theories.

Definition11.4 An A-gerbe over DG-ETSchSupGen
eff (M−Λ) is

p : Tortwist
grop.(A)→ C = DG-ETSchSupGen

eff (M−Λ) [11.9]

in the stack TorA following from [9.92] with grop. denoting for groupoid and
now A is a sheaf of groups,which is a substack with an isomorphism see [9.51].

lx : A|C/p(x) → Autx, ∀x ∈ Tortwist
grop.(A) [11.10]

such that it satisfies the µ-gerbe axioms 12.2.2 in [12] and extra constraints

(i)A is self U-dual ⇔ A ∼= Grep ∨G (ii)A-gerbe ∼= Grep ∨G-gerbe
(iii)A-gerbe is a subalgebraic stack,⊂Mpre.

cons. in the M-theory

[11.11]
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the pre M-theory is algebraic by [10.24] with diagonal morphism given by
[10.25].Along this diagonal morphism,we have spontaneous Z2 breaking [8.28]

A ∼= M rep ∨⃝M /G⊠ Ǧ G ≡ Grep ∨G/Z2, Ǧ ≡ G ∨Grep/Z2 [11.12]

where these are Langlands dual to each other in [10.56].Which means a A-gerbe
is equivalent to a G⊠ Ǧ-gerbe.By [10.43],we have

G⊠ Ǧ-gerbe ∼= G-gerbe⊠ Ǧ-gerbe ∼= Buntwisted
G ⊠ Ǧ-gerbe [11.13]

where Buntwisted
G is stack of twisted principle G-bundles [19] guided by the sheaf

of properties on the M-brane [9.15],we have an isomorphism

Buntwisted
G ⊠ Ǧ-gerbe ∼= D-mod 1

2
(BunG) [11.14]

where the right hand side is a DG category of D-modules with D formed by
super T-fusing all generalized super derivations.

Definition11.5 The dynamics of the M-theory is called M-flow

M-flow ≡ D≤11-mod 1
2
(BunG)→ DGETSchSupGen,cons.

eff (M rep
Λ ∨M−Λ) [11.15]

which is a well-defined stack retracted from the non-perturbative (not well-
defined) flow approaching D0-brane [6.22] and it describes the evolution of gen-
eralized super relative 2-properties compared to [9.15],that is

· · · M [M /G′] [M /(G′G′′)] · ··

M rep ∨[M/G′] M M rep ∨⃝M M rep M ′rep · ··

M rep ∨[M/G′G′′] M · · ·

[11.16]
with the global group scheme G in [11.15] given by

G ∼=
∏
i

M rep ∨[M/Gi] M [11.17]

Recall the Lie groupoid for string-Space [9.39],the half-twist in [11.15] is because
the stack BunG is retracted along normalized determinant line bundle

detBunG : (PG)
op → (det(Γ(M , gPG))⊗ det(Γ(X, gP 0

G
))⊗−1) [11.18]

where P 0
G is a trivial bundle and gPG is sheaf of Lie algebras see [7.4].From the

stack generalized by U-duality see [8.54],we have from [11.8]

Autx
≃−→ Isom(x,Ux) →# F̂ , x ∈ TorA [11.19]
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over the overlap counting field.For Ĝ,we have a functor following the diagram

Rep(Ǧ) QCoh(LSǦ)

DGGr(U(ΓgP(Tδ)−1Ǧ)GSTen

LocSpec

Ǧ

[11.20]

where we used [7.20] and [8.48],the bottom is a fibered category with fibers are
the corresponding tensor categories,over the general site [9.149].For an element
Gr(U) in it,we have Hom(Gr(U),−) ∼=

⊕
nHomfilteredn(U,−) which is compat-

ible with filtered colimits,which means Gr(U) is a compact object.For seeing
further and combing with physics,some information we have not captured.

11.2 DG Lie (pre)scheme and Quantum collapse

Recall theorem3.3,we know the only type of strings is that of étale closed
strings corresponding to the relative properties,also vibration of closed strings
gives us a theory of gravity.For the purpose to study the dynamics of the M-
theory,we need clearly discuss the matter and quantum effect under the view of
algebraic geometry.And our start point is to define an adequate space which let
the behaviors of matters living on them.

Definition12.1 A DG Lie generalized super(pre)scheme on 2-d world-sheet
under D = 10 dimensional spacetime is a spectrum of affine Lie algebra

Spec(g̃ = g⊗ C[t, t−1])≤10, Dn≤10 : O∆
g̃ → O∆

g̃ [11.21]

with generalized super grading and bounded cohomologies n ≤ 10,which makes
the structure sheaf become D≤10-module O•g̃.So called pre because the algebra
of quantum fields is not commutative,by [11.32] it loses representability because
of the automorphism,we can define it as [11.21] because we will use free collec-
tion [7.21] in [11.40] and we will define it more correctly by using adic space
below [13.39].And the bold t is for representing the coordinates we need (not
imperative).A field is a function f ∈ O•g̃.The nontrivial behaviors are given by
gluing axiom

f(O•g̃(Ui))|f(Ui)∩f(Uj) ∼= f(O•g̃(Uj))|f(Ui)∩f(Uj) [11.21]

where we used étale covering {f : Ui → U}i∈I .By uncertainty principle

f(O•g̃(Uf ))×= f(O•g̃(Ug)) ∼=
∏
j

f(O•g̃(Uj))/zj ∼=
∏
zj

f(O•g̃)(Uzj ) [11.22]

where z ∈ p ⊂ V (1/fg),which is an algebraic formulation of OPE (11.5.1) of
current algebra in [3].Now,we have two problems in [11.22],the first is this fields
are not clearly described as quantum fields,the second is the gluing property of
sheaves breaks or is modified.
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Definition12.2 An étale sheaf of wavefunctions of string theory is

O•qutg̃ : (DG,LieSch/Spec(g̃ = g⊗ C[t, t−1])≤D)op → (A [ϕb]) [11.23]

where we used the state-operator mapping in CFT by path integral 2.74 in [4].

(fw : T−∞ →DG,Lie X) 7→
∫ ϕb=1

ϕ′
b=0

[Dϕ′b][Dϕi]fz :ϕ′
b→ϕbe

−S[ϕi]rL0+L̄0A(0) [11.24]

where we performed a conformal transformation z = e−iw,A(0) is a functional
on T−∞.Geometrically,summing over all possible field configurations is

O•qutg̃ (fw) ∼= hA(0) → hA [ϕb] [11.25]

Suprisingly,we find it is consistent with the definition of algebraifold [8.15].

hA(0) → hA [ϕb] ∈ hA(0) → F → hA [ϕb] [11.26]

which means the setting of algebraifold makes it naturally of quantum.
Definition12.3 An étale quantum sheaf of wavefunctions is

BettiO•qutg̃ : (T →X ) 7→ A [ϕb]0 ⊕A [ϕb]
∗
1 7→ dim(Ȟ

D−1
(T/X ,P)) [11.27]

see [9.17] and X =DG,Lie X ,which is a Betti sheaf of D≤10-modules.We want
to let the cohomology to detect the number of D − 1 dimensional holes as the
topological information.Now,we have a tool to study the gluing problem.The sin-
gular point is given by =∈∼=,in this contacting point the variation of momentum
should be enough larger to form a generalized super black hole

O•qutg̃ (Ui)×B̃H
O•qutg̃ (Uj) O•qutg̃ (Uj)

O•qutg̃ (Ui) B̃H

[11.28]

for an étale covering {Ui →DG,Lie X} with the descent data identity morphism
σ : pr∗1Ei = pr∗2Ej .Also we have inequality of topological information

BettiO•qutg̃ (Ui ×f(Ui)∩f(Uj) Uj) =
Betti O•qutg̃ (Ui) +

Betti O•qutg̃ (Uj) + 1 [11.29]

which means we gain topological information during the contaction or a superpo-
sition state.Also,[11.28] follows from that we are in region of relative properties
and this relative property is given by = is heavily strong than ∼=,which means
the first type of étale closed strings in [8.22] dominates the behaviors,that is
ordinary closed strings (theory of gravity is dominant).Now,we need back to
descent theory [9.70],global descent should gives

O•qutg̃ ({Ui →DG,Lie X}) ≃−→ O•qutg̃ (DG,LieX ), (Ei, σij) 7→ f∗Ei [11.30]
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which is information-preserving,the phyics behavour breaks the global descent
as the descent data σij is not effect before collapse to a certain state.

Definition12.4 A quantum collapse is a process that the local descent the-
ory becomes to a global descent theory along an étale coverings

O•qutg̃ ({Ui →DG,Lie X})

→ O•qutg̃ ({Ui →DG,Lie X}) \ {({Ei}, {=})} ∼= O•qutg̃ (DG,LieX )
[11.31]

for the quantum sheaf.An interesting thing is for math,the objects we exclude
are that of automorphisms,and the isomorphisms give good property for descent
theory but these are trivial behaviors,which gives us a motivation to focus on au-
tomorphism [11.10] meaning there are contactions.See the problem for construct-
ing representable functor of the second paragraph in P69 in [12],physics gives
a really concrete explanation that why automorphisms prevent us to achieve
representable (unapproachable to global descent).

Corollary12.5 A covering of a scheme is an effective descent morphism for
F of algebra if and only if the free collection [7.21] of every ideal in the algebra
is the ideal itself.Combing [11.19],we have a connection that we need to know

Contaction Not effect descent

Self U-dual

B̃H

gr.dominance Aut
[11.32]

also we have a diagram for our familiar copy in [11.6]

Free Effective descent

Unself U-dual

regular

qut.dominance Isom
[11.33]

[11.33] is for getting good space (i.e.algebraic space,stack etc.) and [11.32] should
correlate with the objects (non-trivial behaviors) living on the good space.

11.3 F-duality and the Geometric Langlands

In this subsection,we try to combine the math(GLC) with the physics (M-
theory).From [11.32] and [11.33],we find a duality between self U-dual and unself
U-dual copies gives us a duality of gravity theory and quantum theory,which
gives us motivation to define an unified field.

Definition12.5 The F-duality over the 2-nonexistence ⃝ is a duality be-
tween existence and nonexistence,denoting as F see [11.7] and [11.8]

F : (FQrep⊠Q∗rep)⊠ (FQ⊠Q∗)↔ (FQrep⊠Q∗)⊠ (FQ⊠Q∗rep) [11.34]

Which is a duality on the M-flow over ⃝.In summary,we have

⃝ ⇐ F ⇐ U ⇐ T×M S [11.35]
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where we used [8.46].Notice the direction of the arrow similarly to that of
[9.97],which is for canceling the property of right-evolution,we want to call this
direction the left-evolution.

For the understanding of [11.33],we know a consistent string-Space [9.92],a
pre M-theory [9.98] and the M-theory [10.22] are just a good living space for
nontrivial behaviors which exists by F-duality.In this case,we have

M-flow (Mpre.rep.
cons. ∨Mpre.

cons.)-flow

M Mpre.rep.
cons. ∨Mpre.

cons.

F

P(U)−1

[11.36]

And this should be Tδ-breaking to an (10P, 1)-stack S-flow

(Srepcons. ∨ Scons.)-flow10P →DG,Lie (Srepcons. ∨ Scons.)10P [11.37]

over the DG Lie algebraic stack based on Srepcons. ∨ Scons. with Dn≤10 with 10P-
morphisms defined by morphisms of relative properties [9.130],and it is non-
perturbative because we are on level of relative properties in theorem9.5 below
[9.124].Naturally,it is presentable stable and we focus on the seen part

Srepcons. ∨ Scons. ≃ (pts,Scons.) [11.38]

follows from that the unseen part of universe is a point (unseen) observed in
seen part.Which makes [11.37] to a stack of pointed spaces.By [9.92] and [11.21]

DG,LieScons. :DG,Lie (Φ⊕ Ψ̃∗)→Lie DGETSchSupGen(M ) [11.39]

And we use [7.20] and guided by [11.31] that we need to do free collection

DG,Lie(Φ⊕ Ψ̃∗) ≃DG,Lie Gr(U(ΓO•qutg̃ ))retractedGSTen [11.40]

retracting [9.104] through admitting of preservation of relative property.Follows
from the diagram above [4.48],that means the affine Lie algebra descents to a
group scheme with R→ 0 is for simulating (0, ξ, ξ),G here is for [4.46]

gD : (g̃, (1/iϵ)δQA )→ G(x1, ..., x10)R→0 ⊕G(θ1, ..., θ10)R→∞ → Gg̃0
⊕Gg̃∗

1

[11.41]
where we used [3.42],[4.47] and [7.4] for Q,A ∈ g̃.We also used the the existence
of Majorana-Weyl condition in superstring theory below [5.15].

Then,we get a generalized super Lie group scheme from all such pushforward

Gg̃0
⊕ Gg̃∗

1
≃ (gD∗(g̃, (1/iϵ)δQA )) [11.42]

Then,we can back to [11.20],and use [11.12] we get

DGGr(U(ΓgP(Tδ)−1Ǧ)
retracted
GSTen ≃DG,Lie (Φ⊕ Ψ̃∗)rep ∨DG,Lie (Φ⊕ Ψ̃∗) [11.43]
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with the U-duality twists to F-duality F : G ∨ Ǧ↔ Ǧ ∨G in [11.12]

Ǧ ∨G ≃ P(Tδ) [(gD∗(g̃, (1/iϵ)δQA ))rep ∨ (gD∗(g̃, (1/iϵ)δQA ))] [11.44]

Also,we have by using [11.42] from [11.20]

Rep(Ǧ) ∨ Rep(G) ≃ P(Tδ)DGGr(U(Γg[(Gg̃0
⊕Gg̃∗

1
)rep∨(Gg̃0

⊕Gg̃∗
1
)])

retracted
GSTen [11.45]

In this case,we can combine [11.39],[11.43] and [11.45] together

DG,Lie(Srepcons. ∨ Scons.) :P(T)−1(Rep(Ǧ) ∨ Rep(G))

→Lie DGETSchSupGen
eff.cons.(M

rep ∨M )
[11.46]

which lets non-perturbative theory living on as the double counting of the rel-
ative properties below [9.124].An interesting thing is if we let 1.2.2 in [19].

(P(U)Rep(G))∨ ≃ Locspec
Ǧ

(−), Rep(Ǧ) = QCoh([M rep/Ǧ]) [11.47]

recall the self duality gives a fusion-like when we calculate in [8.34]

P(U)(Rep(Ǧ) ∨ Rep(G)) ≃ (P(U)Rep(G)∨)Rep(Ǧ) [11.48]

see [11.66] and [12.38].Pullback along [10.25],we get

M ≃ Locspec
Ǧ,Ran

P(Tδ)DG,Lie(Srepcons. ∨ Scons.)10P

≃ QCoh(LocSysǦ)
≤11 →Lie DGETSchSupGen,cons.

eff (M rep ∨M )
[11.49]

Combining with [11.15] and the F-duality [11.36],we get

D≤11-mod 1
2
(BunG) QCoh(LocSysǦ)

≤11

LieDGSchSupGen
eff,cons.(M

rep ∨M )

F

[11.50]
where compared to that below [11.46],the generalized super algebraic stack M
which is a (11P

2

, 1)-stack with well defined (perturbative) theory [11.15] living
on as the generalized relative 2-properties [9.148],from theorem9.8.

In this case,we see the geometric langlands correspondence is from F-duality
which is a twisted form of U-duality between M-theory and its dynamics

GLC(M↔M-flow) ↪→ F [11.51]

Combining [11.32] and [11.33] with [11.50],the LHS (geometric n-stack) which
is algebraic with (non)representability of localities which are nontrivial behav-
iors in QFT (embedding gravity effect i.e.black hole) and the RHS (geometric
n-stack) which is algebraic with representability of spaces themselves which
are in GR (spreading quantum effects),we see the QFT includes gravity ef-
fect and GR include quantum effect and this is explained by [11.85].Thus,the
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F-duality is a duality between non-representability and representability,recall
[9.107],it should be understood as a twisted form of U-duality.Now,back to GLC
[11.50],the LHS collects all information of automorphisms from self U-duality
and the RHS collects all information of pure isomorphisms (∼= \ =).Also,we
need to notice that the truncation ≤ 11 is for the degree of geometric n-stack
see [12.81] and [12.101],that is for the spacetime dimensions.

11.4 Ran space and the Unified field! theory

This subsection is for compensation of details in the above discussion.For a
D-dimensional generalized superscheme X = X0 ⊕X ∗1 ,we have

Ran(X ) = Hom(Clabiretractedmir , S)→ X ≃ Clabiretractedmir /X [11.52]

from [10.113],localized from mirror pairs of retracted Calabi-Yau manifolds that
is Clabiretractedmir ≃ Ret∗Clabimir see [12.19].A point x ∈ Ran(X ) is a closed
reduced étale X -scheme M ∈ Clabiretractedmir .By formal completion

Xx ≃ Xf∗M , (f :M → X ) ∈ Ran(X ) [11.53]

is a formal glued scheme with étale topology given by [10.115].By [10.117]

p : Ran(X )→ x [11.54]

which is a projection because they generate same topos.In this case,we can have

Ran(X ) ≃
∐
Xx × x ≃

∐
x

Xx × Cla ≃ EtSchSupGen
eff,Cla /X [11.55]

where Cla is the global mirror pair by the global descent theory.Which makes
the Ran space of X a stack over the localized site.The groupoid is from

Ran(X )retracted ≃ (1-propertiesP )Ran(X ) [11.56]

by theorem2.4 such that for P ∈ (1-properties)Ran(X ) it follows the diagram

x1 x2

P1 P2

f

P1×P2

f∗(P1 × P2) ≃M1 ×sM2 ↪→ X0 ×s X ∗1 [11.57]

with isomorphism replaced by admit of preservation of relative property.A point
on Ran(X ) is a 4-dimensional spacetime.Also,if we view Ǧ as a Ǧ-torsor

Ǧ Spec((FQrep⊠Q∗)⊠ (FQ⊠Q∗rep))

[M rep/Ǧ] BǦ×BǦ

∆∗
BǦ

(x×x) x×x

∆BǦ

[11.58]
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where we used [11.8],by the overlap counting field of generalized super relative
2-properties,which should be equivalent to [11.44].And for [11.39]

Rep(Gg̃0
⊕ Gg̃∗

1
) LieDGETSchSupGen

eff (M )

Φ⊕ Ψ̃∗ ETSchSupGen
eff (M )

Lie∗ Lie∗ [11.59]

that follows this diagram,and the stack of representation is isomorphic to

DG,Lie(Φ⊕Ψ̃∗) = (Φ⊕Ψ̃∗)×ETSchSupGen
eff (M ),Lie∗

LieDGETSchSupGen
eff (M ) [11.60]

And the Lie group-Lie algebra correspondence,it should be trivial to distinguish
representation of Lie group and that of Lie algebra on tensor level.

Rep(Gg̃0
⊕ Gg̃∗

1
) ≃ Rep(ΓO•qutg̃ ) [11.61]

Now,we back to Ran space and from [11.49],we have

LocSpec
Ǧ,Ran

Rep(Ǧ) = LocSpec
Ǧ

Rep(Ǧ)Ran = LocSpec
Ǧ

QCoh([Ran(M rep)/Ǧ])

[11.62]
From [11.38],like what we use Spec for schemes,we have by colimits above [10.95]

Stab(Srepcons. ∨ Scons.) ≃ S♡cons. [11.63]

for presentable stable ∞-category.Also by Tδ-breaking,

QCoh([Ran(M rep)/Ǧ]) ≃ QCoh([EtSchSupGen
eff,Cla \M rep/Ǧ]) [11.64]

which is a double quotient.[11.62] means the heart of t-structure.To see this
clearly,we can view U-duality gives us two DG sequences with rep part ≤ 0 and
U-dual copy for ≥ 0,and the existence of F-duality makes them has intersec-
tions.This based on the way we define the geometry [8.11] and above [8.22],which
makes our universe triangulated.And we can naturally glue the self U-dual part
into heart of t-structure,which follows that

(M rep
Λ ∨M−Λ)

unselfU ≃M≤0 ⊕M≥0 M♡

Spec((FQrep⊠Q∗rep)⊠ (FQ⊠Q∗)) Spec((FQrep⊠Q∗)⊠ (FQ⊠Q∗rep))

F

F

[11.65]
which gives us an understanding of the spontaneously Z2 breaking [11.12]

Mpre.rep.
cons. ∨Mpre.

cons. = [M rep ∨M /Grep ∨G]
≃ [(M≤0 ⊕M≥0) ∨M♡/Grep ∨G]
= [M♡/Ǧ] ∨⃝ [M≤0 ⊕M≥0/G]

[11.66]
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where we used [10.55] with M rep ∨⃝ M ≃ M♡ ∨⃝ (M≤0 ⊕M≥0).Which is
consistent with [11.17] if and only if∏

i

[M /Gi] = Mpre.
cons. ≃ Spec(F ), ∨Spec(F ) = ×Spec(F ) [11.66]

where we used F for unself U-dual field in [11.64].Which indeed gives us the
experiment-free M-theory from [10.22]

M→Mpre.rep.
cons. ∨Mpre.

cons. ≃ Spec(F̂ ) ∨⃝ Spec(F ), M ≃ ⃝ [11.67]

Notice that the ⃝ is the only ideal and the left evolution is guaranteed

Spec(⃝) =⃝, ⃝⇐ F̂ ∨⃝ F [11.68]

where We left with F-duality for verifying their are information in this absolute
nonexistence which make it able to generate our universe by left-evolution [11.35]

M-flow ≃ ⃝-flow =⃝⇐ F [11.69]

Now,back to [11.63],the double quotient is equivalent to

[EtSchSupGen
eff,Cla \M rep/Ǧ]

≃ [EtSchSupGen
eff,Cla (X0 ⊕X ∗1 )♡/P(T)−1Ǧ)/(M♡/Ǧ)]

≃ Ran(Stab(Srepcons. ∨ Scons.))/M
pre.rep.
cons. ≃ Ran(S♡cons.)/M

pre.rep.
cons.

[11.70]

we can get further information by [10.33],we have

Ǧ×Spec(F̂ ) Ran(X0 ⊕X ∗1 )♡ Ran(X0 ⊕X ∗1 )♡ Ran(S♡cons.)

Ǧ Spec(F̂ ) Mpre.rep.
cons.

P(T) P(T)

[11.71]
the right cartesian diagram is from [10.25],where (X̃ ∨ X )♡ ∈ Spec(F̂ ) and
the P(T)−1Ǧ in [11.70] is the fiber product of the left cartesian diagram in
[11.71].Also from [11.70] we get the diagram

Ǧ×Spec(F̂ ) Ran(X0 ⊕X ∗1 )♡ ×Ran(X0⊕X∗
1 )♡ Ran(S♡cons.) Ran(S♡cons.)

Ǧ×Spec(F̂ ) Ran(X0 ⊕X ∗1 )♡ Ran(X0 ⊕X ∗1 )♡

Ǧ×Spec(F̂ ) M
pre.rep.
cons. Mpre.rep.

cons.

[11.72]
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the bottom line is from [11.71] with

Ran(X0 ⊕X ∗1 )♡ ≃ Spec(F̂ )×Mpre.rep.
cons.

Ran(S♡cons.) [11.73]

Also,[11.65] shrinks the previous U-breaking diagram [11.36]

M-flow Mpre.
cons.-flow ≃Mpre.rep.

cons. Ran(S♡cons.)

M Mpre.
cons. Ran(Srepcons. ×Spec(F ) Scons.)

F QG

P(U)−1 P(T)−1

[11.74]
Now,we need to open the settings of DG Lie by [11.46],[11.47] and [11.58]

Mpre.
cons.-flow ≃Mpre.rep.

cons.Ran. Ran(S♡cons.)

QCoh(Mpre.rep.
cons.Ran.)

DG,LieRan(Srepcons. ×Spec(F ) Scons.)

QG

P(T)−1

P(T)−1

[11.75]

From [11.72],we get a relative property of Ran(S♡cons.)

(Ǧ×Spec(F̂ ) M
pre.rep.
cons. )×Mpre.rep.

cons.
Ran(S♡cons.)→ Ran(S♡cons.) [11.76]

which inspires us to define an algebraic space see below [9.116],[9.123]

Ran(S♡cons.)/(Ǧ×Spec(F̂ ) M
pre.rep.
cons. ) : Ran(S♡cons.)⇐ → QCoh(Mpre.rep.

cons.Ran.)

[11.76]
where we changed op to a left evolution.To see this we want use a trick

Rep(G) ∨
(
[M♡/(−)]×Spec(F ) Rep(−)

)
◦
(
Ǧ×Spec(F̂ ) M

pre.rep.
cons.

)
[11.77]

where we used [11.47],and equipped with U-fusion,we get

(P(U)Rep(G) ∨Mpre.
cons.) ∨⃝Mpre.rep.

cons. ≃M ∨⃝Mpre.rep.
cons. [11.78]

where we used [11.67],then we use the GLC correspondence(
GLC ∨⃝ id

)
◦
(
M ∨⃝Mpre.rep.

cons.

)
≃M-flow ∨⃝Mpre.rep.

cons. [11.79]

Then,we want to use U-breaking(
P(U) ∨Spec(F̂ ) id

)
◦
(
M-flow ∨⃝Mpre.rep.

cons.

)
≃Mpre.rep.

cons. ∨Spec(F̂ ) M
pre.rep.
cons.

[11.80]
And by the global descent theory,this is equivalent to Mpre.rep.

cons. .Then

Ran(S♡cons.)/(Ǧ×Spec(F̂ ) M
pre.rep.
cons. )

QG−−→ [EtSchSupGen
eff,Cla \M rep/Ǧ] [11.81]
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where we used [11.70] from combining [11.77] to [11.80]

QG =
(
P(U) ∨Spec(F̂ ) id

)
◦(

GLC ∨⃝ id
)
◦
(
P(U)Rep(G) ∨

(
[M♡/(−)]×Spec(F ) Rep(−)

)) [11.82]

By this we have a stack generalized by F-duality [8.53](
Mpre.rep.

cons.Ran. ∨Mpre.
cons.Ran. →M

)
≃ QG [11.83]

By using the 2-Yoneda lemma [9.25],it is equivalent to a (11P , 2)-stack

HOM(EtSchSupGen
eff,Cla /Mpre.rep.

cons.Ran.,M
pre.
cons.Ran.) ≃Mpre.

cons.Ran.(M
pre.rep.
cons.Ran.)

[11.84]
which is an unification of quantum and gravity on the level of relative property
see [11.37],that is non-perturbative.To see clearly,from [11.32] and [11.33]

F ≃ M-flow G ∨ Ĝ M

qut.dominance

gerbe

Rep

gr.dominance

≃ P(U)Mpre.
cons.Ran.(M

pre.rep.
cons.Ran.)

[11.85]
where,we combined with [11.12] and [11.44].

Definition12.6 The Unified field! theory UFT is the diagram [11.85]

representing the generalized super algebraic (11P
2

, 2)-stack.The ! denotes for
the underlying number counting field [11.67].

Definition12.7 We stackified the M-theory and its dynamics and regard
them as algebraic objects.In this case,we want a overall terminology to denote
this theory studding the properties and connections of these objects as

the M!-theory [11.86]

which is a field! theory based on super algebraic generalized geometry.
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12 Modern super algebraic geometry III

12.1 Weak homotopy equivalence,D-brane and Possibility

Now,we want to give an detailed expatiation of the retract [9.104] and the
replacement [9.105].An observation is that,h is a homotopy between FU and FV

U ∪ V F (U)× F (V )

FU

FV

h [12.1]

if and only if there exist F |U∩V = FU |U∩V ∼= FV |U∩V

F (U)|U∩V F (V )|U∩V

FU FV

≃

F |U∩V

[12.2]

with (FU → FV )|U∩V = F |U∩V (U → V ) =∼= which means the overlap |U∩V
gives us a weak equivalence relation.The relative properties living in ordinary
fibered category and behave like (unstable) weak equivalence relations,P =
U ×U∩V V here,over étale site,from descent theory [9.53] relative properties
(descent data) can be localized to be represented by an overlap but it is un-
stable and the retract [9.104] push things to high energy level and things are
highly unified relatively and relative properties are stable.

Definition13.1 A retract is a forgetful functor let us focus on structure of
relative properties and forget the remaining structures,denote as Ret

X P P 2 · ··

Y R R2 · ··

PR , Ret : C →∞-Grpd [12.3]

with PR a relative 2-properties,sending relative n-properties to n-isomophism

Ret(X
P−−−−→
≃weak

Y ) = P : Ret(X)→ Ret(Y ) ≃∼=strong∈ ∞-Grpd [12.4]

We also need to find a space that the relative properties truly lives in (behaves
as ∼=),if we donot do super T-fusion,there is no cut off of relative 2-property
[11.6],in the LEE of M-theory,relative properties lives in an 10-Grpd,denote as

PRet(→)≤10,

P⊕
n+1

Homn(P
n, Rn)), n ≤ 10,∈ Z+ [12.5]

As the descent of string-Spaces to a pre M-theory [9.93],we can use [7.25] that
D = 10 dimensional theory is shrinked to a point (be a solution in D=11) in
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the extra dimension thus,in M-theory the highest degree of relative property is
2.And we can regard a scheme or algebraic space as a relative 0-property.In the
∞-groupoid every n-isomorphism is a relative n-property.And for a topos T on
an étale site,we have for P a relative property in Ret(→)≤10P

F ∈ HOM(T,PRet(→)≤10), F |P is a weak homotopy equivalence [12.6]

And combing the [8.24],we can further define D-branes in this derived category.
Definition13.2 A Dn-brane is a weak homotopy equivalence which is the

global section of an étale sheaf FPn localized by a generalized super rela-
tive n-property Pn ∈ PRet(→)≤10GenSup and coherent sheaf F ∈ T on the site
[9.149].Thus we consider the derived algebraic geometry for studying LEE of
theM!-theory,we based on [21].Loosely,a D1-brane is an étale morphism and
D2-brane is a continuously extension of an étale morphism etc..

A DG (differential graded) Z2-graded (generalized super) algebra is

A0• ⊕A∗1• = ({A0i ⊕A∗1i}i∈Z, ∂), ∂ : Ai → Ai−1, ∂
2 = 0 [12.7]

which is a family of simplicial NC-modules with the conditions in [7.4].And we

denote dgAlg≥0k the category of commutative DG k-algebras for n ∈ Z+ and

denote the DGAff≥0 as that of affine DG schemes.

Spec(A0• ⊕A∗1•) ≃ Spec(A0•)⊕ Spec(A∗1•) [12.8]

with similicial super T-duality Tδ
• : A0• ⊕ A∗1• → A∗1• ⊕ A0•.Notive that the

A00 ⊕ A10 is the final object of the chain complex and by left evolution,we get
cochain complex on the scheme.And a generalized derived superscheme

(π0(X0• ⊕X ∗1•) ⊆ X 0,H•(OX•
)), π0X • = Spec(H0(OX•

)) [12.9]

where we denote the generalized DG superscheme as X • = X0• ⊕ X ∗1•,and we
used the notation below [8.8].the structure sheaf Hi(OX•

) is a H0(OX•
)-module

which is quasi-coherent by the setting.Which means we can perform [10.83]

H0(OX•(U))⊗H0(OX• (V )) Hi(OX•(V )) ∼= Hi(OX•(U)) [12.10]

for an étale cover U → V ∈ π0X•,by setting ≤ 10 X≤10• gives us the full 10
dimensional space time constructing by Hi(OX•

) with left evolution

D0-brane ∈H0(OX•
-mod)

∂←− sc, scweak ∈H1(OX•
-mod) · ·· [12.11]

where we used notation below [8.9] and theorem3.3 below [8.22] before the Tδ
1-

fusion,scweak behaves like open superstrings induced by a weak homotopy equiva-
lence.Which means in ths string-Space we have a closed-like superstring induced
by a ordinary openstring with endpoints attaching with a D-string.After the
fusion,we only have one type of closed string corresponding to the étale equiva-
lence relations called étale closed string recall the F-duality is about self-duality
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[11.34],we can see this by

Sself : [sc] (Sunself : [scweak](s
o ↔ D-string)

scet
P(Tδ)

P(T)−1P(U)−1F

P(Tδ)

[12.12]

which induces one duality fused version of [12.11],we should view this chain with
the étale closed string generates the unified field! theory [11.85].

Now,we want to discuss the quasi-coherent complex,An A•-module M• is a
chain complexM• with A•⊗kM• →M•.For a derived scheme (π0X•, H•(OX•))
with structure sheaf H0(OX•) = Oπ0X• and a complex of presheaves for i >
0 by definition [12.9],a simplicial sheaf OX• -module behaving like [12.10] is a
quasi-coherent1 complex2 if for every degree OX• -mod(U) ∼= OX•(U)-mod1 and
for every homology presheaves Hi(OX• -mod) ∼= Hi(OX•)-mod2 which means
Hi(OX•)-mod(U) ∼= Hi(OX•(U))-mod by [12.10],it satisfies

H0(OX•(U))⊗H0(OX• (V )) Hi(OX• -mod)(V ) ∼= Hi(OX• -mod)(U) [12.13]

Now,we want to study ∞-category.A topological category C is a category
enriched in topological spaces with HomC(X,Y ).A homotopy category Ho(C)
over a topological category C is C withHOMC(C,C) ∼= (π0HomC(X,Y )),which
means it is homotopy enriched.A functor F : C = Top(U) → D = Top(F (U))
is a quasi-equivalence equivalent if for all U, V ∈ C, πi(U) ∼= πi(F (U)) with
commutative square which means the weak equivalent diagram [12.1] and Ho(F )
is an equivalence.Below [9.30],that is a case of relative category which means
a category with equivalence which is relative to a subcategory with weaker
equivalence in that case (∼=,=) we also discuss such things around [11.31].Also
see [12.4] and [12.5] the morphism with preservation of relative property is an
isomorphism (relatively strong) in the groupoid,this should be understood by
the existence of the strong equivalence (relative properties [9.130]) which is
descent data induces weak equivalence by homotopy [9.100]

Theorem13.3 A a breaking of duality is a relatively weak projection to
relative properties of degree n from relative property of degree n+1.Reverse of
the realization gives an explanation of the T-fusion [6.22].

Recall generalized super algebraifold that is T-fusion like below [8.21],which
is a manifold in the string-Space in M-theory which means the unified field!

theory with étale closed string living on it see [11.12] and [11.85].
Next,we want to study derived functor,let (C,Ho(C)) and (D,Ho(D)) are

relative category with the second is a subcategory of the first,with stronger
equivalence.For the fibered category p : Ho → Top from category of homo-
topy categories to category of topological categories,the right derived functor is
the 2-category R = HOMTop(Top,Ho),a derived functor of F is the following
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deformation of diagram with RC/D
∼= HOMTop(C/D,Ho(D))

F : C DF →
Ho(C) Ho(D)

C D

Ho(F )

F

λC λD
η

∼=
Ho(C) Ho(D)

D

Ho(F )′

Ho(F )
[12.14]

the η is unique because [12.1] up to weak equivalence in the homotopy enriched

category Ho(F )
≃−→ Ho(F )′.The dual notion (reverse arrow in [12.14])gives us

the left derived functor,and we let RC/D
∼= RF for a left exact functor we get

the long exact sequence along λD ◦ F with naturally injective resolution

0→ A→ B → C = 0
F−→ 0→ F (A)→ F (B)→ F (C)→

0→ F (A)→ F (B)→ F (C)
d−→ λD(F (I

1)) · ··
[12.15]

where C has enough injectives similarly above [9.10],for each A with an injective
resolution,we can see for a projective morphism P (A)→ A→ 0,canonically

0→ A
ε−→ P (A)→ A/im(ε) ∼= ker(ε)

ε2−→ P (ker(ε))→ ker(ε)/im(ε2) · ·· [12.16]

In such case,we extract 0→ A→ H1(A•)→ · · · as the injective resolution and
Ho(D) ⊆ D,so λD(F (A)) = F (A).Then,we back to [12,15],left exact functor
let rows of short exact be left exact,and λD sends them to homotopy enriched
category giving us δ and make them into long exact sequence.Then first order is
F (A),the second order is the homology group λD◦F (H1(A•)) ∼= H1(λD◦F (A•)).

Then,a model category is a relative category (C,W ) with fibrations and
cofibrations.First is a retract from [12.1] by a weak homotopy equivalence [12.2]

F (U) F (V ) F (U)

U V U

F (rUV ) F (rV U )

rUV rV U

F (U) F (V )

U V

F |U∩V [12.17]

induced by the LEE of relative properties [12.4],which make them into same
week homotopy equivalence class which gives a categorical explaination of the
retract [9.104] that is mod this weak equivalence to stablized the relative prop-
erty in ordinary fibered category see below [12.2].

Corollary13.4 Combining the theorem13.3 above [12.13],the n-groupoid
PRet(→) is a space of dualities.A tract is a stablization of relative property
from the homotopy type of ordinary properties induced by the relative property.

homotopy type of ordinary properties stable relative P

ordinary fibered category prestack

stabilize

Ret

[12.18]
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Based on the unified field! theory [11.85],we want to do a summarization

unknown knownP(U)−1F

non-solvable theory solvableSrep(S)

(Closed) (Open) Scons. Sprecons.

Ret∗P(Tδ0)
−1

Ret

P(Tδ•)

ShD-branes A

Ret

[12.19]
where (open) means superstring theory of open strings,blue means it is not a
full theory it is a space for nontrivial behaviors (red) living on.Recall defini-
tion13.2 above [12.7],a D-brane is a continuous extension of étale morphisms
(étale relations),thus after retract,we get the generalized superalgebraifold is
a contineous extension of étale equivalence relation (generalized super relative
properties).The strings in the last row of [12.19] are

closed str open str attaching on D-brane [scweak] [sc]

[12.20]
Back to model category,the second axiom is composition of 2-morphisms.In
fibered category p : F → C which is called Grothendieck’s fibration which
is given by the 2-categorical structure [9.25].And in model category,we need to
realize that simplicial structure give us a way to construct higher morphism

A1 A2 A3

B1 B2 A3

f

p

g

h1 h2 [12.21]

such 1-morphism p in model 1-category is (co)fibration lifting by (h1)h2.In
this case,we have a homotopy between 1-morphisms f ◦ h1 → h2 ◦ g.But for
physics,recall we regard the corepresentable representable pair [11.25] as the
time evolution (sum over all possible paths) and the existence of 2-morphism
gives us a way to continuously extent the path (1-morphism).Also evolution is
a motion,we need to consider super generalized general relativity [8.33],actually
the motion happens locally in self T-dual (self rest-motion) generalized Lorentz
module in D = 10 over C,for an evolution of bosonic field

DG,Lie(X0 ⊕X ∗1 )⇝local,self
DG,Lie(X0 ⊠ X̄0) ↪→ DG,LieX0 [12.22]

where the [5.13] tells us we can use complex conjugation as a self-dual struc-
ture.And by using the quantum sheaf we used in [11.23],we have

O•qutg̃ (DG,Lie(X0 ⊠ X̄0)) ∼= O•qutg̃ (DG,LieX0)× Ō•qutg̃ (DG,LieX̄0) = 1 [12.23]

Recall self T-duality [8.14] which has the regularity or renormalization.For fur-
ther discussion,some information we have not acquired.
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12.2 The natural of QFT and GR and Nonexpressibility

we need to combine the [8.28],[8.37] and [12.12],we have

R+,R− R++
M ,R−−M , R̃

scweak in D sc in D + 1

P(T)−1P(U)−1F

[12.24]

we see the LEE of the F-duality,along the [12.19] we have

P(Tδ)−1P(U)−1F ∼= Ret∗Ads/Cft [12.25]

actually is a retracted holographic duality,which is a duality between self in the
bulk and weak form of closed string on the boundary over étale site.We know
the F-fusion gives us the 2-nonexistence [11.6],so the question is we have not
calculated for the F̂ .We know see this by

P(Tδ)−1P(U)−1 = P(Tδ ×M♡ U)−1 [12.26]

from observation of [12.12] and we use this to fuse [8.28] and [8.37]

(X0 ×S X ∗1 )unselfT ⊠Tδ×M♡U (X0 ×S X ∗1 )selfT

= ((X0 ×S X ∗1 )⊕ (X ∗1 ×S X0))⊠Tδ×M♡U (X̃ ∗1 ⊕ X̃ ∗1 ) · ··

= (X0 ×S X ∗1 )⊠Tδ×M♡U X̃ ∗1 ⊕ (X ∗1 ×S X0)⊠Tδ×M♡U X̃ ∗1 · ··

= ((X0 ×M rep X̃0)⊕ (X ∗1 ×M rep X̃ ∗1 ))⊠Tδ×M♡U ((X0 ×M X0)

⊕ (X ∗1 ×M X ∗1 ))
∼=P(Tδ×M♡U) ((X0 ×M rep X̃0)⊕ (X0 ×M rep X̃0))/Z2

+ ((X ∗1 ×M X̃ ∗1 )⊕ (X ∗1 ×M X̃ ∗1 ))/Z2

∼=P(U) (X0 ×M rep X̃0)⊠U (X ∗1 ×M X̃ ∗1 )

[12.27]

And compared with [9.144] and [11.8],it indeed corresponds to generalized super
relative 2-properties counting for the field for self U-duality F̂ [11.8]

(P(U)R)selfU = (X0 ×M rep X̃0)⊠U (X ∗1 ×M X̃ ∗1 ) = R̂M rep ⊠U R̂M [12.28]

Based on this and [9.144],we want to form a combination

((X1 ×M X1)⊠U (X̃ ∗1 ×M̃
X̃ ∗1 ))⊕ ((X0 ×M rep X̃0)⊠U (X ∗1 ×M X̃ ∗1 ))

= ((X1 ×M X1) ∨⃝ (X0 ×M rep X̃0))⊕ ((X̃ ∗1 ×M rep X̃ ∗1 )

∨⃝ (X ∗1 ×M X̃ ∗1 )) = RM ∨⃝ R̂M rep ⊕ R̃M rep ∨⃝ R̂M

[12.29]

See the definition [10.22],which is a smooth presentation of M

Ét(RM ∨⃝ R̂M rep ⊕ R̃M rep ∨⃝ R̂M )/M ≡ Lis-Ét
GenSup

cons. (M) [12.30]
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we can discuss the relative space of the generalized super algebraic stack M

the M!-theory⇒ (RSGenSup
cons. /M) ⊃ Lis-Ét

GenSup

cons. (M) [12.31]

which gives as a fibered category over the relative space.And a fiber is a local
unified field! theory.Which means we can apply it locally like [12.22].And to see
the morphism of stacks is representable [10.20]

Mpre.
cons.Ran. ×M (· · ·) RM ∨⃝ R̂M rep ⊕ R̃M rep ∨⃝ R̂M

Mpre.
cons.Ran. M

P(U)−1P(F)∼=∆U∗(P(F)) P(F)

P(U)

[12.32]

where by the [10.28] and [12.25],we have

P(Tδ)P(Ret∗Ads/Cft) ∼= P(U)−1P(F) ∼= ∆U∗(P(F)) [12.33]

Theorem13.6 A relative effect is generated by a property P evolves in a
direction away from its own property P ,or towards property that does not exist
relative to its own property,which is equivalent to say relative effect is a long
range effect.

To understand the theorem,the Lorentz transformation gives an example
that a relative effect is about z′ = z + vt (motion frame) relative to z (rest-
frame).But the quantum field theory is a theory about locality,which mean the
nontrivial behavior happens in z → z′ [3.12].In this case,the reason why we
cannot combine theory of quantum and that of gravity is just because the or-
dinary space is not good enough to have a local relative effect,also the ordinary
superstring theory is just to contain quantum (open string) and gravity (closed
string),but it is not about combing quantum and gravity,it cannot because lo-
calization on the D-brane (D0-brane) which is equivalent to a localization of
openstring [8.22],we know every string theories need to have closed string,so
the theory of D0-brane must contain the localization of closed string,and the
space is not good enough,thus the theory becomes non-solvable [12.19].Con-
versely,quantum effect is a local effect,we do not have a long range quantum
effect in the ordinary space (cannot explain the quantum entanglement).

Corollary13.7 The general relativity is a theory describing continuous ex-
tension of long range relative effects (global properties).The quantum field the-
ory is a theory describing discontinuous extension of local quantum effects (local
properties).

Theorem13.8 A theory quantifying gravity must describe local properties
and describe the global properties at the same time.

It is completely meaningless for an ordinary space which likes the equivalence
[7.25] is meaningless analytically.Now,we are in the right hand side of [12.19],the
fiber product of [12.31] is isomorphic to

Mpre.
cons.Ran.×M(···) ∼= (RM∨Mpre.

cons.Ran.
R̂M rep⊕R̃M rep∨Mpre.

cons.Ran.
R̂M ) [12.34]
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which is an algebraic space by [10.30] as each pre M-theory is algebraic be-
low [10.27].Recall [11.6],the number counting of [12.29] and [12.34] gives 2-
nonexistence.Which means over the site [12.30] and [12.31],the M-theory globally
is ⃝ and locally is ⃝.In this case,we localized the global relative effect to local
relative effect.Which means when making a certain property exist,the property
also tends to not exist at the same time to cancel the existence of the prop-
erty,which is guaranteed by the local 2-nonexistence ⃝.And we call this as the
super generalized relative principle.

Now,we can back to derived algebraic geometry at [12.21].The category with
simplicial structure is homotopy enriched for retraction and lifting.Thus we have
a naturally model structure on dgAlg≥0k with the weak equivalence as the quasi-
isomorphism that is with the projective resolution (reverse of injective [12.16])

Ai

Bi+1 Bi

surj
≃weak

inj

0→ Hi+1(Bi+1)
≃−→ Hi(Ai)→ 0 [12.35]

where we used Bi+1 → Ai ∼= Bi+1 → Bi → Ai,and such surjection Ai → Bi
is fibration with left lifting property and cofibrations are A• → B• with right
lifiting properties with respect to the fibrations.Recall the left evolution above
[12.11],for DGAff≥0 it should be a injective resolution,and the fibrations in the
former corresponds to the cofibrations in the latter.An object in model category
is fibrant if the map to final object is a fibration and it is cofibrant if the map
to initial object is cofibration.For a weak equivalent A → A′ attaching with
fibration A′ → B where B is a final object we call A′ a fibrant replacement.And
in dgAlg≥0k ,the map from every object to final object is automatically surjective
so every object is fibrant.For a scheme X over S,we have

P ×X X P ×S X

X X ×S X

∆∗
X/S(p×Sx) p×Sx

∆X/S
h

X Z DG,Lie(X0 ⊠ X̄0)
⊂

local⃝
h

[12.36]
we denote P ×S X is the path object of X,with the weak equivalence h,we call
P ×SX a path of X.We can see the weak equivalence induces paths of X,which
explain the measure of path integral in the topological space and the paths are
confined in a local region by the super generalized general relativity [12.23] with
local relative effect (in the unified field! theory).Loosely speaking,when it loses
local property it gains local property to cancel it,and it is confined.And such
elegant model will be homotopy weakly projected to our world by Ret∗

Definition13.9 Nonexpressibility means when any operation happens
(observation,discussion imagination etc.),it induces generating properties at the
same time,which affect the system with local 2-nonexistence.Which should be
regarded as the most abstract and difficult thing with⃝ of the M!-theory.This
means the truth (in non-perturbation) is in confinement.
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A functor F : C → D of model categories is (left)right Quillen if has a
(right)left adjoint G and F preserves (co)fibrations and trivial (co)fibrations.If
G ⊣ F an adjunction which means HomC(G(d), c) ∼= HomD(d, F (c)) for all
objects and satisfy the above conditions we call this is a Quillen adjunction.From
[12.14],for above F which is right Quillen,we have

A′

A B

fibrant
≃weak

F−→
F (A′)

F (A) F (B)

fibrant
λD−−→

F (A′)

F (A) λD ◦ F (B)

≃

[12.37]
the Quillen functor preserves the fibration,thus gives us a right derived functor
RF sending A to the F (A′) with A′ the fibrant replacement of A.If we have

equivalence of category RF : Ho(C)
≃−→ Ho(D) with quasi-inverse LG,then

G ⊣ F is said to be a Quillen equivalence.Which means following [12.14],for a

unit ′F (A) which is a cofibrant in Ho(D),G(′F (A))
≃−→weak A in C and for a

co-unit G(B)′ which is a fibrant in Ho(C) we have B
≃−→weak F (G(B)′) in D.We

know that limI : C
I → C is a functor,so we have homotopy limit which is right

derived functor of the limit functor RlimI for objects CI quotient the weak
homotopy equivalence see difference with [7.23].And we denote the homotopy
fiber product by X×hY Z.If Y ′ is a fibrant,the homotopy fiber product is X×hY ′Z

with X
≃−→weak Y

′ and Z
≃−→weak Y

′ are fibrant replacement.A way to construct
is for [12.36],we have the diagram where we denote PY = P ×S Y

X ×hY Z Z Z ×Y,ev1 PY

X Y PY
h1

ev1

[12.38]

with ev0, ev1 as the first and second projections so we have

X ×hY Z ∼= X ×Y,h1 (Z ×Y,ev1 PY ) ∼= X ×Y,ev0 PY ×ev1,Y Z [12.39]

as we have h1 = ev0 a weak homotopy equivalence.Now,based on the evolution
of relative property [9.127] and [9.130],if we combine [12.36] we can see fur-
ther evolution of property (around the relative property) in the homotopy type
induced by the homotopy weak projection Ret∗ of the stable relative property

X X/R X/(X ×h∗

S X)

X ×h∗

S X X ×S X X

Ret

Ret

[12.40]
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where the diagram is a relative system and we observe in the retracted frame
so we used h∗,which means in retracted frame we get stable relative property
X ×S X but in retracted∗ frame it behaves like X ×hS X (no star).Combing the
diagram [12.19] and put the generalized super setting in,we get X ×hS X is a
D-brane where we want to discuss in the next section.

Definition13.10 A D-brane (based on definition13.2) is a section of sheaf
quotient of a weak homotopy equivalence satsifying the diagram [12.40].Also,see
the algebraic space as a sheaf quotient of a relative property [9.123].

For a trivial resolution A 7→ (A ← 0 ← 0 · ··) of [12.16],we have an embed-
ding,if we view it as a trivial functor id : Algk ⊆ dgAlg≥0,then we can send it
to Ho along [12.14],in this case we get a right derived functor

Rid : Algk → Ho(dgAlg≥0), HomdgAlg≥0(A•, B) = HomAlgk(H0(A•), B)
[12.41]

also recall the setting for the derived functor below [12.16] with A• ∈ dgAlg≥0

and B ∈ Algk.For fibrant replacements A•
≃−→weak A• and B

≃−→weak B

HomHo(dgAlg≥0)(A•, B) ∼= A• ×hA•×BB B
∼= A• ×B B ∈ dgAlg≥0

∼= HomdgAlg≥0(A•, B) = HomAlgk(H0(A•), B)
[12.42]

where we used every object is fibrant above [12.36] and homotopy fiber product
around [12.38],so the functor [12.41] is fully faithful and by [12.9],we get

HomHo(DGAff≥0)(X,Y•)
∼= HomAff(X,π

0Y•) [12.43]

for a scheme X and derived scheme Y•.
For A0• ⊕A∗1•, B0• ⊕B∗1• ∈ dgAlg≥0GenSup,we have the graded tensor product

(A0• ⊕A∗1•)⊗ (B0• ⊕B∗1•) = [A0• ⊗B0• ⊕A∗1• ⊗B∗1•]

⊕ [A0• ⊗B∗1• ⊕A∗1• ⊗B0•] =
⊕
i+j=•

(Ai ⊗k Bj)0 ⊕ (Ai ⊗k Bj)∗1

= (A⊗k B)0• ⊕ (A⊗k B)∗1•

[12.44]

for the differential we first consider a bilinear map Ai ×Mj →Mi+j

0 = ∂∂(aimj) = ∂(∂aimj + (−1)deg(ai)ai∂mj)

= (−1)deg(ai)−1∂ai∂mj + (−1)deg(ai)∂ai∂mj

[12.45]

So,we can let ∂ = ∂0⊕∂∗1 and ∂0(a0i⊗b0j) = ∂0a0i⊗b0j+(−1)deg(a0i)a0i⊗∂0b0j
for a0i ⊗ b0j ∈ (A ⊗k B)0(i+j) and ∂∗1 for a0i ⊗ b1j ∈ (A ⊗k B)∗1(i+j).And the

multiplication is (a⊗ b) · (a′⊗ b′) = (−1)deg(a′)deg(b)+F (aa′⊗ bb′) where F is the

world-sheet spinor number.In [12.44],⊗k : dgAlg≥0k × dgAlg≥0k → dgAlg≥0k and
we have an adjunction giving us right adjoint C• 7→ C• ⊗k C•

Hom
dgAlg

≥0
k
((A⊗kB)•, C•) ∼= Hom

dgAlg
≥0
k ×dgAlg

≥0
k
(A•⊗kB•, C•⊗kC•) [12.46]
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the right adjoint is right Quillen above [12.37],and by a lemma 2.29 in [21],for
G ⊣ F of model categories,G is right Quillen if and only if F is left Quillen,so the
tensor product of model categories ⊗k is left Quillen.In this case,along [12.14]
we can define the derived tensor graded tensor product

⊗L
k = L⊗k : Ho(dgAlg≥0k )×Ho(dgAlg≥0k )→ Ho(dgAlg≥0k ) [12.47]

Now,for A• ∈ dgAlg≥0k the A•-module is quasi-free if the underlying graded

module is flat over underlying graded algebra see [12.7].For B• ∈ Ho(dgAlg≥0k ),if

A•
≃−→weak B• is a quasi-isomorphism,we say A• is a model of B• with A• defined

up to isomorphism and B• defined up to quasi-isomorphism.See above [7.29],we
let B• be (quasi-)flat then the A•⊗k (−) is a right exact functor with left derived
functor Torki (−, B•) = Hi((−) ⊗k B•).By below [12.37] and [12.46],the we can
give a cofibration replacement of A•, B• we have

Torki (A•, B•) = Hi(A• ⊗k B•) = Hi(
′A• ∼= A• ⊗k ′B• ∼= B•)

= Hi((
′A⊗k ′B)•) = Hi((A⊗L

k B)•)
[12.48]

where we used the notation [12.47],back to ordinary category,we get quasi-
isomorphism (A ⊗k B)• → (A ⊗L

k B) ∈ Ho,so the former is a model of the

left derived graded tensor product.In DGAff≥0,we have derived scheme

X×hZ Y = Spec(A⊗L
CB), X = Spec(A•), Y = Spec(B•), Z = Spec(C•) [12.49]

Now for an example,we want to calculate k⊗L
k[t]k,by below [12.37] and [12.48],we

should start with k[t] · s ⊗k[t] k with a weak equivalence k[t]
≃−→weak k induced

by k[t]→ k[t] · s over k and which give us a short exact sequence

→ k[t] · s⊗k[t] k
∂−→ k[t]⊗k[t] k

∂−→ 0 [12.50]

We should set deg(t) = 0,deg(s) = 1, ∂s = 1 and we have

∂2(ts) = ∂(∂ts+ t) = ∂2ts+ ∂t∂s+ ∂t [12.51]

which means ∂t = 0 and by the definition of derived scheme [12.9]

π0Spec(k ⊗L
k[t] k) = Spec(H0(k[t]⊗k[t] k)) ∼= Spec(k[t]), ∂t = 0 [12.52]

In this case,we can see the derived intersection scheme {0}×hA1 {0} gives loop (no
boundary) paths,which can be viewed as generating closed strings from vacuum
which is a right evolution compared to [12.11].Compared to the stable relative
property Spec(k ⊗k[t] k) = Spec(k) = {0}.

For dual numbers we used in [7.15] and [8.20]

R[ϵ]/(ϵ2) = R⊕Rϵ, C∞(R)[σ]/(σ2), Ohol(C)[z]/(z2) [12.53]

For a smooth scheme X,the k[ϵ]-points Spec(k[ϵ])→ X form a tangent space

X(k ⊕ kϵ) ∼= Spec(Ok[ϵ]/(ϵ
2)) ∼= {(x, v)|(x) ∈ Ok, v ∈ Ok[ϵ]/(ϵ2)} [12.54]
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For a nilpotent surjection of rings f : A → B,we have for b2 = 0 we have
f(a)2 = b2 = f(a2) = 0,which means such surjection can be written as square
zero extensions with xy = 0,∀x, y ∈ ker(f),such f gives us an isomorphism

A⊗B A ∼= A⊗B (B ⊕ ker(f)), (a, a′) 7→ (a, (f(a), a− a′)) [12.55]

Taking for schemes,we haveX(A)×X(B)X(A) ∼= X(A)×XBX(B⊕ker(f)).Then
by [12.54],we see the tangent space X(B ⊕ (ker(f))) acts on the fibers X(A)
over X(B).Similarly to problem of representability see [11.32] and above,if we
use DG,LieX the nontrivial behaviors on the DG Lie scheme give obstructions
to lift B-points to A-points.For a square zero extension with ker(f) = I,like

[12.16] we have B̃• = (A ←↩ I ← 0 · ··) with B̃•
≃−→weak B,for a surjection

u : B̃• → (B
0←− I ←) · ··) = B̃• ⊕ I[1] to the sequence killing the image of I,we

have A = B̃• ⊗L
B̃•⊕I[1]

B ∈ dgAlg≥0k .A functor F : Ho(dgAlg≥0k ) → Set is half-

exact if F (0) ∼= ∗,factorization F ((A⊗B)•) ∼= F (A•)×F (B•)∀A•, B• ∈ dgAlg≥0k
and surjective factorization of pushout A• ⊗L

k B• for which any representable

functor hB• is half-exact.Now,for a representable functor F on Ho(dgAlg≥0k )

F (A)→surj F (B)×u,F (B̃•⊕I[1]),0 F (B), u(x) = (x, 0)⇔ x ∈ Im(F (f))

[12.56]
In this case,we get a tangent space which is an obstruction space (F (B̃•⊕I[1]), u)
a element y ∈ I[1] gives B \ f(y) which means a nontrivial element in the
obstruction space gives an obstruction to lift elements from F (B) to F (A).

Next,we study cotangent complex,which gives a clarification of [7.27],[9.91].A
morphism R• → A• gives us complex of Kähler differential

a⊗ b− b⊗ a+ I2 ∈ Ω1
A/R• = (I = ker((A⊗R A)•)→ A•)/I

2 [12.57]

with derivation d : A• → Ω1
A/R•, a · 1 7→ da ⊗ 1 − 1 ⊗ da + I2.In general for a

cofibrant replacement Ã• → A•,along the pushout gives us

LA/R = (Ω1
Ã/R
⊗Ã A)• ∈ dgModA•

[12.58]

Recall the Quillen adjunction above [12.37],we have such adjunction here

G : B•/A• 7→ (Ω1
B/R ⊗B A)•, M•/(ϵ

2) 7→ A• ⊕M•/(ϵ2) [12.59]

where we used a dual number [12.53].The first is left Qullen preserving cofi-
bration with final object A• from A•-augmented R•-algebra to dgModA•

and
[12.58] is the left derived functor taking by cofibrant replacement

Ã

B• A•

≃
weak

cofibrant LG ∼= LA/R [12.60]
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Then by the definition [12.57],LA/R = J/J2, J = ker((Ã⊗A)• → A•).Based on
this,we have André-Quillen cohomology

Di
R•

(S•, f∗M•) = ExtiA•
(LS/R, f∗M•) = Hi(Map

dgAlg
≥0
R•

(S•, B•⊕M•)) [12.61]

where f : S• → M• with f∗M• = f∗S• ⊕M• and (homotopy) fibered category

fibered in mapping groupoids with S•
≃−→weak B• ⊕M•

p : MapdgModA•
(S•, B• ⊕M•)→ MapdgModA•

(S•, B•) [12.62]

In this case,LS/R = (Ω1
(B⊕M)/R ⊗B⊕M S)•.Now,see [12.56],we have a repre-

sentable functor on homotopy category Map(B•,−),then we have

Map
dgAlg

≥0
k
(B•, B• ⊕ I[1]) = D0

A•
(B•, I[1]) = D0

A•
(B•, I)[1] [12.63]

which is the corresponding obstruction space.Also by definition of Exti

D0
A•

(B•, I[1]) = Hom
dgAlg

≥0
k
(LB/A, I[1])

= Hom
dgAlg

≥0
k
((Ω1

B̃/A
⊗B̃ B)0, I[1])

∼= Hom
dgAlg

≥0
k
(J = ker(B ⊗A B → B)0/J

2), ker(f)[1])

= Hom
dgAlg

≥0
k
({da⊗ db− db⊗ da+ J2}, ker(f)[1])

[12.64]

The interesting thing is,see [7.18],[7.21] and [7.27],to put physics in we can have

da⊗ db− db⊗ da+ J2 ↔ X ⊗ Y − Y ⊗X − [X,Y ], X, Y ∈ g0 [12.65]

where we used generalized super affine Lie algebra in [11.21].
Theorem13.11 An obstruction corresponding to a nontrivial element in

obstruction space D0
g0⊠Tg∗

1
(g̃, I[1]) corresponds to a nontrivial behaviors on the

generalized super DG Lie scheme induced by nontrivial contaction.

D0
g0⊠Tg∗

1
(g̃, I[1]) ∼= Hom

dgAlg
≥0
GenSup

(J(X,Y, [X,Y ] ̸= 0), I[1]) [12.67]

DG,Lie(X0 ⊠ X0)R′∈Rnorm
>1

⃝ (X ∗1 ⊕ X̃ ∗1 )⇐R̃≃R̃∗
lim

F([X,Y ]̸=0)

[12.23]

qut.dominance [11.8]

gr.dominance

Corollary13.12 Because an obstruction corresponds to an obstruction of lift-
ing,thus a nontrivial behavior on the field corresponds to an obstruction of
lifting.If we set the lifting to be T-fusion this explain the calculation [8.34] for
the generalized super black hole also see [12.94].

B̃H [X,Y ] ̸= 0 An obstruction of T-fusion inX ∗1

[8.35] Reduce one dimension by (dark energy)∗

IsomS≤0⊕S≥0

Aut

[11.32] Thm13.12

R̃∗
lim

[12.94]

P(TδD−1)
−1,S♡

[11.66]

[12.68]
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Because we are in étale site,and if R→ S is a smooth morphism of k-algebras,we
have LS/R ≃ Ω1

S/R.We have exact sequence by proposition 8.3A in [6]

LC/B [−1]→ (LB/A ⊗B C)• → LC/A → LC/B [12.69]

as for exact sequence of homomorphisms A• → B•
ψ−→ C•,we have

Ω1
B/A ⊗B C

u−→ Ω1
C/A

v−→ Ω1
C/B → 0 [12.70]

with dB/A(b)⊗ c 7→ c · dC/Aψ(b) 7→ c · dC/Bψ(b),v is surjective,because Ω1
C/B is

a B-module,we have dC/Bψ(b) = ψ(dC/Bb) = 0,so we get the zero in the right
hand side v◦u=0.By above [12.46],any representable functor is half-exact,so the
it suffices to show the sequence is exact after acting a representable functor

HomC(Ω
1
B/A ⊗B C, T )← HomC(Ω

1
C/A, T )← HomC(Ω

1
C/B , T ) [12.71]

for Hom(Ω1
B/A ⊗B C, T ) ≃ Hom(Ω1

B/A, T ) ≃ Derk(B, T ),it becomes

Derk(B, T )← Derk(C, T )← Derk(C, T ) [12.72]

this is exact by setting and [12.70] is exact.In this case,we have the exact triangle
[12.69].To show the equivalence,we work étale locally with U affine

U Spec(S)

AnR Spec(R)

etg

f

et

, LU/R ≃weak (LS/R ⊗S f∗S) ≃ f∗LS/R [12.73]

based on Ω1
U/R ≃ Ω1

Spec(S)/R ⊗S f
∗S ≃ f∗Ω1

Spec(S)/R and LU/S ≃weak Ω1
U/S = 0

by [9.91],which gives us the weak version on cotangent complex.We étale U →
AnR = Spec(R[x1, ..., xn]) with the affine space is cofibrant over R,by discussion
below [12.37] and combine [12.73] we get a weak equivalence version

LU/R ≃weak g
∗LAnR/R ≃ g∗Ω1

AnR/R
≃ Ω1

U/R,L
S/R ≃weak f∗Ω

1
U/R ≃ Ω1

S/R

[12.74]
Then,we go back,if above [12.69] is an equivalence,then LU/S ≃ 0 for étale
f .Also étale morphism is unramified around [7.30],and by the lemma 29.35.13
in [16],the diagonal is open immersion,let Y = Spec(S) we have

U Spec(S) Spec(R)

U ×Spec(S) U U AnR

smooth

et smooth

pr1 op.im.

pr2

[12.75]

because LU/S ≃weak 0,pr∗1LU/Y ⊕ pr∗2LU/Y ≃weak 0,along U → U ×Spec(S)

U → Spec(S) we have ∆∗U/Y L
(U×Spec(S)U)/S ≃weak LU/S and we recover the
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weak equivalence [12.73],which means we can replace Spec(S) with U because
U → Spec(R) also smooth,in this case,it is suffices to show LU/S ≃ 0 with
U → Spec(S) is open immersion.The simplest open immersion is from localiza-
tion that is k[x]x ∼= k[x, x−1] ∼= k[x, y]/(xy − 1) inducing the open immersion
Spec(k[x, y]/(xy − 1))→ Spec(k[x]),every open immersion can be conprised by
such localizations,in this case,we have a cofibrant replacement over B = k[x]

Ã• = (k[x, y] · t ∂−→ k[x, y])
∂−→ A = k[x, y]/(xy − 1) [12.76]

∂2t = 0 means ∂t = xy−1 ∈ k[x, y] and we have Ω1
Ã•/B

= Ã0(dy)⊕ Ã1(dt) with

d∂t = ∂dt = xdy ∈ Ã0(dy).By [12.58],we have

LA/B = Ω1
Ã•/B

⊗B Ã• = (Ã0(dy)⊕ Ã1(dt))⊗Ã•
A ≃ A(dy)⊕A(dt) [12.77]

with y, t ∈ A as they are units,we get LA/B ≃ 0 then it suffices to compute LA/B
by B• → A• is a composition of cofibration and smooth morphism.A morphism
f : A• → B• is strong if each object is in a section of quasi-coherent complex
i.e.OX• -mod(V ) = B• satisfying [12.13] on a derived scheme.And we say a
morphism is homotopy-(...) if it is strong andH0(A•)→ H0(B•) is (...).Also,f is
called homotopy-étale if and only if LB/A ≃ 0.And for derived schemes (f, π0f) :

π0X• → π0Y•,define the presheaf LX/Y = LOX•/f
−1OY• and for any inclusion

U → V ∈ π0X• the inducing restriction on sections of H0(OX•) is an open-
immersion see above [12.76],so OX•(V )→ OX•(U) is homotopy-open immersion
which is homotopy-étale and LOX• (U)/OX• (V ) ≃ f−1LOX• (U)/OX• (V ) ≃ 0 and we
can apply [12.69] along f−1OY•(U)→ OX•(V )→ OX•(U),we get

LOX• (U)/f−1OY• (U) ≃ OX•(U)⊗OX• (V ) (LOX• (V )/f−1OY• (U))

≃weak[12.48] OX•(U)⊗L
OX• (V ) (L

OX• (V )/f−1OY• (V ))
[12.78]

where we took LOX• (V )/f−1OY• (V ) → LOX• (V )/f−1OY• (U) which is a quasi-flat
cofibrant replacement.And [12.78] is isomorphism after taking homology and

gives [12.13],thus we see LX/Y = LOX•/f
−1OY• is a quasi-coherent complex.We

can see a double-weak,firstly we retract to ⊗L and secondly we quotient the
open simplexes (with boundaries),this gives us diagram [12.85].

12.3 n-hypergroupoids and eigenbrane

To see clearly of the closed string with open string as a weak form [12.12]
and to construct a good space for evolution with such property [12.19],we need
to combine following math with physics.See figures of followings in 4.1 in [21].

A combinatorial simplex is ∆n = Hom∆(−, [n]),the geometric realization
|∆n| gives us the standard n-simplex in topological space see [8.4].A category
of simplicial set is sSet with objects are functor X : ∆op → Set,an example is
Sing(|X|)∆ : |X| → X = (∆op → Hom(|∆−|, |X|)),from Top to sSet.A mor-
phism X → Y in sSet is weak homotopy equivalence if |X| → |Y | is weak
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homotopy equivalence (π•-equivalence).And naturally,we have a model struc-
ture on sSet.We also have the operation for simplicial set Xn = X([n])

∂i : Xn → Xn−1, ∂i : |∆n−1| → |∆n|, ∂i∂j = ∂j−1∂i, ∀ i < j

σi : Xn → Xn+1, σi : |∆n+1| → |∆n|, σiσj = σj+1σi,∀ i ≤ 0
[12.79]

∂i is to include i-th face and σi is to collapse (i, i+1)-th faces.And the condition
is for keeping them in one |∆n| system.Define the boundary ∂∆n =

⋃
i ∂

i∆n−1

and |∂∆n| is the full boundary of |∆n| in topological space.Also,the k-th horn
is Λn,k =

⋃
i ̸=k ∂

i∆n−1,the |Λn,k| is just removing the k-th face from the full
boundary.A trivial Kan fibration and Kan fibration is the following diagrams

∂∆n X

∆n Y

trivial fib.

Λn,k X

∆n Y

fib.

Λn,k X

∆n

∀n, k [12.80]

with X,Y ∈ sSet.A Kan complexis is a simplicial set X satisfying the third
diagram.Now we want to deform the diagram

X

|Λn,k| |∂∆n| |∆n|
ShD-brane

[12.81]

if we let n = 2,the ∂∆2 can be view like closed string and a horn is an
open string,because of X is homotopy enriched (∞-groupoid now),in X(RHS of
[12.19]) the open string is a weak form of closed string and they are equivalent
by 2-isomorphism,but in the LHS of [12.19],they are weak homotopy equivalent
which means they are seen as in two different types of strings.Such gives us
n = 2 case,but we want to see a full evolution degree by degree in this case,we
need a Kan complex.In this case,DAG gives supports for Brane-cosmology.

For studying the RHS,we naturally have the following definitions.A n-th
matching space is M∂∆n(X) = HomsSet(∂∆

n, X),explicitly

M∂∆n(X) = {xn ∈
n∏
i=0

Xn−1|∂ixnj = ∂j−1x
n
i , i < j, x ∈ Xn} [12.82]

Xn →M∂∆n(X), x 7→ xn = (∂0x, ..., ∂
nx).A (n, k)-th partial matching space is

MΛn,k(X) = {xn−1 (i ̸= k) ∈
n∏
i=0

Xn−1|∂ixn−1j = ∂j−1x
n−1
i , i < j, x ∈ Xn}

[12.83]
with HomsSet(Λ

n,k, X) and x 7→ xn−1 = (∂0x, ..., ∂k−1x, ∂k+1x, ..., ∂nx).Thus

Xn
surj−−→ Yn ×M

Λn,k
(Y ) MΛn,k(X) MΛn,k(X)

Yn(≃ ∆n/Y ) MΛn,k(Y )

[12.84]
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the Kan fibration [12.80] follows from the diagram.Notice the double-weak

homotopy-étale(≃weak) closed =et closedweak(∼= \ =)et
Ret Ret∗Ads/Cft

H -quotient

[12.85]

our aim is to get a good space where we can only discuss étale closed string
[12.12],such a space is for unified field! theory living on.In physics this is ac-
quired by Ret∗Ads/Cft-fusion,and in math this is achieved by taking derived
geometry.Now we back,=∈∼=,so we generally consider a Kan complex and say it
trivial fibration [12.80] in RHS of [12.19].

Set

∆op (∆×∆)op

diag : ssSet→ sSet [12.86]

Then the diagonal morphism ∆ → ∆ × ∆ contravariantly gives us a diagonal
functor from bisimplicial category with objects (∆ × ∆)op → Set.Now,along
the singular chain complex [8.7],we set ∂ =

∑
(−1)i∂i which is [8.6] and the

corresponding sequence of singular homology groups is that of abelian groups.In
this case,the simplicial abelian group (A•, ∂) becomes a DG abelian group (chain
complex).We have NmA = {a ∈ Am|∂ia = 0,∀i > 0} which is a complex,it gives
us the normalization of simplicial abeilian group NA,thus we have (NA, ∂0) by
the [12.78] ∂20a = ∂0∂1a = 0 and by Hurewicz theorem we have H•(NA) ∼=
π•(|A|, 0).Also,N induces equivalence of category (Dold-Kan thm 4.17 in [21])

N : (simplicial abelian groups)
≃−→ (chain complexes≥0) [12.87]

So this gives us a way to get a double complex see [10.90].Follows from [12.85]

(Eilenberg-Zilber) ∇ : TotNA→ NdiagA [12.88]

with N for set ∂hi a = ∂vi a = 0∀i > 0 and A ∈ ssSet.
Next,we discuss simplicial mapping space,for a model category C and a ob-

ject Y ∈ C,let simplicial diagram Ŷ : ∆op → C over ∆op → Y ,be the simplicial
fibrant resolution of Y such that

(i)∀Y ≃weak Ŷ (ii) Ŷ
fib.−−→M∂∆n (n ≥ 0, Ŷ )(Ŷ0 is a fibrant) [12.89]

For a commuative ring R,we have category of simplicial commutative R-algebras
sAlgR with objects are functors ∆op → AlgR with ∂i degree down and σi de-

gree up.The [12.87] gives us an equivalence N : sAlgR
≃−→ dgAlg≥0R .They give

equivalent homotopy theory ≥ 0 but sAlgR still work < 0.Also,for a simplicial
ring A,we denote sModA for the category of simplicial A-modules.

Now,we are able to discuss higher groupoids for higher stacks.An∞-groupoid
is a Kan complex [12.80] and for X,Y ∈ sSet,a relative n-hypergroupoid over
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Y is a Kan fibration p : X → Y [12.84] satisfying the following condition

Xm → Ym ×M
Λm,k

(Y ) MΛm,k(X), surj. for m ≤ n and isom. for m > n
[12.90]

which means horn-filler [12.80] exists and m > n it is unique.When Y = ∗ we
say X is a n-hypergroupoid.A n-hypergroupoid is a simplicial set with m ≤ n-
isomorphism and m > n-identity.And we say [12.13] is trivial if we replace Λn,k

to ∂∆n [12.82].
Theorem13.13 The vibration along a dimension (quantum effect) of closed

(no boundary) geometry of ∂∆n will generate that of ∆n
weak.It is F-dual to

gravity effect [12.68] which decrease the dimension of ∆n to ∂∆n because of the
black hole.We can see this in the following diagram see [12.95].The meaning of
the identity is from the physics below.

∆n
weak = Λn,k

∐
Dn-brane ∆n

Λn,k = Λn,k
∐

D(n− 1)-brane ∂∆nAds/Cft

[12.91]

where we igonore the geometric realization | | for clarity.In this case,[12.91] it
is really like gauge-fixing or uniqueness problem of generalized super relative
properties below [9.124],because of [12.91],we have two ways to fill,so it is unique
if and only if we fuse this duality.

Recall the quantum effect we discuss about homotopy [12.36] and combine
the definition13.2 above [12.7] we get the corollary below.

Definition13.14 By the diagram [12.19],we need push things to retracted
level and we call them eigenbrane

Dn-eigenbrane Pn-eigenbrane

Dn-brane Pn-brane

Ret Ret [12.92]

Corollary13.15 A Dn-eigenbrane is a quantum algerbaic section (carrier
of quantum effect) of algebraifold A and an ordinary Pn-eigenbrane is a gravity
algebraic section (carrier of gravity effect) of F-dual algebraifold Ǎ.And A =
Ǎ ∨⃝ A which is equivalent to [11.2],so if we shrink these two algebraifold
together Ǎ ⊕ A → A we will get the uniqueness.

Theorem13.16 Quantum effect make D-brane always exist to weak equiv-
alently compensate a geometry with boundary to a geometry without boundary
with higher dimension.Gravity effect make P-brane exist always to no boundary
geometry with lower dimension.

∆D,∆D
weak · · · ∆0 = ∆0

weak

R̃∗

disorder

R̃∗

order

⇒[9.97] Π [12.93]
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The entropy increase principle is a functor R̃∗

The dark energy is its left adjoint to decrease the entropy R̃∗

For instance,D-brane exists to let a 2-sphere with boundary to 3-sphere without
boundary,and in [12.68] the black hole (by limit of gravity) gives a hole to let it
be a circle without boundary.

Definition13.17 The dark energy is the left adjoint of the functor entropy
increase principle.It should be understood as a force to make universe tend to
be orderly.

Theorem13.18 The ordinary entropy increase (i.e.to heat energy) is an
effect of gravity bending the spacetime it is a tendency to disorder preserving
the degree.And the limit of gravity (black hole) is a tendency to disorder to lower
degree.The degree is for [12.93] representing the dimension of our universe.

Now we go back,a 1-hypergroupoid is given from elements of groupoid G

(NG )n =
∐

x0,...,xn

G (x0, x1)× G (x1, x2)× ...× G (xn−1, xn) [12.94]

which are nerves of a groupoid G .Focus on (NG )1 we have a horn-filler

Λ2,3 ≃
x1

x0 x2

21 ≃(∼=\=)et

x1

x0 x2

string

D1-brane

string

D2-brane
[12.95]

which gives us a weak form of closed string (filling into closed diagram) and
in the hypergroupoid such fillers always exist,which means we can use this to
construct a good space for the RHS of the bottom line in [12.19].And we also
have the properties for n-hypergroupoids X

(i)∀m > n, πmX = 0

(ii)Y ∈ sSet, πmY = 0∀m > n⇒ Y ≃weak X

(iii) A n-hypergroupoid X is completely determined by X≤n+1

[12.96]

Also,we need to put étale of smooth morphism in,this gives us the follow-
ings.An algebraic (Deligne-Mumford) n-hypergroupoid to be a simplicial affine
scheme X satsfying

∗ ×M
Λm,k

(∗) MΛm,k(X) ≃MΛm,k(X)→ Xm [12.97]

is a smooth (étale) presentation and for m > n it is an isomorphism.For defining
higher stack and derived stack,we need to study simplicial mapping spaces.For a
model category C and Y ∈ C,a simplicial fibrant resolution of Y is a simplicial
diagram Ŷ : ∆op → C with Y → Ŷ0 such that

(i)Y ≃weak Ŷn, (i) Ŷn →fib. M∂∆n(Ŷ ) [12.98]

For instance,in A ∈ dgAlg≥0k ,natually over |∆n| → A, Ân = τ≥0(A⊗ Ω•(∆n))

Ω•(∆n) = k[x0, ..., xn, dx0, .., dxn]/(
∑

xi − 1, d
∑

xi) [12.99]
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By using [12.82],we can express the n-th matching space

M∂∆n(Â) = {(x, dx)n ∈
n∏
i

Ân−1|[12.82]} ≃below[7.29]

n∑
i=0

rixi, ri ∈ k

≃ τ≥0(A⊗ Ω•(∂∆n)),Ω•(∂∆n) = Ω•(∆n)/(
∏
i

xi, d(
∏
i

xi))

[12.100]

Because Ω•(∆n) → Ω•(∂∆n) is surjective,so Â → M∂∆n(Â) is surjective and
by above [12.36],the surjective is automatically a fibration satisfying [12.95].

Let X,Y ∈ (C,W ) is a cofibrant and Ŷ is simplicial fibrant resolution,the
right derived function complex RMap•(X,Y ) on Y is given by HomW (X, Ŷn).

12.4 Derived geometric n-stack and consistency

For category of derived affine schemes (work étale locally [9.79]) dAffR,that
of simplicial derived affine schemes is sdAff = (dAffR)

∆op

an object is

X0 X1 X2

... X3 · · · [12.101]

with each Xm a derived affine scheme.A homotopy derived algebraic (DM) n-
hypergroupoid is a X ∈ sdAffR satisfying

(i)π0X is an algebraic (DM) n-hypergroupoid [12.97]

(ii)H0(OXm)⊗∂−1
i H0(OXm ) ∂

−1
i Hj(OXm)

∼= Hj(∂
−1
i OXm)

∼= Hj(O∂−1
i Xm

),

[12.102]

Where ∂i : Xm+1 → Xm∀i,m, j.Which says we need π0Xm to form an étale
site with the global descent for Sh [9.70] over this site,Also by below [12.77],∂i
is strong for all i,m.By below [12.12]

(a)Oπ0Xm = H0(OXm),Decent for Sh on π0X ⇔ Decent for QCoh on X

(b) étale (smooth) on π0X ⇔ homotopy-étale (smooth) on X

[12.103]

the second condition in [12.102] preserves the [12.103].And for trivial case of
[12.90],we just replace to trivial algebraic (DM) n-hypergroupoid.A homotopy
derived algebraic (DM) n-hypergroupoid X over Y satisfies

(i)π0X → π0Y is an relative algebraic(DM) n-hypergroupoid

(ii) preserve [12.102] for all fm : Xm → Ym
[12.104]
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where f : X → Y ∈ sdAff.Theorem 6.11 in [21] tells us

∞-Cat of strongly quasi-compact (n− 1)-geometric derived algebraic stack

≃ (C,W) with C of homotopy derived algebraic n-groupoid X ∈ sdAff

and W of homotopy trivial

relative derived algebraic n-hypergroupoidX → Y ∈ C
[12.105]

such relative should be (C,W) ≃ (∼=,=) in the double-weak diagram [12.85].We
can give a further understand by the diagram

∼=(horn-filling) =(simplex-filling)

quasi-no boundary no boundary

discontinuous smooth

[12.91] [12.91]

quasi [14.10]

⇒ (∼= \ =)et for qut.↔ =et for gr.

[12.106]
This has two points,firstly,it is consistent with quantum (discontinuity) and
gravity (smooth manifold) and give a mathematical support (description) of
the difference of them which we discussed above [12.34].Secondly,the black hole
which is a local discontinuity is an effect of quantum gravity and it is consistent
with [12.67] and [12.68] where we combine quantum and gravity behaviors to
explain the black hole.Thus,we find our theory combining the math and physics
is highly consistent.And we want to give a further explanation based on [12.68]
of [8.34] combining [12.92] by the diagram

P0 P0

P0

P1-eigenbrane

P1 P1

f
→flip f

[12.67]

P0 P0

D0-eigenbrane

P1

P1

P1′
localize

[12.107]
By the local 2-nonexistence,localization is a property which will generate the
property canceling at the same time from super generalized relative principle
above [12.35] and along [12.19] Ret∗ gives a black hole in our universe.

Let dAlgR be category of derived R-algebras opposite to dAffR.A derived∞-
stack over R is a category fibered in simplicial set p : sSet→ EtdAffR over dAffR
with étale topology with global descent theory.Combining [9.26] and [12.105],

X♯(A) = RMapC(Spec(A), X) = HOMW(Spec(A), X̂), A ∈ EtsdAlg
[12.108]

where we used the simplicial fibrant replacement X → X̂ see [12.98] with X̂
a homotopy trivial derived algebraic (DM) n-hypergroupoid.Now the right de-
rived functor gives us the second retractH-quotient in [12.85] and we extract the
things from left of [12.106] to the right by quotient the weak homotopy equiva-
lence [12.91].Which gives us the derived geometric algebraic (DM) (n−1)-stack.
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For a homotopy derived algebraic n-hypergroupoid [12.101],each Xm is a
derived affine scheme so we denote it as X••.On it,we have cochain complex
O(X)•• where we put superscript for the cochain complex index,which is the
structure sheaf on the simplicial derived affine scheme,also we have O(X)••-
modules.A homotopy-cartesian module F on the homotopy derived algebraic
n-hypergroupoid X consists of

(i)Fm
• is a O(X)••-module for each m

(ii) ∂i : ∂∗i F
m−1 → Fm

• σi : σ∗iF
m+1
• → Fm

• keeping [12.79]

(iii)On each π0X•• the Hj(O(X)••)-module Hj(F
•
• ) is cartesian,

∂i : (π0∂i)
∗Hj(F

m+1
• ) ∼= Hj(F

m
• ) ∀π0∂i : π

0Xm• → π0Xm−1•

[12.109]

where by [12.13],the 2nd of [12.102] gives us H0(Om•)-comodule structure

(π0∂i)
∗Hj(F

m+1
• ) = H0(O(X)m• )⊗∂−1

i H0(O(X)m−1
• ) ∂

−1
i Hj(F

m−1
• ) [12.110]

And the 1st of [12.102] gives us the cochain complex on π0X•

Hj(F 0
• )⇒ Hj(F 1

• )⇛ Hj(F 2
• ) · ·· (†)-comodules

H0(O(X)0•)⇒ H0(O(X)1•)⇛ H0(O(X)2•) · ·· (†)

[12.111]

on π0X0• ⇐ π0X1• ⇚ π0X2• · ··.
Application in math For F : dAlgR → sSet a derived geometric algebraic

n-stack(representable sheaf version),a morphism A → B ← C ∈ dAlgR with
A → B a nilpotent surjection above [12.55] gives us a weak equivalence in the
fibers F (A⊗L

B C) ≃weak F (A)×hF (B) F (C) and a functor satsifying this equiva-

lence is called homotopy-homogeneous.Above [12.56],the representable functor
is Hom

Ho(dgAlg
≥0
R )

(S•,−) ≃ RMap
dgAlg

≥0
R

by below [12.100] which preserving

homotopy limits with surjective factorization on the path components

π0F (A• ⊗L
B•
C•) ≃ π0(F (A•)×hF (B•)

F (C•))

→surj π0F (A•)×π0F (B•) π0F (C•) ≃ π0(F (A•)×F (B•) F (C•))
[12.112]

which gives the surjective factorization for representable functor and the above
weak equivalence.Conversely,if F is homotopy-homogeneous then we have the
surjection over the dAlgR of derived algebras [12.112].So we can apply de-
rived stack in tangent space and obstruction around [12.56].By [12.108] and
2-Yoneda lemma [9.25],for a derived stack U ♯ ≃ RMapdAff(−, U),it corresponds
to the homotopy derived 0-hypergroupoid which is a derived affine scheme U
which gives previous case for schemes.Now,let A ∈ dgAlg≥0R ,M ∈ dgModA with
F : dgAlgR → sSet,A⊕M ∈ dgAlgR means (A⊕M)× (A⊕M)→ A⊕M2 ∈
dgAlgR so M is a dual number.For a x ∈ F (A) with coefficient in M ,the tan-
gent space of F at x is Tx(F,M) = F (A ⊕M) ×hF (A) {x} by the pullback.If
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F is homotopy-homogeneous,we have an additive action for the tangent space
Tx(F,M) ∈ Ho(sSet) with A⊕M → A a nilpotent surjection.

F (A⊕M)×hF (A)F (A⊕M) ≃weak F ((A⊕M)×A(A⊕M)) ≃ F (A⊕M) [12.113]

Also,we form a short exact sequence 0 → M → cone(M → M) → M [−1] →
0,M ≃ cong(M →M)/M [−1] ≃ cone(M →M)×M [−1] 0.

F (A⊕M) ≃ F (A⊕ (cone(M →M)×M [−1] 0))

= F (A⊕ cone(M →M)×A⊕M [−1] A)

≃weak F (A⊕ cone(M →M))×hF (A⊕M [−1]) F (A)

[12.114]

13 To Complete Einstein’s Dream

13.1 The derived geometry of M-theory

We haved defined consistent string-Space,pre M-theory and the M-theory
and their flows,we also want to see the evolutions in them dimension by dimen-
sion,and we do a summarization of the framework by diagrams at first.

M rep
Λ ∨M−Λ M

Ran(Srepcons.) ∈Mpre.rep.
cons. Ran(Scons.) ∈Mrep.

cons.
U

[Step I]

M-flow M

Mpre.rep.
cons. -flow Mpre.

cons.

∐
type Ran(Srepcons)

∐
type Ran(Scons.)

F

twisted U

P(U) P(U)

live in descent

[12.24]

[11.82]
[11.85] ⇒ Unified field!theory

[Step II]

Unified field!theory lives in

M-flow M

LieDGSchSupGen
eff,cons.(M

rep ∨M )

F

simp.derived simp.derived
shrink A≃H -quotient[12.85]

[Step III]

And to achieve the top of step III,we need to reconstruct our theory about
stacks by derived stack.We can see our settings in section 8.1 is consistent with
the simplicial setting in this case we first upgrade them.
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Definition14.1 A simplicial DG affine generalized superscheme is a simpli-
cial set by using [8.11] and [12.45]

X : (∆0 ⊕∆∗1)
⇐ → (Spec(NA[∆

D])→ N ), ∂ =
∑

(−1)i(∂0 ⊕ ∂∗1 )i [13.1]

with X ([d, d]) = X d,we have a diagram with horn fillers

Λd,k X M rep ∨M M

∆d

Ret∗Ads/Cft

P(T) smooth

[13.2]

induced by the holographic duality,and the T-fusion lifts the diagram to the M-
brane,but we know the derived obstruction theory [12.67] tells us the there are
obstructions to T-fuse the closed boundary generated by closed string theory
to M .Also by the diagram [Step II] above,we see it has already lived in the
M-brane,in this case,the U-dual pair of M-branes becomes a Kan complex and
then by U-fusion the M-theory has a Kan complex structure.Then,we acting π0
to get a derived M-brane

π0M rep ∨ π0M ∼= M rep ∨M ,Hi(OM rep) ∨Hi(OM )⇒Hi(O(M)) [13.3]

they have d-th matching space and (d, k)-th partial matching space respectively

M rep
d

et−→M∂∆dP
(M rep), Md

et−→MΛd,kD
(M ) [13.4]

Which are all étale surjective,which gives us a smooth presentation of M

M∂∆dP
(M rep) ∨MΛd,kD

(M )⇒M∂∆nP∨Λ
n,k
D

(M)
smooth−−−−→M [13.5]

we know unclosed loop generated the same effect as the closed loop [12.92] by
the enriched homotopy and our theory has Ret∗Ads/Cft duality,which means
each matching [13.4] cannot be isomorphism d ≤ 11 but after F-fusion the [13.5]
have to be isomorphism,which means d > 11 the fillers are unique.Then,we get
M is an algebraic 11-hypergroupoid,explicitly

⃝ RM ∨⃝ R̂M rep ⊕ R̃M rep ∨⃝ R̂M R = R++
M + R−−M + R̃

PRet(→)≤10GenSup · · ·

[12.29]

[11.67]

[8.38]

[12.5]

...

[13.6]
By [12.93],M is completely determined by d ≤ 12.And the algebraic stack is
a representable sheaf,so it is a simplicial derived scheme with mixed matching
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map [13.5].If we work étale locally,we get a site [12.31],on this site we have
QCoh(M) with bounded cohomologies and by the descent theory [9.74] and
[10.83] on the nerve,the homology sheaves are all Cartesian

∂i : H0((OM)d+1
• )⊗∂−1

i H0(O(M)d•)
∂−1i Hj(O(M)d•)

∼= Hj((OM)d+1
• ) [13.7]

with cosimplicial condition in [12.79].And the cochain complex is given by du-
ality breaking [11.35] which is,also see the [11.74]

M M11• · · · M0•
P(F∨⃝U)−1

R̃∗

P(Tδ10)
−1

P(Tδ0)

R̃∗

[13.8]

the closed loop is ganranteed by the universe evolution picture [9.97],now we
have following answers to explain how D = 10 superstring theories are contained
in D + 1 M-theory,which are equivalent in derived algebraic geometry.

(i) (Moduli)By [7.25],5 D-dim theories are solutions of a D + 1 theory

(ii) (Decent)By [9.93],5 D-dim theories descent to D + 1 theory

(iii) (Homotopy)By [12.17],5 D-dim theories are retracted to a point in 1-dim

[13.9]

Also,for each cochain degree d the Md• is a derived schemes,the DG grading
is from our number counting fields

dimHi(O(M)) dimHi(O(M)11• ) dimHi(O(M)10• )

⃝ F++,−−
Q⊠Q∗ ⊕ F̂

++,−−
Q⊠Q∗ [Z⊕ C⊕Q⊕ R⊕ (ZCQR)]+,−DG,Lie

≃ ≃[9.17] ≃

[11.7] [9.18]

[13.10]
with the transverse extension of the chain [13.8] by property evolution in each
degree see [9.130] and [11.16].In detail,by [9.148] and [11.6],the sheaf Hi(O(M))
has global (−0) ∨⃝ 0 section.Now the M becomes a trivial homotopy derived
algebraic 11-hypergroupoid.Now,we get the good space for [Step III],which is a
generalized super derived algebraic geometric 11-stack (for D=11),

M! = RMapRet(Spec(−),M rep ∨M ) : EtsdAlgDG,Lie
GenSup → sSet [13.11]

over the generalized super derived affine Lie algebras (i.e.(g⊗L C[t, t−1])∆) see
[11.21],and the opposite category is that of simplicial derived DG Lie generalized
super scheme.Explicitly,it is given by restriction

M!(g̃∆) = RMapRet(Spec(g̃)
∆⇐

,M rep ∨M ) = M|Spec(g̃) [13.12]
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the restriction means the generalized super relative properties are made by this
scheme for instance let X = Spec(g̃∆) in [8.37].

On the M!,naturally we have a topos (Hi(O(M))-Mod of homotopy-
cartesian sheaves [12.109] satisfying the diagram

(Hi(O(M)))-Mod ∼= ΓA-Mod

M!

A-Mod A(M!) = (D ∨⃝ P-eigenbranes) [13.13]

Now,we had finished the double-retract of the double-weak [12.85],and now an
étale closed string scet = D∨⃝P1-eigenbrane see [12.11] and [12.12],they lives in
this topos and the vibration of it gives effect of quantum gravity.The information
of time evolutions is captured in the modules,there is no so called interaction
on this level,the D ∨⃝ P-eigenbranes smoothly evolve over the M! with the
quantum gravity smoothly spread and be homotopy weakly projected out.

Unified field! theory = (Hi(O(M)))-Mod→M! [13.14]

The first explanation is given by [8.8] and the second is given by the view
of analytic ring in the theory of analytic stack below [14.28].Actually,the full
diagram of [11.16] gives an evolution of D∨⃝P-eigenbranes.We still have things
need to be consdered,the first is our elegant theory is in the RHS of [12.19],which
means our real world is a weak form of it,so we want to discuss more details
about the connections.The second is we need to consider theNonexpressibility
below [12.36],and these motivates the next subsection.

13.2 ⃝-sense and math-physics duality

This starts at the discussion in [12.40],now we put physics in it and recall
that we focus on the first retract [12.85] with model category (≃weak,∼=et)

X0 M /(X0 ×M X ∗1 ) M /(X0 ×Ret∗

M X ∗1 )

X0 ×Ret∗

M X ∗1 X0 ×M X ∗1 X ∗1

h Ret

Ret

[13.15]
where we used [8.12] and [8.37].The D-brane is X0 ×Ret∗

M X ∗1 which is a weak
relative property (homotopy type of properties) which is a weak homotopy étale
equivalence which behaves like a path PX ∗1 evolving in the universe with the
evolution of relative property [9.130] or D-eigenbrane.Also,we have a rep version
of [13.2] for P-brane.In this case,we locally see the generalized super algebraifold
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A = Ǎ ∨⃝ A is the generalized super algebraic space,locally for A in [13.1]

M /(X0 ×M X ∗1 ) ∼= A|X , M /(X0 ×Ret∗

M X ∗1 ) ∼= Ret∗A|X [13.16]

And the weak homotopy equivalence induces the followings

(so,X0 ×Ret∗

M X ∗1 ) ∼=weak sc, ([so],X0 ×M X ∗1 ) ∼=weak [sc] [13.17]

Guided by [13.12],we have

String Landscape = (M /(X0 ×Ret∗

M X ∗1 )⊕ (M /(X0 ×Ret∗

M X ∗1 ))rep)-Mod
[13.18]

By the super generalized relative principle,it must corresponds to the non-
solvable theory to cancel the property of solvable theory in the RHS of [12.19].We
know our real world is in LHS of [12.19],which explains why we cannot find SUSY
in our world because we can regard SUSY as a relative property and it is stable
in RHS because of the space is homotopy enriched,it becomes unstable in LHS
so there is actually no SUSY in LHS,it only lives in RHS and by theorem13.3
and along the first weak in double-weak [12.85],SUSY breaks in LHS.

And for solving the problem of the Nonexpressibility,recall the definition
below [12.36],we find the problem on the bottom line about this is our defini-
tions.The observation is our definitions are representatives of the things but not
the things themselves,if we do not have definitions will not affect the existence
of truth itself.Thus,we want to get rid of the definitions.

Definition14.2 The Def⇐! is a functor from category of definitions to cat-
egory of ⃝-senses,with no reverse functor

Def⇐! : (definitions)→ (⃝-senses) [13.19]

governed by below [12.36].By [12.5],we have a ⃝-sense

⃝-sense = Def⇐!PRet(→)≤10GenSup [13.20]

Also we let Math = (definitions of math) and Phys = (definitions of physics)

Def⇐!Math ≃ ⃝-sense ≃ Def⇐!phys [13.21]

which is a ⃝-sense,we have it because we have removed definitions [13.19].
Definition14.3 The weak projection of the ⃝-sense [13.8] gives us duality

between math and physics.
In the end,we get the theory of everything TOE

the M!-theory ≡ Def⇐!Unified field! theory [13.22]

with Def⇐!(⃝-flow) ≃ ⃝-sense ≃ Def⇐!⃝.Thus,exactly [11.69] should be

⃝-sense⇐ F, Left evolution is guaranteed by [13.19] [13.23]
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13.3 Tδ-fusion hierarchy and smoothification

Now we have finished TOE but actually we do not see it in detail.The first
is the differential of cochain complex [13.8] induced by duality fusion and break-
ing,recall in [8.34] and [8.35] it should be based onT-fusion hierarchy.The second
is if we have [13.21],every math should correspond to physics,thus we claim that
solving the T-fusion hierarchy (combing [8.34] with [13.10]) is equivalent to
solving the Goldbach conjecture (understanding the physics meaning).

T-fusion hierarchy Ret∗Goldbach conjecture

Ret∗T-fusion hierarchy Goldbach conjecture

Ret∗

∼=

≃weak

Ret∗ [13.24]

we have 5 types of superstring theories,so we give a notation T-fusiontype that
means different type has different fusion homotopy weakly projecting out

Spec(Z0)(∗,0) ⊕ Spec(Z∗1)(0,∗) ∼=P(Tδ0)
Proj(Z[x]) [13.25]

guided by [8.12] and slightly abuse it for focusing on the fusion,also we used Z
in [9.18] for one type of string-Space Stype.We want go to LHS of [12.19],

Ret∗(Proj(Z[x]) ∼= Spec(Z0)⊠Tδ0(Z) Spec(Z
∗
1)) ≃ weak-additivity [13.26]

Notice that we do not know the operation Z[x],it is algebraically described

Z[x] ∈ Proj(Z[x],≃ Z⊠Tδ0(Z) [x] ≃ Z0 ⊠Tδ0(Z) {x ∈ Z∗1} [13.27]

Then,before the next step we need to make a thing clear in [12.40] and [13.15],we
know the RHS of [12.19] is homotopy enriched so why we denote the étale
equivalence relation X0 ×S X ∗1 but not the derived case X0 ×hS X ∗1 which based
on tensor product of algebras in Ho,because we are in Ho or derived category

X0 ×hS X ∗1 ∼=stable[12.18] X0 ×S X ∗1 ∈ PRet(→)≤10GenSup [13.28]

but in LHS of [12.19],we have X0 ×S X ∗1 ≃unstable
weak X0 ×hS X ∗1 .In this case,

Ret∗((2)0 ⊠Tδ0(Z) (2)
∗
1) ≃ {2} ×hA1 {2} ≃weak (2, 2) ≃weak (4) [13.29]

which means in the ordinary space 2 + 2 ≃ 2(⊠Tδ0(Z))weak2 ≃weak 4,and

(+,−,×,÷,+−×÷)→retract (⊠Tδ(Z),⊠Tδ(C),⊠Tδ(R),⊠Tδ(Q),⊠Tδ(ZCQR))
[13.30]

which should be an explanation of the source of algorithm in our ordinary
space.We claim that understand the Goldbach conjecture is about understand
the algerithm for instance solving 1 + 1 = 2,but by [13.30],+ is an unstable
relative property.Thus,we can only find a quasi-proof of it in LHS but a proof in
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RHS of [12.19].And it is a natural behavior guaranteed by the T-fusiontype hier-
archy.For giving a systematic description of the evolution of relative properties
over the hierarchy,we first define the following Ret∗algorithm

⊠Tδ(Z) : number of relative properties increase

⊠Tδ(C) : number of relative properties decrease

⊠Tδ(Q) : number of relative properties no change

⊠Tδ(R) : change to opposite relative property over ⃝
⊠Tδ(Z) ×M⊠Tδ(C) ≃ ⊠Tδ(Z)×MTδ(C) ∈ ⊠Tδ(ZCQR)

[13.31]

Now,we can see the meaning of weird setting in algebraifold [8.15]

P̃−− · · · P++

−0Q⊠Q∗ P++ P++

P−− P++

0 0Q⊠Q∗ P++

⊠
Tδ(C)

R̃

⊠
Tδ(Z)

⊠
Tδ(R)

⊠
Tδ(Z) ⊠

Tδ(C)

⊠
Tδ(C)

⊠
Tδ(C)

⊠
Tδ(Q)

[13.32]

And we call this the Tδ-fusion hierarchy with −0Q⊠Q∗×00Q⊠Q∗ ⇒ 0.For further
discussion,we need to introduce p-adic field,we can write a prime number as
p = (x/x′)−vp(x), p ∤ x′, x ∈ Z with vp : Q → Z ∪ {∞} and for x = Q we have
vp(x = a/b) = vp(a)− vp(b),and the p-adic norm is |x|p = p−vp(x), x ̸= 0,in this
case in the p-adic metric space,a convergence happens when vp(x)→∞, p > 1,so
a divergent sequence in ordinary (Q, | |) corresponds to convergent sequence in
(Qp, | |p) with Qp = Qp̂ ∼= {

∑∞
n cnp

n|0 ≤ cn ≤ p − 1} see below [14.29].Each
sequence is convergent in Qp,p-adic completion behaves like a smoothification of
Q (filling the horn in Spec(Q)∆

op

[12.106]),so we can combine analytic approach
with functorial approach for studying the dynamics of TOE,

M-flow M

functorial approach analytic approach

F global GLC global ⃝

smoothification
[13.33]

Then,combing [11.85] and [Step III] above [13.1],these inspire us to view

Unified field! theory smoothification (analytic + functorial)

[13.34]
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and it corresponds to local GLC and local ⃝.
Definition14.4 A quantum gravity effect is a smoothfication.This means if

we want to see it in detail,we should have a formalism to study the process of
smoothing but not the two sides of [13.30].

Corollary14.5 The Unified field! theory is a theory with spreading of
smoothifications.And this motivates us to develop analytic stack in section 14.

Now,we back if we cannot get a reason of p + p = 2p can we shift it to
p− p = 0 which is guaranteed by the local ⃝,which means similarly to [12.107]

N = 2 N = 2

N = 4

string

string

string

local⃝−−−−→
N = 2 N = 2

N = 4

string

string

string
[13.35]

where N is oscillation level of string,which means 2+2 ̸= 4 = (N, Ñ) = (2, 2) be-
cause the information of red 4 is forD0-eigenbrane in quasi-discontinuity.Similar
to [Step III] above [13.1] that Unified field! theory lives in the good space,the
proof of Goldbach conjecture also lives in the good space but we need to see it
in detail (combing functorial and analytic).

13.4 Prism and DG Lie adic space

Combing below [13.22],the non-perturbation property of the flows and p-adic
completion below [13.32],we have the following diagram

M ⃝-sense M-flow M-flowp-adic completed

△prism

≃

Def⇐! Def⇐!

p-adic com.
[13.36]

In the UFT [13.13],we have (co)homology on the M with simplicial derived
setting [13.8],actually the ⃝-sense gives a effect of prism and along this prism
the co(homology) in LHS is scattered to various different (co)homology in the
RHS of [13.36].And this gives us the prismatic cohomology in math.Also,we can
form the following diagram by [14.23]

H (O(M)••)

Ǒ(M)•• ⇔ O(M)•• O(M)

O(M-flow) M!

unique

H -quotient

global GLC
A

Ǎ

⃝-localizing

[13.37]
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where we used the notation below [12.92],and combing [13.36] with [14.26],

O(M)•• O(M)•• Ǒ(M)•• ⃝-sense!

not !

! Def⇐!

[13.38]

such diagram gives an explanation of prismatic cohomology in physics.We can
see in [23] for a rough framework of prismatic cohomology.Which also means,the
top left sheaf of (co)homology in [13.37] is global,and locally it splits into several
different types,and by [13.10] they are given by different types of superstring
theories,the different types of (co)homologies are to count different types of
LEEs (generalized super relative properties) of ⃝,also notice below [13.22].

We have seen below [13.32],the | |p is non-archimedean,so we cannot define
Zariski topology for p-adic scheme.Similarly to the metic topology with metic as
a valuation,the additive and multiplicative valuations give ring a topology,called
topological ring.For a toplogical ring A and I ⊂ A an ideal,we can define I-adic
topology onM which is an A-module,generated by {x+InM |x ∈M,n ∈ Z+}.It
is completion because the metric is d(am − bn) = 2−sup{n|(am−bn)∈I

nM} and
d(am − an) → 0 means (am − bn) ∈ I∞ = ∩∞I∞ = {0} with filtered ring
I = ∪nIn, In ⊂ In−1, I0 = I see below [7.19].A Huber ring is a topological ring
A admitting open subring A0 ⊂ A and for A0-ideal I,A0 has p-adic topology
(let ideal I prime).A Huber pair (A,A+) is a relative pair with A+ is an open
and integrally closed subring of integral elements in A.And the Spv(A,A+) is
the set of equivalence classes of valuations on A with |A+| ≤ 1.

Now,for a ring with characteristic p (i.e.R/(p)),we have a homomorphism φ :
A→ A with a 7→ ap because p|Cpn, p orn ̸= 0,so the binary expansion (a+ b)p =
ap+bp in this ring.If there is a Frobenius isomorphism on it,we call it the perfect
ring.Recall that we use Z/nZ graded ring for our generalized super setting,which
has characteristic 2,for a, b ∈ A0⊕A∗1,if it has Frobenius equivalence,we find (a+
b)2 = a2+b2 which behaving like we mod fermionic states.And the superalgebra
is naturally Huber with a nilpotent unit ϖ generated by odd elements see above
[7.11],so it is Tate which is not Lie so it is complete,satsfying

A∗1 ∈ ϖ−nA∗1is bounded, 2/ϖ2 ∈ A∗1, A1
∗/ϖ

hom−−−→ (A0 ⊕A∗1)/(ϖ2) [13.39]

This let us see in detail of Tδ-fusion in detail that is

A0 ⊕A∗1 ∼=P(T) APerfectoid = lim
a 7→a2

A0 ⊕A∗1 [13.40]

So we get X0 ⊕X ∗1 ∼=P(T) XPerf(ectoid) ⊂M
Definition14.6 A DG Lie scheme is a DG Lie adic space covered by the

adic space of huber ring which is generalized super affine Lie algebra

Spv(g̃, g̃+)∆
⇐

Perf ⊂M pre ∨⃝M [13.41]

motivating us to study the algebraic geometry of (Tate) adic spaces.To under-
stand [13.41],the open subsets are rational opens see [14.60],recall [2.12] the con-
formal symmetry contained in string theory preserves angle but not length,also
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by below [8.1] [11.18] and [12.19],so we remove length and remain the equiva-
lence relation about bigness and the equivalence is reflected by [14.34].

14 Modern super algebraic geometry IV

Motivation

Based on the the discussion in section 13.3 as one motivation of this section
which we want to introduce analytic stack and we based on YouTube videos [22]
and [25].On the other hand,the key problem to achieve unification is the diver-
gence from quantization of gravity or non-perturbation,we see in the diagram
[12.19],we can construct M-theory because we put things into a good space,so
we naturally assign the solution to that of finding a setting on the space to let
it good in order to get rid of the divergence problem as we indeed have higher
isomorphisms see [14.8] and [14.16].Geometrically,the compactness means every
covering has a truncation to finite cardinality and analytically,the completeness
means every power series is convergent to a point,the divergence means there is
not a point for a series to get closed to.Thus,the compactness and completeness
actually are equivalent settings extra for the good space and this is a naive
view that there is a correspondence between algebraic geometry and analytic
geometry see [14.45].We will see in [14.47],completing the RHS[12.19] and taking
to derived category relative to it let us go into the UFT following from this
analytic AG theory which also helps us to further study it based on [13.14].

Theorem14.7 The existence of solution of quantization of gravity is equiv-

alent to that of compactness (topological invariant) of RHS
[12.19]
SolidZ[T ]

.

Corollary14.8 Along the [12.19],Ret∗compactness ≃ quasi-compactness
which gives an explanation why we have compactifications in string theory.In
detail,the compactness can be seen in Ran space [11.52] in the RHS,explained
by solidification [14.20] and the quasi-compactness is given by susyc below [7.34]
in the LHS of [12.19],the quasi is reflected by the physical compactification.

14.1 Quantisation of gravity (analytic setting in UFT)

A light profinite set is a countable inverse limit of finite set,with Grothendieck
topology [9.1] generated by finite disjoint unions and surjective maps.So we
get a site of profinite sets Lightprofop,a light condensed set is a sheaf X :
Lightprofop → Set with sheaf condition [9.2].A condensed ring R▷ is a light
condensed simplicial set of rings see above [12.79].An analytic ring is a relative
pair R = (R▷, D(R)),the category with strong equivalence is D(R) ⊆ D(R▷),s.t.

(i) Any limits and colimits has a finite or initial objects in D(R)

(ii)RHomD(R▷)(M,N) ∈ D(R),D(R) is homotopy enriched relatively

(iii) N̂R ∈ D(R)≥0,∀N ∈ D(R▷)≥0 (iv)R▷ ∈ D(R)

[14.1]
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In this case,we can assign a nontrivial behavior (singularity) a weak-regularity
in D(R▷),this is just a analytic version of derived settings in [12.106].We have

Pro(Fin),HomPro(Fin)(lim
i
Si, lim

j
Tj) = colim

i
HomPro(Fin)(Si, lim

j
Tj)

totally disconnected compact Hausdorff spaces ⊂ Top, (BooleanAlgebras)op

[14.2]

the third is ∀x ∈ R, x2 = x and these are equivalence of categories.Also,we
need to consider the bigness of profinite set,for S = lim

i∈N
Si,the size is κ = |S|

and weight is λ = |Cont(S,F2)| = |colim
i

(Si)/F2|,if λ ≤ ω we call it is light.A

proposition tells us if S is a light profinite set then there exist a surjection
{0, 1}N → S from the set of functions.

Combing above,a light condensed set as a funcor X : ProN(Fin)
op → Set

ProN(Fin) ∼= (metrizable totally disconnected compact T2 spaces) [14.3]

X ∈ CondSetlight = Sh(ProN(Fin)),with X(∅),X(S1

∐
S2) ∼= X(S1) × X(S2)

which means ΓX is a factorization category and X(S) ∼= Eq(X(T ) ⇒ X(T ×S
T )),∀T →surj S,for example,a representable sheaf is light condensed set,A :
Cont(−, A) with A(∗) = A the underlying set and A(N∪{∞}) = convergent se-
quences in A,so being metrizablly compactly generated = sequential (continuity
from preserving convergence on level of sequences).And another reason for con-
densed set is let the topos Sh(−) below [14.3] be of compact and of being Haus-
dorff.Based on this,we can discuss light condensed abelian group,recall below
[7.28],we can have a Grothendieck abelian category of sheaves of abelian groups
denoted as CondAblight,for an inclusion Q ↪→ R to the sheaf level we can form
a relative sheaf (R/Q) with condensed setting,(R/Q)(∗) = R/Q,(R/Q)(S) =
Cont(S,R)/Cont(S,Q) with Q is relative discrete so Cont(S,Q) is a set of lo-
cally constant maps.To see clearly,we have a left Kan extension [10.79]

X ∈ Top

S ∈ ProN(Fin) CondSetlight

Cov [14.4]

Similarly to [10.80],we have for HomTop(−, X)→ X ∼= X(X)

X(X) ∼= colim
S→X

X(S) ∼= colim
S→X(∗)

X(S) ∼= X( lim
S→X(∗)

S) [14.5]

So X(∗) ∈ Top with quotient topology (∼= S ×X(∗) S) from∐
S → X(∗) ∼=

∐
Cantor set→ X(∗) withCantor set ∼= colim

Zco.cl.∈Top
Z [14.6]

where co.cl.denotes for countable closed subsets Z with a sequential presentation∐
(N ∪ {∞}) → Cantor set with {0, 1}N ∈ (Cantor set),in this case we get a
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sequential set
∐
(N∪{∞})→ X ∈ CondSetlight with comparison to a simplicial

set.From below [14.3],we get the following equivalence

(qs (light) condesed sets) ∼= Indinj((metrizable) compact Hausdorff spaces)
[14.7]

where qs means quasi-seperated,notice that the ProN(Fin)
op gives us Ind.For

CondAblight,we have unit object Z with glued global tensor product ⊗ from as-
signment S 7→M(S)⊗N(S) and left adjoint of forgetfull functor CondAblight →
CondSetlight is given by X → Z[X].Now,we want to discuss physics from [3.43]

O1(z) O1
−h

O1
−h+1

z

O1
−h+2

z2 · · ·

O2(z) O2
−h

O2
−h+1

z

O2
−h+2

z2 · · ·

∼

≃

∼

≃ ≃
[14.8]

which are Laurent series of quantum fields,when we open the locality z → 0,then
we find the further to the right,the greater the divergence.Recall in Ho,we have
retractions [12.17] which let us deform objects to another.But,we want to ask,is
there an analogue in [14.8] that we can deform the divergence to convergence,and
we call such thing a n-smoothification (red n-isomorphisms) which should be
over M! [13.14] and this gives a concrete description of the no interaction below
[13.13].And by the theorem14.4,these are from the quantum gravity effects in the
Unified field! theory (UFT).In [13.8] and [13.13],actually we have a smooth
hyper presentation with hyper descent of category of A-modules

M•• →M, A-Mod({M•• →M}) ∼= A-Mod(M) [14.9]

Exactly in [12.106],that should be quasi-discontinuity in RHS[12.19]

n-smoothification quasi-continuity (get closed to each point)

P∨⃝Dn-eigenbrane continuity

[14.10]
This means we only have real continuity in UFT,otherwise the continuity is
relative depending on we based on D-brane or P-brane,so it is quasi.And getting
closed to each point means we can express each point as a convergent sequence
[14.8] in RHS[12.19].For T,U ∈ ProN(Fin),the local operation Z[[T ]]⊗AbZ[[U ]] ̸=
Z[[T,U ]] corresponds to locality in physics [3.39] (cannot get closed to a local
point,commutator does not vanish [3.31],open interaction in non-abelian case)

Z[[T ]]⊗Ab Z[[U ]] Z[[T ]]Z[[U ]]

Smo(Z[[T ]]⊗Ab Z[[U ]]) Smo(Z[[T ]]Z[[U ]]) ≃ Smo(Z[[T,U ]])

≃
locality induced by ⊗Ab

UFT UFT

≃

[14.11]
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where Smo(−) means action of smoothification.We also have

Z[R](∗) =

 ∑
δx=[x,x+ϵ]⊂R

nxδx|nx ∈ Z, almost all 0

 = colim
I=[−c,c]⊂R

∪n∈N Z[I]≤n

[14.12]
with

∑
|nx| ≤ n and we see that in condensed set a point of sections can be

covered by a sequence and combining with physics we get

convergent sequence perturbative quantum effect (∼= \ =)et

divergent sequence non-perturbation in black hole =et

[11.33]

smoothification

[12.67]

smoothification
UFT [14.13]

Recall we only can quantize the gravity in the RHS of [12.19],so similarly there
is no solution of it in our real world.Combining with [14.8],this gives us a clear
description of quantisation of gravity in UFT.

Theorem14.9 We say a gravity is quantised is equivalent to say a non-
perturbation behaving like a divergence in gravity dominant region is smooth-
ified to a perturbation behaving like a convergence in quantum dominant region.

By Yoneda lemma [9.7],the internal Hom (hom-tensor adjunction) is

HomCondAblight(X,−)(S)
∼= HomProN(Fin)

light(S,HomCondAblight(X,−)(−))
∼= HomCondAblight(Z[S],HomCondAblight(X,−))
∼= HomCondAblight(X ⊗ Z[S],−)

[14.14]

where we used below [14.7].And for solving the problem and to get a completed
tensor product [14.11],we perform the free collection [7.21] and things happens
like the lifting in [10.110],which gives us an example of analytic ring

Gr(CondAblight,⊗)Z ≃ (CondAblightSymMon,⊗
2)Z used in bottom of [14.11]

[14.15]
Notice that this does not mean we come into classical physics,n-smoothifications
from UFT [14.17] let us retract things to convergent level [14.8].In [14.24],we
have M ⊗2 N = (M ⊗N)2 = (M2 ⊗N2)2 from physics [14.11].We can see

P0 P0

D0

P1

P1

P1′
2-smoothification

H -quotient−−−−−−−→
[13.13]

P ∨D0 P ∨D0

P ∨D0

P1 ≃

[14.16]
where we used [12.107],also we need to know we are still in RHS of [12.19].

n-smoothification RHS[12.19] ∼= (H -quotient)∗P∨⃝Dn-eigenbrane UFT
[14.17]
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Now,we get a relative category (RHS[12.19],UFT).
Remark14.7 So called quantum gravity effect below [13.13] [13.31],means

the weak projection from UFT to the relative weak category RHS[12.19].
Also,the quantum gravity is governed by the local 2-nonexistence see above

[12.34],we have locality and globality at the same time,this is reflected by

f∗ : Hom(P,M)
≃RHS[12.19]

−−−−−−−→ Hom(P,M), (m0,m1, ...) 7→ (m0−m1,m1−m2, ...)
[14.18]

in math in CondAblight,this is a non-archimedean property of summability of
null sequence P = Z[N ∪ {∞}]/Z[∞] and the quasi-isomorphism follows from
f : P → P, [n] 7→ [n] − [n + 1].In this case,M is solid and D(SolidGenSup) ⊂
UFT.And in the derived category,A ∈ D(CondAblight) is solid if it satisfies the
following,it is solid if it satisfies

RHom(P,A)
≃−→ RHom(P,A)⇔ Hom(P,Hi(A))

≃−→ Hom(P,Hi(A)) [14.19]

which means all Hi(A) is solid (in relative strong category) and this gives an
explanation of [13.14] that why we define UFT after H -quotient.Also

non-archimedean discontinuity in qut.dominance

1 + z(qut.dominance) z(gr.dominance)

∼

localizingquasi-continuity
solidification

non-localizing

=

[14.20]

So the solidification is a smoothification and a quantization of gravity if we put
physics in.Notice that the bottom line in [14.20] says non-archimedean getting
closed to 0 from 1 and getting closed to 1 happen at the same time,for (Z→
P → R)→ R2,1 = 0 ∈ R2 = 0 = 1,⊂ étale closed local⃝,giving [14.8].

z =

∞∑
n=1

n
1

n
=

∞∑
n+1

n
1

n
= 1 +

∞∑
n=2

n
1

n
= 1 + z, Z ∈ Solid [14.21]

The derived solidification of ⊗Ab is ⊗L2.Based on the double-weak [12.85]

étale closed local⃝

closed =et closedweak(∼= \ =)et
Ret∗Ads/Cft

H -quotient
[14.22]

where local⃝ ≃=et ∨⃝(∼= \ =)et,and this gives us a clear description of the
relative pair below [14.26] based on the relativity of the double-weak,with

H -quotient∗(−) ◦ Smo(−) = D(−) ◦ Smo(−) : RHS[12.19] → UFT [14.23]
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Also,we want to push all things to scheme level with Y-duality see [9.106]

(IndN(SchFin),Y) ∼= (Corresponding representables sheaves) [14.24]

recall we have the representability only over at least fppf site (smoothness),which
means we need give the relative strong category UFT such a structure,that is

colim
[n]∈∆⇐,n∈N∪{∞}

P∨⃝Dn-eigenbranes ∈ IndN(P∨⃝D-eigenbranes∆
⇐
) [14.25]

notice that we have self T-duality,which means N∪{∞} ∼= N,so IndN ∼= Ind∆⇐ ,In
this case,a simplical sequence is a convergence sequence.Also,we need to notice
that we need an orientation (by tangent vector) to get closed to a point,but now
{0} ∼= {∞} we lost the orientation,meaning that we need point it out,we need

=et ∨⃝(∼= \ =)et ≃ ⃝-flow ∨⃝-sense⃝, UFT⇝Def⇐! ⃝-sense [14.26]

14.2 Structure of Solid and behaviors on RHS
[12.19]
SolidZ[T ]

The solidification Solid ↪→ CondAblight is to find a class of complete objects
which means in Solid all sequences are convergent,to study over Z because in
math it is hard to let R (archimedean) be complete,also by [14.20] the non-
archimedean corresponds to discontinuity in physics.Also,by a theorem 5.13 in
[25],the Solid is abelian,stable under (co)limit and has a single compact projec-
tive generator

∏
N Z,so we work over Z.In detail,the P2 ∼= Z[S]2 below [14.18]

with Z[S]2 = colim
i

(C(Si,Z),Z) = Hom(C(S,Z),Z) = Hom(
⊕

N Z,Z) =
∏

N Z.

Notice that [14.15] gives us (−)2 : CondlightZ → SolidZ,to the abelian subcat-

egory (free collected,quantised [14.8] in RHS[12.19] to UFT).By the definition of

being finitely generated below [7.29],forM and SolidZ ∼= Ind((M ∈)Solidfin.pres.Z )

0→
∏
N

Z→
∏
N

Z→M → 0,Hom(
∏
N

Z,Z) =
⊕
N

Hom(Z,Z) =
⊕
N

Z

0→ Hom(M,Z)→
⊕
N

Z h−→
⊕
N

Z→ Ext1(M,Z)→ 0
[14.27]

where we let h to be injective and now Hom(M,Z) = 0.To the sheaf level,we
act Hom(−,Z),we get with Hom(M,Z) dual to quotient

0→ Hom(M,Z) ↪→
∏
N

Z→
∏
N

Z→ Ext1(M,Z)→ 0 [14.28]

By using [14.14],we have

Hom(M,Z)(S) = Hom(M ⊗ Z[S],Z) = Hom(M,Cont(S,Z)) = 0 [14.29]

where we work over free module,it generated by Hom(M,Z) over S.Because any
finitely presented submodule is isomorphic to a product of copies of Z,so for any
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M ,it is in the form of sheaf of cohomology Ext1(M,Z),which is also the cokernal
of the short exact sequence [14.28] and this gives us an analytic understanding
of definition UFT in [13.14].Also,

∏
N Z is flat under ⊗2

(0→
∏
N

Z g−→
∏
N

Z→M → 0)⊗2
∏
N

Z,
∏
N
⊗2
∏
N

Z =
∏
N×N

Z [14.30]

as g always keep injective and ⊗L is the ⊗L2 with degree 0 which commutes
with filtered colimit in homotopy enriched category and we have M ⊗2

∏
N Z =

colim
i

∏
N(M i ⊗2 Z) =

∏
NM .For M ∈ Ab,the derived p-adic completion of M

is Mp̂ = Rlim
i
M/Lpn,we can choose M/Lpn = (M → M/pn) which is a cofi-

brant replacement see [12.76].If N,M ∈ D(Solid)≥0 are derived p-complete,then
M ⊗L2 N is derived p-complete,(

⊕
N Z)p̂ ⊗L2 (

⊕
N Z)p̂ = (

⊕
N×N Z)p̂.To see

this,from [14.11],we get (Z[[T ]]⊗L2 Z[[U ]] = Z[[T,U ]])/(T − p, U − p),we get a
simple example Zp ⊗L2 Zp = Zp and we let ⊗̂ to be p-adic completion of local

⊗.We want to focus on M = N =
⊕̂

NZp,first we have an injection

colim
f :N→N

∏
N
pf(n)Zp →

⊕̂
N
Zp =

(⊕
N

Z

)
p̂

= lim
n

(⊕
N

Z/pn
)
, ker = 0 [14.31]

where
⊕

m≤f(n) Z/pn with f : n 7→ mmax so it is also surjective.In this case,

M ⊗L2 N ∼=

(
colim
f :N→N

∏
N
pf(n1)Zp

)
⊗L2

(
colim
g:N→N

∏
N
pg(n2)Zp

)
∼= colim
f,g:N→N

∏
N
pf(n1)+g(n2)Zp ∼= colim

h:N×N→N×N

∏
N
ph(n1,n2)Z ∼=

⊕̂
N×N

Zp
[14.32]

where we used [14.31].Next,we want to connect the solidification with rational
opens in Spv to study physics in [13.39].

Next,we want to give Z[T ] [14.12] a geometric interpretation,it behaves like
Spec(Z[T ]),where the N ∪ {∞}-points give us Z[[T ]] which behaves like a sub-
space,but it breaks the property of functorial structure,we see this by

Qp ⊗2
Z Z[[T ]] = Zp

[
1

p

]
⊗2

Z Z[[T ]][1] = (Zp ⊗ Z[[T ]])
[
1

p

]
= Zp[[T ]]

[
1

p

]
[14.33]

which should be isomorphic to Qp[[T ]],but Zp[1/p] is not isomorphic to it.Recall
the definition above [13.31] with Zp = {x ∈ Qp||x|p ≤ 1},the p-adic norm
is for measuring the length of the functions in this vector space,so actually
Zp[[T ]][1/p] should be understood as the ring of bounded functions,and taking
Spec,we get an open unit disc in Spec(Qp[T ]).This suggests that Z[[T ]] ↪→ Z[T ]
as the open unit disc,and it gives a constraint on the local operation in [14.32]
that is |x|p ≤ 1 for Qp,then we preserve the the functorial structure.Getting
the closed unit disc bases on (6.1.1) of [2], explained in 6.3 of [4].We need to
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know the conformal map above [3.39] shift invariantly from the additive lower
cylinder C2 to multiplicative unit disc and upper C2 to outside of unit disc.

C2 w ↔∼= −w D2 (z →∞)↔∼= ( 1z → 0)z=e−iw [14.34]

where the outside and inside is equivalent and we can cover any geometric ob-
ject by closed unit discs.Then,we form a 2-cover (S1 ∼= C2),Z[[T ]]⊗2Z[[T−1]] =
Z[[T, T−1]] and we want to localized at the w > 0 (mapping to open unit
disc),Z((T−1)) = Z[[T−1]]⊗Z[[T−1]] Z[T, T−1],killing it (getting w ≤ 0) is equiv-
alent to mod the equivalence relation in [14.33] (restrict to w ≤ 0).

killingZ((T−1)) ∼= (Z[[T ]][T ] ∼= Z[[T ]][T ]/(UT − 1)) [14.35]

where we mod the equivalence relation of 2-cover formed by T -valued and (1/U)-
valued discs by the isomorphism.We can try to equip with physics,we can form
an eigen S2 from [12.92] in (RHS[12.19],UFT) see below [14.17],

H -quotient∗(PD2 ⊕DD2-eigenbrane) ∼= P ∨⃝ DD2-eigenbrane ∈ UFT
[14.36]

If we let Z((T−1)) = PD2-eigenbrane,we get in UFT

RHom(PD2-eigenbrane, D(M)) = 0, D(M) ∈ D
(
(ModZ[T ](SolidZ))

RHS[12.19])
[14.37]

And this gives us an explanation of the modules in [13.14] where

D
(
(ModZ[T ](SolidZ))

RHS[12.19])
⊂ (Hi(O(M)))-Mod [14.38]

Back to math,M is Z[T ]-solid,if and only if

HomZ(P,M) ∼= HomZ(P,M/(UT − 1))⇔ [14.37]⇔
HomZ[T ](P ⊗Z Z[T ],M) ∼= HomZ[T ](P ⊗Z Z[T ],M/(UT − 1))

[14.39]

We have group (Z[TM ],Z[TN ])-actions on D(Z[T ])-modules (M,N) by the de-
rived tensor product,see below [12.46],by quasi-flat cofibrant replacement of Z[T ]

M ∼=M ⊗L
Z[T ] Z[T ] ∼=M ⊗L cofib(Z[TN ] · TM → Z[TN ])

∼= cofib(M ⊗L
Z Z[TN ]→M ⊗L

Z Z[TN ]/(TM − TN ))
[14.40]

Then,we put if into the derived sheaf of Hom,we get

RHomZ[T ](M,N)

∼= RHomZ[T ](cofib(M ⊗L
Z Z[TN ]→M ⊗L

Z Z[TN ]/(TM − TN )), N)

∼= fib(RHomZ[TN ](M ⊗L
Z Z[TN ], N)→/(TM−TN ) RHomZ[TN ](M ⊗L

Z Z[TN ], N))

∼= fib(RHomZ[TN ](M,RHom(Z[TN ], N)→/(TM−TN ) RHomZ[TN ](M,

RHom(Z[TN ], N)) ∼= fib(RHomZ[T ](M,N)→/(TM−TN ) RHomZ[T ](M,N))

[14.41]
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where we used [14.14].Now,for a Z[S]-module with action f : X → X,

X ∼= cofib(X ⊗L
Z[f ] Z[f ] · T →/(T−f) X ⊗L

Z[f ] Z[f ] · T )
∼= cofib(X[T ]→/(T−f) X[T ])

[14.42]

where T is a quasi-flat S-module.We want to make several things clear,by below
[14.29],we will have a form of

∏
N(−) in Solidfin.pres.Z and 2-categorical notion

ModZ[T ](M)[9.25] ∈ SolidZ-ModZ[T ] = ModZ[T ](M ∈ SolidZ) [14.43]

Thus,we have inclusions with adjoint (−)2 which is left to the 2nd above [14.27].

SolidZ[T ] ⊂ SolidZ-ModZ[T ] ⊂ CondAblight-ModZ[T ] [14.44]

and the first inclusion should also have a left adjoint (−)T2,such functor should
have a property ((

∏
N Z)[T ])T2 =

∏
N Z[T ].Before we see more properties,we

want to give a summary of solidification by diagrams,in the math side

(series of algebraic structures) (series of geometric structures)

(series of analytic structures) RHS
[12.19]
SolidZ[T ]

to complete≃[14.8]

≃
[14.7]

to complete

to complete

[14.45]
where because ⃝-sense [13.21],we do not distinguish math with physics.

RHS
[12.19]
SolidZ[T ]

∼= (spaces covered by P⊕DD2-eigenbranes) [14.46]

where PD2 ⊕DD2
∼= P⊕DD2 should be understood as the closed unit disc in

RHS
[12.19]
SolidZ[T ]

and combing with [14.23] and [14.4] we have the diagram

RHS[12.19] RHS
[12.19]
SolidZ[T ]

UFT

Smo(−) H -quotient∗(−)

P(F)−1
[14.47]

And the reason we do not consider SolidZ ̸= SolidZ[T ] is in [14.16]

P0 ∨⃝ D0 P0⊕D0 RHS
[12.19]
SolidZ

D0-localizing

P0-localizing

≃ [14.48]

We want RHS
[12.19]
SolidZ[T ]

∩UFT = ∅ and [14.37] is preserved in it.

PD2-eigenbrane→cannot retract P ∨⃝ D0-eigenbrane ∈ UFT [14.49]
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Back to math,letM ∈ ModZ[T ](SolidZ),soM ≃ HomZ[T ](Z[T ],M),by the [14.37]

we should have RHomZ[T ](Z((T−1)),MLT2) = 0 which helps us to find an

expression of MLT2,it just to give a modification of Z[T ].We find

0 =RHomZ[T ](Z((T−1)), cofib(Z((T−1))→ Z((T−1)))
∼= cofib(Z((T−1))⊗L2

Z[T ] Z[T ]→ Z((T−1))⊗L2
Z[T ] Z((T

−1)))

∼= RHomZ[T ](Z((T−1)),RHomZ[T ](Z((T−1))/Z[T ][−1],M))

[14.50]

so MLT2 ≃ RHomZ[T ](Z((T−1))/Z[T ][−1],M) which should be understood as

killing Z((T−1)) so Z((T−1)) derived hom to give zero.To connect with physics,

Z((T−1))/Z[T ][−1] ≃[14.35] Γ(Z[T ]/(Z[[T ]][T ] ∼= Z[[T ]][T ]/(UT − 1))) [14.51]

Then we open the generalized super setting by below [12.92]

Z[T ]/Z[[T ]][T ] ∈ Ǎ,Z[T ] \ Z[[T ]][T ]/(UT − 1) ∈ A
Z[T ]/(PZ[[T ]][T ] ∼= DZ[[T ]][T ]/(UT − 1))

≃ Z[T ]/((Z[[T ]][T ])rep × Z[[T ]][T ]) ∈ Ǎ ⊕ A
[14.52]

In this case,by [13.13],[14.23] and [14.46] we have

Γ(Z[T ]/((Z[[T ]][T ])rep × Z[[T ]][T ])) ≃ P⊕DD2-eigenbrane

D(Γ(Z[T ]/((Z[[T ]][T ])rep × Z[[T ]][T ]))) ≃ P ∨⃝ DD2-eigenbrane
[14.53]

which gives us a way to understand the object in UFT that is

(P orDD2 ⊂ P⊕DD2 ̸⊂ P ∨⃝ DD2)-eigenbrane [14.54]

The next property is for D(SolidZ)→ D(SolidZ[T ]),M
L2 7→ (M ⊗Z Z[T ])LT2

(M ⊗ Z[T ])LT2 ∼= (M [T ])LT2 ≃ RHomZ[T ](Z((T−1))/Z[T ][−1],M [T ])

RHomZ[T ](Z[[U ]][−1],M [T ]) ∼= fib(RHomZ[T ](Z[[U ]][−1],M [T ])

→/(T−f) RHomZ[T ](Z[[U ]][−1],M [T ]))

∼= fib(RHomZ[T ](UZ[[U ]][−1],M)⊗LT2
Z[T ] Z[T ]

→/(T−f) RHomZ[T ](UZ[[U ]][−1],M)⊗LT2
Z[T ] Z[T ])

∼= RHomZ[T ](cofib(UZ[[U ]][T ][−1]→/(1/U−f) UZ[[U ]][T ][−1]),
cofib(M [T ]→/(T−f) M [T ])) ∼= RHomZ(UZ[[U ]][−1],M) ∈ D(SolidZ)

[14.55]

where we used [14.35] in the first line,so acting Z[T ] is equivalent to act Z[1/U ]
and used [14.41] in the second line,then used [14.42] in the last line.And the
isomorphism tells us the functor below [14.54] is t-exact.Which means we have
a t-structure on UFT based on the t-structure of the M-theory see [11.66].And
this t-structure gives the orientation [14.26],and it should be

UFT♡ =⃝-sense ↪→ (⃝-senses) ≡ ⃝-Sense [14.56]
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Loosely speaking,UFT♡ is a point of sense in UFT,of absolute nonexistence,it
can be ”seen” if we do meditation at that level.We need to realize that the
TOE is a theory of everything (math,physics,philosophy,religion etc.),but we
mainly discuss philosophical and scientific views here and we put the religious
correspondence to our theory at the very end.And combing with [14.26],we get

Def⇐!UFT ≃ UFT♡ =[13.22] TOE ↪→⃝-Sense [14.57]

and we need to notice that compared to [13.20] and [13.21] this is the only way
we can get (quasi-define) to the ⃝-sense.

Now,we have a structure of Six-Functor formalism see [24] on [14.44].

D(ModZ((T−1))(SolidZ)) D(ModZ[T ](SolidZ)) D(SolidZ[T ])⊂=i∗

(−)⊗Z[T ]Z((T−1))=i∗

i!∼=i∗

(−)LT2=j∗

[14.50]

M 7→[M→M⊗ZZ[T ]]=j!

⊂=j∗

[14.58]
where ! is for local functor and ∗ is for global functor,inclusion i is proper and
we can get j∗ by 2-sheafification of j!.By [9.26] and [14.43],it should gives a
Six-Functor formalism on the corresponding sheaf level

D(Sh(Z;Z)) D(Sh(X;Z)) D(Sh(U ;Z))
i∗ j∗

i!

i∗ j!

j∗

[14.59]

In [14.58],the left is about the open unit disc Z((T−1)) and the right is about
killing it,so we can let Z ∈ X be open and U = X \ Z be closed.The local to
global property preserved by Six-Functor formalism follows from [14.58],gives a
global descent theory on [14.59] for the derived stack [12.104] and [12.108] or on
the category of sheaves of (co)homologies on the derived stack [12.102].

The conformal map [14.34] and [14.58] gives us enough reasons to restrict
the middle global sheaf in [14.58] along the rational opens in valuation spectrum

X

(
f1, ..., fn

g

)
7→ {M ∈ D(ModR(SolidZ))}, R ∈ Alg(SolidZ,⊗) [14.60]

where g ̸= 0, v(fi/g) ≤ 1,such that M ≃ M ⊗Z R, f, gi ∈ R(∗) see below
[14.5],and for all i we have [14.9] which means to go outside is equivalent to go
inside at the same time,that is RHom(P,M) ∼= RHom(P,M)/(T −g/fi), T ∈
M .And we glue [14.60] to get the structure sheaf on Spv(R(∗)).

By the discussion of compactness of topological space below [13.41] and
[14.4],if R ∈ SolidZ[T ],f ∈ R(∗) is power-bounded which is Hom(P,R) ∼=f→1/f
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Hom(P,R).For instance,we naturally have condensed ring structure

lim
d
O[d] =

D∑
m+h=0

(
O[m+h] =

Om
zm+h

)
,Alg(SolidZ)

T2 ⊂ SolidZ[T ]

L+(g ⊗Z C[t, t−1]) : (lim
d
O[d])op → (hlim

d
O[d])

[14.61]

where (lim
d
O[d])op ⊂ ProN(Fin)

op, 0 ≤ d ≤ D and h see above [3.58] it is given

by the tensor transformation to the unit disc induced by the conformal map
[14.34].L+(g ⊗Z C[t, t−1])T2 ∈ SolidZ[T ],by the definition above [14.67],it is
equivalent to swap 1/z to z in it and the solidified condensed affine Lie algebra
is over the good space which preserving the smoothification [14.8].

Definition14.10 By [3.13] [11.32] theorem14.9 below [14.13] and [14.47],a

current in L+(g̃Perf)
LT2 ∈ D(RHS

[12.19]
SolidZ[T ]

) ⊂ UFT is a field generating the

quantum gravity and we call it an unified field,and see perfectoid ring in [13.41].
Back to math,f is called topological nilpotent if Z[T ] → R, T 7→ f fac-

tors through P2 =
∏

N Z = (1, ..., 1, 0, ..., 0) see above [14.27],with Z[T ](P2) ≃
Z⟨T ⟩.Let R◦ be set of power-bounded elements in R(∗),we have eR(∗) ∈ R◦ and
for f, g ∈ R◦ ⊂ R(∗) we have the diagram along ⊗2 by [14.11]

Z[T ]⊗2 Z[T ] = Z[T,U ] R

∏
N×N ZZ⟨T,U⟩

[14.62]

It gives us the closure axiom of R◦ and R◦◦ ⊂ R◦,which is the set of topological
nilpotent elements,and R◦ is a subring of R.We also have

Z[T ]2 ≃−→ Z[x0, ..., xn−1][T ]
(Tn + xn−1Tn−1 + · · ·+ x0)

→ R◦ [14.63]

where we used above [14.61],every monic polynomial in SolidZ[T ] can be con-
vergent,which also make R◦ integrally closed.And we can combine [14.62] and
[14.63],R◦◦ ⊆ R◦ is a radical ideal.Guided by [14.63],we have in [14.60]

O(π0X

(
f1, ..., fn

g

)
) = H0(

R[x1, ..., xn]
T2

(gx1 − f1, ..., gxn − fn)

[
1

g

]
) [14.64]

such that g → 1/g gives equivalence and every fi/g is power-bounded and we
used derived AG because [14.17],and see the derived scheme in [12.9].Combing
[13.41] and [14.61],we see the structure sheaf on DG Lie adic space is

DG,Lie
Perf X

(
zO[0], ..., zO[D]

z

)
7→ L+(gPerf)[x0, ..., xD]

T2

(zx0 − zO−h, ..., zxD −OD−h/zD−1)

[
1

z

]
[14.65]

where z → 1/z inducing O−d → Od gives equivalence,also see [3.61] which gives
us commutativity here,and OD−h/zD is bounded by the spacetime dimension

187



with v(OD−h/zD) ≤ 1 as the normalization of the quantum fields.The gPerf

means we mod the Z2 generated by Tδ and we glue the rational opens to get

Spv(g̃, g̃+)Perf.Such things are the building blocks of RHS
[12.19]
SolidZ[T ]

.

14.3 Analytic rings and propertificationan

Now,we want to use the analytic stack to formalize things we discussed above
and to study the derived category UFT on the derived stack [13.13].For a light
condensed ring A▷,an analytic ring structure is a abelian full subcategory

ModA ⊂ CondA▷ = {light condensed A▷-modules,A▷ ⊗M →M} [14.66]

The property on it is stable under all (co)limit,extensions and ExtiA▷ .There
exists a left adjoint CondA▷ → ModA,M 7→M ⊗A▷ A the kernel is stable under
⊗,which is a ⊗-ideal.To see this,for M ⊗A▷ A = 0,we have

Hom(N ⊗A▷ M,A) ∼= Hom(N ⊗A▷ M,Hom(N,A⊗A▷ A)
∼= Hom(Hom(A,M),Hom(N,A)) ∼= Hom(A,M ⊗A▷ A)⊗A▷ N = 0

[14.67]

which gives us the associativity and an unique symmetric monoidal structure
making (−) ⊗A▷ A which is given by the hom-tensor adjunction (H-T duality)
[14.14],we need to see more information about it.A trivial case is,1 ⊗A▷ A ≃
HomA▷(A,−),it actually correlates with the Y-duality [9.106],and combing dis-
cussions below [11.51],[11.66],[14.45] and [14.47],we have

F UFT

Y2 = Yself ⊕Yunself RHS
[12.19]
SolidZ[T ]

H↔ T hA ↔ A

H -quotient∗

[14.68]

where Y2 is a 2-representability,which makes two definitions [11.85] and [13.14]
in consistency.Next,we study the analytic ring structure in derived category.

We can write an analytic ring as a pair A = (A▷,ModA),we define D(A) is
a full subcategory of D(CondA▷) such that M ∈ ModA with Hi(M) ∈ D(A)
which is triangulated.The derived category is triangulated,that is

Ri
∏
n∈I

M ′n → Ri
∏
n∈I

Mn → Ri
∏
n∈I

M ′′n → Ri
∏
n∈I

M ′n[1] [14.69]

with a fibrant replacement M → (Mn)n∈I which is also a series expansion in
ModA and we can forget the derived structure and leave triangulated ModA by

Ri
∏
n∈I

Mn ≃ Ri
∏
n∈I

HomA▷(A
▷,M) ∼= ExtiA▷(

⊕
n∈I

An∈I ,M) ≃ RiM [14.70]
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where we used the stability below [14.66].Next is ⊗-ideal,for M• ∈ D(CondA▷)

M ⊗L
A▷ N ≃ HomD(CondA▷ )(M•,RHomD(A)(N•, A•))

A• ∈ D(A), (N• = Rlim
n
τ≤nN

≃−→ N) ∈ D(A)
[14.71]

where we used Postnikov limit as the fibrant replacement making things into
D(A) as we can use the H-T duality in [14.68],and this gives us a spectral se-
quence,so we first calculate it by Extq(Np, A•) ⇒ Extp+q(N,A•) see 2.4.25 in
[12],then the ⊗-ideal on the derived category is given by that of ModA [14.67]
through [14.70].And in the D(A),(− ⊗L

A −) ∼= (−) ⊗L
A▷ A gives the symmetric

monoidal structure.The t-structure is stable under derived limit and the trun-
cation τ≤n so the inclusion D(A) ↪→ D(CondA▷) is and the its left adjoint
(−)⊗L

A▷ A are t-exact which gives D(A) a nature t-structure with

D(A)♡ = ModA, (−⊗L
A▷ A)

♡ = (−)⊗A▷ A (−⊗L
A−)♡ = (−⊗A−) [14.72]

Similarly to [14.4],we have the following left Kan extension

SolidRings

A▷(∗) ∈ HuberRings A▷ ∈ CondRings

[14.73]

where A◦◦ ⊂ A◦ ⊂ A▷(∗) see around [14.62]

A◦ = {A▷(∗)|A▷ ∈ SolidZ[T ]}, A◦◦ = {A▷(∗) ∈ A◦|[14.62]} [14.74]

By [14.18],an analytic ring A = (A▷,ModA) is solid if and only if allM ∈ ModA
are solid that is every f∗ : P ⊗Z M → P ⊗Z M gives an equivalence.For an
analytic ring structure A on a solid condensed ring A▷,we can define

A+(∗) = {g ⊗2
A▷ f |(Z[T ],Z⟨T ⟩)→ A, T 7→ (g, g ⊗A▷ f), g ∈ A◦◦}

= {g ∈ A▷(∗)|P2 ⊗Z A ∼=g→1/g P
2 ⊗Z A}, P2 ∼=

∏
N

Z [14.75]

Now,by Z⟨T ⟩ ⊂ Z[[T ]] and [14.58],we get a category of relative Huber pairs

(A▷, A+) ∈ (Alg(SolidZ[T ])
T2,ModZ[[T ]](ModA)), A◦◦ ⊂ A+(∗) ⊂ A◦

ModZ[[T ]](ModA) ↪→h∗ ModZ[[T ]](SolidZ)→(−)T2 SolidZ[T ] ↪→k∗ SolidZ
[14.76]

with ModA ↪→ SolidZ and we have Asol = k∗((h∗(A
▷, A+))T2) with

ModAsol
= k∗((h∗ModZ[[T ]](ModA))

T2) = ModZ[[T ]](CondA▷) ∩ SolidZ [14.77]

which is a relative solid analytic ring.And we denote (−)▷2 = k∗ ◦ (−)T2 ◦ h∗,

(Alg(SolidZ[T ])
T2,ModZ[[T ]](ModA))▷2 = (Alg(SolidZ[T ])

T2,SolidA(SolidZ))
[14.78]
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where the bold symbol for category of ModAs.In this case,we can summaries
them by the following diagram

(analytic rings on solid condensed rings) (relative Huber pairs)

(Alg(SolidZ[T ])
T2,ModZ[[T ]](ModA)) (solid relative analytic rings)

id×(−)+

(−)▷2

[14.79]
with solid relative analytic ring denoted as (A▷,Mod(A▷,A+)▷2).Now,we put
physics in,for the condensed affine Lie algebra,we have a relative pair

(L+(g̃Perf)
T2,L+(g̃Perf)

+)▷2 ∈ Ret∗(RHS
[12.19]
SolidZ[T ]

,UFT) [14.80]

which let us put the solid analytic ring structure in.
Next,we want to put things into RHS of [12.19].For a commutative ring

R,the D(R) is fibered over Spec(R),with B-sheaf U ∈ Spec(R), 7→ D(O(U))
glued to structure sheaf of ∞-category.So,we need to let D((A▷, A+)▷2) fibered
over Spv(A▷,Mod(A▷,A+)▷2).For achieving this and combining with physics,we
need to make things clear.The first thing is a ring structure (R,+,×) is in LHS
of [12.19],so actually it should be acted by Ret∗ to RHS we need

Ret∗(R,+,×) = (Ret∗R,⊠Tδ(Z),⊠Tδ(R)) [14.81]

where with Ret∗algorithm [13.30].For a Ret∗algebra,the only nontrivial func-
tions should be valuations to number counting fields,so we have

Ret∗Spv
0(R,R+) = {v : Ret∗R→ [Z⊕ C⊕Q⊕ R⊕ (ZCQR)]+

|v(P1 ⊠Tδ(R) P2) = v(P )⊠Tδ(R) v(P2), v(P1 ⊠Tδ(Z) P2) ≤
max{v(P1), v(P2)}, v(0) = 0, v(1) = 0Q⊠Q∗ , v(Ret∗R

+) ≤ 0Q⊠Q∗}/ ∼
[14.82]

for a Huber pair (R,R+) and we need to mod the equivalence relation generated
by dualities.Thus,we need the derived case of [14.80] to be fibered over

Ret∗Spv
⃝((L+(g̃Perf)

T2,L+(g̃Perf)
+)▷2) [14.83]

and notice that the double-weak [14.22].Now,back to ordinary Spv,the rational
opens gives a basis of quasi-compact opens,closed under finite intersections

U

(
f1, ..., fn

g

)
= {v|v(g) ̸= 0, v(fi/g) ≤ 1 ∀ i}

O
(
U

(
f1, ..., fn

g

))
= R

[
1

g

]
,O+

(
U

(
f1, ..., fn

g

))
= R+

[
f1
g
, ...,

fn
g

]
[14.84]

the overline denotes for integral closure.The rational opens in Spv(R,R+) give
us a Zariski site,from [14.34] we have a pair of covering

({R[f ], R[1/f ]}, {R+[f ], R+[1− f ]})→ (R,R+) [14.85]
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For R,we naturally have the the global descent theory to let us glue and localize
along the Zariski site D(Sh(X → R)) ∼= D(Sh(R)) which is an equivalence of
derived category [9.70].but for the R+,the localization process is

onUf : RHomZ[T ](Z((T−1))/Z[T ][−1],−) ◦ (−)⊗Z Z[T ](R) [14.86]

with the condition [14.39],and this is a T -solidification with killing the Z((T−1))
see [14.35] and below [14.50].And we use RHomZ[T ](Z[[T ]]/Z[T ][−1],−) to lo-

calize the derived module on U1/f .Thus,for the Huber pair (R,R+),we need to
use (Zariski descent [14.59],!-descent [14.58]) guaranteed by the Six-Functor for-
malism and H-T duality that we can form [14.86].Notice that along [14.47] a
solidification Smo(−) is to restrict the algebraic object on Z[[T ]]⊕Z((T−1)),and
D(−) shrinks them [14.23],the shrink is understood in [Step III] above [13.1].We
can understand this only if we combine math with physics as [14.46] and [14.49].

RHomZ[T ](Z((T−1))/Z[T ][−1],−) ∼= RHomZ[T ](Z[[T ]]/Z[T ][−1],−) [14.87]

with the killing is understood as shrinking,so such formalism help us understand
the behaviors on UFT,if it is still hard to understand,see the foundation of
Taoism.Also,we can do solidification [14.8] in the RHS of [12.19],for [14.82]

Ret∗Spv(R
2, R+) = Spv((Ret∗R)

2, (Ret∗R)
+) [14.88]

And for solid ring R,D(R,R+) is fibered over Spv(R,R+) by the B-sheaf U 7→
ModR(D(O(U)),O+(U)).

A Tate adic space is an analytic space that is covered by Spa(R,R+) with
Tate R that we for I ∈ R0 ⊂ R with I-adic topology.And for a Tate A▷,we can
analyze propertification by analytification in the diagram

A▷(∗) Spec(A▷(∗))

Spa((A▷(∗), A+(∗))▷2) Ret∗Spa((A
▷(∗), A+(∗))▷2)

propertification

analytification
propertificationan [14.89]

The GAGA theorem tells us for a R-algebra A ≃ A ⊗Z R,if Spec(A) is proper
over Spec(R),then the Spec(A)an ∼= Spec(A),which means the analytification in-
duces equivalence,in this case,the analytic propertification propertificationan =
Ret∗analytification induces an equivalence.Thus,we can give an analytic set-
ting for UFT [13.14] over the derived stack M!,our goal is not only to study
UFT,but also to achieve the TOE.For category of analytic rings AnRing based
on the category of condensed rings below [14.3],we have analytic stack in the
form Sh(AnRingop) with D(Sh(AnRingop)) = Sh(D(AnRingop)) which is an
analytic derived stack.By the propertificationan we have

UFT(M!)
≃−→ Sh(D(Ret∗

GenSup,LieAnRingopsol)) [14.90]

where it is over the opposite category of that of [14.83].By [14.26] [14.47] [14.48]
[14.56] [14.77] and [14.80],we want it to be the pair (UFT,TOE).
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14.4 6-functors,!-descent and the Unima

The stakified condition for the derived analytic stack need we have the global
descent theory given by below [14.86],that we want to make it clear.In the
diagram [14.58],we have six functors (⊗,RHom), (f∗, f∗), (f!, f

!).By [10.68],the
global descent for Sh follows from that of underlying stack,so we discuss the
six functors for D(AnRingop).The Six-functor formalism for a derived category
D(X) follows from the following axioms

(1)Each D(X) is a closed symmetric monoidal ∞-category with symmetric ⊗
dual to RHom (2)We have global adjoint functors f∗, f∗ for f : Y → X

with f∗ : D(X)
⊗−→ D(Y ) (3)We have a local functor f! : D(Y )→ D(X)

which is commutative with g∗ that is g∗f! ∼= f!g
∗

for A ∈ D(X), B ∈ D(Y ),f!f
∗A ∼= f!B with B-module f∗A,A-module f!B

[14.91]

Below [14.58],we have seen that for a proper mapf, f∗ ∼= f!,this is because proper
morphism is affine,we can glue affine morphisms by [10.7].We call a map is !-able
if f : Y → X can be factorized to open immersion j : Y → Y and proper map
f : Y → X so f! = f∗ ◦ j!.The derived category is enriched of !-able maps with
Y a compactification of Y which is uniquely determined.And this things deter-
mine an abstract Six-Functor formalisms for derived category.Then,we want to
apply this to analytic stack,an affine analytic stack is AffAnStk ∼= AnRingop

with analytic spectrums AnSpec(A) ≡ Spv(A) as objects and morphims are
proper if f∗ : D(B) → D(A) over f : AnSpec(B) → AnSpec(B),satisfies (3) in
[14.91].This is equivalent to say the morphism of analytic rings factors through

A = (A▷,ModA) B = (B▷,ModB)

(A⊗A▷ B▷,ModA⊗L
A▷
B▷)

induced

(−)(L)T2

localization [14.92]

ModA ∼= D(A)≥0 see above [14.69],that is an induced analytic ring with A
as the compactification of it.A map j : AnSpec(B) → AnSpec(A) is an open
immersion if j∗ admits a left adjoint j! satisfying (3) in [14.91].For instance,let j :
AnSpec(Z[T ]2,Z[T ]2) → AnSpec(Z[T ]2,Z),recall the meaning of solidification
above [14.87],this should be covered by the analytic spectrums of the following

j : (Z[[T ]]⊕ Z((T−1)))2 → (Z[[T ]]⊕ Z((T−1)),Z[[T ]] ∨ Z((T−1))) [14.93]

which are algebraic open unit disc for solid case and taking AnSpec(−) gives
us the geometric open unit disc,so j∗j

∗ = RHomZ[T ](Z((T−1))/Z[T ][−1],−) see
[14.87] and for M ∈ D((Z[T ]2,Z)),M ⊗L

Z[T ] Z((T
−1))/Z[T ][−1] is a compactifi-
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cation of M ,that gives the diagram

D(ModZ[T ](SolidZ)) D(SolidZ[T ])

compactification

proper

[14.94]

see [14.58].So we get an assignment M 7→ j!j
∗M .

Proposition15.1 By [14.23],The functor H -quotient∗(−) is a category of
F-fusions with [14.47] can be understood as a process of compactification.

Back to math,[14.93] corresponds to idempotent (co)algebra after solidifica-
tion which is a compactification in [14.94],that is j! = j!⊗j! to Z[[T ]]⊕Z((T−1))

(j! ⊗ j!)eD(Z) = j!eD(Z) ⊗ j!eD(Z) ∼= j!(j
∗j!eD(Z) ⊗ eD(Z)) = j!eD(Z) [14.95]

where we used (3) in [14.91],which is called projection formula.This also says
that j!j

∗M = j!eD(Z) ⊗A M ≃ RHomA((j! ⊗ j!)eD(Z),M) which also gives an
explanation of [14.48] also see below [14.86] and derives to over Z[[T ]]∨Z((T−1)).

Now,we call the ∞-Grp anima DSh(AnRingop) = Anima(AnRingop),in an-
alytic derived stack,an object is a homotopy-enriched ∞-groupoid and

anima is (homotopy,!-map)-enriched with (∗-descent,!-descent) [14.96]

from the naive discussion below [14.86] with ∗-descent the global ordinary de-
rived descent see [10.83].So a map of stacks f : Y → X satisfies ∗-descent if

f∗ : D(X)
≃−→ lim

∆
(D(Y )⇒ D(Y ×X Y )⇛ · · ·) [14.97]

which is a derived gluing property of [9.2].And for a !-map f : Y → X

f ! : D(X)
≃−→ lim

∆
(D(Y )⇒ D(Y ×X Y )⇛ · · ·) [14.98]

with !-descent in math lets us glue derived solidifications (compactification
[14.94]) and we need pair of global descents for analytic derived stack.

Definition15.2 An analytic duality fusion is analytic propertification of
duality fusion.Thus,for the analytic derived stack [14.90],we need

Ret∗(!-descent) = H -quotient∗(propertification
an[8.53]) [14.99]

Thus,we need Ret∗(!-descent) to glue the Def⇐!F-fusions

Ret∗AnSpec⃝(−, (L+(g̃Perf)
T2) Ret∗AnSpec⃝(−,L+(g̃Perf)

+)▷2)

Def⇐!F-fusion

[14.100]
Then,we get Def⇐!Ret∗(!-descent) to glue ⃝-senses in TOE.
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Definition15.3 Similarly to analytic derived stack above [14.96],we call the
category of ∞-groupoids in the RHS of [14.90],the Unima,and that becomes

Unima(Ret∗
GenSup,LieAnRingopsol,Perf) [14.101]

where we want the Unima denotes for the unification and the unimaginable.From
[14.56] and [14.57],the global descent below [14.100] lets us glue the ⃝-senses.

Unima = (UFT,TOE) =⃝-Sense⇐ UFT [14.102]

with left evolution and the no definition fusions in [14.100] which is proper
and already !-ed.Now,back to math,we get a !-site with Grothendieck topolpogy
generated by !-coverings !-able {f ! : Xi → Y }i∈I and the globalization

∐
iXi →

Y which is a !-able surjection.Combined with !-able factorization of [14.47].

TOE UFT

RHS
[12.19]
SolidZ[T ]

RHS[12.19]

RHS
[12.19]
P[13.32] RHS

[12.19]
D[13.32]

Unima

Our world in LHS[12.19]

P(Def⇐!F)

Def⇐!Ret∗!-able H -quotient∗(−)

Smo(−)

Ret∗!-able

P(Tδ self)

Ret∗!-able

Ret∗Ads/Cft

P(Tδ unself)

Ret∗!-able

[Step II,III]

[14.103]
with universe evolution picture Π in [12.93],property evolution in [11.16] and
the Nonexpressability below [12.36],also with homotopy weak projection in
[13.15].This is an upgraded [13.6] of derived stack,of analytic derived stack and
we see things in details and achieve TOE.The diagram [14.103] collects all
information we developed, for instance,[8.28] [8.34] [8.37] [12.25] [12.92] and
above [13.1].Back to math,see below [10.94],we have AnRing → ComAlg(prL)
with (R▷, D(R)≥0) 7→ D(R)≥0 under D(CondAb).

This theory is aimed at realizing the pursuit of perfection by physicists and
mathematicians,but so-called perfection does not exist relative to our existing
state.We have completed the complete framework,but we do not want to sup-
plement some details in this paper.We can see it in the following.

Definition15.4 A so-called perfection is a property or a false vacuum in the
string landscape [13.18].So this theory without so-called perfection is complete.
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15 the M!-theory

Definition16.1 We define a forgettable functor fSci,which let us forget the
scientific structure.Acting on it,we get true stances without biases.

fSci(LHS[12.19]) = The world in our brain,out of our heart

fSci(RHS[12.19]) = Spiritual space in our heart
[14.104]

Thus,in the end we get the ultimate theory [11.86],that is

the M!-theory = fSci
(
[14.101],[14.102],[14.103] and all settings below

)
[14.105]

Then,we want to make a thing clear that is the stability of relative properties
[12.18],the RHS[12.19] has smoothness everywhere,all singularities or holes in
LHS are filled by [12.106] in RHS,we need to understand that a singularity or
hole is an obstruction of retraction induced by the homotopies.But with the
existence of higher dimensions and taking to derived case of LHS to RHS,there
is no any obstruction of n-homotopies,so the relative properties are keeping
retracted by the dark energy [12.93] in RHS.

The last thing is discuss the application,we see in [14.104],the application is
Intangible mental guidance but not corporeal production and living.

Theorem16.2 The [14.105] is an unification of science philosophy and re-
ligion.For instance,Buddhism tells us that all spiritual origins are one as the
global descent theory below [14.100].The Yin and Yang in Taoism corresponds
to [14.48],and the [11.85] gives us Tai chi symbol and the 5 superstring theories
corresponds to the five elements.
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