Construction of M-theory(the M'-theory)

Shenbo Wu,University of Leeds

February 2025

Abstract
The main process to solve the problem of quantum and gravity is

Mordern AG (global GLC) X, Derived AG (local GLC)

(O-localizin

Grothendjeck’s dream comes in . . .
quantization of gravity

Complete Einstein’s dream < Analytic stack (analytic AG)

The Langlands duality from the M-theory is a part of U-duality,the M-
theory and its dynamics give us the global geometric Langlands corre-
spondence [15] simplified by combining math and physics.

D=!"-mod (Bung) ¢ QCoh(LocSyse)<'"

where G is the Langlands dual group acting on the F-dual part of M-brane.

Generally,construction of the M-theory is based on the modern alge-
braic geometry with category theory.Studying the dynamics of the M-
theory is based on that with higher category theory (representation of
underlying space).The former gives an unification of superstring theories

(Superstring theories™?®) = etract (S®P°) € MP™®

Retracted from fibered category of superstring theories to stack of Lie
groupoids.And the latter gives us a well defined stackified flow which is
retracted from a non-solvable theory.Combing them,we successfully estab-
lish an experiment-free theory with left evolution

M-flow ~ O-flow, (O-sense = F

where () is the 2-nonexistence.In the end,derived algebraic geometry gives
us further support to summarize all things and we find the M'-theory is
the theory of everything originally proposed by Albert Einstein.

Preview. A pre M-theory is a geometric stack written by

MP' = (ETSchyP“"(.#), P(T), 2,11)
The M-theory M is a generalized super algebraic geometric stack
Ay =P(U)™" : M = MEZIP v MBS

We also put things into derived algebraic geometric n-stack and analytic
derived stack to achieve our final goal completing TOE which is a category
of no definition objects ()-Sense ~ Def =" UFT.
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1 Introduction

1.1 In this paper

In the journey to the M-theory,we answered several questions,(1) the un-
derlying space for a theory with dualities (2) achieving to D + 1 spacetime (3)
D-brane in math (4) dualities (T-duality etc.) in math (5) property and geome-
try (6) general relativity with cosmological constant (7) unseen part of universe
(dark energy etc.)(8) evolution of universe (9) wave-particle duality in math
(10) what is an experiment-free theory (11) quantum collapse in math (12) uni-
fication of quantum and gravity etc.The settings we used are generalized super
simplicial derived algebraic and sequential.

The first part is to review works about string theory based on the two vol-
umes of books about string theory [2][3] written by Polchinski,the text about
conformal field theory [1] and and a complete derivation of [2] that is [4] by
Stany,including supersymmetry based on [7] and standard super algebraic gen-
eralized geometry based on [10].Purpose is to accumulate enough understandings
and intuitions.The second part is to develop a new formal mathematical the-
ory called modern super algebraic generalized geometry based on [12] written
by Olsson.The section 8 lets us exclude the verification of experiments and es-
tablish a bridge between superstring theories and modern AG.Standing on the
shoulders of Witten and Grothendieck,guided by our specific philosophy above
[8.1] supported by our new formalism,we are able to construct M-theory as
an experiment-free theory. Then,the dynamics of M-theory is closely connected
to geometric Langlands programme and we based on [17][18][19][20] by Den-
nis Gaitsgory.Also,we find there can be only one type of strings called étale
closed string [8.22],which is the key point to achieve unification of quantum and
gravity.The open string is just a homotopy weak form of closed string [12.92]
and derived algebraic geometry capturing the homotopic information naturally
comes in and we based on [21].After developing the above abstract objects,we
want to perform analytification which based on the theory of derived stack
based on [22] by Peter scholze and we put things into the analytic derived stack
[14.103] in the end.

1.2 Connection about fermions and bosons

Our discussion starts with connections between fermions and bosons.The
first is an equivalence of fermionic and bosonic operator on OPE see section
3.1 on 2-d conformal field theory,called bosonisation.CFT is a quantum field
theory with local conformal symmetry.2-d and conformal symmetry give strong
constraints on theories that give many good properties.We can easily see an ex-
ample by [1.21] in [4] and (1.31) in [2],for dimension D and weyl transformation
that is conformal given in [2.11] with parameter w,the metric g;b — e“gqp and

V3 = 1/]gav(0)] which combine with a Ricci tensor gives /g'R = /g[R—2(D—
1)V2w—(D—2)(D—1)w-0w].If D = 2,we have §,,[/g'R'] = —2,/gV?w and the
term x = 1/4 [ 7do,/gR that is a topological term of string’s world-sheet in the



action gives d,x = —1/(27) [ drdo\/gV,V*w = —1/(27) [ drdo\/gV 0w =
—1/(27) [ drdod,(y/g0"w) where we used \/gVq,v* = 9,(y/gv®) we will see it
in [3.16],that is zero because it is a total derivative, and we have this confor-
mal invariant term in 2-d.The second is an equivalence between fermions and
bosons that is supersymmetry that follows from a nontrivial term {Q2, Q,5} =
20&"de5‘4 B where Q4 is a anticomutative operator with spinor index o and
inner space index A and P, is a 4-momentum,of supersymmetry algebra (I) in
[7].We will see they are similar in [6.31],bosonisation is a trivial supersymmetry
on 2-d super CFT [3.48].

1.3 world-sheet and spacetime

We discuss all things under string frame work with n**=diag(-1,41...),and
we need to understand the position on world-sheet (a,b) living in spacetime
(1, v).World-sheet is a 2-d surface with coordinates ¢% a = 1,2,We have a
canonical embedding from world-sheet coordinate into spacetime.

(o, 0%) = X (o', 0%) = XH(o*,0%) = (0,..., X*,...,0) € RP [1.1]

In this case,we also call X* a spacetime point.Also,we have spacetime holomor-
phicity %, v and world-sheet holomorphicity ¥, 1,see below [5.44].

1.4 Represented by geometry and its topology

In this paper,we will ignore calculation of amplitude and focus on algebra
and geometry to some extent,because information of world-sheet just depends
on the geometry,and quantum fluctuation is just a property from the topology
of the boundary of the geometry (topological QFT).That is

/[ddedg]e_S ~9g cC M, gauge fixed by ¥ /GdirxWeyl [1.2]

where M is a topological space and ¢ is a classical super moduli space.We can
see it is lengthy [4.79] with tiny information by using analytic approach,also
this approach cannot be a foundation of a non-perturbative theory,thus we use
functorial approach to replace the classical analytic approach.This should be
started at two specific geometry we will get from physics,the first is about super
setting (SUSY),the second is about generalized setting (T-duality).

2 Conformal symmetry

We base on chapter 4 of [1] and chapter 2 of [2] and give detailed calcu-
lations.First,we do not distinguish tensor with field operator transforms like
a tensor and we define the conformal dimension h is the degree of covariance
which means if A is lager the object with h is more likely transform covari-
antly.Conformal map(transformation) is an bi(anti)holomorphic function f that



maps the coordinate z — r = f(z),such that it gives a conformal trans-
formation that is a tensor transformation with z-dependence as a rescaling

/

O'(2') = (9,2 ) "O(z) = A(z)O(z).For a 2-tensor g (x) h = 2 with confor-
mal map x — 2’ = x + € where € is an infinitesimal parameter,gives conformal
transformation

. Oz 02

v = G 9"
B Az —e)*d(z’ —e)f
- oa'm arv. 9P
= (6% — 0,€*) (05 — 0,€”)gaps (2.1]
= 62‘659(15 - (8H6“55 + (538V6B)ga3 4 o(€?)
= Guv — (a,uey + 81/6#)
= (1 - f('r)g;:ul)g;w = A(x)guv

It gives 0,6, + Ove, = f()gu that gives for g, =nu = I,

" (Open + Oven) = f(@)n" N

2
f(z) = 58,)6"
Then,we add a 0, to f(x) and by permutations of indices we get

—0,0,€, — 0,0,€, = =0, f
0,0u€p + 0,056, = 0,00 f [2.3]
0u0p€y + 0,,00€p = N p0u f

Add them together and contract with n** we get

77“”28”81/6,0 = TIW (nupauf + nupauf - nuuapf)
20%€, = 640, f + 040, f — DO, f [2.4]
20%, = (2— D)o, f

And we act 02 to d,€, + dy€, and change the indices we get
(an)an = 82(f77;w) = 62(8;LGV + a;LeV) = 8u(282€1/) =(2- D)auauf
1 2
82.](.77;“/ = (2 - D)Bnuunuyauauf = (5 - 1)82f77uu [25]
(D—-1)2*f=0

Then we put f in,we get a constraint on the transformation parameter e of the
conformal map z — 2’ =z + €(x)

(D —1)9%0 - €(x) =0 [2.6]



Also this constraint classifies different conformal transformations in different
dimension and we discuss in the following.

For D=1, it is trivial case which means all smooth maps are conformal
maps.For D > 3,we get 0°f = 9,0, f = 0 from the first line of [2.5].Then,for
[2.6] we get a linear differential equation

0,0, c,, = " (D,Bye,)) = O ( 0 9 > _ om0,

— ¢
Oxr Oxzv M

14 174
€p = ay + by’ + 22’ Cuvp = Cupu

2.7]

When €, = a,,it shows a translation z# — 2’* = z* + a* is conformal. And
we put [2.7] into 0,6, + Ove, = f(x)gu, in [2.2] and focus on the b-dependent
terms,we get

O (buyat) + 0y (buz") = (1/2)07 (b 1)
2 5 2, [2.8]
b + by = S0, = = V0

For u,v = 0,1 we have bg1 +b19 = 101 = 0 which means that b,,, is antisymmetric
it is like a rotation matrix.Thus,it shows a rigid rotation x — a'* = RFaY for
Rl € SU(D) is conformal.And The trace b/ that is a number multiplying on x
shows a dilation z# — a* = bz* is conformal. Then,we put [2.7] into the first
line of [2.4] we get

2
28”611(017071,01.7') = (nMP8V + nl/pa,u« — nm,ap)ﬁa,\ci‘ngxa

1
Couv = B(nupcﬁu + nupcﬁu - nuucj\\p) [2‘9]
1

Cuvp = NMupby + Nuvby — Nupb,  for b, = Bcﬁu

Then,we put it back we get e,[f] = Cupr’a? = bya¥z, + byxPx, — b,r?. And it

shows the transformation z — 2/* = z# + 2(b- z)z# — b*2? which called SCT is
conformal.Because € is infinitesimal for doing the expansion [2.1],the coefficients
we discussed above are on the infinitesimal level, it means b* — 0 with o(b?)
for SCT,we can adjust to

o't = at £ 2(b- z)at — ba® ~ ot 4 2(b - x)zt — bl — 2(b - x)bH
~ (ot — bz (14 2(b - x))

xh — g2 xh — bHg?
T1=20b-x)  1-2(b-x)+ b2

[2.10]

We use = to represent a reverse Taylor expansion,and we end with a form finite
SCT transformation for b* is finite.Next,we use this reverse expansion trick to
see where is the Weyl transformation we mentioned above.We also start with



SCT on the infinitesimal level and we ignore the index

A(x) = (0,2) % = (0p(xz +2(b- )z — ba?) 2 = (1 4+4(b-z) —2(b-x)) 2

1 2 2 2
- (m(b)> ~ (14 2(-b-2) + 0B, 67..))

Qb
=14+ (-2b)-z+ Z z) 2 (722

2w(x)

=e where w(x) =-2b-x

2.11]

For w(x) is a local parameter of Weyl transformation.Thus,we find the Weyl
transformation is a typical form of SCT transformation that is conformal.We
have finished the discussion of (1.2.19)-(1.2.21) in [2].

Now,we observe that the conformal transformations we classified above form
conformal groups and we set up category Cs with groups of conformal invariance
as the objects Ob(Cq).By Cayley’s theorem,for U € X an affine scheme

Ob(Cq) = Sym(C”) = {f : C” = CP|f € Oy _yan-1(ayyy = Im C=(U)}
[2.12]
where U is open set and C* is a sheaf of C-algebra of holomorphic functions.t
is an ideal for ¢t € U.Simply speaking,conformal symmetry is a symmetry that
maintaining the angles.We can see definitions and details in section 7.Above
all,conformal symmetry is a natural symmetry for a theory consider general
relativity and gauge field theory,and it becomes a local symmetry after gauge
fixing in string theory,to see more details about global scale in QFT and local
scale in string theory and their meanings on theories around 3.26 in [4].Generally
speaking,the local scale invariance contained in local conformal symmetry means
the string theory is effective in the whole energy scale,but the QFT is effective
under a typical effective energy scale.In this case,compared to QFT (effective
theory),the string theory tells us how to understand somethings but not only
describing somethings (QFT just gives us descriptions of quantum world).

3 Super Virasoro algebra

3.1 Operator product expansion

Before we discuss the affine lie algebra,we want to introduce superconformal
algebra [3] for a consistent string theory that is an extension of Virasoro algebra
to the level of superpartners which is also an example of simple Lie algebra.By
definition from (13.1) in [1],a simple Lie algebra g (V;[,]) is a vector space V
with commutator as the binary operation [,] : g x ¢ — ¢ satisfying Jacobi
identity which is equivalent to say the following diagram commutes



gXgxg ——gxg
J{b lc
gxg ——4g
witha=1x[],b=[]xLc=[],d=[]x1—=(]x1)o(lx f)(gxgxg)for
the flipping f: g X g = g X g.And a vector in V is a generator of the algebra.
Follow from chapter 2 om [2],we first to see how we get Virasoro algebra from

the normal field operator under 2-d CFT by complex analysis.On a world-sheet
(2-d region),we have for spatial direction o' and time direction o>

. 9 1 2tz 5 Z—Z
— = = 3.1
ic® o 5 o 5 [3.1]

By the vector transformation 9,z) = 5‘Z(5)0131 + 82(2)0282 ,we get

z=cl'+ic® z=oc'

a:%(aﬁiaz) 5:%(81+i32) D=0+d Hh—i(0—-0)  [32]

where 9, = 0,0; = 0,and by coordinates transformation we have

det (812 622) ‘ dotdo? = |det (1 _Zl>

0z Oz
Because of uncertainty principle,when two fields get closed to each other,there
will be a singularity on the correlation function,we can easily see for a scaler X

0=0(X) = (SXM((S”) (/ DXe_S(Z’Z)X”(z',z’)>

= (06S) + (6% (z — 2,2 — 7))

8 /) a 1 " v, =/
+ (6% (2 — 22— 7))
([00XH(2,2)| X" (2, 7)) = —ma'n* (6% (2 — 2,2 — 7))

1

D0X"(2,2) X" (¢,2) = —ma/'n" 6% (2 — 2/, 2 — )

d?z = dzdz = dotdo® = 2d%0 [3.3)

where Sx(z,2) = (1/27a) [ d?20X*0X,,.And this singularity emerges in form
of delta function.Under the algebraically closed field C,we can further analyze
the delta function to a form that we can directly see the coordinates depen-
dence.We start at divergence theorem for a 2-d closed region M and let @ =0

2 _ 2 _ 20’i - z z

M

_ L / dzdz(OF* — OF%)
2 M

1 ) _ .
= 772‘?{ (e™/2dzF? + '™ /2dzF?)
2 Jom

1 )
Z—i(i]{ dZFZ—i% dZFZ>
2 oM 5

Ne



In the third line,we put a 7/2 clockwise phase rotation because after applying
divergence theorem the integration direction is outwards but we need a counter-
clockwise direction to perform contour integral. Then from the second and the
last equation of [3.5] we get two separate parts

_ _ 1 _ 1
/ d?20F% = = dzF? d*z0F* = = dzF* [3.6]
M v Jom M tJoMm

then,we use [3.6] to solve the function [ dz%62(z,z) =1

= 1 1 1 1 1 1
/ d?20— = — dz— = / d?20— = — dz= =1 3.7]
M 2z 27 Jom 2 M 2nz 27 Jou %
where we use F* = 1/2rz, F* = 1/2rz and Cauchy theorem.Then we get

PR L L S 13.8]

2 oz — 2 2 z—1Z

Then,we transform a Cartesian integral to 2-d complex complex case 01 — z,the
subtile point is two operations integration and changing variable commute

(01—>z)o</>01:[/o(01—>z)]z 13.9]

Then,we use [3.9] to calculate the following integral

( d011> - %df /dzf
01 o1—>Z2

Inz = = /dzf where 2 # 0 [3.10]
2 z

9 _ 1

In|z]* =Inz+Inz = [ dz—

z

Next,we put (1/27)90 on the two sides and perform [3.8]
i85111|z —P= /8d25'¥ =8%(z—2,2-7) [3.11]
27 2m(z — 2') ’ ’

Finally,we sub [3.11] in [3.4] we get

o 1

Q0XH"(2,2) XV (2, 7)) = fﬂa’n“”2—6‘81n|z — 2
7r

!/

XHM(z,2) XV (2, 2) = —%n“”ln\z — 22 [3.12]

1 ! 1 !

XM(2) XV () = —%n‘“’ln(z —2) XME)XV(F) = —%nwm(z — 7

Now,the normal wick contraction carrying the nontrivial information of con-
tacting of fields in the correlation function is analyzed further to see directly its

10



coordinate-dependence in 2-d CFT,we also call this operation product expansion
OPE.Because we consider supersymmetry,we need to have periodic fermions in
the 2-d CFT with £ (2) = (1/27)y* 01, of holomorphic fermion and similar
Z5(z) = (1/2m)¢" 9y, of antiholomophic fermion we will see details later.And
similarly,we get

(ng AN v <2 !
L) = )
1 |50 5 v oo L s
T D5 ) — 5B (A7) = 50
- SO () = 5o

27 2z — 2/

v nm/ P TH N Tyt 77“”
Y (2)YY () = P similarly ¢ (2)¢"(z") = P
[3.13]

3.2 Conformal invariance

After we analyses the wick contractions in C,we want to analyze more things
in normal QFT to support further calculations in 2-d CFT.First is Noether’s
theorem that claims a symmetry corresponds a conserved current and we fol-
lows from chapter 2.3 in [2] with detailed calculations.In QFT,a transformation
¢'(0) = ¢(0) + p(o)e(o) with infinitesimal parameter e appears as a symmetry
in the field theory means it gives a total derivative and be invariant on the level
of path integral.We can easily see this by setting p(c) = 1,and for [d¢]e_s[¢]

(' )e=519) = [do + 8(¢)d¢] ~Sl6+e(0)]  [gs]e=SleI—e(@)OS el +o(e)

= [dgle™51Ple= (5] — [dg]eS)(1 — e(0)0S[4]) [3.14]
= [dle= " — d([dgle™5)e(a) S[0))
= [dgle” 5]

Now.if p(c) is not constant and let S[¢] = (1/27) [ d*'od(ic)\/gj(c) where
we did wick rotation,for preserving the symmetry on the field theory we need

o [ oo p(@10u(Va ) = (5 [ atap(o)VaVait(e) 1315

which follows from the following equation and we use result In(detM) = tr(InM)
for a matrix M from linear algebra.

OUVBI*(0) = VI"(0) + 0 5i*(0) = V0L + 055"
= V30 + 5v/0a(nlgD]"(0) = V3l0u + 5t10u(50)]5" (0)

= \/9[0. + QCd3 (gea)li®(0) +0

11



1 - 1 Ci C
= V90 + 59“5@(9@(1)]3 (@) +3lo 10eGad — 9°'0cGadl

= V/9l0a. + %g"‘d(?a(gcd)]j“(a) + %[ngacgad — 9°"0ageal 3.16]
= V3100 + 0% (Petaa + Duea — Dual ()
= V9(0a +1¢,)i*(0) = VgVai*(0)
Then we get the Noether’s theorem for a conserved current ;¢ that is
V.j*=0 [3.17]

For getting an expression of conserved current,we solve the exercise 2.5 in [2]

. 07 %
0.Y = Eam%/ = 7¢5¢ + méaad)
0.7 0.7 0%
=—390 0, — O0g—=—~—90 .
950" (a(am) (b) 50.9) 1318
0L 0L 0L 0L
= — — U, 5 a 76 = Uq 5
<a¢ 0 a<aa¢>>> #+0 (a<aa¢> ¢> 0 (f)(am) ¢)

where we chose a simple case under a unit gauge (3.3.3) in [2] which iS Gap = dap
that means 0§ =I' = 0 and 0.2 = €0,.#® with Z(¢(0), 0*¢(0)),we also assume
vanishing of equation of motion.Then,we put [3.17] in to get j*

Vaja = 8aja =0= 8& ( 02 Gléd)) - aa‘%/a
-a af 716 a .
R TOR M

We derived [3.15] with no insertion,if we insert a operator to the path integral
(«),we can recalculate it like what we did in [3.4] and set p(o) =1

0= 06(e/) = 6()(0) (00) + (0)

% dop(0)\/gV aj (o — 00) (00) = —6.4 (00)

3.20
Vaj* (o = 00)d (0g) = g_1/2(5d(0 - 00)21,—:5%(00) | ]

/ 200, (0 — 00)/ (00) = X6 (o)
M 1€

we put a delta function two sides in the second equation and integrated the
third equation where we used unit gauge gave /¢ = 1.Then,we analyze the final
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equation of [3.20] in complex coordinates which is similar to [3.5]

| doeut + au)st(o0) = [ 5[0+ 0"+ i(0 - 0)%) (o) (00)
M M
=5 [ @00 + %) + 3G~ i)z ) (o0)
M

1 1
- z/ (A5 = i) — dz5 (G + i) (20, 70)
oM

— UaM dzj(z) + /W dzj(z)} o (20, Z0)

[3.21]
Then we sub [3.21] in [3.20] with z — 29, Z — Z, we get
1 . _ 1 e _ 1 _
— dzj(z) (20, Z0) + —[ dzj(2)d (20,20) = —0.9 (20, Z0)
21 Jomr 27 J5 1€ 3.22]

1 1

] _ — [ _ 1 _
Res,—2,7(2) % (20, Z0) + Resz—5,0(2) (20, Z0) = %(5%(20, Z0)

Now,we get the complex version of Ward identity [3.22].

Then,we can talk about conserved current of symmetry and see how to
get conformal invariance by using Ward identity in string theory.For a string
theory,we know a 1-d string sweeps through a spacetime and gives a 2-d sur-
face called world-sheet. Thus,we have translation of the whole world-sheet in
spacetime called spacetime translation and translation in the world-sheet called
world-sheet translation.Spacetime translation is simple reflecting property of
spacetime around the motion of strings that is 6X*(0) = ep(o)a* and for
Sx(o1,02) = (1/4wd) [ d*00* X0, X, we have

oS 2

(5SX(01,02) == aaa(aaXu)(SX#

/d206a8“X“ep(o)au [3.23]

4o/

And we perform [3.15] we get current a,j% of spacetime translation invariance

% / Lo 29, X = ;& / Aot
m @ 7” [3.24]

. 1
.]5 = EaaX'u

Specific properties of string theory reflecting on that of 2-d world-sheets or 2-
d world-sheets collect specific information about string theory.In this case,we
want to discuss the current of world-sheet translation invariance.First,X is a
scalar field that is h = 0,from the tensor transformation above [2.1] we get
X't (o'*) = X*(c"),then for the world-sheet translation do® = ev®

XH(e%) = X"M(0"") = X""(0® + ev?) = X'*(0") + 0o X (0%)ev®

3.25
dXH = X"M(0%) — XH(0%) = =0, X" (0")ev® = —ev?0, X*(0%) 13:25]

13



where we used a trick that is for X — 0,06X = 9(X’' — X) = 0 that gives
0X' ~ 0X.And we know the Lagrangian is also a scaler by Lorentz invariance,so
we just change X* to .Z in [3.25] we get 0. = —ev?0,.% = €0, * for [3.19]

that gives ¢ = —v°67.% then we get the current of spacetime translation
invariance
< 1
Jo= gy € 0Xn — A
0(0°X,) K
2 b b 1 .
= maaX“(—ev X)) —(—v 5abm6cX“8 X,) [3.26)
Loy 1 . 1
= e’ {_a’ (a“XA WXy — 26abacXHach>:|

And this gives us the energy-momentum tensor if we extract the differentiable
[
or finite term by using the normal ordering defined as (: XX :) = (X X) — (X X))

1 1

Top=—— : (aaxﬂabxu - 25@80)(“80)(“) : [3.27]
«@

for V¢ : j, := (1/2ma’)V*T,, = 0.We see above (5.32) in [1],the traceless-

ness of the energy-momentum tensor shows the corresponding symmetry invari-

ance,that is Ve T,, = 00,4 (0%Typ) = 02045 (89°0Ty,) = 0 for this case

which gives us two equations

6Ty = 80T, =0 [3.28]
Now,we also want to analyze this tracelessness in 2-d complex case,we need the
tensor transformation of 6% for a,b = 1,2 to g for a,b = z, zZ with hgar = —2
we have
- 020z 020z 020z
2z _ ZZ _ 5ab _ 511 622 _ 12 -2 =0
g g Ao do® Il atolons + 002002 t 13.29]
G = g = doda® ., _ 020% sy 020% S2_12_2_9
020z doldo! 002002

Thus,the first term of [3.28] gives 6%°Tyy, — Ty = ¢g°° Tz + ¢7* T, = 0 that
is T,z = T-, = 0.The second term gives §*°0%Ty;, = 67590, Ty, = [0 Tua) (o) —
0u(0)[Toa(2,2)] = 01T, + 02Ts5 = (0 + 0)T., +i(0 — 0)Tsz = 0 that is 9T, =
~OT,.,0Ts: = 0T:> and we can also let [0,T.a](0) — [0aTual(2,2) = 0 that
is OT,. = 0Tz = 0,combing two cases we get 0T,. = 0T = 0.Then,we
combine above solutions of [3.28] and we get the following properties of the

energy-momentum tensor in 2-d CFT

T.:=T:.=0

o [3.30]

where T(z) is purely holomorphic and T'(%) is purely anti-holomorphic. Then,we
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want to use a trick to analyze [3.27] in complex case

Tuv(2,2) = gab(0*Tu) (0) = gan(9*" o) (2, 2) = Toy (2, 2)
1 1
= (aa)w),,xM - anbacxuacxa :

O(/

3.31]

notice that My = ((1/2)04p0%°)Mup # (1/2)0ap(69°My,) where associativity
breaks for left §%°—action.And we see [3.31] directly follows from [3.30] with

1 ~ 1 -
T(z) = A 0X1oX, : T(z)= A 0XH10X,, : [3.32]

Now we ignore prefactor of the current under [3.27] and change the vector v° to
the biholomorphic function v(z) with ¢ from wick rotation,we have currents

J() =T iE) = i(z) T () 3.3

these are currents of conformal invariance in the corresponding free scalar field
Lagrangian.Then,we can apply the Ward identity [3.22] to reproduce [3.25] for
conformal transformation of the field X*

1
Sy X (w, w) = i€Res,_yiv(z) (—/BX”(“)XV) (2) X*(w) + h.c.
a

1—o

= —ev(z)Res,—,0X" (2)0520, (;/ 3

= —ev(z)%/dzz_lw
= —ev(w)0X*(w) — ev(w)*OX*(w)

In(z — w)) + h.c. 334

OXH(2) + hec.

z—w

And this is an infinitesimal conformal transformation follows from the conformal
map f(z) = z + ev(z) for the definition above [2.1].

Also,because of the bijective map v(z),the currents [3.33] are also bijective,in
this case the equation [3.22] gives us an correspondence of a conformal transfor-
mation of a operator with OPE of energy-momentum tensor 6.2/ ~ T'A which
means conformal invariance gives a strong constraint on 7.ef OPE along this
correspondence.And we want to see how this constraint reflects on T.e¥ OPE
for a general operator 27 (z,z) and similarly for antiholomorphic part.We notice
that OPE is to collect all singular terms in contractions that is

— [ — e (n)
§(2)47(0,0) = iv(2)T(2)7(0,0) = iv(z) Y % [3.35]

n=0

and we put this in [3.22],we get conformal transformation for general operator

= )
047(0,0) = —ev(z)Res, 0 E —=1 The
z
n=0

n+1 (n) M(n)

= ev(z)Res, 0 Z (_173' 0 + h.c.
n=0 :

z
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1 dz
— e (n n)
€2m' Z 8 + h.c.
oo [3.36]
1 a * _7(n
= fez% E[@”v(z)d(”)(O,O) + 8™v(2)* ™ (0,0)]

where o7(™ is the coefficients of 1/2"*! in [3.35].Now,we want to study the
tensor operator O'(z/,7') = (0,2')~"(0:2')~"O(2,%) we defined above [2.1],for
z' = z 4 ev(z) and we focus on the holomorphic part we have

O'(2) = 0.(z + ev(2)) T"O(2)
(1+ edv(z))""O(2)

O(z) — hedv(z )(9(2)

60(z) =

z

O'(z + ev(z)) = O'(2) + ev(2)00' ()
O'(2) + ev(2)00(z)

O'(2) + ev(2)00(z)

—hedv(2)O(z) — ev(z)00(z)

[3.37]

compare it with [3.36],we get O = h©®, 0(©) = 9O which gives the TO OPE

h

T(2)0(0,0) = 50(0,0) + %acf)(o,o) (3.38]

and this gives us clear expression about the meaning of an operator transforms
like a tensor or a tensor operator will satisfy the 7O OPE like [3.38].The con-
formal invariance preserve only for tensor operator,we can see [3.64] the T is
not a tensor operator and for non-tensor transformation we need to quantify
the degree of breaking conformal invariance by central charge ¢ on 1/22%.

3.3 Commutator expression

In math,a Lie bracket Ly X = [V, X] for two vector fields X,Y € g quantifies
the difference in differentiation order between these two differential operators
by definition and it is also a vector field dy X € g quantifies how X transforms
along the vector Y.Thus,we want to analyze our commutators to reflect clearly
above information and support further calculations in SCFT.First,we set this
order of commutators to time ordering 7" in physics and we indeed have a radial
time order t = €7 after we perform a conformal map z = e™ ™ = e’ emio"
where w = o! + i0?,with a good property that is State-Operator Isomorphism
in 2-d CFT from 2.64 in [4].We first put a combination of states with time
on a eigenstate that is ji(t1)j2(t2) — j1(ta)ja(t2)|h) = T'[j1,j2l(t)|h) for t5 <
to < t; with current j;.The z-plane is a disc,we can set the isomorphism to be
a contour map fck dz;i(1/2mi) = j;(tx) — Qi(C;) that is conserved charge with
03 <Cy<Cy

T[jl,jZ](t>|h>z1sz = [‘717]2}(t2)|h> = [QlaQQ]{CQ} = T[Q13Q2](t)Z1‘)22
[Q1(C1)Q2(C2) — Q1(C3)Q2(C2)]z, -2, = [R1(C1) — Q1(C3)]z,—2,Q2(C2)
1
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ZResyl t1) ZRebﬁ i3 ] Q2(C2)

a1z [3.39]
1 ] ]
- —.f dz1 | J1(81)Q(Ca) = Res. sz, (11)Qa(C)
270 J (0 —Cy)m0,20

z1 — 29 means we let the first operator closed to the second one on time
and position to open the contaction and we performed contour deformation
at the fourth line by Residue theorem.Then we end with the expressions of
commutators with a contour Cy

dZQ

Q1 Qo 1{Cs} = {Q1, Qo) {02}74 2 Resey et (2)ia(z2) [340)

where Q{C} = (1/2i) §, dzj,and we also have similar anticommutator expres-
sion for fermionic operator.Also,we have similar expression for antiholomorphic
part

@1.Q:HC) =101, QHCa) = § SReme s i(a)ize) (341

Cy

where Q{C} = —(1/2mi) $o dzj.Then we compare [3.40] and [3.41] with [3.22]
without the contour Cs we directly get

Sl (22, %) = i€]Q, o (22, %)) 05 (22, %) = i€|Q, o (22, 72)]  [3.42]

with obvious Lie bracket structures.

3.4 Superconformal algebra

Virasoro algebra is a simple Lie algebra about Laurant coefficients of bosonic
energy-momentum tensor,fermions come in because of consideration of super-
symmetry and in this case we need to extend previous algebra to a larger one
containing two types of states which is Super Virasoro algebra based on super-
conformal algebra.First,for an operator O(z) with conformal dimension h there
exists a laurant expansion or series in z-plane

= On dz ..
— —_— = m .4
0= Y om0, fc o) [3.43]

m=—0oo

Next,we want to get bosonic and fermionic energy momentum tensor from the
world-sheet superstring action S = Sx + Sy

]. 2 1 2 2 A 9 7 7
=5 / 2= / &>z (daX“aXﬂ + 9", +w“8wu> [3.44]
with hS — hX = O,ha e h@X = 1’h5 = h’éX = —1,hw = %,h& = —%.Then,we

classify T, T5 as the currents of conformal symmetry with same commuta-
tive multiplication and T, Tr as that of superconformal symmetry with mixed
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commutative multiplication in C,we get following expressions

24 —1 —1 0L —1 -1
= . XM+ 2 Lyl
a(aaXH) ( aw ) [345]

1 1 1 - = 1~ -~
Tp(2) = ——0X 0K, — 50400, Tp(2) = — 0K 0K, — S0,

TB(Z) =

where we used conformal variance [3.34] same for fermions and bosons

s / 02 -1, —1
Tr(2) =1iV2a RN G 3.4
Tr(z) = i(1/a) 210X, Tr(z) =i(1/a)/ 291X,

where 9 € V, for V = V; @ V; which is a super vector space in 1.1 [10] and
adding prefactor for simplicity.we can set the currents to be

J"=0()Tr(z)  JE) =0 (2)Tr(2) [3.47]

with anticommutative parameter n.Then we can get the superconformal trans-
formation from [3.22]

5, X (20, 20) = ieRes, .,m(2)i(2/a’) /2 (2)0X (2 )X”(zo)—f—h.c.
—e(2/a’)!/*Res.zon(2)0" (2)(— a/2) —

= (//2)"2e[n(z0)4" (20) + n(z0) " (20)]

0yt (20) = i€Res.2,n(2)i(2/a') /2OXH (2),,(2)1* (20)
= —€(2/a’)Y?Res,_,.,0X"(z)

z— 2z [3.48]
—(2/a)en(20)0X* (20)
Syt (20) = —(2/a’)Pen(z0)"0X* (%)
Now,we get conformal transformation 4, [3.34] and superconformal transforma-

tion &, [3.48].Superconformal algebra is an algebra with these two transforma-
tions which means they closed under commutation relation.For instance

[0y O ] X (2) = 61y Oy XH(2) — 01y 0y X (2)

= e2(a/2) P ()6 0" (2) — 1(@'/2) P20 () g g
= ere2[—mem + mn2|(2)0X"(2) = e[2m (2)n2(2)]0X*(2)
= 6, X"(2) where v(2) = —2n1(2)n2(2)

Formally,An superconformal algebra is a Zs graded set Hom(A®¢, A*¢) we will
see in [7.8],for a super vector space A = Ay @ Aj,the element is tuple (d,,d;)
with a binary operation [,] : A% ® A% — A*¢ with Zs-grading (6y,,0,,) ®
(Ouvgs 0ny) = (([00y 5 60s]s [0 5 0na 1), ([0 Ons ], [0y 5 0p])) € A®¢,which is a simple
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Lie algebra.We want to claim that supersymmetry exists in a compactified di-
mension we will see details later,thus we want to study the X#y#* SCFT on a
circle.We can set following boundary condition

w=oc'+io? 2w+ 21 = (o +21) +io? (3.50]

which gives periodicity 27 on spatial dimension o!.And this classify fermions to
R and NS that induce two distinct Hilbert spaces called sectors

Ramond (R) : " (w + 2m) = e*™ 9k (w) 0
. 3.51
Neveu-Schwarz (NS) : *(w + 27) = ezm”@[;“(w) U= % [ )

similar to 1[)'“’(15) with —7 ,because of the invariance of periodicity on Sy (w),let
us set ay)(w) = ¥ (w + 27) and we end with a? = 1 that is a = +1

/ d?(w + 27)Y* (w + 27) Opiby (w + 27) = a® / 2w (w)dpt, (w)  [3.52]
For fully remaining Poincaré invariance in action,X*(w) = X*(w + 27),we can
easily see if we put antiperiodicity on X* and for an infinitesimal parameter e

XH(o! 421 —€) = =X (o' + 27)
XH(o! 4 271) — e0X" (0 +2m) = XH(oh)

X X ) [3.53]
—XH"(o") +edXH(07) = X" (o)
eOX*(o") = 2XH(oh)
which gives nontrivial translation 6 X* = —2X* in [3.25] which is not a total

derivative and breaks the translation invariance. Then,we put periodicity in [3.46]

Tr(w+ 21) = ™ Tp(w)  Tp(w + 27) = e 7™ T (w) [3.54]

Under the periodicity condition we can expand " in exponential Fourier series

Prw) =i 2N ke, ) =i Y ke [3.55]
reZ+v reZ+v

We need to transform w to z-plane that exists vertex operators we did in 3.3.

P (z) = (Ow2) Mt (w) = /0 (ilnz) P (w 2712 (w) [3.56]

then we put [3.55] in [3.56] and get Laurent expansions correspond to [3.43]

Z Zr+1/2’ ) Z Zr+1/2 [357]

reZ+v reZ+v

And we can now understand clearly [3.43] is actually an exponential Fourier
expansion equipped with a tensor transformation of w-plane to z-plane.The
expression of Laurent coefficients are

e ORI TR e I -

c 2miz C 2miz
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Also,for vector fields 0X, 90X ,we have following Laurent expansions with pref-
actor about string lenth scale v o/

o 1/2 oo o ~ o 1/2 oo G
aX“(Z)—Z<2> > Py 3X”(Z)—Z(2) > Fm+1

- [3.59]
with Laurent coefficients

1/2 1/2 _

aﬁn:i 3 % diznzm-i-laXH(z)’d% = —4 3 7{ &ZW—HEXM(Z)
o c 2miz o Cc 2miz

[3.60]

By using [3.40] we can get commutation relations of Laurent coefficients in the
X#Hy* SCFT

~~ dz r— 5— v
{0 U HCa} = {98, 9V HCo} = ;{] oo Ress sl T P )y ()
_ dzp TS uv v
_7{@ omizg 2 1 Ons

[aﬁw O‘Z]{CQ} = [dumﬂ d;]{cb}

d
) % QReszlﬁzzz{”zgale“(zl)(?ZzX”(ZQ)
e}

, 2T

2mi

2 dzo o pt
-1

- 5t Resy, zomaz" ™ 25 )

o' ) Je, 2mi z1 — 22

0"
= mﬁ’ 6m,—n

d
7{ =2 ReSz, 32502, 27" 28 02y XH(21) X (22) [3.61]
C>

Then,we can Laurent expand our energy momentum tensors [3.45] and [3.46)
with hTB = Q,hTF = 3/2

[eS) Lm ~ [eS) Lm
Tp(2) = Z om+2’ Tp(2) = Z Fzm+2
memee e 3.62
G G 3.62]
TF(Z) = Z ZT+3/2’ TF(Z) = Z 57—1—3/2
reZ+v reZ+v

Now we focus on the holomorphic part for simplicity and the reverse expansions

dz ., dz
Lm = ﬁ %Z +2TB(Z)7 Gr = ﬁ mz +3/2TF(Z) [363]

The Laurent coefficients close under commutation relation to give an algebra
which is super Virasoro algebra or Ramond and Neveu-Schwarz algebra.We
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first calculate OPEs of energy-momentum tensors which collect singular terms
of single,double and higher contractions,for Tg = T5 + Tg

TR T (W) = —30-X(2)0: X, (2)00 X" ()00 X, (1)

= X 0, XY X, 0, X ()00 Xy (w) + 2 13 D X" X1, 0 X¥ XV

4701 1

2 04/2 my v
_ fii[aw+<z—w>ai}X“<w>anp<w>+ —

a? 2 (z—w)? o 4(z — w)? [3.64]
D 2TF (w) =21, , 5
= — — (05, XF 0w X XroL X
2(z — w)* + (z — w)? + o 2(6w O Xy + 00 X0, X)) (w)

D n 2TH (w) 9, TH (w)
2(z —w)t (2 —w)? zZ—w

for fermionic part we need to notice the anticommutation relation

Tﬁ<z>T;§<w>=§w<z>6wﬂ<z>w )0, ()

=§[—¢< o) ()6 (0) + () () (=) (w0) + D (=) (w)oh () ()
— 0(2)s D) - D)D) (w) + ()00 ()2 (2)(w)
— S POU) + s (04 (2 — )P () (w)

- ! SpH G- ))w(w)aw(w)+&210)3,(1+(z—w)a+(Z_w)

() + o A e L]

z—w(z—w)? (z—w)?(z—w)?

W =

_11ovw)y(w)  P(w)oy(w) 2 o) — 2 9l

4 (z—w)2 (z — w)? + (z—w)2a¢( J(w) z—u)aw( )0y (w)
T PV ) + o 0PU()U(w) + ]

D)2 B 1 bl w 1 y o N

T wt _w)Qw (w)0y(w) 3G —w) (O Oy, + 0%, (w)

D/2 T8 (w) By T (w)
2(z —w)* * (z —w)? * zZ—w

3.65]
where 99(2) = 9,4(2) and ¥(w)i(w) = 0, P2 (w)p(w) = —b(w)d2(w).Also,

we used tylor expansion.From the sentence below [3.38] and the above results,we
find Crx = D, cpv = D/2 so the central charge of the whole energy momentum
B
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tensor ¢ = ¢y, = 3D /2. Then

d 1
[Lm7 Ln]{02} = ﬂReSz%wzm+lwn+lTB(Z)TB(w)
Cs 27TZ
dw c 2T OuwTB
= 7R ¥4 w m+1 n+1 |: = :|
s e A
dw —C 1
_ R o m+1, n+l 783 _ 9T az awT
7{5 g RSz W 39 0; = 2Tp(w)0: + 0, Tp(w)| T
:?{ dw Res w [£33zm+1 + 20,2 T (w) + 0 TB(w)ZmH}
o 2mi Yy —w L1277 ’ B
dw c 3 m+n—1 m+n+1
= [ (o + )T~ Ta()d)u ]
dw m—+n+2 dw m—(—n) ¢ 3
= 5 (m —n)w Tr(w) + i E(m —m)
c, 2miw Cp £TIW
= (m - n)Lm+n + TZ(m3 - m)(sma*"

[3.66]

where we reformulate [3.63] and we performed Cauchy theorem.Then
T ()T () = ()0 X, ()0 ()00 X (w)
=~ 2 ()0 X0 (2)00 K () + ()9 ()0 X, ()0 X, ()
+ 0. X 00X, ) () )

I B _ ' )82
, [z % o N 0:0uIn(z — w) + o w((’?w + (z —w)dy)
!/

X X, (10)00 X (1) + 1, 0: 000z = w)(1+ (2 = w) 09 ()" (w)]

/

_ 2 1=a'n" nu 1 o
--=[3 w0 Xa(w) + mw(w)awu(w)}

2¢ n 2T (w)
3(z —w)3 z—w

[3.67]

And the commutation relation of corresponding Laurent coefficients

dw

{GT'7 Gb}{OQ} - %; %RGSZ_HUZT+1/2U)S+1/2TF(Z)TF(U))

2

:j{ dw o ] 2 2TB(w)]
Ca 2mi e 3(2 — ’LU)3 zZ—Ww

d 2c1
= s 2202 4 o )
c, 2T 32

1

Z—w

d 1
= ?{ 2 Res. yp——w'+1/? [faf +2TB(w)] 12
C, 2T Z—w 3
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d dw ¢ 1
= 2% #w””zTB(w) +]{ 57w 3 (7"2 - 4) w9
C2 YIXA Cz YIXA [3.68]

—2L,.. 4% —1)5,
++12(7“ )or,

Finally,the OPE of the cross terms is

Tp(2)Tr(w) =1 (1>1/2 [— Loxrox, - Lurov] (wrox.)w)

:—2><z< X (200 X ()0 X (= )w(w)—% (;)WX
[ 0% (2 ()0, (2) 0 X, (0 >+azm”<w>w<z>awxy<w>]

(2 = w)(Ou + (2 = w)95) X (W) (w)

ee(3)

‘i1<1/) /2[— ()0 X, (1) + 0.~ (14 (=~ )2

2\« z

x w(w)awxy(w)}

a z—w) ! z—w
11\ 1 11N\ 1
i— | — V0w Xy il = 0w X
+22 <a’> . O’ O Xy (w) + 5 <a’> e w)Qw (w) (w)
1 /1\"* 1 ,
=+ 51 <a,> 2 Oup” ()0 X (w)
= 3 Tr(w) + L8 Tr(w)
C2(z—w)? F z—w T
[3.69]
and the commutation relation of corresponding Laurent coefficients
_ dw m+1, r+1/2
Lo, Grl{C2} = —Res, 2™ w Tg(2)TF(w)
C, 2T
_ dw m+1, r+1/2 3 1
= 7{02 %Resz_mz w [2(2 — ) r(w) + o wﬁwTF(w)}
d T 1
:f w'ReSZ_)me+1,wr+1/2|: 3 F( )8 +a TF( )}7
c, 2T 2 Z—w 13.70]
d 1 7137 '
_ f ’LU. Reszﬂwwr+l/27|: F(w) az + 81_UTF(U}):| Zm+1
Cy 2T z—w 2
_ dw m+r+1/2 3TF(w) m+r+3/2
dw m —2r m — 2r
_ T m-+r+3/2 _ o
j{ 2mw 2 r(w)w 2 Gt
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Now,we finish the commutation relations of the Laurent coeflicients of energy-
momentum tensor of X*¢* SCFT and they indeed close.For integer r,s the
algebra is called Ramond algebra and for half-integer r, s the algebra is called
Neveu-Schwarz algebra.Then we want to verify the Jacobi identity [X, [V, Z]] +
[Z,[ X, Y]] +[Y,[Z,X]] =0for X,Y,Z € g.For parity | X|=|Y|=|Z]=0¢€ Z,

0= [Lmv [anLpH + [Lpa [Lmv Ln]] + [an [Lpa Ln]]
= (n -p) [Lmv Lnﬂ)] + (m - n)[Lp, Lern] + (p - m)[Lm L;D+m]
=[n—=p)(m—-—n—p)+(m-n)(p—m-—n)+(p—m)(n—p—m)]Lninip
+ Sl =p)m* —m) + (m = 0)(p* = p) + (0 = M)(0® + W], (i)
- 1%[(” —p)(—(n+p)°’ +n+p)+(—2n—p)(p° —p) + (2p +n)(n® + n)]

3.71]

Thus,L,, individually forms a algebra and gives a Lie algebra structure called
Virasoro algebra.Also,if we let v = 1/2 for antiperiodic fermions that gives half
integer r, s in [3.63] and gives a form that the T transform like T'5.

To see the last point above clearly,we want to perform only supersymme-
try transformation on our theory for avoiding the holomorphic parameter in
[3.48]. Actually,we want to find a low energy effective field theory (LEE) of cor-
responding string theory [3.44] which will be in a similar form of (3.11-3.12) in
[7] .Also,we open the interaction of strings for completeness.And we based on
the chapter 3 in [2] and chapter 10 in [3] in the following.

We will see opening the interaction in string theory corresponds a perturba-
tion in path integral of a curved spacetime metric.The way to put interacting
objects on world-sheet in w-plane is to put vertex operators in z-plane.So,we
find the vertex operators for bosons and fermions,we used [3.58] and [3.60]

9\ 1/2 ds 9\ 1/2
T ~m-Dgxr(s) =2 m i
om =1 <0/> ?i omiz 0XM(z) =1 <0/> 0 © [3.72]

—i0|0; k) = K|0; k) = [0;k) = 1 =: ¢FX(0.0)

where m > 0 and k is world-sheet momentum.For fermionic states,we need first
analyze the spectrum of NS and R.NS ground state where r = Z +v,v = 1/2 is

YO =0, 7> 0 [3.73]
For R ground state, i forms a Clifford algebra,we can set T* = 21/2¢}
{1, TV} = {V20, V205 } = 2{uf, v5} = 201 3.74]

Pl |0br = ({2, 65} — G5e)[0)r = 0 for # > 0 means ¢ x : Vi, — Vg,
which gives us a representation of Clifford algebra I' x Vg, — Vg,.We want
to give details of the spin representation in various spacetime dimension u =
0...d.First we need to know several concepts,we represent elements of Clifford al-
gebra by linear transformations that are Dirac matrices of corresponding vector
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space and a spinor is an object that transforms under the corresponding spin
representation.For even dimension d = 2k + 2 we can form linear combinations

1 1
o+ = 5(ﬂO +1), 1o = §(r2a +4020TY a=1,..k [3.75]

The only nontrivial commutation relation is
1
{Fa+,1—‘b_} _ Z ({1"2@71"21)} 4 {F2a+1’r2b+1}) _ 6ab [376]

Also we can find the property

1

(1072 = (o) = (07 =

[(FZa)Q _ (F2a+1)2 4 i{F2a, F2a+1” =0 [377]

We can form a matrix ( = H];ié I'*~ up to constant,then
r*=¢=0, for alla =0, ...1 [3.78]

makes ¢ to be a ground state spinor and I'*~ to be annihilation operator which
gives a representation p for ¢ € V; satisfy [4.7] for s, = £1/2,s = (s¢, ...5k)

Matpirac X Ve — Ve, (DFF)SH/2 (D0F)s0+l/2 5 ¢ ¢ eV, [3.79]

with the Dirac representation p : gso) — End(V;) = Matpjrac that is group
of gamma matrices,then we get dimp(gso(q)) = dim(Matpirac) = 281 We can
view ((®) as generators of representation of Clifford algebra [3.74].For seeing
more connections,we want to derive supersymmetry algebra in the following
section based on the text [7] and show that the representation we got above is
actually isomorphic to a representation of supersymmetry algebra by regard-
ing [3.75] as a compactification of dimension 2a and 2a + 1 which follows from
normalization which means the radial lenth is 1 and we have a compact space.

4 Supersymmetry algebra

4.1 Representation of Lorentz group SO(1,3)

We start at the representation of SO(4) which we start from U(n) with
dim(U(n)) = n? for n X n unitary matrices.And for U € U(n), U~ = U*

|detU|* = detU (detU)* = detUdetU(U*) = detUdet(U ") = detU/det(U) = 1

[4.1]
Thus,we can write detU = e = 1 for SU(n),this equation fixes the polar
coordinates and total degree of freedom loose one which means dim(SU(n)) =
n? —1.Then we get dim(SU(2)) = 22 — 1 = 3.In this case we know the Lie group
SU(2) is a manifold unit S®.On the $%,we have symmetry group SO(4), and
elements are rotations that can connect two points on the three sphere. Thus,
we get a natural map SU(2) x SU(2) — SO(4), (p1,p2) — M which sends a
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pair of points on sphere to a rotational transformation,which is not injective.For
Z> symmetry which sends (p1,p2) to (—p1, —p2), we have short exact sequence
0 — Zy — SU(2) x SU(2) — SO(4) — 0.But the surjection lets us claim that
their Lie algebras are isomorphism, gsou) = gsu(2) @ gsu(z)-To see this we
follow [5], we can originally choose J;, K; for SO(4) with indices i,j = 1,2, 3,
totally six dimensions for 3 rotations and 3 translations.

3 3 3
[Ji, J]] = ’LZ fijkt]k, [Ji, Kj] = i26iijk, [Ki, Kj] = izeijkjk [42]
k=1 k=1 k=1

Based on these,we can form a linear combination Jy ; = %(JZ + K;),with

iisd -] = [+ K0, 50 = K] = {1 (s = KD+ K (s = B}

= e 3] = s K+ (K 5] = (K B )

= e i)+ U K+ (K 03] = (K B}

3 3
1. .
= Z {Z’;Gijkjk + [Jj,KZ'] — [Jj,Ki] — Zkzleiijk} =0

i Tog] = [+ Ko, 55 + )] = (1o (4 B+ [ (U + F))

4
= 3 (U T+ Lo B 4+ [, ) + o 61

:3{2[%%’] + i K] = K5, Jil} = {[Jz,J] [Ji; K51}

3 3 3

1. )

=3 {ZZEiijk-HZEiijk} S0y eigrlde + Kl =1 €edin
k=1 k=1 k=1 k=1

1

1
[T=i J- gl = [5 (i = Ki), 5 (Jj = K;)]
= e (s = K]+ Ko (= )}
= 3 (U0 5] = i K] = [ 3]+ [ K}

= 3 21 i) = o B + [, il = (210 5] = 3, K + s, K )

3
1 1
= 12{[JZ,J] JZ,K ilkZ:lewk Jk —Kk —Z;Eljk;],

[4.3]

Again,Lie bracket describes the differences in the order of differentiation between
two differential operators on manifolds.Translate it to physics,the commutator
describes if there is a contact term when two fields are closed to each other.In this
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case,the 2nd and 3rd commutator in [4.3] give closure of Lie algebra with dimen-
sion 3 separately,so Jy ;,JJ_ ;give two copies of gsy(2),and the 1st commutator
means there is no contact between these copies that means they are individual
to each other.Thus,gso(4)indeed splits and is isomorphic to g5y (2) © gsv(2)-

And one copy has irreducible representation indexed by j and have dimension
(2j+1).Recall that we have a 2-1 map SU(2) x SU(2) — SO(4), thus we need to
know what type of representation does the SU(2) x SU(2) descent to.Theorem
5.7.4 in [5] told us SU(2) x SU(2) is indexed by non negative half-integer j1, ja
have dimension (251 +1)(2J2+ 1) when J; + Jo is integer it descents to ordinary
representation,otherwise it descents to spin representation.Thus we have lowest
spin representation that is (j1,72) = (1/2,0) or (0,1/2).And these give us two
objects that transformed under the spin representation called spinors.

For SO(1, 3),there is a Wick rotation K; — iK; [K;, K;] = —i Eizl €ijk T
in [4.2],50 their Lie algebras are same over C.We use the above isomorphism
below, and use C denote complexification map.

Cygsoq,3) = Cgso) = Cysve) © Cysu(2)
= gsr2,0) D IsL2,0) = gsr2,c) © 19sL(2,0) [4.4]
= Cysr2,0)

we have used Cgsy2) = gsr(2,c) and perform contour rotation again.Then
after restriction to real, we get gsr(2,c) = gso(1,3), in this case we find the spin
group of Lorentz group that is SL(2,C) — SO(1,3) and along the map the
representation of SO(1,3) descents from the representation of SL(2,C),which is
same as that of SO(4).

SL(2,(C) X V1 E— V1

| l

SO(1,3) x Vo —— Vs

4.2 Spinors and Pauli matrices

Because of above,we know that the spinors of SO(1,3) can be viewed as ob-
jects transformed under representation of SL(2,C).We focus on the lowest spin
representation (1/2,0)(0,1/2) and each has dimension 2.Thus,we get [7](A.1)
for M € SL(2,C)

p— « H—
U, = Mo g b =M":"P,

o —la,,8 & s«\—1la 7 [45]
(4 :Mg (4 v =(M )B (G

B

The spinors with undotted indices transform under the (1/2,0), and with dotted
indices transform under the (0,1/2),and the dimension of the spinor is equal to
the dimension of corresponding representation is 2 here that explain the two-
components indices o, = 1,2.And the transformation matrices need to be
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4.3 Derivation of SUSY algebra

We can construct two operator Q4 and Q.p,A,B are indices for inter-
nal space.The first indexed by undotted 2-components index transforms under
(1/2,0), and the second indexed by dotted 2-components index transforms un-
der (0,1/2), so the product of these two operator transform under (1/2,0) @
(0,1/2) = (1/2, 1/2) As we see above, (1/2,1/2) has dimension 2 x 2, thus we
conclude that Q2Q, 5 o< P with P a 2 x 2 matrix which has dimension 4.Then
we need to find the expression of P and this is the case we need to use Pauli
matrices.We consider a combination ¢ P,, with P,, a 4-vector

omP, =0"Py+c'P, + %Py + P

N L RO P

_ [(=Py+P; P —iP,
“\p+iP, -P,—-Ps

In this case,we find properties of the combination.Firstly,c™ P,,is an 2 x 2 com-
plex matrix.Secondly,(c™Pp,)12 = (0™ Pm)3;, this gives 0™P,, = (6™P,,)!
which shows it is Hermitian and by any choice of real P, we can express any Her-
mitian matrix in the form o™ P, Now,we can guess Q4Q 5 < o™ P,,CAp.Owr
aim is to express the anticommutator {Q%,Q,z},we only have two questions
left,the first one is does 0™ P,, has same spinor indices as the product?and the
second one is if the anticommutator is hermitian or not.For the first one,we
know given a 2 X 2 hermitian matrix we can obtain others by SL(2,C),we let
P =0mP,,, and M € SL(2,C), this is P’ = MPMT then we use [4.5] we get

P'=0¢"P), = MPM' = Mc™ P, M" = M§o™P,,(M§)"

a(.-m T a\t a (. _m t [48]
We can regard [4 8] as a test equation,if we plug the spinor indices that are same
as that of {Q2, Q5 },the equation maintains,then we can conclude that o™ P,

indeed agree on spinor indices.That is we do ¢™ — o7 ,then from [4.8] we get

aq?

for the left hand side o™, P/ and for the right hand side

aat m
MEg[ME (005 Pn)] = Mg (05 Pr)" = Mg (P) ' (05)" = Mg P (o%)"
= Py, Mg (o5s)" = P Mg (o)™ = Pr,MgaT, [4.9]
/o m / /T /
- Pm /3g (P ) ( ,H,B) [( )P ] - Uﬁﬂpm
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Then,by changing index § to «,the right hand side indeed agree with the left

hand side. Therefore,we conclude that ™ in P can be equipped with lower indices

o™, Thus,we can express Q4Q,5 = UZ}XPMC’AB.IH this case,we get
{Q2.Qup}t = QAQup + QupQia = 01 PnC 5 + 05, PrCP 4

4.10
ZUngPm(CAB-FCBA) [ ]

And the verification of the anticommutator is Hermitian

{Q4,Qun} = (Q1Q QB+QQBQA>*%QAQQB>* + (Qap@)

— (Qa@a)* 1) + (@aQu) ™ ™) = [((QuBa)™) 5 + (@2 Qa))5"
= [([@a)"(Q)™T" 5 + [(Qu)" (@) ]*BA=<@an>*AB+<Qa@d>zA
— [([@a)"(Qa)T 5 [(Qa) @a)15" = (QuQa)* 5 + (@sQu)s”
= Qf@ BT QaBQA = {Q ,Qan}
[4.11]

Also,each product is Hermitian. Thus, C4 5, C® 4 in [4.10] are all Hermitian.And
a theorem told us any hermitian matrix can be diagonalized by a unitary ma-
trix.Then,we use an unitary transformation U to diagonalize C4 g, C'B 4 that is

Q4 7QB} U] = 0 which is {Q4, Q. 5}U = U{QA, Q5 },then
{Q4,Qup} = U{Q%, QuplU ™" = Uoy Ppu(CAp + CP ) U
= o™ P, (UCARU + UCP ,U)
= 0" Pn(6%p +645)
= 20" Pnd’p

[4.12]

Now,[4.12] gives the only nontrivial term in Supersymmetry algebra.

4.4 Properties of SUSY

One property is that equal number of fermions and bosons are contained
in the supersymmetry representation.We have a fact that a non-vanishing cor-
relator need to have even number of fermions and the first loop amplitude we
consider in string theory is the torus that will give periodicity of boundary.We
know on world-sheet we have one direction for time,anticommutative fields on
the periodic time direction will give antiperiodic time-ordering in path inte-
gral. Thus,an operator (—1)¥ with F the world-sheet spinor number is needed
to correct the time-ordering,gives —1 for each fermionic operator.Thus,we put
{QA,Q,p} on a periodic world-sheet or world-sheet in compactified dimensions
WlthA B counts for the dimensions with periodicity and (—1)! must be acted
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on for correct calculation of path integral.In this case we apply trace

tr[(—1)F{Q%, Qup}] = tr[(- )" (Q4Qsn + Qup@l))]

[4.13]

We performed [4.12] in the second equation.For non-vanishing momentum,[4.13]
reduces to tr[(—1)¥] = 0,this gives us that the number of fermions and number
of bosons are equal in compact space.

The second property is states of representation SUSY algebra.For seeing
clearly,we need to boost the momentum to rest frame that is P,, — P,, =
(=M,0,0,0),thus

m -1 0 10
aade_og@P0_<0 _1) Py=-1 (0 1) (=M)

1 0
=M (O 1) ad - M(Sad

In this frame,SUSY algebra [4.12] becomes

[4.14]

{\/%Qé’\/%éw}:%“& {Q4,QF} = {Qup. Qyp} =0 [4.15]

we can define a? = 1/vV2MQ%, (a)' = 1/vV/2MQ, 4 to get a rescaled algebra
{al, (@)1} = 6a56" 5 4.1

Similar to [3.78] we introduce Clifford vacuum for supersymmetric field theory
aéQ(") =0, foralld « [4.17]

with Q) = afll ...aﬁ: [YroFT),each distinct operator at most has one copy and
(YrorrlYrorr) = LY[Wrqrr) = Qaal¥rerr) = (a3) Wrorr) = 0.n can
have 2N choices for A = 1...N.For the normalization Qgé)rm = C’Q(”)7the subtile
thing for getting C' is that we need to write [4.16] into a 2N x 2N matrix

-(% @) @@= (Y ) 8

Q

a
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This gives us diagonal commutation relation

@ = (4 2) (" )
+

[4.19]

And we call it diagonal supersymmetry algebra.And clearly from the bijection

[4.18],{asy, (aF) }aiag = {a&, (af)1} . Now,we can use this form to calculate C

for A = B,we get {a?}, (ag‘)T}diag = 024 for n = 2A and by induction we get
1= (" Q) (CQ( )TCQ(n) C2(Q(n )TQ(n

norm) norm

= C*(Yrorrl|(al!..aim) all . al [Wrorr)

= C*(Prorrl(adr)t. (a Z‘f)TaAl )

= C*(Yrorr|(agr)t...(a52) (554 Al a2 alz ahm [YrgrT)
= C*(Yrorrl(aim)f..(as2) (53 ) : an|1/)RQFT>

— (Yrorrl(ad).(a52) as? . .a (aﬁf A ad =2 Wrgrr)

= C*(654) (Wrorrl(ad™)..(a A2)T a2 anWRQFT
:02(52,2‘)<1/11:5QFT|(CL(§‘:)T (@d)1(53471 — af2=>4 2=

X ay?..al" [ProrT)

—02( )(532 D{Wrorrl(aam). (ad2) as? ..afn
C*(554)(05471) - (61) (Yrorr|lYrorT)

= CZ(QA)(QA —1)...(1)

= C?(24)!

)

[4.20]

1

/(24)!

build consistent states based on the Clifford vacuum.

Therefore, we get normalisation constant C' = = \/%.And now we can

Ao+ 1 ,
Q(n)(‘zlvjl) (an,An) = ﬁ(aél )T (aa" )TQ(H))\O [421]

where Ag is the spin.And states [4.21] generate the representation of supersym-
metry algebra,called supermultiplet.Above all,we can see a representation of
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supersymmetry algebra is that of Clifford algebra [3.79] on compactified dimen-
sions.For each n,we have 2N choices,thus statistically for each n we have C2¥
choices with n =0, ..., 2N.Thus,we get the dimension (number of states) of the
supersymmetry representation

2N
dimQ = (2;\[) =22V = (dim(CQ))? = 2% = (dimp(gs0())/2)* [4.22]

n=0

where € is defined by a® = af' + iaf.We see that the k compactified part of
representation [3.79] is actually a supersymmetry representation with N internal
dimensions for N = k in [3.75].With 22V 1 integer spin states and 22V~! half-
integer spin states.And we list below several cases of supermultiplet below, each
tuple shows the corresponding states in the representation.

N =1, dim(CQ)=2', (Ao, X0+ %)

1 1
N =2, dim(CQ)=2% (Ao, N0+ 30+ 500+ 1) [4.23]

1 3
N =4, dim(CQ)=2% (No,* o+ 5,6 Ao+ 1,4 N + §,A0 +2)

4.5 Component fields

We want to change the supersymmetry algebra to a version with fields for
constructing supersymmetric field theory.Firstly,we introduce the anticommut-
ing parameters £, 7.., and satisfy

(€967} = {€%,Qp) = .. = (€% P} = 0 £Q =€°Qu,EQ = £,Q"  [4.24]
In this case,the nontrivial term becomes
£Q.EQ] = [£°Qa.E,Q"] = £QEQ — EQLQ = €EQQ — EQQ
= €£(QQ + QQ) = ¢€{Q, Q) = €€20™ Py, [4.25]
=260, Py

Notice that we need to be vary careful about the spinor indices,but sometimes
we ignore indices for simplicity. Then,we introduce a component multiplet that
is a set of fields(A,i ...) with the infinitesimal supersymmetry transformation

0cA=(§Q+8Q) x A, dep = (§Q+EQ) x ¢ [4.20]
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The x means undefined multiplication.And satisfy

[0, 0¢] A = 6,0 — dedy = 6,(€Q + EQ)A — ¢ (nQ +TQ) A

= (nQ +7Q)(£Q + EQ)A — (€Q + £Q)(nQ +TQ) A

=nQ(6Q +EQ)A+7TQ(§Q + £Q)A — £Q(nQ + Q) A — EQ(nQ + Q) A

= NQEQA +1QEQA + TQEQA + TTQEQA

—EQNQA — £QNQA — EQnQA — £QTQA

= Q. QA+ 1Q, £QIA + [7Q, £QIA + [7Q, £Q)]

=04 2nc"EPRA — 260 P A+ 0 =2(no™E — E0™' ) P A

— 2o ™E — €6 T) (~i0n) A = 20y TTLE" — €T A

[4.27]

The last line is for scalar field, A « e*™ and 9,y, 8m , ia%A = —i(ipm)A =
P,, A. This means the supersymmetry transformation closes.And supersymmetry

transformation needs to transform tensor field to spinor field and vice versa.For
tracking the field produced we need to do dimension analysis,we have

Qoo P " A, Q=3 W=5 @]=nldl=n ke o
1 2 1 2 [4.28]

[ ]is for mass dimension and F' is an auxiliary field.By the guidance of [4.28],we
can set

0eA= VAo,  Oetha = iV20IRE O A+ VIELF [4.29)

we can verify closure similarly to [4.27] for closure on

(6, 06)toa = iV20™ €D (9, A) + V2E(5,F) — iv20™ 10, (0 A) — V2n(0c F)

= i(=20n9)(10"E — £ 7) + V&8, F — 13 F)

= i(om 7" P 0,05) (P oE — P oY) + V2(E6,F — néeF)

= (0500 T P 0,) P 0P IE, — €70 IT) + VA€, F — ndcF)
—i(o 0BT 0, 05) (1 Spals — E285aTs) + V2(ES,F — 1o F)

—i(0 o) (€T S g0 — T PP 8 50) Db

+\/§(§6 F— T](SgF)
1(8367) (€45 P — 11550 €4) 05 + V2(E6,F — no¢F)
z(E(ﬁ”m — 150" ¢a)Ontha + V2(£8,F — nocF)
—i(&5™n — 76" E)Omta + V2(£6,F — ndeF)

—1

[4.30]
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And for closure on A

(8, 0¢]A = 6,0c A — 5¢6, A = V/2E8,0 — V200t
= V2L(iV20™ 0 A + V20 F) — V25(iV/20™E0 A + V2EF)  [4.31]
= —2i(no"™& — o™ N)Om A + 4ENF

For closure and maintaining the similar form of 1st term in [4.30],we have
0¢F = iv/2E5™ D) [4.32]

Then,from Dirac equation (3.39) in [8] we get below for i = 1,2, 3

—mipp = i(—=0 — Uiai)llfR = i(ano —0'0))¢r = i0" Omibr [4.33]
we can let F' = —mA*,and [4.32] becomes
V26T Dtk = —me A* = —m/289 [4.34]

we exactly get the Dirac equation [4.32] in periodic dimensions 17, = 1, Yp = ¥
in this case.Which means we get a right form of [4.32] and we can view the
closure has guaranteed by the field equation [4.32].And we call A ¢, F with
supersymmetry transformations d¢A, d¢1), d¢F' closing the chiral or scalar mul-
tiplet.
Then,we can use above to construct the following supersymmetrically invari-
ant action Lsysy = £ +m%,
Lo = 10" + A*OA+ F*F
1 1— 4.35]
Ly = AF + A"F* — §¢¢ — §¢w

We can see the variation

8¢ Lo = 10,6605 + 10,0 0tp + 0 A*OA + A*O6¢ A+ 6 F*F + F*6¢ F
= 10, (—iV2E0™ O A* + V2EF* )T + i0, 5" (V20 E0m A + V2EF)
+ V2EPOA + A*OV260) — iv/20,,0a ™ EF + Fin/ 265 0 1)
= —V2(=0"T" 0 0,) A E) — V2(—E) 0T Dy O A
+ V2EP0A + V2400
+ V280, F*T") 4+ iV 20,05 EF + iV 260 0 F + iv/2F* €™ 0,0
= —V2(= = "0 0n) A" — V28D (— = 0" 01 On) A
+V2EP0A + V2A% 0y
— iV2EF*G" 0t + iV 20T EF — iV 20,05 " EF + iV 2EF* T Ot
= —V2A%¢0y — V2EY0A + V2E0A + V2A*E0Y +0 =0

[4.36]
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We have performed partial derivative and £0™) = —1)d"¢.And for unbar part

5Ll A Fop) = 8 AF + ASF — et .
_ 4 4.37
= V2o F + AiV2T" Opt) — ) (iV20 54 O A+ V2 F) = 0

Then,easily we can find the field equations

0L 0% 0 0 1—
0=0h———=—— —— = O ——=(i0,97"Y) — —=(—ms 1))
I(Optp)  OY A(0n1)) oy 2
1 _ _ —
=00t — 5(—77“1) —my) = i0"Intp + mi
0=F+mA*
0% 0L 0 0
_ _ [ * 7%
0 a"a(anA*) + 94 an@(ﬁnA*)<A A) - A ——(mA*F™)
8 * _mn o * 3 _ *,_mn _ *
— anm(/x N 0O A) — mF* = a"ia(anA*)( O A" O A) — mF

= _nmnamanA —mF*=0A4A+mF*
[4.38)

Next,we want to proof a good property Lsysy =: Lsusy : which means the
path integral of the interacting Lagrangian is regular,the interactions counter-
act with each other,the interactions of bosons counteract that of fermions ex-
actly.And we perform Dyson-Schwinger equation

— 0 =t
0= [l ) eap(-S)i(<' 7))
-/ [dw<z,z>1{exp<s>§i¢<z’,z’> T eap(—8)8(x — .5 — 7)}

- / [0z, 2)eap(—S{[iT" Dt + M) (2, 2)B(',Z) + 8°(z — 2,7 — 7))}

= (i0,(2',Z)0"(2,2)) + (M (2, 2)0 (2, 7)) + (6°(z — 2/, 2 — 7))
[4.39]

Following the same method of [4.39] and use the field equations [4.38],We finally
get

(10,92, 2)5"P(2,2)) + (m(2,2)9(, 7)) = = (8°(= — 2/, 2 = 7))
(i00(2,2)0" (2, Z')) + (M (2, 2)0 (2, Z)) = — (6% (2 — 2/, 2 — 7)) (4.40]
(F*(2,2)F (2, 7)) + (mA(2,2)F (2, 7)) = = (8°(z — 2/, 2 = 7))
(A*(2,2)0A(2, 7)) + (mA* (2,2)F* (2, 7)) = — (6*(= — 2/, 2 — 7))
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And for the 2nd term in [4.40]

(10,0(2,2) 5" (2, 2))" + (mp(z,2)0 (2, Z2)) = — (6% (z — 2,7 - 7'))"
(=0, (2, 2)7" (2, 2)) + (M (2,2)0(2, 7)) = — (80(2 — 2", 2 = Z))
(i9(2',2)5" 0n1p(2,2)) + (M (2, 2)0 (2, 7)) = = (66(z — 2/, 2 — 7)) [4.4]]
<—28n@(z’,2')6"w(z,2)> + <m@(z,2)@(z',§’)> =— <62(z -2 z- Z’)>
<15'n1/)(z',2')5"¢(z,2)> - <m@(z,2)@(z',§')> = <§2(z —-2z-7)
Then use 1st term in [4.40] minus final equation in [4.41],we find
(mp(z,2)9(2,Z) = — <52(z -2, z- E')> [4.42]
Same procedure above for consider all field equations,we get OPE
<mE(ZaE)@(2/a7)> = <m¢(zaz)w(2‘/’§/)> == <52(Z - Z/’Q - E/)> [443]

(mA(z,2)F(2,7)) = (mA*(2,2)F* (2, 7)) = = (8°(z — ', 2= 7))

And other OPEs vanish.The subtile point is that a spinor field has 2-component
index that means it has 2 degree of freedom compared to a bosonic field which
has 1 degree of freedom thus (my1)) o, = 2 (ma(z,2)Y(2',Z')). Thus,

: ZLsusy 1= Lsusy — (L)
= Zsusy — (AF) o — (A" F ) g + 5 () g + 5 (V0)y  [4.44]
= Lsusy — 6% — 6%+ %252 + %252 = ZLsusy

Also,[4.44] tells us that the number of degree of freedom of bosons is indeed
equal to that of fermions in a supersymmetry invariant action.

4.6 Superspace and Superfields

The supersymmetry algebra with anticommuting parameters [4.24] is a Lie
algebra,we can verify the axioms

afQ +b6Q, £Q] = al¢Q,£Q] + bEQ, €Q)]

[
FQ@Q] = [5@75@] = [Pmapm} =0 [4.45)
[

Pm, [€Q, Q)] + [€Q. [€Q, Pm]] + [€Q, [Pm,£Q]] = 0
gQag\Q] = _[@7 gQ]

we can define a corresponding group element by using the linear combination
of basis (P,,, @, Q) that expand the parameter space (x, 8, 8) of a multiplicative
group with element

G(z,0,0) = 'l=+" Pm+0Q+0Q} [4.46]
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o« . . 1
Because of Jacobi identity,we use Hausdorff’s formula e4eP = eAtB+3zl4.B] o

multiplication of two group elements.We find
(0,6, E)G(™,6,7) — HEQHER == P 400470}

— =2 P (€+0)Q+(E+0)Q}+i% §[6Q.0Q]+i% 5 [€Q.0Q]
o 4,47
— =2 Pt (§+0)Q+(E+0)Q—(—i5260™0) P+ (—i5200™€) P } | ]

= G(x™ +i0c™E —ila™0,0 +£,0 + §)

Notice that G(0,&,€) is the only nontrivial multiplication element from the
observation G(z7*,0,0)G (25", 6,0) = G(0,0,0)G((z1 + z2)™,0,0).This multi-
plicative group can naturally induce an additive group with element (2,6, 0)
with multiplication (7%, 0y,0;) (x5, 02,0) = (z7* + 25,01 + 02,01 + 02) which
makes ((2™,6,0),+) = (R x R x R, +),we can find a subgroup of it descents
from the group [4.46] based on super Lie algebra [4.45] by

G(0,£,9) x G(a™,0,0) —2—— G(z™ +i00™E — it0™0,0 + £, 0 + &)

!

(O’ 572) =X (xmﬂa’ g) =

!

2 x (2™,0,0) x (2™,0,0) —L— (2™ 4 i05™E — ia™0,0 4+ £,0 + &)

Because elements G(0, £, £) forms a subgroup,the first line in the diagram induce
a group action.If group action is a property,the natural isomorphism in the
diagram descents the group action of a to that of b,that means we get a natural
group action induced by the last line in diagram from [4.46] over [4.45].

(2 x (2™,0,0)] x (z™,0,0) — (z™,6,0)

0,0) —
_ _ [4.48]
d x (21,29, 23) X (2™,0,0) — (2™ + dx1,0 + da, 0 + da3)

which means Gy = ([2x(2™,0,0)],+) C ((z™,0,0),+),is a subgroup.Then,the
group axiom of inverse gives,for d € 2,z € (2™,0,0) the inverse (dz)~! =
2~ 1d~! exists which means for any z € Gg,d ! exists to make d 'z € (z™, 6, 0).
Next,we want to find out the elements in 2.By the following calculation

0 —& 0 0 0 -
al Y o™ Y spam ,Ba m
[5 <aaa acl Gom )+5 (aa 0705 axm)](x :0,9)
& 0 _ 5e O 0 0
_ea; m m _ ¢ spa_m _Ba m «a
&0 6 T £410 005 8xmx , &4 890‘9 s Eh 0 > (449

_ ( i€ om 7* — (= w“amﬁ-sﬁ'd&)yfafd)
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and compare it with [4.48] we get d = £Q + £Q € 2,which are also differential
operators.

oo 9 _ . mgt z (9 _ o _m _fa
€QEg=t¢ (w o, am)+gd< D igroyye am) 14.50)

Thus,if z,y € (™, 0,0) for z # 0 that means x is nontrivial,we have
dila::y:>/a:...:y:>dy=1:7é0 Yy [4.51]
In this case,[4.51] tells us the group Gg is a Lie group which is a differentiable
manifold and the space parametrized by (z™,6,0) € G4 is also a differen-
tial manifold,we call this superspace which is a supermanifold here.For com-

pletion,we need to verify the commutation relation of operators in [4.50] indeed
agree with the superalgebra [4.12].And we can verify the supersymmetry algebra

— 0 Jp—_s 0 o aBm
{Qom Qd} = (w - ’LO’adG a’m) <60a - Za(xa A Sﬁ'dam>

+ (8 — i9aaa6m55d8m> <8 - iagd9d3m>
90° oLk

o 0 0 : —6 ) _. .
= %&? - iw@agaﬁmé‘ﬁ'dam — ZUZLGO‘@mj — Ugldﬁaam@aaaﬂmeﬁdﬁm
0 0 . 0 —a . : 0 : =&
+ ﬁ% — ZU‘ZLdfde 3m — Z@aaaﬁmsgdamw - eaaaﬂmEBdamU?de am
7] : 0 —a ; 0
= 72‘%00&:&60?7”85028'”1 - ZO'Zlaam + Zogfaamﬁe + isaﬁagmsﬁdﬁmwea
= —iieaﬁe G0N s Oy — 0™ O + 10T Oy + 0P 2P i@
g 798 “pam T HWaatm T e Um @ TpaT T g
; 9 Bm . Bm Bao 0
:za—gﬁeaaﬂ sgdﬁm—wa €44€ 8m%9a
= zégo’g €460m — io? 55d8m65 E& = 90" O + 08 53018’”%0
= 2i004,0m = —20.6Pm,

[4.52]
for P,, = —i0,,.We can see in the diagram above [4.48],the [4.50] is a left
multiplication,we want to shift it to right multiplication D, D4

0 . m p& Y 0 N _m
Dy(+) = = +iohu0 Om Dy(+) = —— —i0%050m [4.53]
00 90>
with anticommutation relations that are right multiplicative version of [4.52]
{Do, D} = —2i0040rm {Da,Qp} =0 [4.54]
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other anticommutators vanish.Now,we can introduce superfields living in the
superspace.For component fields (f...x4...d)(z) in a theory,a superfield is a func-
tion of degree 0 of sipinor index in superspace that can be expanded in a power
series over all #,0 index-contractions with the component fields with certain
indices.

F(2,0,0)(0,0) =f (%) + 0a(2) + 0" X, ()
+ 00 m(x) + 0 Oan(z) + 0%6750" v () [4.55]
F090,0" N () + 0°050%0 () + 00,0 04d(z)
Higher powers of 6,8 vanish,because it will contain repreated Qa,gd.This con-

struction gives us that the supersymmery transformation of superfield is that of
component field [5.3].

S¢F(2,0,0) =0¢ f(x) + 0S¢ da () + 00X ()
+ 0%0,0em(x) + ?dgdégn(x) + 0%, gddgym(x)

. . “ : [4.56]
-+ 90‘9(15&55)\@ (x) + 5a§d0a5§¢a (x) + Haﬂaéagdégd(x)
=(6Q + EQ)F (x,0,0)
In this case,we get the following properties for a constant a.
(EQ+EQ)(FI + F) = ((Q+EQ)F + (EQ +EQ)Fy w57]

(6Q +8Q)(aF) = a(6Q +EQ)F

that matches the definition of linear transformation,which means we can rep-
resent elements of supersymmetry algebra as linear transformations of super-
fields.Thus,superfields form a linear representation of the supersymmetry alge-
bra.But the representation space consisting of superfields is highly reducible.For
this,the problem of studding supersymmetry representation to that of finding
solution space of vanishing of differential equations of superfields.

Dd =Ddt =0 chiral or scalar superfields

; [4.58]
F=F vector superfields

Another way to construct a superfield is applying exp(Q+60Q)x to a component
multiplet A,with undefined multiplication x.

P, 0,0) = 007 4 = 3 (EQHEQ0)"

|
n=0 " [4.59]

A (EQ+EQ) x At H((EQ+EQ)X)A + .

with transformations 6 F(x,0,0) = (£Q +EQ)F # (£Q +£Q) x F with the first
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equation from [4.50].We can find out the undefined multiplication by

(6Q +EQ)e "+ x
o pa i Y] m Ba (0Qx+6Qx)
= [e (g — i o) 40 (o - ivvomeon )|

60‘ (89a ZO' 9 8 ) +Zd ((;Z — ieaO'Zlﬂ'EBdam)} BGQXQ@X 6*90’"5Pm
= €Q X _€Um§Pm +£\Q X +(90'mgP } BQX @X _Oa.nzgpm’

[
= (6Q X +E€Q X —E0™OPy, + 05 EP,,) e0RTIR)
[4.60]

the expression for the undefined multiplication is
(€Q+EQ)x = (£Q +£Q) + Ea™OP,, — 00 EP,, [4.61]

4.7 Chiral superfields
Chiral superfields are characterized by the condition [4.58],they correspond
to chiral multiplets [4.23] for N = 1,with ® € (—1/2,0),®" € (0,1/2).For ®
with coordinate-dependence,the solution on coordinate space is
y" =2 +ifc™0 and 6 [4.62]
Thus,the solution of the superfield is ®(y™, §) with
B(y™,0) = Aly™) + V200 (y™) + 00F (y") 4.63]
We give spinor field ¢ a /2 for convenience.And tylor expansion gives
O = A(x™ +i00™0) + \/591#(;10"’ +i00™0) + 00F (z™ + i05™0)
= A(z) +i00™00,, A(z) — %eaméeonéaman/l(x)
+ V200 — V2i0°0750"0% 0,00 + 00F (z)
. mp 11 YaYayss %o
1 =
V200 — \@iisaﬁé)@a;”ﬂ@ﬁ Omthe + OOF (z)
= A(x) +i00™00,, A(x) + i@@@DA(x)

éeeamw@ +00F (z)

We have used [7](B.13)(B.14).The right multiplications [4.53] are z-fields,we
want express it in y-space,and notice that they are first-order derivative opera-

+ V200 —
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tors.

[4.65]

Same method for D®' = 0 gives us things about conjugation.And we list them
below. 3 3
y' =2™ —ifc™f and 0 (4.66]

which is solution in coordinate space.And the corresponding superfield is

o = A*(y") + V20y(y") + 00F* (y')

* - mp * ]' YaYa) *
+V200(x) + —=0000™ 0,0 () + OOF* (z)
V2
And differential operators expressed in y'-space
0 — 0 0
Dy =— Dy =—— —2i0% 0 —— 4.
505 7 0%y, Byt [4.68]

Products of superfields are always superfields,products of chiral superfields ®
are always chiral superfields

ﬁa(q)zq)]) = 5(}@1‘1’7 + (I)iﬁdq)ju- +..=0 [469]
But products of superfields with conjugations are not chiral superfields.

Dy (®;0]...) = Da®;®1... + @D ®l... £0 [4.70]
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Thus,we can construct following product chiral superfields.

0,05 = [Ai(y) + V200 (y) + 00F, (y)][A;(y) + V2005 (y) + 06 F; (y)]
= Ai(y)A; () + V20 Ai(y)v; (y) + 00 Ai(y) Fj (y) + V20ui(y) A; (y)
+ V20%ia (¥)V20%40;5(y) + V20%i0 ()00, F; ()
+00F;(y)A; (y) + V200,000 (y) Fi(y) + 002000 F;(y) F; (y)
= Ai(y) A (y) + V20[0i (y) A; () + As ()15 (y)]

i
FOOLA ) ) + A () Fi(9)] + 2~ 500 oy

(

(

)
= Ai(y)A;j(y) + V20 (y) A; (y) + Ai(y)¥; (y)]
+00[A; (y) F(y) + A, (y) Fiy) — viv]

0,0, ), = {Ai(y)A;(y) + V20[i(y) A; () + Ai(y) 15 (y)]
HO0[A; () F5(y) + A; (W) Fi(y) — vt AR (y) + V200 (y) + 00F . (y))]
= Ai(y)A;(y) + V20[hi Aj A + b + ApAi + Ve Ai A (y)
+O0[FiAj Ay + Fi A A; + FrAiAj — P (Viathjp Ak + YjatrsAi + YratiipA;)]
= Ai(y)A;j(y) + V20[pi Aj Ay + b + ApAs + A Aj)(y)
+00[FiAj Ay + FjARA; + FirAiAj — Yo Ai — YathpAi — YrathpAjl

[4.71]

[4.72]
- 1 1 _ _
1D} |,55 = 0000[F; F; + TAI0A; + J0ATA] + (=i00" 00, A7)i00™ 00, A
- Zeega@zoz(_?ﬂaglﬁamw]ﬁ) + l%( mwza ;naea)eﬂ,(/}jﬁ
_ 1 1 _
= 0000F; F; + {ATDA; + 04T A §eeooanA;amA-
: o 1 aBy=m yaya) 7ma
+i09(—00) (52 )7 ‘*amwﬂa +we< O ) (5= i
— 0000[F; F; + 1A*DA + = DA* a AfD, A

- ?/’ﬁm m¥; + §8m1/}ﬁm¢j]

[4.73)
Notice that ®!®,|,,57 is chiral.
; 0 . ‘A .
D (91 @ilyg5) = om | 06001 F, + A OA; + - DA a AZ0m Al
= 000°F} Fio + A*DAWJr DA* - a AZdm Asal
—0
[4.74]
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Because the symmetric vectors with antisymmetric indices vanish.Now,we are
ready to build supersymmetric Lagrangian of chiral superfields.

First,recall that calculating path integral is about summing over all Feyn-
man diagrams.And superficial degree of divergence D is a quantity about UV
divergence that for D > 0.

D; = [diagramz’} - Z Vi [gn] [475]
n=3

V., is number of vertices and [g,] is the mass dimension of the vertex in the
diagram;.And this leads to the definition of renormalizability.A theory is renor-
malisable means there are finite diagrams with D > 0 < [g,] > 0.[.Z] = 4 for
4-dimensional case tells us the mass dimension of product fields in the Lagragian
must be equal or less 4 to give a renormalisable theory.

Now we can use the terms with appropriate mass dimensions in above chiral
superfields to build the most general renormalizable Lagrangian.

4 4
Lo > Luwpetiaq = P, (ca_a) x superfield,
[superfield]=0 d=[superfield]=0
1 1
= (I)ICI)AOG%.C + [(Qm”@ﬂ)j + ggijkq)i(qu)k + )\z(I)z> oo + hc]

[@10;],55] = 0,1 [®i]pg] =2 [®:D;]p9] =3 [0;D;Ppgg] = 4
[4.76)

where we use £, to show it is a Lagrangian on the supermanifold and the .c
means the component of the restriction and the fraction and symmetric-index
coupling are for symmetrization to cancel double counting.For ®;®; case

1 1
§m[AiFj + AjFi] = §mij [AiFj + AjFi] = miinFj [4.77]
And use [4.64][4.67][4.73],changing basis from y to 2 does not change Lagrangian

() \ (8.c) = A(z) + V204(x) + 60F ()
= Di(y)...|00.c = Pi(x)...]90.c
@T(I)ﬂee%(m) = (I’Tq’j‘eew(y) - eamga[qﬂq’j‘ee@(y”m [4.78]
= B1D;|yy55(y) +0(8°6°,8°6"...)
= ©'P;1,555(y)

The two sides are same on form,we can do a reparametrisation x <> y.Thus,we
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get L., () = Za, (y). In terms of component fields
Za, =FF; + - (A*DA +0A47A;) — 6 ATOmA;

1
( ¢U am¢z+a ¢U ¢z) mz](AF +AF %%)

— l\D\N

=+ ggijk(FiAjAk + FjAkAi + FkAZ‘Aj)
1
+ ggijk(—iﬂﬂ/)jAk — Vjp A — Ui Aj) + NiFi + h-C}
=FF; + - (A*DA + A7OA;) + EA;‘DAZ»

( Omth; @™ i + O 0, T ;) + [mij(;2AiFj - %Wﬂj)

l\D\s

1 1

_ 1
= i0m ;0" + A7OA; + FF; + [mz’j <AiFj - 2%‘%‘)

[4.79]
+ Gijk(FiAj Ay — i Ay) + N Fs + h-C}
We can use % and gﬁ to find equations of auxiliary fields.
0%¢, 0%a,
0= 0 2 — 2 = FFOF + N0 4 mij Aid% + gijrAi A,
DO F) ~ gF i o PO a0 ik A
= Fp 4+ A+ miAi + gijrAiA; [4.80]
0% 0%,
0=20 <& 99— By Np + mi AL+ gl ATAS

"0(OmF*)  OF*
And we put [4.80] in [4.79]

Lo F = FiFie + minAi By + giju AiAjFi + M\ F,

+mi AT Ey + g5 ATATF + N Fy
= Fp Fl — (—mirAi — gijr AiAj — M) Fre — (=i A7 — 955 AT A — M) F™
= FpF), — FyFy — F by = _FI:Fk = —W(Ai,A*)

XG_@ = iam@iﬁmwi + ArDAz - mzszwk zszwk

— Gijk it Ak — gfjk@ﬂjz‘lk — V(4 A}f)
[4.81]

v (A;, A;) = F} F}, is the potential term.The reason of expressing in terms of
component fields is that [4.76] is clear on chiral superfields but now we can
clearly see the kinetic,mass and potential terms in [4.81].
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Note that constant a is the superfield F(z,0,0) = f(z) in [4.55] with f(z) =
a and satisfy Dga = Doa = 0,50 it is a chiral superfield. Thus ®; + a is chiral
superfield and we can get another Lagrangian made of chiral superfields by shift
®, — @, + a.The shift on Lagrangian [4.76] of terms on 66.c is

1 1
§mw((b7 + ai)(q)j —+ aj) —+ ggljk((pl —+ a,)(q)] —+ aj)(@k —+ ak) —+ AZ((p’L —+ a,;)
1 1 1 1
= immfbl@j —+ imij(aiq)j —+ ajcbi) —+ ggmkq)zq)J@k —+ ggijk(aiéjCDk —+ aj<I>k<I>z-

1
+ akCIn-(I)j) —+ ggijk(aiajq)k + ajakfI%- —+ akaiq)j) + X\P; + O(a, a2, ag)

1 1
= -mj PP + gijrar®;®; + ggijk@i@j@k + X ®; +mia; P + gijra;ar®;

2
[4.82]
And then we get following coupling constants in the shifted Lagrangian
g;jk = Yijk
mi; = mij + 20ijk [4.83]
)\; =\ + mija; + 9ijkQj0k
This is a good property,if the previous potential had a minimum at ®; = —a;

then we can shift it to the origin ®; = —a; + a; = 0 and with shifted couplings
calculated by [4.83].

In addition,we find supersymmetry algebra is invariant under multiplication
of supercharge by a phase factor Q' = e~**Q,thus [4.25] gives

[0Q,00Q]) = e "' *200™0P,, = [0Q,0Q) [4.84]

We see that it is invariant on algebra,and we call it R-invariance.In the algebra
[4.25],we can let the anticommutative parameter absorb the phase factor

[0Q.0Q) = [0(e™*Q),0(e™* Q)] = [(7"*0)Q, (" 0)Q)] [4.85]

Then we get R-transformation on the anticommuting parameter R : 6 — e~%*f.
Notice that the R-transformation is invariant on supersymmetry algebra but
not necessarily on 6.c in Lagrangian.thus we get a constraint on renormalizable
Lagrangian [4.76] that is being R-invariant,this needs to let us define a unify
quantity to superfields called R-character n to capture and cancel the effect
of R-transformation on the parameters in the chiral superfields.In this case R-
transformation acts on chiral superfields is

R®(0,z) = " ® (e, z)

_ 0i o [4.86]
R®1(6,2) = e 2m®T (120, 1)

We can put it on the component fields in [4.78] as this is the case we have used

in building the Lagrangian.Now,®(0, z) = ®(z)/(0.c, x)

RO (0, z) = 2™ A(z) + V262 10y + 2o 10 F (1) [4.87]
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Then we get
R:A — ¥y
P — 2iln—3)a [4.88]
F — eQi(n—l)aF

In this case,we shift the effects of R-transformation to the R-character of each
superfield and assign the R-character to each component of the superfield. And
in our Lagrangian [4.81],the phase factors of kinetic terms cancel on the con-
jugate pair.Thus,the R-invariance is a constraint on the mass term and poten-
tial term.Thus the Lagrangian has R-invariance only if the total R-characters
of products superfields of mass and potential terms need to be integer.For
instance,we use ¥;¢;A; in a mass term of [4.81],the R transformation gives
210 =3)q; 2105 = 3)9) 02k Ay as [4.88]. This term is R-invariance only if n; —
%—i—nj —%—i—nk =n; +nj +np — 1€ Z,that is just n; +n; +ny € Z.

4.8 Vector superfields
Vector superfield satisfies [4.58]

V=V [4.89)]

which means a vector superfield needs to contain conjugate pair.Also,it should be
understood as the power serious expansion of 6, 8 over all 6, # index-contractions
with component fields with certain indices.

V(2,0,0) = C(x) +i0% X0 — i?dyd(m)
+ %mea[zw(x) + N(z)] — %édéd [M(z) — iN(2)] — 0%0™ 8" vy (z)

P ) R OB
, | , [4.90]
+ 500‘9&5“5@ [D(a:) + 2DC($)}

The component fields C, D, M, N and v,, must all be real for forming conju-
gation pairs.The vector field v, can be entire multiplet.The particular combi-
nations of components fields in #66.c,060.c and 6006.c follow from the chiral
superfield ® + ®T from [4.64],[4.67] and it satisfy Hermitian condition [4.89].

(®+ @) = (" + &) = (& + &F)f [4.91]
So it is a vector superfield of addition of a Hermitian pair of a chiral superfield.

O+ 0 = A+ A" +V2(0¢ + 0Y) + 00F + 00F* + i05™00,, (A — A*)
+ " gogsm P+ " G6gom P+ 199@5(A+A*) [4.92]
—=b000" O, —=bv000"" O, -
V2 V2 4
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we have used—%@@@mwomg = —%99(—@5’” mt).In [4.92] there is a gradi-

ent i0,,(A — A*) as coefficient of §o™6.This leads us define a supersymmetic
generalisation of a gauge transformation(or phase transformation) on [4.90].

7

V—>exp{v

[(A — A*) — i/(A + A* +00F + 00F*)dz?

1 - 1 — -1 T
+ —=0005") + —=0000™ 1 + ~00000™ (A + A* Vv
SO0+ 000" + 300900 (4-+ 4°) |}

V+ﬁ%kAN)i/@Hzﬁ+%F+%WM¥ [4.93]
+ L o5 + 0005 + Loga0m (4 + 47| Lv

Ry I 1

V2 V2 4 N4

=V+0+0f

Indeed this is gauge transformation and the V +®+® is also a vector superfield
by [4.91] as V ,thus this is a supersymmetric generalisation.And from [4.90] in
that particular combinations with [4.92] formed from [4.93],we clearly get

C—>C+A+ A"
X = X — V2
M +iN — M +iN — 2iF
U — Vpy, — 10m (A — A™)
A=A
D—D

[4.94]

under this supersymmetric gauge transformation.

5 Classification of superstring theories

5.1 Spinors in various dimensions

Now,we have used a whole section for basics of SUSY because we need to
accumulate enough physics intuition for further study.We continue our discus-
sion at the last of section 3.For generalized case,the generator of Lorentz algebra

47



[4.2] in various dimension d with signature (d—1,1) is ¥#* = —i/4[T*, T"] with

iz, 500 = % ([0, T, 17, 7] = %[[rﬂ,m,r“rﬂ] - 116 ([T, 1], T°T°]

%[FZL[HVUP]_[IOUVM] T F4[1/upa]—[apuu] 4 F4 [popv]—[vuop) i F4[apuu]—[;wpa]]
= [(2p — TYTMIOT — (247 — TOTP)DYTH] + ..

16
= I—é[znﬂ”r"rﬂ — 2POTVTH — TV (2017 — TOTH)TP 419 (27P” — TVTP)IH]...
_ %[277;4111—\2[‘7P] _ 2npar2[”#] _ Fu2,’7uarp + FU27’]pVFM + F4[””I‘P]*[””P#]].“
= {2 (2o — 2o - [ogr)eee 4 [ogrjee)

+ (2,’7110' _ 1—‘2[‘7V])1—12[:up] o (2no'l/ o FQ[DU])FQ[pH]} 4

= {2 im0 iz T2 )

%{162'77V0'2M,0 + 1’\4{”’V}0p _ F4{p7a}l’/"‘ _ 1_‘4V{[L,0'}p + F4U{P7V}IJ4

4 F4{VxU}PM _ F4{‘7’V}HP} _ [nz]uaup 4 [nz]ppva _ [nz}yp,uo _ [nz]paup

(F4) x F4[MV7UP]+[UP#V] +F4[MU»VP]+[VPxMU] F4[MPaUV]+[UVaMP]

+ o
= ] + [ — ) e — [yl

+

[5.1]
with the observation from the commutator decomposition

fife, fafal = filfe, [} fa = fifs{fe, fa} + {f1, fa} fofa — falfo, fatfo  [5.2]

We showed the details [5.1] for completeness without explanation for simplic-
ity.And exactly we see the algebra closes and represents Lie algebra gso(q—1,1)-
From [3.75] and apply [5.1] we can see the generators 2241 commute,and we
can use it to define an operator

1 1
([2ep2e+1 _p2a+ip2a_gy_ 3= reftre-— 3 [5.3]

—1
o0___

Sa — i6a,022a,2a+1 _ iéa 1

which let ¢(®) in [3.79] be its eigenstate with eigen value s, for instance

1 1 1

SaF“JT — (Fa+ra7 _ §)Fa+c — (Fa+(1 _ ra+Fa7) _ §Fa+)< — §FQ+C [54]

We want to generalize I'; to various dimension which leads us to define I' =
k1741 o .
i " [, —o I that is

k k k
I =i *[[reert = - J[(-2rtre + 1) =2 [ 5. [5.5]
a=0 a=0 a=0
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with eigenvalue 2% HZ:O sq = +1,we can diagonalize I to I'syy =) __, ¢
by the eigenvalues that are +1 for even s, = —1/2 and —1 for odd s, =
—1/2.And the two states with eigenvalue as chirality split representation of
Lorentz algebra to two Weyl representations over C we discussed in [4.4].For
superstring case d = 10 and for the representation p.

32pirac € P(950(10)), = 16 + 16" € p(gsu(s)) ® p(9su(s)) [5.6]

denote as their dimensions 2**! and 2F for d = 2k + 2 and subscript Dirac
denotes the Dirac representation [3.79].Also,for the matrix form below [5.5],we
get T, = Nyy and T = (3, ¢y (3, ¢*))" that means I'* =T up
to changing basis,and we get S, is real from [5.5],then T'%F is real that means
['2a+1 is imaginary in [3.75] which differ from the remainders that are real,thus

we collect them to form a subgroup B with By = g;il:?) Ir2etl B, =TB;

B={By,B,,T..}, B}=(—1)Zzni=s(®) B2 — (41} B,B, = {+T} [5.7]
and for anticommutation [T#* T] = 0,we find the following conjugacy classes
DH g, (DM, TH ~p, (Z1)FHTH B ~p i, gy —2 [5.]

dividing the gamma matrices group Matpiac C Mat(C),satisfying Clifford alge-
bra [3.74].We can reformulate [5.8] and we get

BYM = B =[S B] =0 [5.9]
Thus,for Dirac representation p : ggo(24/2) — Matpirac [3.79] with injective p

P_I(B) C Z(Qso(d)) ={z¢€ 950(d)|zy =yz,Vy € gso(d)} [5.10]

the center of the Clifford algebra.And we want to use a theorem 7.20 in [11]
that is p is injective if and only if Z(G) = Ker(p) = {e},which means p~1(B) =
{egsow HP H(B1), p~ 1 (B2)},then we get B = {eMatp,.} by the injectivity.In
this case,we get the property that the Dirac representation is self-dual.

Matpipae = Matpirac/ B = Matpirac/{€} = Matpirac [5.11]
Also,we can put conjugate action on chirality matrix I’
I ~p (—1)*T*, kever  self-dual, k°44 dual to other [5.12]
which give property of Weyl representation.In this case,we have an notation

(d=4,k=1),4pirac =2+ 2(=2") (d =10,k =4),32pjrac = 16(= 16) + 16’

[5.13]
B need to consistent with Lorentz transformation see example [4.5],which means
it contains the spinor index and preserve index contraction and notations are
same with section 4.From [5.9] in explicit index form,we have

Ba S =SEYBY = By =) = (G =Ba"C  [5.14]
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And we end with a Majorana condition.Following from [5.7],we have

BiBy = (—1)FB? = (=1)"% B3 B, = (~1)M (—1) "7 B} = (—1)"

[5.15]
Condition [5.14] can be translated to (¢*)* = B*B( = B*B = l.In this
case,if kmod4 = 0,3 Bj is open,if kmod4 = 0,1 By is open in the Ma-
jorana condition.By, By are physically equivalent,we can see the equivalence
above [5.11] in mathematical structure.If we regard B as a map,[5.14] induces
a self-dual representation.Majorana condition is open on Weyl spinor only if
kmod4 = 0,dmod8 = 2 which is in self-dual Weyl representation [5.12].In
this case,this Majorana-Weyl condition is open on the spinors in the space-
time (D=10) and world-sheet (d=2) of superstring theory.There is a duality
between Majorana and Weyl,in superstring theory the two sides of the duality
preserve,and one or two is closed for other case.We can see the duality by the
chirality projection operators Py = (1 £1")/2

14T x _1+B'B

1
CWey1 = Prx = — X (g)iwaj = 5@ + B*(") = TC = Civey1 [5.16]

where we used a fact that a Weyl or Majorana spinor is the object transformed
under Weyl or Majorana representation.The —I'*T satisfy Clifford algebra,we
can consider charge conjugation in various dimension in Dirac representation

0 —1 . Y e
= T;’“x2k ® (1 0 ) ’ with 7 ngXZ’C(T ) ' = ’YMT [5'17]

for p,v = 0...d — 3,then the charge conjugation on I'* gives

R P

GO
ooy Sy ) <

by induction we get a C for various dimension with CT*C~! = —T*T the
antihermiticity and hermiticity of I'* in various dimension

DAt = D = —TOPAT) ™ = 409 @ 0% (%)

i (-1 0 : - [5.19]
=07 e ( 0 1) . withy (7,470 (1) T = (=90, 70)

where we showed details with [4.6] and we do not explain for simplicity.And we
combine [5.18] and [5.19],we get

Th* — (_FOFM(FO)—I)T _ (FO)—lT(_FuT)FOT _ FOCI—WC—l(FO)—l

5.20
= —Ccr'rv(ro°c)~! = crrr(cr)—! 15-20]
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where we used I'°C' = —CT?,T? = (T9)~! = 1" We can compare this with
[5.8] and use (I'°)? = 1,we find clear expression for [5.17]

C=BI k=2, C=BJI'k=2n+1, neZ [5.21]

And we easily to calculate the conjugacy of Lorentz generator with [3.74]

CT Ot = LBIO(TITY — T (L) T BT

_ZZB[(—F“FO O - (-0 4 reroy-tpmt 522
— BZ#VB—l — S

5.2 Spinor product decomposition

There is a natural antisymmetrization from wedge algebra to tensor algebra

P+4)
AP =T 5T, AnBys T ay, By = Sl

n>0

[5.23]
where T defined in [7.17] with a normal vector space V here,and b is graded
ideal generated from anticommutative relation.[n] means a set of antisymmet-
ric n-tensor.Subscript p, ¢ for forms and u for degree of tensors.This antisym-
metrization makes the wedge algebra isomorphic to a tensor subalgegra.And
isomorphism induces an isomorphism on basis,which means we can use a ba-
sis in tensor subalgebra to generate the wedge algebra,which is spinor product
decomposition.A spin presentation is a wedge algebra which means we can con-
struct product wedge algebra by [3.79] and all elements in this product algebra
can be decomposed in tensors which is a [0]-module for [0] be a field

k k
A< Ao = ({ Ty« f T )

a=0 b=0

k k
=tr { Z (H(Fa+)5a+1/2 H(Fa+)sb+1/2> C*dxa}

Sq,5p \a=0 b=0

k .
=tr {Z (H(ra+)8a+1/2> | Bgfgﬂc*dx"}

a=0

Sa

= Span({ ¢SOt Tet T ) g )

K [5.24]
= Span({CCF[“1F“2...F““]X}) = Z[n]
n=0
where the upper || means fully antisymmetrized product as in [5.23] and C' € [0]
also is charge conjugation [5.21].And we applied opinion in [7.18] and isomor-
phism [5.23],and the prefractor for canceling double counting was abosorbed in
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constant C,also we changed of basis from ¢ = 0,...,k to u = 0,...,d.This fin-
ishes (B.1.32) in [3],and we do not explain more for simplicity.Because Poincare
duality on homology inherits to Hodge duality on tensors,and the tensor repre-
sentation reduces.We can clearly see Hodge star from [5.5]

iR (etrpap, ) =dli T D = 4T
ik (—1)*
s(s—1) d!

- iik(*l) 2 F#lmﬂs (eulmudrﬂsﬂm#d) = Ai;ir

M1---Hd — Al
€ Fﬂs+1~~~MdFH1mHs =dll’

[5.25]

_ s(s—1) . _ d'/(d—S)' )
(O )T = =TS
j—kts(s+1)
THL-HsT — _We% 1---f dFM5+1~-~/1«d

where we set THi-#m = Tlaw2  Trml and we get Hodge star * = xI'.For
even dimension d = 2k + 2,I' is a non zero constant,thus s-tensors are Hodge
dual to a new copy of (d — s)-tensors.But in odd dimension d = 2k + 3,we set
I'* = 4T that means they are Hodge dual to same copy because they are linearly
dependent in [5.25] now.In this case,we have decompositioin

k+1 d
d=2k+3 2% 52X =N nj s Y [n] = (0] 4 [1] + ... + [k + 1]
n=0 n=k+2
d k+1 d !
T T S S Ol ( 5 m)
n=0 n=0 n=k+2

=[O+ 12+ ...+ K2+ [k +1]
[5.26]

An observation is the setting I'* = 4T is actually a dimension reduction condi-
tion and a d-dim spin representation naturally lives in that of higher dimension

e ro.r?=r°.1rr =104 =1 < 1.0 [5.27]

By using the dimension reduction we construct a reduction r consists of chi-
rality matrix [5.5] and projection [5.16],r ~ I'>,which means we can reduce 2
dimensions to form this combination in representation.the [5.24] separates to

AVer) x \(Vy) = 28F 2kt & A (PLVe (D) x A\ (PLVA(D))

d d d—2 d—2

=P A (V) x AV (CID) = tx(P(A ... x A\ ) (=) TCr)
d=2 d-2 rr/
= (_1)k+n+1f‘{)r /\ (VFC*) X /\ (VFX) — ok ok + 2k’ % 2k/ n 9ok o 2k/
d—2 d—2

rr/

[5.28]
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where we define matrix projection P with r,7’/ = + and P+ = P, P, which
means the first part in product has chirality 1 and the second has also 1 and we
used [5.18] n for n-tensor.And I'f ™ = 1 x (—1).Clearly,the dimensionality agree
in [5.28].The orthogonality gives constraint on [5.28] that is (—1)¥"+1TE" =
1.Which gives a constraint to classify the decomposition in tensors [5.26].

34+ ...+ [k+ 1]y, keven
2]+ ...+ k+ 144, kodd

/ / (1] +[3]+..+[k+1]__, keven
26 x 2 :{ 0]+ 2]+ ...+ [k + 1], kodd 15-29]
[ 0]+ [2] + ... + [k]4—, keven
22 = | 1]+ 3] + o+ [, kodd

5.3 Decomposition under subgroups

Notice that for [4.4] in various dimension that is SO(20) — SU (1) x SU(l),the
decomposition of representation of the right product is to set 21 = 2k+2,k =1—1
in [5.29].Above case is trivial,the representation of two sides are same.But,we
can use that to study decomposition under typical subgroups

SO(2k +2) — SO(21 4 2) x SO(2k — 21) =, (SU(l + 1) x SU(k —1))* [5.30]
We can only focus on one sector of product,and set k + 1 — k& in [5.28]

(2k)2 _ (2](-1 + 2k-1/)2 = 2k _ 2k-1 4 2k-1/
= PLp(9sv(+1-1)x5U(k—1-1)) [5.31]
gk _ ol y gkl | ol | okel1’ gk _ ol y gkell | ol o ok-l-1’

Next,we want to study SO(2n)/U(1) — SU(n),we know p(gsu(n))-Recall we
have a ground state condition [3.78],we can regard it as a local conserved current
[3.17] by a map I'*~ — 9,and it is invariant under U (n) rotation, M9¢ = M0 =0
for M € U(n).In this case,it does gives a conserved quantity,that is global on
the orbit of U(n).Also,conserved law gives ¢ € [0].For this,we can define a U(1)
charge by just (1/27i) § (dz = —n.From [3.75] over C,[['*F|? = 1/2,we can
assign detl’®" = 1 and make them into SU(n),In this case,a decomposition
under SO(2n) — SU(n) x U(1) is just a charge decomposition on the original
SU(n),and from [5.24],[n + 1] is based on [n] added by a I'* with charge of
SU (n).And we know expression of ¢ above [3.78],we get charge of T'*~ is —n/n =
—1 which means charge of T'%" is +1.In this case,we have enough reasons to
assign charge of I'* +2 from I'** = (1/2)(I'?% + i['?**1). Then we get

2" = [0]_p, + [l]2—p + ... + [#]n, under (I'*,{) € SU(n)xU1) [5.32]

In this case we have 2% = [0] _3-+[1]_1 +[2]1 +[3]3,this tensor with charge need to
have a modified Hodge duality that is ordinary version with charge conjugation

*c : p(gsumyx1) = P(G1xsum)), n—1]p_2— 1], [5.33]
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Notice the subscript.By using [5.33] we have further classification

— — _o —

2% = [0]—s + [0 + -1+ [1];, 2% =1[0]s + [1]1, 2° = [0]s + 1], [5.34]

where we use reality [0] = [0] and 4,4 should have opposite total charge.

5.4 Fermionic state with bosonisation

Now,we can continue from [3.74].Dirac representation [3.79] can be used to
construct R ground state in D = 10,that is an eigenstate of S, [5.3]

4

1
805 81 -0y S4)R = g(ra+)8a+1/2g =ls)r, s =45 [5.35]

Because of the discussion above [4.13],we need an operator e™f" and the world
sheet fermion number is defined mod 2.We can see it anticommute with

ry = Y TV 5 T 1y = gemitPH) — e (536

For [3.61] we have Clifford algebra {v/2u#, /292 }{C2} = 2n** apply to the
original Lorentz generator above [5.1],we get £¢* = —i/2% Tt 4p* ].In

this case we can define F' = Zi:o Sa,we can see with [5.3]

25% = S (92 i) = L S (WHE, — 0P W)Wl £ i)
= S SRR R ] = 5
Do it P — ) =i T £ ig] £ iptelet i) F iyt ¢l

= U2 )R, - P )] £ (0 )
=20}y £ 21 = 21 F (S £ 1)

4 4 4
Fyp= =3 Sathy® = Siy™ + 1% > Sa=¢iF> S+l [5.37]
a=0 a=0

a=0,#1
== (F +1)

where we use this notation in [3.74] and [3.75] and the subtile point is we need
to individually treat the case d, s, d,,—s 7 0 in [3.61].And indeed the world sheet
fermion number operator counts the number.For closed string from [3.58],NS-NS
states have integer spin,R-R states the two half-integers add to a integer,R-NS
and NS-R have half-integer spin.
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We can apply state-operator isomorphism [3.72] for NS fermionic state [3.73]

dz(=1)"=Y2 5 1 _
B QT2 () = ——_gr=1/2ym(0 5.38
Vs ‘%;(T——1/2)2wi VNE) = T vhO) 538
where we used [3.58] and partial integral. And we now we need a version of [3.36)
for superconformal variance.We start with [3.62]

—r—3/2 r+1/2 _ —r—3/2 .
et = Zz j[ N T() Zz Gy 7(0,0) [5.39)
and compare it with [3.35] we get r = n—1/2 and &™) = G,,_; )5 #/(0,0) and
— 1
5yt (2, %) Ej;[ Ga1pp + (0"(2) Curpo] - #(2,2)  [5.40)

And for R sector vertex operators,because 1" (z) oc z='/? in [3.57] there is a
brunch cut.It is complicate to solve in bosonic case,when we make orbifold twist
state that also gives a brunch cut in 8.5 of [2],this is an inspiration to [7.31]
that orbifold can give effect like bunch cut.But now,we can use bosonisation to
simplify all things.

1

For setting o/ = 2 in [3.12] we get H(2)H(0) = Inz for scalar H(z).We have

e (Z) L omiH () — exp(a—lklkglnz) : etk H(2) ik H(0)

— ¢ lnz . ( + 2’8) 1H(0) 71H(0) — 1 [541]
z

() o H(0) = o= iH(2) 1 o —iH(0) .= o(3)

where k1 = 1,k = —1 and we used Taylor expansion.The matter contractions
without self-contractions in scattering amplitude of Sy (6.2.17) in [2] gives us
expectation value of such exponentials in general

<H eikiH<z7a>> =TIz - 264> k) [5.42]
i i<j i
The delta function is momentum conservation that gives constraint on ki, ko

for [5.41].And for fermionic part,we form two Majorana-Weyl fermions by linear
combination of ¥12(2) in D = 10 spacetime we discussed below [5.15].

1/) _ 271/2(1/)1 + iw2)7 ’l/; — 271/2(11[}1 _ Z¢2) [543]
And the OPEs are
DEIH0) = 5101 (0) P EA(0) + WA 0) + P2 (2)(0)
:l(ﬂ_zﬁH”ﬂJer):l [5.44]

and for world-sheet antiholomphic part,ih(z) = et (z) = e~H ()
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6 D-brane and algebraic generalized geometry

6.1 A physics intuition to D-brane

We want to develop details of a special geometric object in string theory
which is Dp-brane,for further application.And we based on chapter 8 in [2],a
note [4] and chapter 13 in [3].For a pure gauge A(22%) = ¢iAz” o gidz™ gi2nRA

Ags — €% Ay = €%(—idlnA) = e RA(_igInA) = e O+H2mRA) A0 — Ayg

[6.1]
with periodicity of toroidal compactification x2° = 2%° 4+ 27 R and [6.1] is for
fixing the global gauge from the toroidal setting by a constant §.And toroidal
setting induces a loop path of U(1) charge,which gives Wilson line to the gauge
field living in the spacetime,a measurable quantity about magnetic field

Wq — eiqfdw%AQs — e—iQ(9/27"R) § dz®® = e—iq@ [62]

which is invariant under a local gauge transformation A — ei(@®) 4

- r2TR

W, = Wyet§ T i"a@®)"de® _ yp7 i [ 1@*)de® _ 7 cilo(

z25)](2]7rR

[6.3]

where we used toroidal setting for z2° = 0,0 = 27R.A field operator is iso-
morphic to a state made from path integral see details in section 3.3.In this
case,adding a U(1) gauge field gives a modification on path integral,and we end
with non-linear sigma model coupled to a U(1) gauge field Ay,

Jlaxiem () 5 —i0

2

. [6.4]
= /[dX]e_S" /[dX]e_ideqatAJ\/IXIW — /[dX}e—(S,,—fdriqAMXM)

where t denotes Minkowski time.The contour rotation ¢ — it and the vector
Oyt = 0;t0y = —1i0,.In this case the canonical momentum Py; = 0y, xu.Z =
O_io,xmul = —0,3xu = Oy (—%) with Minkowski velocity v™ = iXM And
the Minkowski Hamiltonian is H = vMpy; + %, we get

-0
Py =V + qAM = v, +vg + qAg, AM:(),Ad:ﬁ
1 1
H = 0oy + 0¥ gAy — 5 (M oar +m®) — gAyo™ = S (pup" + o35 +m?)

[6.5]

where we used p for non-compact space and d for compact space and now we
discuss d = 25.See [3.55],field operator can be expressed in Fourier serious,so
periodicity on field gives that on Fourier serious,eipd””d > ¢ipa(”+27R)ip o
mentum space,which gives quantization on compact space pg = l/R,l € Z,and
we have ves = (27l + ¢f)/27R.In BRST quantization in section 4.4 in [2],H
vanishes physical states and gives mass-shell that means mass m? = —pHpy

96



shifted by @ from initial mass m? in [6.5].In strong interaction,we have a con-
served quantity that is color which is extra degree of freedom for SU(n) gauge
theory means the representation must forms a closed loop along the world-
sheet boundary to match the degrees for gluing free string world-sheets to a
whole interaction world-sheet,this let us introduce Chan-paton factor on open
string boundary and the representation matrix is Af; € U (n) with constraint
tr(A?AP) = §°.The gauge boson A, can be generated by open string vertex
operator 90X e* X Aij from [3.72],and we naturally have a diagonalization of Aq
from that of A\;; € U(n).Which means

Gij . _UeijU_l . 1

A, = — — _
d oTR 2R orR

diag(@l,ﬁg, >0n)u [66]

In BRST,the initial mass m? = (1/a/)(N — 1) for N the total level of oscillator

~oni (27Tl + tr(diag(Q191, ey qnen)ii)Q 2 (27Tl + Zl qzﬁl) 1
(m )i - 47T2R2 +m — 47‘[‘2R2 +J(N—1)

[6.7]
we want to study A(m?);; = (0; — 0;)?/(4n*R?) when ¢ = 1,l = O,N =
1,counting difference of energy between different color degree of freedom.We

see if 0; # 0; we have discrete dynamics that induces breaking of gauge group
Un) = U(r) x .. xUr), Y ri=n [6.8]
i=1

for r; equal 0.This gauge group breaking spontaneously breaks the vacuum
expectation value.Which directly means the vacuum which is the underlying
geometry that the open strings boundaries attaching on can be spitted to dif-
ferent geometric objects letting open strings attach,with corresponding dynam-
ics.Which is an abstract explanation to D-brane.To see concretely,we need to
apply T-duality,and this directly gives us meaning of D-brane with underlying
generalized geometry.And we will see the non-trivial meaning of the insertion
of delta function in [6.4],which actually a Dirichlet boundary condition.

6.2 T-duality with algebraic generalized geometry
The mass formulae for d compactified dimension for closed string is

9 ngn wqw? Ry R? + 2 ~

m =
R4R4 o o

then a T-duality T for an ordered pair K is

TK = (w,n), TR=
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where the winding number w is easily calculated from [3.59]

o Rl — ]{ (dX%(2) + dX(2)) = f (d=0X" + dzX%)
oriented

(N g S el g [6.11]
=-ilg) Epl 2 s 3 i)

m=—0o0 m=—o0

=2 (a’/2)"?(af + &j)
The spacetime momentum p? is calculated below [3.41] from current [3.24]

1

1
d d_ go~d

dzjt—dzih) =

p (dzj®~dz]") = 5—

- 2mi

7{ (d20X —dz0X) = (2a/)~2(al—Gd) [6.12]

where we have p? = n?/R¢ below [6.5] and combine two equations we get

nt  wiR?
pf = (2/a’)2aff = Rt 613
d N1/2 ~d nt  wiR? 613
P = (2/d) Ofozﬁ* R (n,w) € (Z,2)

And m? = (1/2)(p}pra + phpra) + (2//)(N + N — 2)) in [6.9].The discrete
pair is to describe properties(energy etc.) generated by underlying geome-
try(vacuum).We need a reverse quantization to study underlying geometry,that
is {(n,w)} =(Z,Z) — (R,R).In this case

{(n® w?)} = 2@ - RED = R g (RY)* [6.14]

Actually,generalized geometry is a field in differential geometry which is a math-
ematical structure describing LEE with O(d,d,R) of string theory with T-
duality group O(d, d,Z) [9].But we want to use this idea of Double field theory
and develop on our algebraic language.

A generalized module Misa graded module over a field kM = Mo M* with
astructure map T € O(d, d, k).A free generalized module is a generalized module
M = k(dd) with k(@D is a k-module generated by (z!,...,z%, 21, ... 2'9).

T:( 0 Adxd) . T:MoM =M ®M  [6.15]
Baxa 0/ saxad

A generalized ringed spaceA)A( ,see AG basics in section 7.2,is a topological space
X with a structure sheaf Ox,which is

X = (X,0x), Ox(X) = k[z!,...,z% 2", ..., 2] [6.16]

A generalized function f = f @ f* is a element in the section of generalized
ringed space,with f € k[z!,...,29], f* € k[2'L, ..., 2’Y].Now,we want to find the
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coordinates in[6.16].By using T-duality [6.10] on spacetime point X%(z, Z) with
expression (2.7.4) in [2],we have

TXY(z,2) = T(X{(2) + X3(2)),  af = 2] +a% Zopr 2], — 1%,

/ /N 1/2 d 5
=T |2¢ - i%(p%lnz + p&lnz) +i (a) Z ( “m_ | o
#0

2 mz™  mz™m

I
SN—

= X%(z) — X4(2) = X'z, 2), m— —m
[6.17]

In this case,we get the coordinates in [6.16] if we X4 = 29 X'* =~ 2/ Now we
need to study the property of this coordinates,we use [3.2]

041 XU(2,2) = 1 X(2,2) = (0 + 9)(X[(2) + X(2))

_ ~ ) a4 ) P [6.18]
=(0-9)(X%(2) — X&(2) = =i X""(2,2) = —i0g X' (2, Z)
where we described the whole dimension with the d dimension compacitfied as a
tube with (d, d*) similar to a world-sheet made from an open string wipe around
with (02,02t = o). The [6.18] tells us a Neumann boundary condition which is
trivial in ordinary coordinates is T-dual to a Dirichlet boundary condition which
is non-trivial on dual coordinates.And this Dirichlet condition fixes a position on
X'? and reduce one degree of freedom in T-dual space,leaving with dim (D — 1)
hyperplane called D(D — 1)-brane.For getting an expression for X’ ,we need

AX'd [X’d(z z al_g; / dx't = / doto X' = —z/ do'd, X4
:4%2%w—ﬂwgﬁaaxgj)
1 d oy 1:5%d L 2 1.5%d _ 2 1saxd
=—= (dz0X® 4+ dz0X® 4+ —dz0X* — —=dz0X*?)
2 oriented z z
/QWAZ% - 9}1 + 64
2 R4

1
= —5271'(@'/2)1/22(2@’)1/2])(1 = —2d/ Av? = —21ax

— (27 Al + 60, — 0;)R!
[6.19]

This is difference of two endpomts of open strings on D brane,where we used
[3.59] in [1] withz = e~ "+ and ay, = @y, and ad = (2« )1/2 4 for open
string attaching on.Also,we applied [6.11] and quantization of momentum in the
sense of [6.7].And we get the expression of dual coordinates for Ald =0

X'§, = 04R = =271 Agii (6.20]

where we used [6.6]. Which directly gives understanding about the delta function
in [6.4].That is 0;Aq = 0 = 9, X'" = 0 when t towards along d,which is only
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a Dirichlet condition in that field theory,but in string theory we have more
properties based on this.
An interesting thing is in [6.16],because of Dirichlet boundary condition we

have 92" =0 gives a point ' = (¢!, ..., c¢?) with integration constant c,which

corresponds to a prime ideal (2’ — (c!,...,c?)).This motivates us to develop
generalized scheme.Also,from [6.20],actually a point in dual space corresponds
a family of D-brane in the undual space.And we want to enlarge the dimension
d = D to the whole theory.

An affine complex pre generalized scheme is a generalized locally ringed space
(Spec(C[z", ..., z'P]), (C=®[z4, ..., 2P| @ C®[2", ..., ') cww-an)  [6.21]

where C®[z4+1.. 2P] is a sheaf of complex smooth functions on the D-brane
and C*®[2, ..., 2'%] is sheaf of complex smoothe functions on the corresponding
T-dual fixed space to the D-brane.

And a pre M-brane .t is the above pre scheme with typical limit d = D

(Ax, P) = ((Spec(C*P)),- @ C*[2", ....a"P]), 2)
= ((Spec(C%P*)), . @ C*°[(z* = 0),2"", ...,2""]), 2)
= (((Spec(CP) @0, p+ ) (Spec(CHP))), 2) [6.22]
~p(r) (Spec(CP)) x Spec(CHP)), 2)
= (Proj(R"*), 2)
where * is an enhancing dimension and P(T') is for fusing the two D dimensional
affine schemes to a D + 1 dimensional projective scheme,and we call this opera-
tion T-fusion,which should be a natural property of generalized geometry.And
T-fusion works similarly in (D + D,0).With a highly nontrivial presheaf & on
it now and we will see later.See definition below [12.12] explaining [6.22].
Then,we want to discuss orientifold.We start with unoriented string theory
which is a collection of unoriented world-sheets with a gauging world-sheet par-
ity Q € PSL(2,C) acting on,we can do it because the Mdbius transformation is
conformal.This collection with Chan-paton factors reduces to that of operator
Q2 = +1 on initial states.And Q : o' — (2)7 — o! for (closed) open string
Oz = Qefi(alJrio'z) _ 6026+i067i27r =3
$dzzm9, X4
mz

_ x4(3) 6.23]

o
OXd(z2) =24 — zgdelnz +C Z
m#0
where we put trivial constant to C' and used [3.60] and [6.11].In this case,we get
QX2 2) = XP(2) + X&(2) = XUz, 2)
X"z, 2) = (QXU(2,2)) = (XR(2) + XL(2))' [6.24]
= Xjp(2) — X{(2) = —X"I(z,2)
where we used [6.17].And we see an unoriented string theory in the dual space
is living on an orientifold (X = —X) x (z + z),which is just a unoriented
world-sheet embedded into an orbifold spacetime.
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6.3 D-brane in superstring theory

Now,we can enter the case of consistent string theory. T-duality reflects right
moving parts both of bosons and fermions as supersymmetry.if we let d =9

T(XR(2), 97 (2) = (- X3(2), —¥3(2)), TE*,1¢®) = (', -I'T(®)
[6.25]
we applied first tuple in [3.75] and [5.5].For the R-R field translating into the
product representation [5.24] guided by [6.23]

- ~ - ~ 3 =9
B fp — M1 pp 9 — Hp
T(FTH oY) = J TR PID Y { VIS -
_f VTHeetp s DITY = o (—DHabo=1 DY = f (—TTH-to-1) Ty
- { YT tpTITY — Y THL- kY — 7(_]"‘]"‘#1--Aupﬁ))’rﬂy~
And we quotient an equivalence relation of Hodge duality [5.25],we get
T(C97 Cp,y C;,Ll/97 Cp,l/)\) = (C; CMQ, C;,Ll/7 C;,Ll//\g) [627]

which are non trivial T-duality on antysymmetric tensor in IIA to those in
ITB.And for general case with T-duality on m dimensions on R-R state

Trp=[[#", B"=TI", p"p"=c"Fprpm [6.28]

with spacetime fermion number F of R-states and an observation,m = n, F = 0
and we have for m # n, I'T"TT" =I'T™(-I'"I') = —TT"I'T™ Where

F=0I"T"=-1 F=3mod2=1T"1T"T"" [6.29]
And T2¥, = e™F ¥, with an observation ™3™ %, = e”(F“)(fl)”fé where
F=1T"T"Y,=-%, F=4mod2=0;%,, ™Y, ", T™T"Y, [6.30]

And ITA and IIB superstring theories are T-dual.

The type I unoriented string theory made from acting [6.23] on type II
oriented theory.The interesting thing is take R — 0 in [6.10] let us focus on the
phenomenon in the bulk of T-dual space away from the orientifold boundary
[6.24].The existing state is NS+, R+ in type I theory,which means T-dual on
one dimension gives NS+, R+, R— by [6.25],that form type ITA theory in the
local bulk.ITA theory is also dual to IIB,thus locally in the bulk of non-compact
like dual space,it is a type II theory.Also,in this bulk,for a D-brane away from
unoriented or reflected boundary,the superpartners are

OX", Agii Zsusy V07 €720, Zpo, Yo [6.31]

on the level of vertex operator.Where Bos denotes bosonisation,which we can
see it is a way to compensate the bosonic and fermionic degrees of freedom for
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[4.13],a way to construct superpartner.And for a theory with one compactified
dimension d around [4.22],we have operators Q¢, Qi with internal index d cor-
responds to d = 10, N = 1 supersymmetry.But the conserved supercharge is the
total charge Q¢ + Qi,we can easily see by method around [3.41]

- 1 g 1 l (
d d -d —~d -d —~d
QS+ Q% = — %d — dzj% | = — d + dz 75
“ “ 2mi < C e C Zja) 2mi < C e C Zja)

1 d ~17-0xd 1 d ~d 631
=5 C(dea +Q7dzZ055) = %%dz(ja + Q%)
where we used corformal invariance [6.23],which exactly obeys [3.17]
Oja(z) + QJa(2)) = 0 + Ja)(2) = 0j — Dja =0 6-32]

because,the directions of the flows are opposite.And in T-dual space by [6.28],it
is Q4 + (ﬁdQ'd)d which acts on T-dual spacetime point X’¢ and makes the
scattering amplitudes of type II closed strings from D-brane invariant under
supersymmetry.From another version of [6.18] from [3.2]

04X 2,2) = (XU 2) + X42)) = i(0 — 0)(XU2) + XU(2))

—d J J J [6.33]
=i(0+ 0)(X%2) — XU(2)) =101 X'%(2,2) = 040 X'*(2, 2)
In this case,we can discuss translation invariance for T-dual space that is
XU o+ €)= XU o) + €04 X4 o) =1 XU 0) + iedy X'4(0) [6.34]

Local translation invariance breaks because the current 9,1 X’?(o) is not a total
derivative,it cannot be integrated out.To quantify the total nonconservation of
momentum,we can put [6.34] back to T-dual bosonic part of action [3.44]

ota 5% 1 - ,
APt () = 658(87)?’01)’z = Oy xrd {2770/ /M d?20X"40(X )y + i€y X)) — X;)}
i€

= 1
2
= " /d Z@&dLXé = %/BM dZadLXZi]].

[6.35]

where we used split Stoke’s theorem [3.6].The explanation is subtle,around the
T-dual spacetime point on the D-brane or along the closed boundary dM ,the
original global momentum splits to infinite many local pieces with interval be-
tween them (1/2wa’)04. X/ This is a spontaneously breaking that the global
translation invariance splits into infinite many local degenerate states.Which
means local Feynman diagram has a leg of emitting a infrared Goldstone bo-
son with [6.35] as its vertex operator.And this should have a superpartner by
supersymmetry [4.29] in T-dual space,with degeneracy

| o= [ ati= [ dsaidy, = omipQa (630
oM oM oM
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which is global goldstino.Over all,Goldstone with goldstino correspond to spon-
taneously broken supersymmetry of dimension d below [6.32] to degenerate
states,one corresponds to a half.A point is translation invariance indeed be in-
volved in supersymmetry.We can see from [4.29]

SeXH = LMk = 200, 8%0, X" = =6, €=E"0aal” [6.37]

with ignorance of pointless prefactor,which is similar to [3.49].Recall the gen-
eralized module below [6.14] and global translation invariance maintained in
ordinary space [6.34],the broken supersymmetry is just a half of supersymmetry
totally in the generalized module.Which means we have Q% + Qg is unbroken
and assigned to one state with Q' + (ﬁdQ’ 4)4 in T-dual space,which is vacuum

Xd=X",.  0uX'T=p8Y],=0 withd,X'?=0 [6.38]

And we call this vacuum in T-dual space the BPS state,which is a point on the
D-brane with the Dirichlet condition,carring the conserved charge.It also means
D-brane is not the real vacuum,it carries charges.

7 Standard super algebraic geometry

Motivation

One problem that prevent us to achieve unification is the problem of vac-
uum,string theory also cannot describe the phenomenon of vacuum.We claim
that this is because we use analytic approach to study quantum gravity or
unification problem.To solve this thing,we need to use functorial approach in-
stead and follow the Grothendieck’s philosophy. We can simply consider a scheme
W = Spec(C|z, z]) with a sheaf X' of C-algebra of C*° functions that is a sheaf
of scalar fields.A derivation of degree 1 is following for specific open set U € W

D=D'D?: X(U) = X(U), X(z,2)+— 0X(2,%) [7.1]
Based on this we can form spectrum of kinetic terms as
W = Spec; (D(X(W))), ZyeeW for L e X(W) [7.2]

where the ideal of Lagrangian is o = (£ — tr(DX ® DXT)) for existence of
trace.Then,we can define a presheaf of world-sheets .# that is

F Uy = F(Ugp), Uy =W\ TV(X)

2 7.3
F:IgH/[dX]e‘fdd, FeZUsy) 73

And for a diff xweyl group action G gx, x W — W.The free bosonic string theory
is a category of (W/Gaxw, %) which is non-trivial for string theory because 1-d
object has geometric property.In this case,we can reconstruct string theory by
using algebraic geometry with functorial approach.Thus,we indeed need super
algebraic geometry to develop such structure for consistent string theory.And
we based on the text [10].Also,we need to consider T-duality,which means the
geometry needs to be equipped with generalized setting.
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7.1 Super linear algebra

A super Lie algebra g is an object of category of super vector spaces with
contaction [,]: L ® L — L and (super)commutation cpp : LOM — M ® L
with ab +— (=1)1%"lba,a € L,b € M.And super bracket defined by a,b € L
[a,b] = (—1)[, ] o cp (ab) with Jacobi identity defined on L® L ® L

0=1[, 17 [(ay2) + (123) o (2y2) + (123)% o ()]

[7.4]
=[, 2o [(xyz) + (=D)IEH= ) 4 (—1)lellvltlellzl o (52)]

with (123)? = (132) € S3.For a super algebra A we can form a left A-module
M by A® M — M ,which is a super vector space,the morphism of A-modules
M, N that is ¢ : M — N,am — a¢p(m) let us have category of A-modules.And
the tensor product for a commutative A defined by ® : M x N — M ® N which
is universal by the unique map M @ N — A, (ma) ® (bn) — ab € A with M
a right A-module and N a left A-module.Then we can define APl9 = A @ kPl
with the Zs-grading,

(AP19)g = (Ao & Ar) @ (K§* @ kY1)

[7.5]
(AP19), = (4, ® Ag) ® (kg\q ® ki)\q)
with kP17 is a free k-module generated by the basis {e, ..., €p, €1, .., € }.And a
free A-module M is an A-module such that M =2 AP that is

AQMEARARKIN = AR kP11 =5 M
My = spany {e1,...,ep} ©spany, {e1, ..., €} [7.6]
My = spany, {e1,...,ep} D spany {e1,..., 6}

And morphism T : AP17 — A"ls of free A-modules,follows from the linear trans-
formation T : kP4 — k715 for ¢; = €pt1...,we have T'(e;) = tlej for j =1,...,7+s
and for i = 1,...,p 4+ ¢,Then the matrix of the transformation in M(Ap|q) is

rls T
Tirts)x (pa) € Hom(AP19, A7), = t;; = (T; Tj) [7.7]

With sub matrices r x p even Ti,s X q¢ even Ty and r x q odd Ts,s X p odd
T3.And T transforms coordinates.In category of A-modules,Hom set is set of
parity preserving maps.For setting grading,we need Hom = Hom, © Hom, set
with even map as T" above,odd map is parity reversing on each sub matrices.For
a simple case,Hom(AP!9, AP19) for maps T in the set

Teven € M(API7) = Hom, (AP, APl9), qodd _ (T1 T2) 7.8]
= 5 T,

with all sub matrices formed by even elements.And we have a super Lie alge-
bra Mat(APl9) which is a super vector space Hom(AP!9, API9) with commutator
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defined by [T, S] = T'S — (—=1)ITIISIST for S, T € Mat(AP17).And we can define
super trace to be

str(TV°") = tr(Th) — tr(Ty), str(T°Y) = tr(T)) + tr(Ty) [7.9]

with str(7S) = (—1)7115Istr(ST).And we can collect the automorphisms in
Hom (M, M) to form a group GL(M) called special GL group of automorphisms
of M.

An observation is M(AP!%) is a super linear algebra that cannot define normal
det,we need generalize it to Berezinian.First we have a natural map A — A =
A/J4 for an ideal J4 C A.And we got a induced map

M(Aplq) N M(Aplq) _ Hom(Ap|q, Ap\q) N Hom(flp‘q, Aplq)

= A ® Hom(k"!, kPl9) — A @ Hom(kP!4, kP14) [7-10]
an element of A corresponds to an matrix in the form of [7.7] in M(API9).If
we have an invertible matrix T € M(API9).it corresponds to an invertible el-
ement a € A which means ab = I4 for a b € A and above map send ab to
(a+Ja)(b+ Ja) =ab+ J = I4 + J4 = Iz,which means if T is invertible then
we get T € M(API9) is invertible.And for the reverse,if a T is invertible,we get
(a+Ja)(b+Ja) = 14 that is ab = I 5 — J a,0n the level of matrices is TS = I+ N
for SN € M(API9) and N corresponds to the ideal J4.Then,T'S = I means
TSN" = IN" + N"t! for N™*! = 0 and N is indeed nilpotent when r is enough
for all times if and only if J4 is an ideal generated by odd elements by anti-
commutativity. Thus,we get T is invertible if and only if T is invertible for odd
Ja.Also,T is invertible means T4, T» with even elemtents are invertible. Which
gives us a proposition1.5.1[10]that is for T € M(APl9) then T is invertible if and
only if T7,T} is invertible.In this case,we define Berezinian on an invertible T’

Ber(T) = det(Ty — ToTy "T3)det(Ty) ™! = det(Ty — T3T; ' Ty) " tdet(Ty) [7.11]

Now,we want to study properties of Ber(7T').First,we have a set G with elements
S, T € GL(API9) such that Ber(ST) = Ber(S)Ber(T) for all T,because of the
uniqueness of inverse,it is equivalent for all T—!,clearly I,7-! € G and for
all S, P € G,we can find a T = P,Ber(SP~'P) = Ber(S)Ber(P~!)Ber(P) =
Ber(SP~!)Ber(P) if P € GL(A?!%) that means SP~! € G and G is a subgroup
of GL(API%) but now P = G.Thus,G is a subgroup of GL(AP!%) if and only if
G = {p € G|p € GL(APl9)} = GL(APl9).At the same time,G must be a subgroup
because for all T is equivalent for all ST,s0 S~ € G for S € G which is the
only one we need to check in group axioms.Thus,Ber is multiplicative

Ber(ST) = Ber(S)Ber(T),  VS,T € GL(APl) [7.12]

And [7.12] let Ber become a homomorphism GL(API7) — GL.(A'Y%).For T €
GL(API9) there exists a decomposition of T

Tn T\ _ (1 0\(H 0\/1 S\ [(H H,S 7,13
, 1,) ~\r 1)\ o Hy)\0o 1)~ \TH, THS+H, :
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induces a decomposition GL(A?1?) = UHV ,for subgroups U, H,V C GL(APl9)

S (G SR (Y RS (G VI

And we see that there is a relation between determinant and trace in [3.16].Now
there is also a relation between Ber and str.We want to study this relation around
the identity,in this case we need to set up an algebraic infinitesimal system,e is
infinitesimal means a localization A — Ale]/e? for I +¢T € GL((Ale]/€?)Pl9),the
inverse (I +¢T')~! = (I — €T') which is an algebraic Taylor expansion denotes ~

Ber(I + €T) = det(1 4 €Ty 4 o(e?))det(1 + €Ty + o(e?))~?
~ det(1 + €T} )det(1 — €Ty) ~ det(e*)det(e~T4) [7.15]
= T (T) ~ (1 4 etr(T))) (1 — etr(Ty)) = 1 + estr(T)

where we used reverse Taylor expansion above [2.11] and normal relation above
[3.16].Based on this we can get cyclic property

Ber(1 + eSTP) ~ (1 + etr((STP)1))(1 — etr((STP)4))

= (14 etr(S1T1 Py + SoT5P1 + S1T2Ps + S2T4 Ps))
X (1 — etr(S3Ty Po + SaT3Ps + SsTo Py + SyTuPy))

=1+ etr(PT1S1 + PyT1S3 + PT35S, + PyT5Ss3) [7.16]
— etr(P1 T3S + P3ToSy + P3T4Ss + PyTySy)

=1+strPTS =1+ estr(STP)

= str(PTS) = str(STP)

For a super vector space V,we naturally define a tensor superalgebra

TV)=EPver, 1(V)e= P Ve, T(V) =P ver [7.17]

n>0 n even nodd
induces an universal enveloping superalgebra (UESA) of a super Lie algebra g
o) =T(e)/1, I=(@E(X)@i(Y)—(-)¥IMi(Y)@i(X)—i([X,Y]) [7.18]

for X,Y € g with immersion i : g — T(g).And we define 7 : T'(g) — U(g),for
i~1(I) = 0 € g.We can find morphisms ¢ : g — A such that £(i71(I)) = 04,in
this case,£’ = ¢ 1oi:T(g) — Atthen we get 0 = Loion ! : U(g) — A.And
the universal property follows from that i(g) is uniquely generate T'(g) which
means o is unique.By the universality,for a representation of super Lie algebra g
that is p : g — End(V),it uniquely extends to p’ : $i(g) — End(V) follows from
&(i71(I)) = Oygy+.And because of the commutation in [7.18],a basis of U(g) is

r r+s
L [[iXe) ] 5(Xk,)|ki € Kordered Xy even, Xj 0dd, X € g p [7.18]
i=1 j=r+1
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where j = m o4 we defined above.And we have a similar corollary to ordinary
case above [5.10],that is p : g — U(g) is injective because of the immersion i.and
casily,we can split [7.18] by Zy grading,I = Io @ I, = IIXIIVI=1 g [IXIIYI=0

£U(g) = U(go) @ A\(91) = (T(90)/To) @ (T(g1)/Tr) [7.19]

directly see from [7.18].

Next,we want to use graded and filtered superalgebra that are defined in
definition 1.6.8 in [10] which are just ordinary case with grading.For a filtered
superalgebra A =, -, A" for A"~ C A™ we have associate graded superalge-
bra Gr(A) = @,,~, A" /A" 1. Also,for a graded superalgebra A = @, An,we
have associative filtered superalgebra Fi(A) = (J,,>o(D, >0 An/An—1).because
we cannot define the grade of the monomial tensors of I in [7.18],in (g),we
need to start with filtration.By the definition we have for n = r + s in [7.18]

Gri@) = @ (@@ /@™ /1) cho @ (Tun I] i(Xx.))
0<m<n 1<m<n kieK

[7.20]
where T,, is span of monomial tensors with degree m.Gr(4(g)) is commutative
because the nontrivial term which expressed in Lie bracket we explained above
[3.39] is also a vector field of degree m +p — 1 for X, Y with degree m, p,that is
modded by the filtration setting in [7.20].In this case,the operation Gr for Lie
algebra can be called as free collection or closing the contaction that is

Gr(I) = I = I(i(X),i(Y),i([X,Y]) =0), X,Yeg  [7.21]

Next,we define a symmetric algebra to be Sym(V) = T(V)/I&°.When m =
1 in [7.20],we find Gr(s(g))! = (To @ Tog)/To = Tog and also by definition
Sym(g)' = (Ty ® Tog)/Ii*¢,we have I = Ty in this case,we find an injective
homormorphism Sym(g) — Gr(L(g)),and the basis generating them are based
on [],.(Xk,) which means this need to be surjective.Thus,it is an isomorphism

Gr(U(g)) = Sym(g) [7.22]

which gives the graded UESA geometric property,the corresponding physical
understanding is the geometry was broken down at the contaction point.And,we
can also see that the (anti)commutation as information collected in I indeed be
the property of underlying space but not on the fields living in the space.

7.2 Standard super algebraic gen. geometry

Now,we can apply the super linear algebra to standard algebraic geometry.A
sheaf F is a functor from the opposite category of open sets or topological spaces
X satisfying gluing property.The stalk F, of the sheaf F for a point x € X is

Fo =lmFU) = ([[ s JUi)/ =2r  VaelUcX [7.23]
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U;, ~z Uj < U; N Uj and &, ,= Ul‘v = Uj|V73i|V = Sj|V,V cU;n UjA point
in stalk is an equivalent class of sections around the fiber of z and U; \ {z} is
open.And Ox denotes the sheaf of algebra of regular functions.A ringed space
M = (|M|, F) with topological space |M| and F the sheaf of commutative
ring.A morphism of ringed space uniquely induce a fiber product which means
¢: M — N,= (|¢|,¢*),where ¢* : Oy — ¢.Op and (¢*On)(U) = On(¢(U))
for an open set U C |M].A locally ringed space is a pair (|M], F) such that
Vo € |M|, F, is a local ring.Local ring has a good property with unique maximal
ideal like irreducibility.In this case,F, is local everywhere means a point on base
corresponds a point on the section.For any commutative ring,we define SpecA to
be the spectrum of the ring,that consists of all prime ideals in A.A closed point in
this spectrum is a prime ideal,a closed set V(S) = {p € SpecA|S C p} consists of
closed points.An open set Uy = SpecA\V (f) = SpecA; = SpecA[f~ ], f € Aln
this case,we define Zariski topology on SpecA and it is an topological space.For
a commutative ring A,we define a #-sheaf Uy — O4(Uy) = Ay.And now we
use definition 2.2.10 and proposition 2.2.11 in [10],a %B-sheaf with Z a base of
open sets in a topological space,is an assignment U — F(U),VU € A satisfying
sheaf axioms.And a %-sheaf uniquely extends to a sheaf F on the topological
space.For extending to a sheaf O 4,we only need to check gluing property

h _hL_RL ek o tcoaw,)
flognv, fg  gf  glugno, f g

In this case,it indeed extends to O4 called structure sheaf on SpecA.And the

unique maximal ideal is (f) in the stalk O4 sy which means we have a locally

ringed space SpecA = (SpecA, O4).

An affine scheme is a locally ringed space isomorphic to SpecA.A scheme X
is a locally ringed space,locally isomorphic to an affine scheme.An observation
is a scheme is a solution space.For instance,a prime ideal in a polynomial ring
express a solution in D+1 dimensions of a polynomial in D dimensions just from
linear algebra.On the other hand,we have a function-solution correspondence

a function in D-dim space <— a solution in (D + 1)-dim scheme

D] — 0) = (k[y, 2", ...,xD]) [7-25]

y=k[z! ...

Next,we want to introduce projective scheme with dimension d,which covered by
(d —1)-dim affine schemes.Let M = @, , M; be graded commutative k-algebra
over a field k and M; is homogeneous elements of degree i.We define Proj M to be
set of all homogeneous prime ideals.Closed that V(I) = {p € Proj M|I C p}.The
open set is Wy = Proj M — V(f) = SpecM (f~")o,the subscript means the set
of homogeneous primes in degree 0.For a basis x°, ..., #” with degree 1 elements
generating ideal in M then the projective scheme is covered by Wo, ..., W, p.

We define an assignment Uy — M (Uy) = M for My an Ag-module we want
it to be a Z-sheaf,we only need to check gluing property based on [7.24]

h h

1 h
m = —m—-— =
folvou, g

1
m? =-m € AggM, meM [7.26]

h
g g UrnUy
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actually M can be a cotangent space easily generated by Grassmann coordinates

M = \(0) = Span((¢',...,07)), 0" =da’

with  d(Inf) = (Oyolnf)da® + ... + (dolnf)da®, V f € A [7.27]
d(Inf) € AyM, d(Ing) € AgM, d(Inf) + d(Ing) = d(Infg) € ApgM

And the above %-sheaf uniquely extends to a sheaf M on SpecA,which is an O 4-
module that is a sheaf of A-modules.For a sheaf F on a scheme X ,of Ox-module
is quasi-coherent,if Fly, = M; that is a O4,-module for {U; = SpecA;}icr
covering X.In the topological space,we can naturally retract Ox (U)-modules to
Ox (U) and to U on the Uz, [9.79].

A super ringed space S = (]S|, Og) is a Z2 graded ringed space with a graded
structure sheaf,Og ¢ is ordinary sheaf of algebra of regular function on |S| and
Os.1 is an Oy g-module. A super space is a super ringed space S with the property
that the stalk O , is local ring for all € |S|.A supermanifold M = (|M|, Oum)
of dimension p|q is a superspace that is locally isomorphic to RP! which is just
a superspace with smoothness setting. Exactly,RPI?7 = (RP, C2 [0, ..., 09])

C2[6Y, ... 09 (RP)g = {f0+ S fi0i]I = {iy <--~<im}}

even ||

Cﬁ‘;[el,,..,eq](Rp)l — { Z fJ9J|J ={ji1<---< Zr}}

odd J

[7.28]

where 07 = 0162...0' i =1, ...,q and |I| counting for the total parity and reg-
ular functions fo, fr € k[, ..., 2P].Which gives a formal definition for the super-
manifold descents from the supersymmetry algebra below [4.51].The smoothness
means we descents the information of free collection into a geometric object by
our opinion around [7.22] and now we see the commutation relation is a prop-
erty of the supermanifold and fields living on this geometric object naturally
follow its property.A superscheme is a superspace S with (S|, Og ) is ordinary
scheme and Og; is a quasi-coherent Og ¢-module.

An abelian category is a category of Abelian groups,with the zero object
being the identity and binary biproduct as the binary operation,morphisms
are homomorphisms with kernel and cokernel. The commutativity based on the
comutativity of Abelian groups reflecting by normality of all monomorphisms
and epmorphisms.Clearly,we can form an Abelian category of R-modules with a
ring R,denote by Modg.For a module M € Modpg,it is flat means the functor of
tensor product of modules (—) ®g M : Modg — Modg, is an exact functor.M is
called faithfully flat means faithfulness of homomorphism as a property preserve
by (—) ® g M and fit with corresponding commutative square of category

g~ ' : Homp (N, N') — Homg(N @ M, N’ @p M) [7.29]
where g : M - M@ M*® N € N,M is faithfully flat means the M is flat and g

is injective.The flatness is just like regularity. A morphism of schemes f : X — Y
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is flat means for all point 2 € X ,the map of the stalks O(f). : Oy, fz) = Ox,¢ is
flat which means Ox ; is a flat Oy f(,)-module.And f is faithfully flat means it is
also surjective which means injectivity on morphsims on the level of sections by
the structure of morphsm of ringed spaces below [7.23].An remark is morphisms
of affine schemes Spec(R’) — Spec(R) are (faithfully)flat if and only if R’ is a
(faithfully)flat R-module.From a R-module M ,we have an observation that is a
map M — R*,m =) rsas — (r1,...,75),property of finite generating reflects
on s is an integer,because infinity is not integer.Which is a surjection reflecting
on exact sequence is R™ — R® — M — 0 and if this exact sequence exists,we
call M is of finite presentation(of R®).If A — B is a ring homomorphism,we call
B is of finite presentation over A if there exists a surjection 7 : A[x!,...,2°] — B
with ker(r) is a finitely generated ideal in A[z?, ..., 2%].We can understand by
first isomorphism theorem,B = im(w) = Alx!, ..., 2%]/ker(r),the set of cosets
is finitely generated if and only if ker(r) is finitely generated.A quasi-coherent
sheaf F on a scheme is called locally finitely presented if for every open subset
U = Spec(A) C X the section F(Spec(A)) is a finitely presented A-module.If X
is locally noetherian,then the quasi-coherent sheaf is locally finitely presented,if
and only if it is coherent.A morphism of schemes f : X — Y is locally of finite
presentation if for every U = Spec(B) C Y and Spec(A4) C f~!(Spec(B)),A is
of finite presentation over B.A morphism f : X — Y is of finite presentation
if f is locally of finite presentation and quasi-compact and quasi-seperated.A
morphism of schemes is quasi-seperated if X xy X — X is quasi-compact.Easily
speaking,we have finiteness setting on the number of fibers and each fiber and
the pullback along fibers.

Now,we are able to define étale morphism of schemes which has very good
property like locally isomorphism also see below [9.89] for a motivation.Let
f + X — Y be a morphism of schemes.We call f formally étale(formally
smooth,formally unramified) if for every affine Y-schemes Y’ — Y and every
closed embadding i : Y] — Y’ defined by nilpotent ideal J4,the following map
is bijective(smooth,injective).

oi : Homy (Y, X) — Homy (Yg, X) [7.30]

The f is étale(smooth,unramified) if it is also locally of finte presentation.To
understand above,we need an observation that is if 22 = 0,2 # 0,d(z?) =
d0 = 0 = 2xdx # 0,which is a contradiction,that means if Qx/g = 0 for a
S-scheme,and df = 0 € Qx,g must give f is a constant and f* # 0 for some
integer s,this gives a corollary that Qx,s = 0 if and only if the functions on
the scheme X cannot be nilpotent.And Qx/5 = 0 just for excluding the relative
ramification over C.An interesting thing is we focus on nilpotent ideal because
the brunch cut which forms discrete space,but if we put superscheme in we find
nilpotent ideal can be generated by all odd elements.Intuitively,this nilpotence
should also correspond to a discrete space structure over C.In (8.5.1) in [2],we see
an orbifold strucure which is a reflection of space X* = — X* and by discussion
around [7.22],if we just absorb the anticommutation to the space

(A N D) o (9102) = (—D A A) o (0192) and 9102 ~ XH [731]
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This is exactly an orbifold structure which forms a discrete space,this inspire us
to regard the orbifold as the correspondence to the nilpotence from the odd ele-
ments.We want to use definition in [13] to define orbifold as a groupoid associat-
ing with the next chapter.A groupoid is constructed by a pair (Go, G1, s,t) with
Gy a set of objects and G a set of arrow,with structure maps s,t : G; = Gg,for
fe€G, f:x—y,s(f) =x,t(f) =y and all these are categorized into category
structure.A Lie groupoid is a groupoid with Gy, G are smooth manifolds and
structure maps are smooth and submersions.The intersection of source and tar-
get fiber at a point x € Go,(G1), = s~ (z)Nt~1(z) is a Lie group called isotropy
of G; at z.A Lie groupoid is proper if the diagonal map (s,t) : G1 — Gp x Gy
is proper.It is étale if the structure maps are local diffeomorphisms.An orbifold
groupoid G is a proper étale Lie groupoid which is equivalent to be a proper
Lie groupoid with all isotropies are discrete spaces.In this way,a category of
orbifolds is a differentiable stack denoting as W

U |GP/GIY, wy e s(g) = a,tlg) =y [7.32]

where x,y € G§,g € GY™ and we will see the verification in the next sec-
tion.[7.32] means it is an orbit space from quotient of the equivalence rela-
tion.And we can reformulate [7.31] just for f : X# — —X* € G, s(f) =
t(y).And we claim that for C-superscheme S over C,S; = (|S],0g,1) € U.We
define a C-superscheme to be a complex superscheme locally generated by

CPle = (CP, Cc2[pY, .., 09,6, ...,07]), T(CPI9) =C[z*, 2",0%,0 [7.33]

where 2! = 2} +izd, 01 = 01 + 03, (01)? = 00! = 0.Notice that this bar 6 for
conjugation is not overline 6 in section 4 which has overline for denoting another
Weyl copy,because we want to keep notation same as in section 3.And [7.33] are
just complex case of [7.28].

Notice that algebraic supergeometry is for super setting for both considering
fermions and bosons without the constraint on their number.Supersymmetry
directly reflects by agreement on number counting see [4.13].In this case we
use the terminology super algebraic geometry denoting the algebraic geome-
try with SUSY and generalized setting.Actually,we can call it supersymmetric
geometry,but we want to be same with superstring theory.For develop a super-
symmetric AG,we can start at the work by Renaud Gauthier [14]he extends
Zo-module to Zs-bigraded-module to consider number counting on the string
World—sheet,that is M = MiO %) Mil = (M(]() &b M()l) S>) (Mlo S¥) Mll) and 7 for
denoting the coordinates we used for o?.And ¢* corresponds to anticommutative
coordinates 0% because of supersymmetry gives a correspondence between X (o)
with 1(0).But we see we can add more dimensions in [7.33],in this case we want
to generalized 1-d string to Dp-brane.

A symmetric superscheme of dimension d = 2n + 1 is a superscheme gener-
ated by R2"~ 11271 with supermap 6“.A symmetric C-superscheme of dimension
d = 2n is a C-superscheme generated by C™™ for n > 0, € Z with supermap on
the underlining super ring R on the compact dimension indexed by A.

A =060 @l (24,04 = (04,27), zeRp,0eR [7.34]
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Notice that we have a C winding [3.79] which becomes a compactification by
normalization of physical states and we see this gives an equivalence of super-
symmmetry representation [4.22].In this case we use geometric part of compact-
ification geo® for only C winding and physical part of compactification phy® for
physics consideration.And we define a termiology that is a supersymmetry exact
compactification is susy® = phy® o geo®,which is not toroidal compactification
etc..This is a setting for naturalness.Thus,for symmetric C-scheme of even di-
mension,we naturally have complete exact compactifications.But for symmetric
superscheme of odd dimension we leave with one dimension do not be compact-
ified exactly which means we do not have full supermaps for a odd dimension
symmetric superscheme.We want to apply the fact below [7.25] that is a pro-
jective scheme of dimension d is covered by d — 1 dim affine schemes,and for
considering the odd dim brane exists in superstring theory,we need a constraint
that all symmetric superschemes are isomorphic to projective schemes or sym-
metric exists in universe as a projective scheme.And another constraint that is
all symmetric C-superschemes are isomorphic to affine schemes or a symmetric
C-superscheme lives in universe as an affine scheme.In this case,an projective
symmetric superscheme of dimension d naturally has supermaps from the affine
symmetric C-superschemes covering it of dimension d — 1.And exact supersym-
metry compactification also restrict their dimension need to be in superstring
theory D = 10,that is 0 < d < 10.

Now we want to combing these super settings with the former generalized
settings for T-duality in section 6.A M-brane (.#, %) is a pre M-brane [6.22]
from the T-fusion of two D = 10 dimensional affine generalized symmetric C-
superschemes,which is a 11 dimensional projective symmetric superscheme,with
a highly nontrivial sheaf & of properties with a clear form [9.15].And we want
to use a section to discuss a theory with properties,which should be the correct
way to the unification.

8 Experiment-free programme

Introduction and motivation

Every thing is actually about property,every property is actually about ge-
ometry.we can regard generating of quarks pair by vacuum as a process of dis-
playing properties from the underlying geometry.

We claim that we can construct a theory with complete elimination of ex-
periments.And this follows from a philosophy that is non-existence must exist
which means we cannot understand a thing exists but we can understand a thing
does not exist without explanation.Thus,achieving an experiment-free theory is
to create a non-existing theory,for a theory does not exist we can explain the
existence of such a theory without any doubts and experiments.This leads us to
construct a theory of properties that for quantifying the extent of existence.And
we call the process following from the philosophy and leads to such a theory,the
experiment-free programme which is based on modern algebraic geometry which
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we developed in section 9.

8.1 Fundamental settings

Definitionl.1 A property P is a relation P C {(z,y)|z,y € X},a point or
a thing is a trivial relation x = y,z,y € X.In this case,a thing is a property.

Definition1.2 A category of property p over C is a fibered category,with
objects are P-properties for P € C,and a morphism is a fiber product

{(1,22) X (w2,92)} —— {(72,92)}

l l 8.1]

{1, )} ———— P

where (z1,y1) X (z2,y2) = (z122,y1y2).For instance,for two properties >, =,we
have the fiber product {(x122,y1y2)|z122 > y1y2} over a field P.Morphisms
of categories €p,ér of properties over C are functors.a morphism of functors
is a base preserving natural transformation.In this case,we have a 2-category
HOMc¢(6p,6r),for functors g, ¢ ,the natural transformation « : g — ¢’ the
morphism ap : g(P) — ¢'(P) is a identity morphism in éx.

Corollary1.3 A normal commutation is a property {(z,y)|zy = yx}.An
anticommutation is a property {(x,y)|xy = —yx}.A (super)commutation above
[7.4] is a property of a Zs-graded super ring A

{(@ ey = (DWyz, v,y e A} [8.2]
The T-duality [6.10] is a property on the generalized module
{(x4,X'H|x'"=TX? VdeD} 8.3]

Definitionl.4 A geometry is a singular simplex ¢” : A" — X where X is a
topological space.And A™ is an algebraic normalized n-simplex

A" = Spec(R[A"]), R|A"] = R[z',..,a"*] /(1 - Zx) [8.4]

which is an n-dim affine scheme.The simplex ¢% : A® — X is a point in X.

Definitionl1.5 A category of geometries ¢4 over C that is a category of topo-
logical spaces,is a fibered category.The objects are simplexes and a morphism is
fiber product,for X € C and A" x A™ = A"*T™m

AT % Am Am

| = [8.5]

a

Ar X

Corollary1.6 A family of open strings s° in X is a geometry [s°] : Al — X
and a family of closed string s¢ in X is a geometry [s¢] : 9A? — X with
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boundary operator from 92A™ =0

OA™ = Z(—l)i[xl,...,xi_l,xi"'l,...,x""'l] [8.6]
Then,we can formalize open and closed string by algebraic topology.As A™ forms
a basis for R”,we have a simplicial group S, (X) = (ZA,, — X, +) which is free
Abelian.And the subscript means it forms chain complex

e S (X) 2 S (X)) 2 Sy (X) [8.7]
Then,by taking long exact sequence we get simplicial homology group
Zn(X)
B,(X)’

In this case we can see strings s in topological space X are elements of H; with
closed string s¢ € Z1(X) and open string s° € By (X).Similarly,we have the
super simplicial homology group follows from the Zs-graded chain complex [8.7]
denoting as ¢, (X ),and superstrings are classified by .573.

Corollary1.7 A supergeometry is a geometry s : A™ = Spec(A[A"]) = X
for a super ring A,with Zs-grading

s™ : Spec(Ap[A™]) @ Spec(41][A"]) — X [8.9]

which gives a formal definition for superscheme below [7.28]
Definition1.8 A superscheme is a superspace (X,Ox) with topological
space X a admitting structure s [8.9] and structure sheaf dicussed below [7.28].
Propositionl1.9 A family of open superstrings in X is a supergeometry
s° = 5'.And a family of closed superstrings in X is a supergeometry s¢ = 9s°.
Corollary1.10 A generalized geometry is a geometry

g" : A" = Spec(R[A"]) = X, R=R®R" [8.10]

H,(X) = Z(X) = ker(0n)(X), Bn(X) = im(0p41)(X)  [8.8]

Definition1.11 A D-string sp is a D1-brane with T-dual space point above
[6.21].In this case,a family of D-strings in X is a generalized geometry g'.
Definition1.12 A super generalized geometry is following

(g@ﬁ)n : SPGC(NA[An]) —)./\/,7 NA = (AO@Al)@(AOEBAl)* [811]

which gives us the definition of generalized superscheme from definitionl.8.
Corrollary1.13 From the natural property of generalized geometry below
[6.22],the T-fusion extends a pair of [8.11] to a M-brane .# with specific limit

Spec(Ne[AP]) = Spec(CIAP])x & Spec(C*[AP])
= Spec(C[z!, .., 2P]) g @ Spec(Clz", ..., 2'P]) g/
= Spec(C[z!, .., 2P]) ro @ Spec(C[z", ..., 2P pr Lo
= @ Spec(C[z", ..., z'P]) = - @ Spec(C*P)) [8.12]
(Spec(Ne[AP]),Spec(Ne[AP])) r—o
2 (Spec(C%P™)), - @ Spec(C**P)))
o Spec(C(O;D’*)) ®(0,0+D) Spec(C(O;*’D)) Sp(r) M
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where the subscripts are set for the radius in [6.10] and we will discuss in the
definition1.15.Also,[8.12] gives formal definition to M-brane.

Definition1.14 A M-brane .# with D = 10 is a projective symmetric gen-
eralized superscheme admitting the structure P(T) o ((g ® s)”)? that is

(Spec(Nc[AP]), Spec(Ne[AP]) = (N, N) — A4 [8.13]

And we see the supersymmetry naturally exists from C[z!,...,2P] = CP!P And
if we both have super and generalized settings,we ignore to denote symmetry
because it naturally fit in.

Also,there is a subtile point,recall that the normalization in [8.4],actually
the right hand side of the first line in [8.12] is normalized,in this case,we cannot
operate the radius,this is answered by the following definition.

Definition1.15 A spontaneous regularity breaking is the normalized radius
spontaneously breaks to those of double spaces in generalized geometry.

<1 - ZI) Nelar)) (R N ;zi)C[AD] x (I/R - Xi:xi)c*[AD] [8.14]

where we set o’ =1 in [6.10].And R — 0 actually means R — h — € to let it be
unobservable and R’ almost counts whole T-dual space now.

8.2 Algebraifold A and equivalence of categories

From an observation that a manifold is a continuous extension of a geomet-
ric object,we want to define an algebraifold for a continuous extension of an
algebraic structure.

Definition2.1 An algebraifold A in topos T on the big étale site Et(X),is
a locally ringed space locally isomorphic to a category AUU® with ha, € AS/U
and Y/U¢ € AS/U*¢ in category of algebraic spaces for an étale cover U € Et(X)

Ax = A{h@vy) = Y/Ujy) = heajoytiger = U [8.15]

where A; € AS/U C T on étale U-scheme U; in Cov(X).And the evolution of
relative properties is given by [9.130].If U = Spec(R),we must have an étale
cover and it factors through an algebraic infinitesimal system

U = Spec(R) <2 Spec(M/e?) <2 Spec(M), M/e* = (RM)/e® = R(M/e?)
[8.16]
see [7.15] and we are in big étale site.In this case,U¢ = Spec(R + em)

Y/Uj,; = TIEt(U) — Hom(T'|Et(U), B|(Spec(R + em))), em € M/ [8.17]

with the following diagram commutes,with infinitesimal transition ff;

W Avesv)”

AS/U ——— AS/US,, = AUUS AS/U*
! p 1 ! [8.18]
U v Usy Ue
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Proposition2.2 A function is a property {(x,y)ly = f(z)}.In this case,a
sheaf is a category of properties.An algebraic space A over S-scheme U is equiv-
alent to a fibered category of relative properties ¥4 and admits an étale pre-
sentation X — A over S.Which is equivalent to say for an étale equivalence
relation which is R <— X xg¢ X and for étale projections s,t : R = X with
A= X/R > Gy with #64 = #(X/R)

Proposition2.3 If A € T satisfies [9.6] and extra condition for generalized
geometry,we have a generalized superalgebraifold.

Theorem?2.4 The category of properties is equivalent to the category of
geometries €p = ¢ over a same base P.

Proof. If P are equivalent properties that are equivalent relations,the cat-
egory of equivalent properties corresponds to an algebraifold A4 € ¢ and a
property corresponds to a A™ with 9A™ = 0.If P are properties that are not
equivalent relations,a property corresponds to a A™ with 9A™ # 0. O
This proof is based on an observation that we can view a geometry with bound-
ary corresponds to a relation that is not equivalent of boundaries,a geometry
without boundary corresponds to a relation that is equivalent of boundaries.

Corollary2.5 by using the theorem?2.4,a family of open string is a property
that is not equivalent,a family of closed string is an equivalent property.And
we know,the massless bosonic state of closed string gives the graviton which is
the source of gravity.In this case,a family of gravitons actually is an equivalent
property P =2 [s¢] : OA? — X in corollaryl.6,with the first oscillation level
reflected by the topology in X.

Theorem2.6 There is a natural existence of gravity in the structure con-
structed by algebraifolds .A.

An interesting thing is if we view scheme [8.16] as a functor [9.7] we have

UE AG

l \ l [8.19]

hSpec(RJrem) ” SpeC 146 UE))

then if A is a sheaf of super structure,R 4+ em € S with S a symmetric super
R-module,we must have em € Sy/(¢2) or S; because (z + 0)? = 220 # 0,Vz,y #
0,z(¢) € Sp/(€?),0 € S1.Then we can form a linear combination

em€M@lorldM* (eSo/?) @S = Mo M* [8.20]

Ifwelet e =0,m =Q,em € M & 1 with a conserved charge ().This induces a
split of dynamics on the generalized superalgebraifold A = A & A*

D0 =001+100" =dc A Q@ Q") € Mody
NQBQH =003 Q" +Q@d"Q*=a(QRQ")

where Mod 4 is the category of all A(U)-modules and from an observation that
is a moving object can be separated to movement and object itself,the con-
served quantity is reflected by the closure from the movement as an action of

[8.21]
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an algebraic structure on the object in the vector space.And we call ® — X the
T-fusion like,which makes generalized algebraifold on pre M-brane [6.22] where
we loose the double setting because we T-fused the generalized geometry.

Theorem?2.7 For a generalized superalgebraifold A,the dynamics of one part
is open if and only if the dynamics of T-dual part is closed,with the conserved
current 0(QXQ*) € Mod 4,also this split of dynamics induces a split of modules
MOdA = MOd_A@l X MOdl@A*

8.3 Relative property and nonexistence

Definition3.1 A relative property is an étale equivalent property which
is an étale equivalent relation.On the scheme level,that is a monomorphism
R — X x4 X which preserves for T-points R(T) C X(T) x X(T) and the
projections are étale R < X x, X = X where S = [ Spec(N¢[A?]).

Corollary3.2 By using the equivalence of categories in theorem?2.4,an étale
equivalent property is a class of open strings in the scheme with the endpoints
gluing by étale morphism,from the notation we used in [7.32]

s(s°) S a(s?) & 80 (s(5°),1(s)) = (s(sD). t(5D)) [8.22]

we used definitionl.11.Which means an an étale equivalent property can be a
class of closed strings or class of open strings with boundary attaching on a fixed
plane.In this case,setting of étale is the source of open strings with D-branes.

Theorem3.3 The only type of strings in all string theories is the type of
étale closed strings.The ordinary open string is just an ordinary closed string
split by étale morphism.We will discuss this in section 12 and 13.

proof. From the difference of endpoints of open string [6.19] we have X4 =
X/® + 6R' which means X|* = X/*(X/%),and X}* = X/%(X/?) then the relative
dlfferentlal Qxld/X/d = 0,which means the X;* — X/ is étale.

Definition3.4 ‘A generalized super étale morphmm is the étale morphism

along each grading.For instance, N4 Y Np if and only if
AO e_t) Bo,Al e_t> Bl; A* 4 BO,A* et Bl [823]

Definition3.5 A Dp-brane in super generalized geometry is a homotopy of
super generalized étale morphisms in the section of the coherent sheaf

Dp: (2 — (XW, ...X’PH)) e M*, x[0,1]7 :z; Spec(Nalz!, ..., zP])

1

8.24
Dp € I'(Spec(Clz’ HC°° e ®cla’...] MP=d 824

where we used [6.21],[8.11] and from discussion below [7.29],the sheaf is coherent

(C®[zx®tt 2P e C®[2", .., 2" ) cio-aa 2 [, C®[", ..., 2" @cppr..] MP~.
Another interesting thing is we combine [8.2] and [8.3] to discuss super gen-

eralized property,the supersymmetry gives a Zo symmetry on the pair and the
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T-duality also gives the symmetry on the it.This induces a spontaneous Zo
symmetry breaking for Na[z?!, ..., 2P].
Definition3.6 A generalized super ring is the ring with structure

(Ao @ A1) B (Ao ® A1) Zpos (Ao & Ap) @ (A1 ® Ar)”

8.25
=(AoA)po (A A) .29

where we used bosonisation [6.31].With super T-duality on it
T : (A A)gd (A®A); = (A A @ (A A) [8.26]

Corollary3.7 A generalized super ring has the following decomposition
1 1
(A Ay (Ad A)] = 5((A @Apd (A A)]) + 5((A BATB(Ad A))

cortered = 3((A© Ao x (A& A)) + 2 (A A); x (A A)o)
[8.27]

Definition3.8 A spontaneous Zsy breaking on the generalized superscheme
X & X* level is the breaking of symmetric product scheme Xy x s X5 from [8.25]
to two ordered products from [8.27] of the underlying generalized super ring.

(X xg X7 ymsell T —  dered Xo X5 X /Ly + X X Xo/ Lo [8.28]

We will see a self T-dual case in [8.34].Following the breaking [8.28],we have a
classification of generalized super étale equivalent properties

R — XO Xs Xl*azordered R+ — XQ Xg XF/ZQ, +R™ — Xl* Xs XO/ZQ [829]

Which gives a field,that is F* = {#R*} and F~ = {#R~} with additive iden-
tity Op(T)-10m@+ when R are properties on Spec(N¢[zl, ..., zP]).And the field
formed by étale equivalent properties on .# we will discuss in [9.17].The subtile
point is the former identity need to be T-fused to identity on the M-brane that
we denote as Ogg- which cannot be ordinary zero we will see.

Definition3.9 The local nonexistence locally on Spec(N¢[z?, ..., #P]) or .4
is total number of étale equivalent properties is equal to Op(1)-1Qmg+ = OgmQ=-

Y {#RIr =D {#R.4}r = Op(1)-1qmo- = Ogmg+ # 0 8.30]
P(T)- .4 VA

Definition3.10 The nonexistence is the global nonexistence with total num-
ber of étale equivalent properties is equal to 0,with no relative effect (indepen-
dent of choices of reference frame).

8.4 Super generalized general relativity

Firstly,recall in double field theory,we have double copies of theories induced
by T-duality,and where we live in depends on how to choose the dynamics
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(can be generated by winding number or angular momentum),the dynamics of
one side must be closed when the dual side is open.And [8.21] is an algebraic
expression of this and such freedom has relative effect.Now,we want to study
relativity in super generalized geometry,which indeed makes sense based on the
theorem?2.7,which means we can put relative motion frame (open dynamics) in
Mod 4g1 and corresponding rest frame (closed dynamics) to Modig 4.
Definition4.1 A motion is an étale equivalent property that is a set of pairs
{(z,y)ly = Lx,L € SO(D — 1,1)}.The general relativity is a fibered product
X xg X’ where X' is a reference scheme compared to X.An interesting thing is

2 2 2
1-Z —r=arR=-1-L 1=+ 25 [8.31]
C C C

which gives us a modified Lorentz correspondence

v2 T — vt
1xz < r—ot) & R+ —2 &
L,‘Y( ) +02 R

8.32]

Then,we compare [8.32] with [6.10] and we find Lorentz correspondence behaves
like T-duality,with now the coordinates of dual space is ' = x + vt,and denote
M @& M’ as generalized Lotentz module and grading extends to further alge-
braic structure.We can see the super generalized general relativity is used for
explaining possibility in quantum theory [12.21].

Theorem4.2 There is a natural inclusion from a generalized Lorentz scheme
to generalized superscheme with the classification of relative properties

XX — X x, X' +— R

j j j 8.33]

Xo® X —— Xgx, Xf +—— R

The physics meaning of [8.32] is the source of Lorentz transformation or special
relativity is the compactness of underlying geometry.And the reference frame
lives in the T-dual space with radius 1/R = «,when v changes the T-dual space
radius changes and the ordinary space is always unchanged.This means the two
parts in super generalized geometry in [8.11] are decoupled when v # 0 that is
non-trivial case,which means they should be self T-dual, R’ € C\ R<;

Spec(Ng[AP])de¢ = Spec(C[z!, ..., 2] r—1 H Spec(Clz"t, ..., 2"P)) r

p(T) Spec(Clz?, ..., 27, ) H Spec(C[*, z', ..., xD])R'eR;Ofm c ., 8.34]
H Proj(R[z!, ..., 2P~ %]) @ Proj(R[+, 2", ..., 2’P~1))

with trivial T-fusion.The explanation of [8.34] is given by combining physics
meaning of automorphism with derived obstruction theory,we will see in [12.65].
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And the black hole limit lets us construct T-fusion dimension for dimension
and combine [6.22],we have T-fusion hierarchy

Proj(Ng[AP~1)%° = Proj(R[z", ..., #” ) p=1 [ [ Proj(R[z", ... 2° ) mr
~p(T) Proj(R[z!, ..., 2P~ %, «]) H Proj(R[x, *,z', ..., xD_l])R/eR;olrm /4

H Spec(Clz", ...,2P 72, %)) @ Spec(C[x, z*, ..., 2"P~2])
P(T)-1
[8.35]

the R with imaginary radius T-fuse to C which is (R—) g cc\r Zp(T) (C—) and
similarly for others.Also,we use C for super complex number for simplicity.

Definition4.3 A black hole on D = 10 decoupled super generalized geome-
try relative to self T-dual ordinary part is

BA = Spec(Clz, ..., x’D])SIg,IfGE\R n - @ Proj(R[*,2"", ..., 2P )p  [8.36]

where we use the superscripts for self T-dual in decoupled case.

Remark4.4 We call the result theory that from viewing Lorentz correspon-
dence as T-duality and include it into decoupled super generalized geometry,the
super generalized general relativity.

Proposition4.5 We can understand above by putting [8.34] in [8.33],we get
another decomposition from the self T-dual

(XO Xs Xf)self T —decoupled (XO Xs XO)% + (Xl* Xs X]jk)/// + 'i/vl* X ‘;le* [837]

and the tilde is for unseen part (black hole,dark energy etc.) because we are in
compact dimension with imaginary radius.And the decomposition [8.34] gives a
self T-dual classification of generalized super étale equivalent properties

R=R,+ B, +%R [8.38]

where the subscript is for the relative properties on M-brane.Compared to dis-
cussion below [8.29],there is no a number counting for #Z to construct a field
but easily we can quantify it by [8.30] with definition3.10

0= (4%} = & +#7;}+ ) _{#%} 8.39]

If we set it to cosmology constant A we have
> {#%y = A = —0gmq- [8.40]

8.5 S-duality and U-duality on étale closed strings

Actually,[8.22] is the source of S-duality,an ordinary open string is dual to a
D-string with agreement on endpoints.We know open strings live on Dd-brane
which means they live in D — d dimensional spacetime,from [6.21]

S:C®([z, . 2P @ [, .. 2Y) = C®([2", ..., 2 @ [¢¥T, ..., 2P]) [8.41]
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If we mod the S-duality,we get the generalized algebra from the coset
C® ([, . 2P @ [ ..., 2/Y) + SC>® ([, .., 2P| @ [2", ..., 2"Y]) [8.42]

Thus,we can regard S-duality as a fiber of T-duality on the generalized space
with SC'> # C'°S.For generalized space C(P-P) we have

SP) « . End(I'(Spec(CP:P)))

J l [8.43]

TPP) 5 End(Spec(CP:P)))

where if we set D to one direction and D* to a prependicular direction,we find
StYoot ¢ sU(2,c>CtD) c SL(2,CED) where we set f(z') = 2/ Now,we
want to consider a fibered product and use the generalized super ring [8.11]

End(Spec(CPD)) x_y End(I(Spec(CP-2)) P Brd (I (Spec(CP-D)))

[reor- |

End(Spec(C(P:P))) M

[8.44]
where we used T-fusion and recall the sheaf of properties on M-brane

End(Spec(CP™)) x4 End(I'(Spec(CPP))) =p(p) End(2(4))  [8.45]
Through the fiber product [8.44],we can define a new duality called U-duality
T X4 S =p(r) U € End(2(4)) [8.46]
Also,we can apply S-duality on the coherent version of [8.41] in [8.24]
S: O™, ..., 2" @) MP~ = C®[2 L 2P @) M* [8.47]

Then we can let C> = T : Spec(N¢[z'!, ...,2'P])zar — GSTen,to the gener-
alized super tensor category based on [7.17] and super T-duality [8.26] with
Ob(GSTen) = Ob(GSTeny) & Ob(GSTen)

Ob(GSTeng) = @5 M®", Ob(GSTenj) = P M**" [8.48]
0<n<D 0<n<D

morphisms are M®" BME ppr@(ntm) and pren EMET rentm) And we
apply [8.43],that means we should have a S-duality over the super T-duality

S: MOWP=d) _ ppr@d = §ox: MO MR [8.49)]

guided by [8.47] and the Hodge duality [5.25],we can express Hodge duality as

= (T° 0 S)csTen (8.50]

which can be constructed by the dualities in superstring theory under super
algebraic generalized geometry.
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8.6 Stack generalized by dualities

For a stack p : F' — C which is a category fibered in groupoids,for defining
global descent theory,the presheaf Isom(z,z") on (C'/X)°P [9.48] is a sheaf.

Now ,for a prestack F®F* — C generalized by a duality,we want to study the
presheaf Isom(z,2'),z € F(X), 2’ € F*(X).The corresponding fibered category
isp: 2 = (Isom(zx, 2')(C/X)°P) — (C/X)°P.For a X-scheme ¥ — X we have a

X-morphism (Y’ ER Y)/X .We can define a category 2((Y' % Y)/X) with an
object (f,©),where we want to view f as a functor

f € g*lsom(x,2) (Y — X) — HOMc)x)(F(Y"), F*(Y")) [8.51]

Then,the transition © is a natural transformation in Z(Y’ xy Y'/X),that is
O : pri f — prs f such that the following diagram commutes

* * pr* 6 * * * *
priopri f — prioprs f == prizprif
H lpr;?,@ [8.52]
* * pr;3@ * * * *
prizprif —— prigprif === prizprsf

where © is called descent data for the functor f.A morphism is given by [9.53].
Definition6.1 A stack generalized by a duality is a category F & F* — C
fibered in groupoids with ordinary stack conditions,with the extra condition

IUWi = Y) /X }ier) = 2(Y = X) [8.53]

for all covering of X-scheme W, ,which is a global descent theory for gluing
duality fusions in ordinary groupoid.So we have a global effective descent data
in fibered 2-category which is a stack of dualities.

HOMc/x)(F, F*) — (C/X) [8.54]

Now,recall that the fibered category as a functor and scheme as a functor below
[9.19],we need following fusion condition C'/X = X = F which means

HOMUX(C/X)(FaF*) = HOMUXX((C/X),F*)

8.55
= HOMx((C/X),F*) =2 F*(X) = F*(F) 8.5
where we used 2-Yoneda lemma [9.25],and we put it in [8.54]
p:(F*=F)=|Jc/x)=C [8.53]
X

which is a stack of fusions of dualities. ~

Definition6.2 A fusion of a duality is an object of p(F* — F) € C.
For instance,if we set X to be a M-brane,we have C' = ,(C/.4) = (4).In

this case,a T-fusion is F™* (.4 )(F(AH)) =) A .
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8.7 Preview of M-theory

In this paper,we regard the modern algebraic geometry as the mathematical
counterpart of M-theory,because we always follow a philosophy about everything
is a reflection of properties.And in this case,every process should be a process
of generating properties from the space or vacuum.Also,we have seen that ev-
ery property is an algebraic structure corresponds to a geometric structure,in
this case algebraic geometry should be a natural language.And we need a num-
ber counting for relative properties to achieve experiment-free.In the classical
method (differential geometry),the first limit is we cannot correctly define and
study the space or vacuum,the second limit is it can not provide a methodology
to study a process of generating properties.

Definition7.1 A prespace (prevacuum) is an object for generating prop-
erties.In this case,we have a completely different way to understand the vac-
uum.For instance,a sheaf F' is a prespace because it can generate a property
(X, F(X)).Which enlarges the category of schemes to category of schemes with
sheaves.Notice that we need relative properties for nonexistence of M-theory
and we will see in [9.112] only a part of sheaves (algebraic spaces) are spaces.

Definition7.2 A preservation of universal property is a process admitting
a relative 2-property below [9.110] along a covering.For instance,if conservation
of positive energy is a relative property,positive energy is a relative 2-property.

Definition7.3 A space is a consistent prespace that guarantee preservations
of universal properties.

Also,modern algebraic geometry started at viewing scheme as a functor,the
physics meaning is the real vacuum meaning it is consistent,is not eventually
nothing,it indeed has information for generating properties.Also,modern alge-
braic geometry supports to construct a theory of moduli.And the theory of
moduli on the consistent site,unifying all superstring theories without verifica-
tion of experiment,the M-theory.With further development of our theory we will
give a full understanding of D+ 1-dim M-theory and D-dim superstring theories
in [13.9].And the full process can be seen in diagrams above [13.1].We will give
clear definition of M-theory at start and achieve the unification at end.

9 Modern super algebraic geometry 1

9.1 The sheaf of properties &

Supersymmetry is a background for describing geometry of our world ade-
quately,and for the geometry,we want to apply modern AG based on the text
[12] based on Grothendieck’s philosophy that is points(closed sets) are not im-
portant,the importance is a collection of maps covering others(open sets),we
want to ignore points completely,this shift from study points to maps onto open
sets induce the generalization of standard AG.Which shifts the focus point from
a category of schemes (Sch, Hom) to a site (Sch, Cov).

A Grothendieck topology on a category C'is a set Cov(X) = {{X; = X }icr}
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forall X € C
(){V =2 X} € Cov(X)
(i) {X; xx ¥ = Y}ics € Cov(X) V{X; = X}ier € Cov(X),Y = X € C
{){Vij = Xi = Xhierjes, V{Xi = X}ier, {Vij = Xi}jen o
9.1

A site is a category C with a Grothendieck topology.By the definition,a category
Op(X) of open sets U of scheme X is a site with classical topology that is
{U; = U}lier € Cov(X) with |J, U; = U.A small étale site et(X),is a category
of étale represented schemes X with objects are étale morphisms U — X we
discussed in [7.30] and the Grothendieck topology Cov(U) is classical and the
globalization [[, U; — U is surjective.A big étale site Et(X) is based on the
strucuture of et(X) with more general topology that each U; — U is étale with
surjective globalization,it has enough coverings.

For a site C,a presheaf is a functor F' : C°? — Set.And it is a sheaf if it
satisfies

0= FU) = [[FW) = [ FWi xv Uj) »0, YUeC
el i,j€Il

F) = F([[od) = [T F@)/FUiNU;)

i,j€1

9.2]

which is an exact sequence for equalizer with a globalization [[, U; — U for
a covering {U; — U},cr.We can see an example [7.20] and the Gr operation
is actually a sheafification.And the key observation is we ignore points (closed
sets) and define sheaf only on open sets and their covering.

A topos T is an equivalent category of that of sheaves.Which is just a gener-
alization of sheaf on a scheme to a category of sheaves on a site of schemes.And
we denote topos on a small étale site X,t,also we use Sy for the étale site of S
[9.79],if not clear we use tilde for topos.In this case,we can do categorical algebra
in topos equivalent to category of sheaves of sets to generate all sheaves of al-
gebraic structures (group,ring etc.).For example,we want to generate a sheaf of
generalized super ring.For A € T topos of sets with final object.For the additive
Abelian group structure,the binary operation gives by composition of Homs

HOch(A, A) X Homc(A,A) - HOmc(A, A)

| | [9.3]

Ax A “ A

and identity from a final object e

id:A— {x}xA-S5AxA " A [9.4]

Associativity and commutativity are similar.Inverse is from the existence of limit
a=pro(1xA) 1

A A, A7 =Eq(a,f) ={a€ Ala(a) = B(a)} = A [9.5]

B=id
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And the uniqueness of inverse is from the universal property of the equal-
izer.Similarly for multiplication,the only thing is multiplicative commutativity

AXxA+— AU)x A(U) +— ab

JCA,A J l [9.6]

Ax A ——— AU) x A[U) +—— (—1)lalllpg

where c is the commutation in the superalgebra above [7.4].Around [7.22] and
[7.31],we extract the commutation as a property from fields to the underly-
ing geometry,but now,we further see this property comes from the underlying
topos.This is a natural consequence,because the super ring is generated by the
sheaf of super rings and the sheaf is generated by the topos on a site.The dis-
tributivity is from that of functions and we have generalized ring strucuture if
it admits a spontaneous regularity breaking A = A @® A*.A fact is different sites
can induce equivalent topoi see [9.82],thus,we regard topos as the lowest level
of logic of this generating process.

Now,we want to formalize the limit and colimit [7.23] in functorial ap-
proach.For a functor F : I — C the limit im F : C°? — {hx — F} where
the representable functor hx = Hom(-, X) which is also called functor of points
of X and it is completely determined by the underlying rings that is for a cov-
ering {X; — X }ier,hx(X;) = Hom(Spec(4;), X).Also X @Y < hx = hy for
schemes.Similarly,the colimit lim ' : C' — {F — hx}.The Yoneda lemma is

(9:hx = F) +— F(X) [9.7]

we find hxy > {idx : X — X} that is a point on scheme X corresponds a
permutation of points of X ,this is a trivial case that means the identity functor
idx = hx and is represented by the scheme X,or the X is a moduli space of
families of functions that keep identity globally.If a sheaf of curves F' & hx is
represented by scheme X one point in X corresponds to a family of curves or
equivalent class of curves where F : (Sch/X) — (F(T — X)),this good property
is from a point of scheme X is an ideal that is a subring I,then a natural T-point
is T = Spec(I) — X which corresponds to a correction to weirdness of Zariski
topology.

A ringed topos is a ringed space (T, A) for topos,see below [7.23].Functor of
sites f : C' — C is continuous if for every X € C’ we have {f(X;) = f(X)}ier
in Cov(f(X)),if f commutates with fiber products then f(X), f(X;) € C'.And
most of times the continuous map f : C' — C preserves functorial structure on
their topoi fi : T — f*T" with (f.F)(X) = F(f(X)),X € C' from

[0 X xx x;) = HF(f(Xi xx X;)) — HF(f(Xi) x ) f(X5)) 9.7]

%

And f,, f* are adjoint function that is Homy(f*G, F) & Homp/ (G, f.F).If f
is not continuous,which means there will be mamy U’ € C’ such that f(U’) =
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U ,which means we need to change f* to f* where

(f*@)U) =lim G(f7 (V) = Gllim [ (U)), == f(Ule)) =U (98]

i€l iel
Then we combine with Yoneda lemma [9.7],we have
HomT(f*hX/, F) = Homy (hX/, f*F) — f*F(X/) = F(f(X/)) [99]

we find f*hy is represented by f(X') that is f*hxs = hyx1y.

Then,we want to talk about cohomology of sheaves.For a ring A € T',we de-
note Mody as category of A-modules.Now,we want to assign each sheaf a point
{z; = T}ier,pt, F; € T,which means F; — zfF is injective.If F; = A;,then
7 F is a A;-module which is included to an injective module I;,then we have
riwxi F' = F — w0, the product of injective module is injecitve,we have
F — z;I; also,we have F' — z}F; is injective with ¥ = A now we have
F; — x;.1.Above all ,we have F; < I; which means Mod, has enough injec-
tives.Then,from the duality of Hompyjed, (A, F') and A ® F' in Abelian group,we
have a left exact functor T'(T, —) : Mody — Ab,then we have the right derived
functor H'(T,—) from injective resolution of every sheaf.Now,for a site C' we
have a trivial topos C'/X if F € Mod, is C-acyclic,we have H'((C/X),F) =
0.For a covering 2" = {X; — X }ier,from [9.1] the fiber product is still in cov-
ering,we can form super fiber product X* = X§ & X7 with i = (ig, ..., i,) € I"!

XE= (—1)7x700) oy x70)  x 90 9.10]
for X a superscheme.Then,we have super Cech cohomology complex

(2, F)=F(][Xs0 X7) = [[ F(x5® X7) 9.11]

where F' is a pre sheaf of A-modules.With the inverse boundary operator [8.6].
Now,we want to consider super version,recall that anticommutation corre-
sponds to a change of orientation [7.31],thus we get super differential

r+1
dr(X5® X7) = D (-1 @ (-1)TXET)? = X@F e X [9.12)
§j=0
with generalized super Cech cohomology group

AN F) = H(C (2, F)) @ H(C* (X, F)) [9.13]

the generalized super Cech (co)homology group 2 1(% , &) classifies M-branes
with generalized superalgebraifolds acting on.By Yoneda lemma we have

Homptod, (D Alhx,), F) = Hompyoa, (] [ hox,, F) = [[ F(X:) = C"(2, F)

[9.14]
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We see that from [7.26],we form a sheaf of modules from %-sheaf;now F is a
presheaf of A-module but [[; F' forms a %-sheaf.Then,from [9.14],F is a sheaf

of P, A(hx,)-modules on scheme [[; X;.We can form a sheaf &
P (C)X)) M~ ( P Al- C XX} pap ®(T@T*)AA///> [9.15]
i=(0,41),A

we call it the sheaf of properties on the M-brane,which is a sheaf of A-modules
we discussed in [8.21],and the tangent bundle @ ,(T'®T*)4 = T ®T*.With the
commutative diagram for a generalized super étale equivalence relation

Ay —— A
l l [9.16]
RO R —S— Xig X¥
where a collection of data (A, d(Q K Q*).4) € P (M ),where
* : 1 *
(QRQ").0 =dim(AZ (A, 2), D [(QRQ).a]=00rg  [917]
M

counting for the number of equivalent properties.And the constraint [9.17] en-

sures that the M-theory is a nonexistent theory which is experiment-free.In this

case,we can get a field in the whole space from [9.17],denote as Fg%gf corre-

sponding to the notation in [8.28] and [8.38] with decomposition
Fihg. Zpm- [20CoQaR® (ZCQR)r) 1 ongn 9.18]

from inverse T-fusion,corresponds to five D = 10 superstring theories.Notice
that the sheaf on the M-brane [9.15] it is a presheaf on the localized étale site
of M-brane,after discussion of descent theory,it become a sheaf globally [9.93].

9.2 Fibered category,2-Yoneda lemma and string-Space

Now,we want to discuss category as a moduli space.We know there is a
unique morphism connecting fiber products

[9.19]

We can see if we set y = p(A)op,we have another fiber product with poX = p(A\)o
p,and a unique composition of two fiber products given by A! to that with pogo

87



A =p(g) op(A\) op.These form a category F over category C' that is a pair (F,p)
with p : FF — C and morphisms are fiber products with universal property for
composition with each F(p(v)) = F/p(v) a category over p(v).We call (p: F —
C)/C a fibered category.Comapared to a scheme as a functor above[9.7],now
we have a category as a functor corresponds to the 2-Yoneda lemma.Now we
have a trivial fibered category id : C' — Cfor a functor g : C/X — C,we have
another fibered category (C/X — C')/C,the morphisms are functors C/X — F
over same Cif we collect them as objects and treat the natural transformations
as morphisms we can construct a 2-category HOMc((C/X), F),and we have

HOMy(—, F) —— F
l N l [9.20]
C/X —— X/X

which gives £ : HOM¢((C/X), F) — F(X).For seeing the structure

(6:Y - X)eC/X e p*re F(Y)CF

\ / [9.21]

YeC

and 7, maps a trivial cartesian morphism of (C/X) to that of F' over C

y" ! Yy €,y “ "\ Ly ' o'
e |, RGN [9.22]
LA l .
X Y — 5V — Y

so the functor 7, is a morphism of fibered categories and gives  : z € F(X), —
e € HOMe((C/X), F).Also,for f: 2’ — z in F(X) we have

© ¢l ey ¢t — s e

ny (e

= l l l [9.23]
¢//*!.I‘ ! > ¢/*$ € ¢*$

so 1y is a morphism in the 2-category that gives n : f € F(x),— n;.Combing
[9.22] and [9.23],we get a quasi-inverse 7 of functor £.Now from £on : z —
e = idx 2 = z,we get idp(x) = € on.Also,we have ¢ : f — f(idx) € F(X) and
n: fidx) = Npiay) : C/X — ¢ f(idx),we are in category with pullbacks,thus
Brtuax) £ (C/X) — (6 oidx) = flidx © 9)) = f(0)

fl9rz) = 9" flidx) — f(idx) € F(X)  ¢*idxy — idx

fT fT l J [9.24]

prey — 2 Lr~idyeX y —% o x
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we also have idgon. ((c/x),F) = n o & Therefore,we have 2-Yoneda lemma
HOM((C/X), F) = F(X) 9.25]

Compared to Yoneda lemma,we can see (C/X) represented by scheme X, we
also know scheme X is represented by hy,and in this case,we can view the
fibered category as a representable functor.If we let F' = (C/Y'),we get a familiar
connection HOM¢((C/X),(C/Y)) =2 Home(X,Y).

A category fibered in sets over C is a fibered category p : F' — C with iden-
tity morphisms as the only morphism in F(U),U € C and F(U) is a set.Now
in HOM¢(F,G) for G is a category fibered in sets,we have two objects f,g
and a morphism « : f — ¢g,a, : f(x) = g(x),x € F.But only morphism in
G is identity morphism which means f(z) = g(x), f = g,thus,the 2-category
HOMc¢(F,G) with G fibered in sets loose its categorical structure and becomes
a set.And for g : V — U in category C,there is always a well-defined pull-
back map ¢g* : F(U) — F(V),it makes F : C — (F — C) behaves like a
presheaf.Conversely,for a presheaf F' : C°P — Set,we know we just change the
morphism ¢! to inclusion and g, is the restriction on the level of sections,which
gives g* the pullback,then p : F(C°P) — C°P is a category fibered in sets.Then

I' : (presheaves on C) = (categories fibered in sets over C) [9.26]

where we discussed category of categories fibered in sets.
A splitting of a fibered category p: F' — C is a subcategory K C F with

(i) arrows in K are cartesian
(ii) f: U = V,v € F(V) induces a unique f:u — v e K(U) = K(V) [9.27]
(iii) id,, € K for u € F(U),U € C

And we denote split fibered category as (F, K).Then from

oV —9 oMU

\ j‘ / [9.28]

The pairs in [9.28] (U, u) form a category F.a morphism is a pair (g, @) with
3-isomorphism « : v — uog.For a (W, w) and ¢’,there is a unique 2-isomorphism
o :w — vog let the following fit with axiom of fibered category

(c/w)/F 22 cpvy F 2 o) P [9.29]
which means we have a fibered category of 3-catgories HOMc((C/U), F),U €
Cthat is FF'= (HOM¢((C/U), F)) with morphisms are 3-isomorphism,which is

3-category.From 2-Yoneda lemma,we have

F = (HOMc((C/U),F)) = (F(U)=F, UeC [9.30]
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And the pair (ﬁ , K) is a split fibered category with K C F follows from counting
all objects with the 3-isomorphisms choose to be 3-identities,actually Fisa3-
category fibered in groupoid corresponding to an equivalent relation and if we
mod this equivalent relation on the set Ob(F) we have BOb(F) = (x — K)
which is a classfying stack.

A groupoid is a category with objects forming a group see around [9.3],which
is equivalent to say all morphisms are isomorphisms,it is transversal.A cate-
gory fibered in groupoids over a category C' is a fibered category p : F — C
such that F(U) is a groupoind for all U € C.Similar to that in sets above
[9.26],HOM¢(F, F') is a groupoid for F, F' are categories fibered in groupoids.

One important construction of a groupoid in a category C' with finite fiber
products is a collection of data

(Xo, X1, 8, t,€,4,m) [9.31]
with s, t, Xo, X1 we have discussed above [7.32],and inverse and composition are
e:Xo—= Xy i:Xhi—= X1, m:Xi Xex,: X1 = Xa [9.32]

with s om = s o pry,t om =t o pr.Associativity us given by

mXxid
X1 X x0,6 X1 Xg,x0,6 X1 — X1 X, x0,6 X1

lide lm [9.33]

X X x00 X1 —F—— Xy
Identity factors through €, m given by
X1 Xs,x0 Xo

w

X1 Xs,Xo,t X1 L) X1 [934]

Xl/

Xo X x4t X1
Non-Abelianness factors through m, e

eEXE
X1 X x0,6 X1 — X1 X4, x5 X1

lm l’" [9.35]

X1 _ ” Xl

which induces the following inverse diagrams

ixid idxi
X1 55 Xy X x0,s Xi X, 5% X, Xt Xo,s X1
lt |m l [m [9.36]
Xo " X4 Xo S N X1
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Now,we consider a category {Xo(U)/X1(U)} whose objects are u € Xo(U),and

for a morphism ¢ € X;(U),: v/ — u,the composition u” 5 u’ 5w given by

(n,€) € X1(U) x¢,x,,5s X1(U),which is a groupoid over U.Following the diagram

g lof l=(fg)!"

{Xo(W)/ X1 (W)} =L {Xo(V)/X1(V)} —— {Xo(U)/X1(U)}
l l l [9.37]
W g 1% ! U

g"! £

we get a category fibered in groupoid p : {Xy/X1} — C with objects are pairs
(U,u),U € Cyu € {Xo(U)/X1(U)}.A morphism is a pair (f,«) : (V,v) = (U, u)
with an isomorphism a € {Xo(V)/X1(V)},: v — f*u.Also,the composition
w2y g0 ™S (fyu, (Wow) 22 (v,0)
is (fog),9"(a) 0 B) : (W,w) = (U,u).
Definition8.1 A string-Space SP™ is a Zy-graded category fibered in Lie
groupoids over a big étale site,where

(f2)

Uu)  [9.38]

SP: ® @ U* — ETSch®"PC (L7) [9.39]

of étale generalized superschemes over M-brane .#.We also have super T-duality
T : dpU* — U*@d from [8.26].Where ® is a category fibered in Lie groupoids
@ : {Xo/X1} — ETSch"™ " (L) and W* : {1pg /11 } — ETSchi"™PS" (L#).
For ®,the X((Xy) collects all bosonic étale closed strings s living in Xy and
a morphism w : s; — sy is an étale morphism along the time-evolution,which
is a world-sheet.In this case,we collects all world-sheets made from the time-
evolution of these strings to X;(Xp) with s(w) for initial states and ¢(w) for
final states.From discussion above [8.6],we see Xo(Xy) — Ap,actually Xy is the
moduli space of these strings,a point U = Spec(R(A')) — Xy corresponds to a
class of étale closed strings,if we let ¢, be the moduli space of world-sheets

Xo(Xy) — X Yo(X]) —— &Y
l IR l s l TeR l [9.40]
X1(Xo) — % Pi(Xf) —— G

where we combined super T-duality. These give them smoothness where we as-
sumed that the moduli spaces are differentiable.To verify the properness

Xo(Xo) X xo Xo(Xo) —=5 X1 Xy x08 X1 —2— X

T T ] [9.41]

(51,82) ———— (w1, w2) ——— wy X glue W2
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It just ends with an interactive world-sheet,and must be proper.Above all,the
definition7.1 is indeed consistent with Lie groupoid structure with properness
naturally comes from the physics.

The super T-dual part W,we have already found in [7.32].Also,we need to
combine the facts we have discussed,we have R and NS sector for fermions
[3.51].From the classfication of string theories,we can group the vertex of étale
closed strings to ori = {(NS,NS),(R,R)} and orb = {(R,NS),(NS,R)},with

ori: Y =—1, orb: Y=Y [9.42]

on the reflection point.These corresponds to two types of orbifolds,the first is
ordinary orientifold [6.24] and the second should correspond to orbifold [7.31] if
they are defined over unordered and ordered set

Q

ori orb

l l [9.43]

(¢;1;) —unordered _(¢7 7;) <L> (wﬂﬁ) —ordered _(quﬁ)

where,the ordered set is for orbifold and unordered set is for orientifold that is
unoriented on world-sheet.Also [9.43] induces the decomposition of super T-dual
part ¥ = ¥ @& ¥ where the tilde part is for orientifolds.Which induces a further
decomposition of string-Space

(P D)® (V) 2, (D) (Ve b)* [9.44]
with Q-super T-duality on the string-Space
TS, : (20 0) (Ta ) - (Ta ) ¢ (P d) [9.45]

For a category fibered in groupoids p : F' — C,we can made another category
p/x : Fyx — (C/X) which is also fibered in groupoids.And an object of I, x is
a pair (y, f : p(y) = X),y € F and a morphism is (g,p(g9)),9:y = v

p(9) :py) = py), f = foplg) 9.46]

And the functor p,x sends (y, f : p(y) — X) to f € C/X .For any f:Y — X

F(Y) === F/x(f:Y = X)

l i [9.47)
Y

= LYo X

the F,x is a category fibered in groupoids.Recall that the relation between
fibered category and presheaf [9.26],for a fiber F/(X) = F)x (idx),we have

Isom(x, ") : (C/X)°® — Set [9.48]
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for x,2' € F(X).For any morphism f : Y — X ,with pullbacks f*z, f*a’
Isom(z,z")(f: Y — X) = Isompy(f*z, f*2") [9.49]
where the set of isomorphisms is an object and a morphism is (g, g*)

g" Isom(x,2')(f : Y — X) — Isom(z,2")(fg: Z — X) [9.50]

where Z %Y i> X.If x = 2’ the section is an automorphism group
Isom(id,)(f : Y — X) = Autp(y)(idsez) [9.51]

Which means the presheaf becomes Aut(id,) : (C/X)°P — Groups.

9.3 Descent theory and a pre M-theory MP"™

Descent theory of fibered category gives us a method to glue schemes (topol-
ogy and section) by different morphisms,which is a high dimensional represen-
tation of gluing axiom of sheaves.For a fibered category p : I — C,we can

define F(X ERN Y') for each f,the object is a pair (E, o) with E € F(X) and the
isomorphism o : priF — priyE in F(X xy X) as a data of gluing

Xxy X — X

l l [9.52]

X — XNnNXeY

which is a high dimensional representation descending data to transition map.

TX,X

U|XﬂX = prTE|XﬂX — pr§E|XﬁX = f(E)‘X f(E>|X [953]

where we want to abuse f with f, for simplicity.And following the diagram in
F(X xy X xy X) for the composition axiom of category

pr§300pr’1‘20 = pr}lk30' / g
o / l o
F(XXyXXyX) F(XXyX)
PTi3
A or \ /
F(X xy X) 2 F(X xy X)

[9.54]
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descending data to composition of isomorphisms on gluing area.A morphism in
F(X ERN Y) is the morphism g : (E’,0’) — (F, 0) following the diagram

priE —2— priE
pr;gT pr;gf [9.55]

priE’ . pryE’

And for a pair (E,0) in the category F(X EN Y),the isomorphism o is the

descent data for the object E.For a functor e : F(Y) — F(X ERN Y'),we have E €
F(Y').And we can pullback it to the section on the fiber product X xy X — Y, we
have ocan @ prif*Ey — prsf*Ey which is a canonical isomorphism.Then,e sends
Ey to (f*Eop, 0can).In general, we want to study fibered category over a site with
covering which means we have a covering {X; — X };cr,we need F({X; —» Y})
with objects as collections of data ({E;}ier,{0i;}ijer), Bi € F(X;) and the
isomorphism is o;; : priF; — pr;F;,based on gluing axiom of sheaf

Tik|f(X)NF(Xp)

oijlrxnrx;) Ujklf(xjmf'(xk)f
—

FE)|f(X:) ———— f(E)I|f(X)) (Ei)| f(Xk) [9.56]

translated to descent theory,we have

" Prisoij N
priopriE; —— pri;prsE; == pr3;priE;
H lpl’;30'jk [957]
* * Prigoik * * * *
prigpril; —— prigpryEy ——— pragpra by

and the isomorphims o;; are descent data of {E;};c.Also,a natural functor is

FY) = F({X; » Y}) —— F(X L v) [9.58]

The collection of morphisms {X; — Y} is of effective descent for F if ¢ = io¢; in

[9.58] induces an equivalence of categories.If ({E;}, {0;;}) € i 1 (F(X ERN Y)),we

call {o;;} is effective.

For instance,if we have F(Q — Y) with @ = [, Xj,this scheme @ is trivially
coverd by these subschemes.If F(Y) = F({X, — Y}),it means a ({E;, E;}, 04j)
maps to a ({f(E;), f(E;),r:i;}) € F(Y) such that

FE) pxonrxy) Sy FED rxonrx;) = Hf(Ei)” Hf(Xi) ey [9.59]
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Then the pullback along f: X — Y in [9.58]

{I[ Ei-orids} = [[F(Xi = Y)=F([Xi = Y)=F@Q—Y) [9.60]

Reversely,if we have F(Y) = F(Q — Y) = [, F(X; — Y) which means we
have a global section E € [], F'(X;),such that

(FE) px)lrxonex,) = FE) o) poxongx;) 9.61]

= [(E)|rxonroe) Sey FED rxonrxg)
along the pullback throgh {f : X; = Y}icr,we
{({E:} {pr" frri})} = F{Xi = Y}) [9.62]
which gives a lemma with @ = [, X;
FY)ZF{X;—»Y}H) e FY)XFQ-Y) [9.63]

giving an understanding of descend theory,the first equivalence of categories
for effective descent gives a glued scheme @).Also,if f : X — Y is a morphism
such that e induces an equivalence of categories,we call f is an effective descent
morphism for F.Next,we want to give several examples of such morphisms.

Descent for sheaves in a site. For a site C associated with topos (C/X);a
morphism f: X — Y induces f: (C/X) — (C/Y) with pullback

FEYW > X)=F(W > X —=Y), Fe(C/Y] [9.64]
Define category Sh with object (X, E),X € C,E € (C/X).A morphism is a
pair (f,e): (X, E) = (Y,F) where f: X —» Y,e: E — f*F and composition is
similar to [9.38].A point is sheaf is defined on a scheme,this sheaf is a presheaf
on a site see above [9.15],this induces the ideal about gluing sheaf

{sheaf F on X|X € C} & A presheaf of sheaves on C,~ p:Sh — C [9.65]

where we used [9.26].This gives us a fibered category with Sh(X) = (C/X ). We
first have Sh(X — Y’) with objects are pairs (F,0), E € Sh(X),0 € Sh(X xy X)
satsifying the cocycle condition.Along g : X X7y s X — Y ,we have

fepr1,0, fapra,0 "t fuE = guprsE, fupry, & g. [9.66]
By the fiber product,we have a inverse functor of e above [9.56]
n:Sh(X —=Y) = Sh(Y),  (E,0)— Eq(fupry,o, fepra,o™t)  [9.67]
Composite functor 7 o e follows from Ey € Sh(Y), f. f*Eo — g.prs f*Ep

idsn(y)y Znoe & noe: Eylyexxyx — BEq(Ey = g.prsf*Eo)  [9.67]
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And for the functor eon: (E,0) = (f*F,0can), F = n(E, ). We have

Sh(X) rcstrictiog Sh(X Xy Y/)

Jf Jf [9.68]

Sh(Y) restriction Sh(y/)

for an inclusion Y’ <Y € {Y/ — Y };c;.Which means it is equivalent to show
(B2 f*F)|xxyvy,if Y/ = X, we see it is the pullback of an identity morphism

(B = f'F)lxxyx = 9"1dsny) ==r(xxy X) [9.69]

Above all;we have the equivalence of categories and each f: X — Y in Cov(Y)
of C is an effective descent morphism for Sh

Sh(X — Y) = Sh(Y) [9.70]

Next,we want to discuss sheaves of modules.For a scheme X ,We need the cat-
egory (Sch/X) which is a fppf site with Cov(U) = {{U; — U}ier} with each
U; — U is flat and locally of finite presentation and the map [[;.; U; — U is
surjective.We have adequate properties of sheaves of modules on this site.
Descent for quasi-coherent sheaves. For a fppf site C = (Sch/S) with
scheme S.We have a presheaf of rings ¢ : C — (I'(T,0Or)), T € C,and this
fibered category (p : I'(T,Or) — C) = (hr) = (Sch/X) because O = hy
is represented by T.Theorem 4.1.2 in [12] tolds us for any morphism X —
Y of category of Y-schemes with fppf or étale topology,hx is a sheaf.In this
case,we find our familiar structure sheaf Op below [7.23].Now,for a category of
quasi-coherent sheaves on S,denote as Qcoh(S),we have a presheaf Fi;, of O-
modules, Frig : (I' = S) — I'(T, f*F) where f*F is a quasi-coherent sheaf on T’
by pullback.Then,we need to know a big Zariski site of a scheme S is a category
of S-schemes with Cov(U) for (U — S) be {{U; = U};cs} for each U; — U is
an open embedding and U = | J;; U;.In this case,Fi,;g is a sheaf on big Zariski
site because € is a sheaf.And we want to extend to fppf site,starting at a big
Zariski cover Spec(B) — T = Spec(A),we have the short exact sequence

0—>0r(T)— (B+ A =B®4B—0 [9.71]

from sheaf axiom [9.2] of sheaf of rings.If A — B is faithfully flat,we have
0= Or(T) @4 M — Bos M= (BoaB)oa M0 9.72]
from discussion above [7.29] for a flat A-module M .But [9.72] gives sheaf axiom
of Fiig with f*F(T) = Or(T) ®a M.Also,Spec(B) — T is faithfully flat from

that on ring level,which means it is also a fppf cover.Therefore,(Fpig) 7 is a sheaf
for any quasi-coherent sheaf ' on S and Fi,, is a sheaf on fppf site.
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And by restriction of sheaf,we have (Fiig)s S F e F|r = Fiig,which
induces the definition of big quasi-coherent sheaf on S that is a sheaf I’ of -
modules on C,Fr = (Fig)7 and g*Fr = Frv for every morphism g : T — T".In
this case,we have a fibered category in general

p: QCOH — (schemes), QCOH((schemes)|s;, ;) = Qcoh(Stype)  [9.73]
And we claim that for each f: X — Y in Cov(Y") of fppf site
QCOH(X —Y) 2 QCOH(Y) [9.74]

Compared to [9.70],the extra thing is the preserving of quasi-coherence for
[9.67].We see above,fppf site can be viewed as an extension of Zariski site,in
this case,we have a Zariski covering Y = |, Y, f~1(Vi) € X, = Uj X,; with Y;
affine and X;; is quasi-compact through f.The morphism X;; — Y; and this
quasi-seperated cover gives us the diagram

QCOH(X; [[ Xijr) —— QCOH(Xyjr)

D T l [9-75]

QCOH(X;;) — QCOH(Y;)
Follows from the fiber product we have an equivalence of categories
{F; € QCOH(Y)} « {{(f*Fi);} {oyy = (fF); = (f*F)y}) [9.76]
{(f*F;),} is an isomorphic class from o;; along f~*.Then,we get
QCOH(Y;) = QCOH(f~}(Y;) — Yi) [9.77)

where we used the fact that the quasi-coherence preserves along the affine cover
and the isomorphism let us glue X;; through j,after gluing through %

QCOH(Y) 2 QCOH(X — YY)
17} o WITE R Ao (PR = (PR D8
i J
where {{(f*Fi);},{oj;}} = {I[;(f*Fi);} with cocycle condition and we re-
peated [9.75] for index 7 and we see the descent structure [9.54] becomes an usual
process to glue Zariski sheaf in [9.75] by using this quasi-separated cover,and
the extra quasi-coherence preserves because of fppf cover is Zariski.
Also,from the definition above [9.71],we find equivalence of categories
(Sv OS) = (SZara ﬁSZar) — (Sfppf7 ﬁsfppf)7 ffppf U — 8

(8 = [[C™W) = (Us € S, C=(U3)) = (fippt = DUz £ ) 27

Similarly for étale morphism f,we get ringed topoi on small étale site. And based
on this ringed structure,we have equivalence of categories of quasi-coherent

97



sheaves.For 0 : (Set, Os.,) — (Szar, Os,,, ) induced by fetale and a quasi-coherent
sheaf F' € Qcoh(Szar),we have n* F' is a quasi-coherent sheaf on Set,sending fetale
to I'(Uzar, ¢*F).And we can define a sheaf &g -module E is quasi-coherent if
E = n*F.Because product of A-modules is an A-module,we naturally have

Qcoh(Uzar) X qeon(u,) Qeoh(Szar) = Qcoh((U [[U’)zar) — Qeoh(Uy,,)

nH

Qcoh(Uzay) 1 Qcoh(Uet)
[9.80]
then,for F’ € Qcoh(Uzay), F' € Qcoh(Uy, ) we have F' = n,n*F’ by using this

Homs,,, (F, F') = Homy, (F,nn"F') = Homgs w, (n"F,n"F')  [9.81]
which means the functor n* is fully faithful,then we have

7 : Qcoh(Szar) = Qcoh(Stppt) — Qcoh(Ser) [9.82]

which is an equivalence of subcategories of topoi 17y, Tppf and Tet,which means

these sites can induce a same subtopos.With the diagram of sites in [9.82]

Set —— Stopt —225 Sza [9.83]

et
If put [9.70],[9.74] and [9.82] together,we further have

QCOH(St) =5 QCOH(Sippr) = QCOH(Szar) = QCOH(S)  [9.84]

Then,we get a further definition above [9.80],that is E on Sy is quasi-coherent
if and only if E restricts to each S; ¢ is quasi-coherent for an étale covering
{Sl — S}iEI € Set.

Torsors and an example. A p-torsor on a site C with p a sheaf of groups,is
a sheaf 7 such that for every X € C has a covering {X; — X };¢; the section
T (X;) # @ for all i and the action p(X)7(X) is simply transitive.Which
means for all ¢ € . we can find a g € p to let ¢ = gt’."We claim that this is
equivalent to say

(mx T, -xU) = (T xT,UxU), (g,t) (t gt) [9.85]
Indeed,it is a homomorphism because
(91,t1)(g2,t2) = (9192, t1Uta) — (t1Ut, g1t1Ugata) = (t1, g1t1)(t2, gata) [9.86]

And egyg = (8,9) so ker = (e,) — (&, eD),= euxs which means it is
injective.And surjection follows from simply transitive action.A torsor (7, p)
with a left action p is trivial if it has a global section which means if s is a
global section p(s) = s,the uniqueness gives us

p = staby(s) 2= T = fix,-1(4)(7) [9.87]
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which gives a global section ¢ ~!(s) of p and let p identifies .7 .Now,we want to
consider category of p-torsors with a morphism satisfying the diagram

id
ux 7 XL g

le I [9.88]

T — T

We have seen in [9.3] that we can generate group structure by topos,also dif-
ferent sites can induce a same topos we should put torsors in topos but not
on sites.And we want to consider an example when u,, (X) = {f € O%|f" =
1} with X € C,similarly to [9.83],we can consider category Tor(u,,) on X .Let
Y, be the category of pairs (L, c),where L is a graded Ox-module of degree
1,also an invertible sheaf with trivialization o : L®® — Ox.A morphism is an
isomorphism on the level of line bundles and satisfies the diagram

o

/ ) \ 9.89)]

L®n P N L/®n

where p : L =5 L' .For a pair (L,0),we have a sheaf on X that is .7, ) send-
ing U 4 X to oly : Lly — Oy satistying idg, = J|U®" o 0\U®(7n).Putting a
constraint f" =1 where f € Of makes 7y, ) a p,-torsor on étale site.And we
use étale here gives us a reason why we want to study étale morphism because
étale and Zariski sites induce equivalent of categories [9.82] and sometimes we
cannot find Zariski cover,but we have enough étale cover because C is alge-
braically closed.Now a subscheme of X = Spec(R) is U = Spec(R|[T]) from ring
extension R C R[t] and a Zariski cover of this scheme is Spec(R[T]/f) where
f € R[T]*,which is not for a structure u,,-torsor living on because we are lack
of the above constraint,in this case we can use

Urn—y =Spec(R[T]/(T" = f)) = U C X, Jro)lvn_; = Ovpn_, [9.90]

which naturally gives T" = 1 € Oy (Urn—_y) which is in the section of graded
Ox-module and this cover is étale because we need R = C for every f it can be
expressed as T and property of étale follows from

Qr Q4

DT DT [9.91]

R=C[T] -1 A=C[T)/(T" - ) = Qg

with a derivation D : T" +— nT™1D inducing isomorphism and € A/R =
0 follows from Q4 = Qpg.Also,by descent of quasi-coherent sheaves,We find
the fibered category p : Tor(m,) — Xet is equivalent to a sheaf Tor(u,,) by
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[9.26].And by [9.87],it is identified by p,,.Then,we want to apply these things
we have developed to generalized superalgebraifold in [9.15] and string-Space.

Definition8.2 A consistent string-Space S is a string-space which is isomor-
phic to a stack Tor 4 of A-torsors over the ETSch®"P%"(.7)

(S:®@T* — ETSch™"PC (,#)) = Tor 4 [9.92]

with an action (I'A) x (@& ¥*) — (X U*) making it to an I'A-module.Descent
of quasi-coherent sheaves make it becomes a stack generalized by Q-super T-
duality with corresponding fusion of duality. Which also means previous category
of sheaves is a category of sheaves of properties in [9.15] corresponding to the
string-Space can be descended to a sheaf of properties on M-brane

P (ETSchS™Cen (7)) = 2 (M) [9.93]
with the number counting [9.18] that becomes a consistent isomorphism

Fito ®R[ZeCeQeRa (ZCOR)EN Duo) 19.94]

A subtile corollary is we have a relative property which is étale equivalent

F = FOE0T Xogmo- Py omg- —induce 2 [9.95]

corresponding to the notation in [8.38] with additive identity is the cosmological
constant we have seen in [8.40],with the further fiber product

F++7—— ]_[:EMQ7 F@

QXQ*
| l [9.96]
Fong: — 0

Definition8.3 An universe evolution picture IT is the following diagram
which is the original description of evolution of our universe

+4,—— Y74 +,—self T
0 % Fomo- IF" == Fpir)-10me- [9.97]

%

with arrows denoting the subtile directions of evolution.
Definition8.4 A pre M-theory MP™ is a geometric (based on simplicial
settings [8.11]) stack for which we express it in a collection of data

MP™ = (ETSchS2PC" (L), P(T), 2,11) [9.98]

The subscript means coverings are effective descent morphisms [9.93] for Z2.

100



9.4 Stacks (2-preschemes) and Yoneda duality

For a site C,a category fibered in groupoids p : F' — C' is a stack (we call
2-prescheme see [9.104]) if and only if the following conditions hold

(i) For any presheaf Isom(z,y) on C/X in [9.49] is a sheaf 9.99]
(ii) For any covering {X; — X },any data o on [9.52] is effective ’

The (i) is for global descent of groupoid structures and (ii) is for that of fibers.To
interpret it,we first study two sections with overlap in topological space and how
can we topologically retract them will not affect the relative property above
[8.22] that is equivalent to a class of closed strings,the answer is

F(XZ X x XJ) —retract 12 C F(XZ) XF(X,;ﬂXj) F(X]) [9100]

where R is an equivalence relation.If only (i) satisfies it is a prestack.
Definition9.1 A spontaneously breaking of equivalence relation is

R C F(X;) X px,nx,) F(X;) —breaing F(X0) [ F(X;) 9.101]

The information is contained in the equivalence relation (overlap) and breaks to
two degenerate states.But to achieve such retract in [9.100],we need F to be a
sheaf because F(X xy X) = F(X) X p(y) F'(X).Thus,we have a natural retract

(Fibered categories with global descent) —yetract,over ¢ (Prestacks) — [9.102]
Notice that C' does not neccesary preserves Ceg.We can apply [9.98] in,that is

(Superstring theory™?®) — SupGen () (8%P¢) € MP™ [9.103]

retract,over ET'Sch_

where a type of theory is a fibered category and category of categories induced by
dualities.And global descent [9.93] glues these string-Spaces to a pre M-theory
which gives us the unification of superstring theories.Intuitively

retract : Fibcat. — presheaf 2O, cheaf — fibers®™"P prestack  [9.104]

Then to stack which is a method to make the global section of a scheme be
scheme-like,so we call a stack a 2-prescheme,we may regard the latter algebraic
stacks as 2-schemes.Secondly,stackification (retract) [9.104] let us focus on the
relative properties above [8.22] in the world.

Before we discuss algebraic space,we need to recap the Yoneda lemma be-
cause something we have not captured about representable functor.First,we have
a fibered category p : Sch™® — Sch with étale topology where Sch*P(X) = hx
and we claim that it is a stack,because hyx is a sheaf we have global descent
[9.70],the only thing is to verify it is a category fibered in groupoid

T % X —repace T = X [9.105)
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where (T' — X) € Sch/X = hx Follows from [9.105],we have the theorem.

Theorem8.5 Sch/X is a quasi-groupoid if and only if P? ~2 in RHS of
[12.19] and -~ yeax see double-weak diagram [12.85],which means if and only
if Sch/X admits a relative 2-property see below [9.113].

Theorem8&.6 Sch/X admit a relative 2-property if and only if Ret.Sch/X
is a category and objects have relative properties.But these are just natural
settings for [12.4],50 Sch/X is a quasi-groupoid in LHS with ~yc.x and we can
perform a weak version of stack (quasi-stack) on it.

Also,we have hx = X by Yoneda lemma,which makes us put them into a
quasi-stack generalized by duality,and we call this as a Yoneda duality Y

p: Sch™ @ Sch — C [9.106]

with Y-fusion P(Y) : Sch™P(Sch) € C.An interesting thing is generalized super
version has LEE and High energy representation,that is

U (M) & (M)
[ by
Y ——— (ETSch’y*9" (.#))P @ ETSch* 9" () [9.107]

| J

WoP s (X)) DXy ) M

where W < P is wave-particle duality.

9.5 Relative 2-properties and algebraic spaces

Now,we are able to discuss algebraic spaces.A class of objects in a site C
is a subcategory S C C which is stable if for every U € S,every covering
{U; — U} € S.If a stable class of objects with a global property P,we call it
a stable property P of objects.For instance,in big Zariski site,we can collect all
coverings of an affine schemes U € C' to form a stable class,the locally noetherian
is global that is stable,because for every cover Spec(R) — Spec(A) we have

(br) (ar) (ar)max

T T T [9.108]

(0) (a) (@) max

for every ascending chain and A is a noetherian ring and R becomes an A-
module.For a site Cif a subcategory D C C' contains all isomorphisms in C
and a morphism f € D if and only if pullback of it is in D we call it a closed
subcategory of S.And if C' = (C, Cov) is a site for each morphism f: X — Y
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in D if and only if
f*Cov(Y) —— Cov(Y)
l l €D [9.109]

x—1 Ly

which is a fibered product,we call the closed subcategory stable.And a stable
closed subcategory D C C' is local on domain,if for every f € D only if

Cov(X) —— Cov(Y)

iel eD 9.110]
vl

Y

Xi

Let Dp denote the subcategory of C' with the same objects and Hom changes
to Homp which is a hom set preserving the property P.Now we have

(i) & f*Cov(Y) € Homp(—, X),Cov(Y) € Homp(—, X) 9.111]
(ii) < Based on (i), Cov(X) € Homp(—, X) '
for every f € Dp,: X — Y.The property is stable if it satisfies (i),and is local
on domain if it satisfies (ii).In summary,by using the philosophy above [9.1] we
want to study a property of morphisms (morphisms preserving the property)
which shifts the focus point from C to Cov and we get Covp inherited from hom
set.Recall the definition above [8.1],now we shift to morphisms of properties

P X xgX
l: lfxf [9.112]

P — Y xgY
And if we apply [9.110],we get P is local on domain < for every f € C

P —— Cov(X) xg Cov(X)
J{: J,fxf [9.113]

P —— Cov(Y) x5 Cov(Y)

Definition9.2 A 2-property of relative properties P is a relation of stable rel-
ative properties P based on the site (C, Cove, ).A relative 2-property of relative
properties is a pair (P, P") with the strucuture in [9.113] at least on the level of
stable properties.For instance,the we have a 2-property from [8.50],(x, (T5 08))
on the site GSTen and each is a stable relative property along coverings.

Corollary9.3 For find a general site for properties being stable,Cove, = Et.

Let f : F — G be a morphism of sheaves on Sch/.S with the étale topology. f
is represented by schemes if for every S-scheme T and morphism 7" — G the
fiber product F' xg T is a scheme.If f is representable by schemes,we say f
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has (preserves) property if for every S-schemes T',pry : F' X T — T preserves
property P.Which means a relative 2-property on f by the structure [9.113]
and inherited from schemes level to represented sheaves level.For instance,if
f : hx — hy is a morphism with a relative 2-property P? on the (Sch/S, Et)

P2 p?
hx Xpy T —— T Xxy T —T
J/ J/ = J{st ab lst ab [9 . ]' 14]
P2 P2
hx ——— hy X ——Y

Because f is representable by schemes,hx X, T = X xy T.Which means every

2 2
X Y  hy &5 hy on a stable site (Sch/S, Cove, ). Exactly

hX Emd hy
[9.115]

representableP’

X stableP™®* v

And we also call a relative 2-property universal property see below [9.130].

Definition9.4 A general Cov®" is a collection of preservations of universal
properties,which means Cove, || Rep is general,(hy — Y') € Rep.And we call a
site generalized by the covering which containing sheaves admitting preservation
of universal properties as extra objects,a general site denoting by cons..

We claim that for a sheaf F on Sch/S with étale topology,the diagonal
morphism is representable by schemes,then for any scheme T, 7’,the morphism
f:T — F is representable by schemes.Indeed,we have

T xp T —— T Xs T’
lfﬂg lfxg [9.116]
A

F——— FxF

where A*(f x g) = f]lg and (f][9)*F = T xp T’ and because diagonal
morphism is representable by schemes, T X g T" is a scheme which means any
morphism f : T — F with T a scheme is representable by schemes.

An algebraic space over S is a sheaf X : (Sch/S5)°P — Set on big étale site
with a diagonal morphism A : X — X X g X represented by schemes and there
exists an étale presentation that is a surjective étale morphism U — X from a
S-schemes giving a covering X — U € Rep in a general Cov®®* . And we see
schemes over S are algebraic spaces over S.Let AS/S is a category of algebraic
spaces over S,we see from [9.115]

AS/S = ((Sch/8)*"  ET [ [ Rep) 9.117]

where we use ET for coverings of ordinary big étale site.For a morphism of
schemes g : S’ — S,we have a category ASS’ with objects are pairs (X, f/s) with
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X € AS/S and f: X — S’,a morphism is (t,0t™1) : (X', fg) = (X, f/s).For
an algebraic space Y € AS/S’ we have a functors

Ys: (Sch/S)® = ((,Y(e: T = 5"))), fyys:(Ys—5")/S [9.118]

with € : T — S’ where T is a S-scheme making ¢ a S-morphism.First,T is a
scheme which is a sheaf over S’ and Y is a sheaf over S’ so Yy is an étale

sheaf.Then,by Ag,/s(fy/s x fyss) = (fy 11 fv),we have

S Y Xy (8 x5 ) Xgixss S —

L |
Y Xyxgy (8 XSS’)

| el |8

Y Ay Y oxg Y ————— Vi x5 Vs
l A lfy/sxfy/s

% S K8 g S
[9.119]

where Y is algebraic space,S, S’ are schemes and colored fiber products are
scheme because of representable diagonal morphisms.And the red product is
isomorphic to Y Xy ., v (S X58") Xysx svs Ys. Thus,we find Ay, is representable
by schemes.Next,we have an étale presentation U/S’” — Y corresponding to a
global section w € Y (U/S"),which gives a global section (e, u|(e : U/S’)) in
Ys(U/S),s0 we have an surjective morphism U/S — Ys.From [9.119]

U—svy

\ Wm [9.120]
Ys

which means U/S — Yy is étale.Therefore,Ys € AS/S.Then,we claim that
AS/S/ = ASS/, Y — (Ys, fY/S) [9121]

Indeed,for a Ys € ASS" with fy,s : Ys — S,we can recover Y € AS/S’
from (\/Agi/s)* fy)s-Also,from Y € AS/S’;we can recover Ys € ASS’ along
(v/Asr/s)x 0 VAy, with (1/Ag /)« 0 VAy . (fy) = fy/s-And the uniqueness

of pullback and pushforward gives the correspondence.
Now,for a relative property R and T, X € (Sch/S,Et) we have

RXXXS)(X4>X

| JAX [9.122]

R—— X xgX

which makes X to be a principle R-bundle,now we want to define a %-sheaf
that is an assignment T +— X (T') because (T' — S) € Et(S) this extents to an
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étale sheaf X = hx : (Sch/S)°® — (Sch/Xs),then we have a hr-torsor hy
hx/hR:hx/RgX/REAS/S [9123]

An interesting thing is X, X/R € (Sch/S)°" gives a double counting of rela-
tive property R,so we have reason to regard this as a problem similar to gauge
fixing.In this case,actually the site should be general in a pre M-theory [9.98]

ETSchSiPeemeons gy — (ETSch3PC™ (L#))™*P @ ETSchP ™ (L) [9.124]

Because we cannot distinguish representable sheaves and schemes by Y-duality
[9.106] the problem of a pre M-theory cannot be consistent is because we want to
do number counting of relative properties to achieve nonexistence in [9.97],but
we know algebraic spaces can also be in site with relative properties,so we cannot
have a consistent number counting on the site which can be general.

Theorem9.5 A number counting of relative properties is not unique and
depends on the underlying site.

Remark9.6 Combing with definition3.10,the nonexistence for pre M-theory
is local because it changes with the number countings of relative properties.

Definition9.7 The M-theory is consistent if and only if there is an unique
number counting of properties to achieve nonexistence.Which is equivalent to
say a pre M-theory is M-theory if and only if it is experiment-free.

Theorem9.8 A number counting of generalized super relative 2-properties
is unique on the site ETSchgPeemeons:( z).

Proof. The general site is from Y-duality as a part of U-duality,we get these
properties after U-fusion [9.148].The number counting of each generalized super
relative 2-property is 0,thus there is no double counting problem,which means
this number counting is unique,(Forg+)"? @ (Forg-) Zpey) 0 ! |

Back to algebraic spaces as sheaf quotients [9.123].To verify the axioms below
[9.113],we have seen it is an étale sheaf.And let Y = X/R based on [9.119]

Ry —— U xgU Ry xuyxsu U —— U

(jxj)*ﬂ J{jx j l jl 9.125]

R°—>X><SX RXXXS)(X%X

where a Zariski morphism j : U < X and induces j : U/Ry — Y .Also,we have
Ry — R induced by the cover,which gives the diagram

Ry Z{ZX s(t™' (i~ o /)T)) — U/Ry

jl etl - ;l [9.126]

2 f7) —Y

where we work étale locally f: T LN X,j7rof: (T — U)/X.And we can see
j is representable by open embedding through étale T-points.For seeing Ay is
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representable by schemes,we need to gather information in [9.116] and [9.122]

RXXXSXX 7)( Y

l ” P T [9.127]

R——— X xs X +— X

for a general étale covering f : X — Y ,and we get R = X xy X.Then for W, S
affine schemes W — Y X g Y where we work Zariski locally

A (f/sxfrs)

R Y YXYXSyW — F

J JA J i [9.128]
frsxfss /
X xg X —— Y xgY ot w o w

< et

where A*(f/s x f;s) = f 1 f,it follows that
F/:YXYXSYwXWW’gYXyXSyW/gRXXXSXw/ [9129]

Now W is affine and also need to be quasi-compace which means W’ is affine,the
diagonal morphism from F’ makes W’ be separated.Also diagonal morphism is a
monomorphism and F’ need to be an separated scheme.For a ((Sch/S)" Et)
the coverings Et(S) induces a category of local relative properties,for example,an
étale morphism X — S induces a relative property X x ¢ X localized by this S-
scheme.Based on this local relative property,a S-morphism induces a sub relative
property R by [9.127],if we add a further étale morphism and change the notation

X" )or ——s (X))

é X// X/

: X
X// XX X// ‘c" » X// XX/ X// ¢ X// XS X// X// X
- \7
o e Y xgY

[9.130]
where we find Et induces an evolution of relative properties,relative properties
was transferred along morphisms in coverings and may be same and may be
changed and back to classfy X’ and X by sheaf quotient of X" by corresponding
relative property.This also gives us an understanding of why we regard relative
2-property as universal property.Formally,we use [9.104]

Fibcat. of stacks of rel.properties —yetract stack of rel.2-properties  [9.131]

107



And we will see it in the generalized super case,this retract is U-fusion.And this
chain as oco-category is truncated by physics.

Now,back to math,apply [9.130] in [9.128] we classify F = F'/(F' xp F')
where F' =Y Xy .,y W.If we denote g : F/ — W’ we have

’ Arir / ’
Fre—— F'xp F
lg AF//F \L [9132]
/ 4>AW//W / /
W e——= W' xw W
AW’/W
which is F — W is monomorphism g* is well defined and makes [9.132] carte-
sian.Because scheme W' is an algebraic space and F’ is a scheme,F’ xr F’ is a

scheme with étale topology.Now,we repeate [9.126] but focus on F’

s(t=1(U")) —— U'/RL,

l 31 [9.133]

F— S F/R

where we denoted R’ = F’' xp F’ and a quasi-compact open subscheme U’ C
F’ which is cartesian and s(¢~1(U’)) is an quasi-compact open subset of F”.In
this case,we put [9.133] back to [9.128],we get

st~ U")) =2 U /Ry xw W' [9.134]

Then,if s(t=1(U")) is a scheme,U’/R};, is a scheme then F is scheme.Now,the
set s(t~1(U’)) is a set of quasi-affine schemes and W’ is quasi-compact and
quasi-seperated,which means by Zariski’s main theorem

sENUY) s F A W (Aog)T (W, C W) Cs(t7H(UY)) [9.135)
By definition, (A o j) is quasi-affine.With a fibered catgegory

((A Oj)ilwll N W//) L (W”)

l l [9.135]

Af ——2 5 Sch

By global descent of quasi-affine morphisms over fppf coverings in 4.4.17 in
[12] and also for étale coverings,or just by knowing that gluing affine schemes
follows from gluing structure sheaves on them by using [9.70].Thus,we have a
glued affine scheme s(t~1(U’)).Back to [9.28] the diagonal morphism of ¥ =
X/R is representable by schemes.The last thing is étale surjection,we claim
that a natural étale presentation is X — X/R,the quotient let it be already
epimorphism of étale sheaves.For a morphism 7' — Y and it factor through X
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we have the cartesian square with A%y (f xy id) = f/y

Txy X 9% x sy X — 5 X

l Ay “Het l 9.136]
Ay (Fxyid)

because diagonal morphism of Y is representable,X xy X is scheme by [9.116]
so Ax,y is étale and X — Y is étale.By definition below [9.116],X /R is an alge-
braic space and comes into ((Sch/S)®"s Et ][ Rep).Now,an algebraic space X
can have stable relative property from étale presentation in general site with cov-

erings adimitting preservations of relative 2-properties,U P—2> X .Also,by [9.115]
morphisms of algebraic spaces admit preservations of relative 2-properties.

Algebraic spaces are fppf sheaves. For an algebraic space X|S which is
an algebraic space X over a scheme S,that is an étale sheaf and at least a fppf
presheaf.If we put fppf topology in,we claim that

q 1 X|Stppt — X|Stopt 9.137]

where X is a fppf sheaf.Definition 5.4.7 in [12] tells us a morphism X — S
over S is quasi-separated if the diagonal Ax /g is quasi-compact.So,we want to
assume Ay, g is quasi-compact,in this case,for a fppf morphism U — S

UxxU —— UxgU
A% /s(fxsf) lfxsf [9.138]
A
X — 5 X xg X

where A% o (f xg f)=f11f and define f by X (U).Because,X is an algebraic
space,U x x U is a fppf sheaf recall that below [9.70] and X is a separated
presheaf.Also,the diagonal morphism is monomorphism,so ¢ is injective with
X = U xx U.To see surjectivity of ¢ is to verify if s € X(U) is in the image of
q and it suffices to consider U is quasi-compact,in this case,we can decompose
the separated presheaf X = [J; X; such that

limiXZ‘|Sfppf, X7(U) = (hm7Xl)(Sfppf)|Ul [9139]

they are locally matching,because U is quasi-compact we may therefore also
assume that X is quasi-compact.For an étale presentation Xg — X

UXXXQHXO

J l / [9.140]

U, —— X
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where we used a fppf covering {U; — X }ier,we find ¢ adimits a section § :
§;0 s{l,where we want to apply the descent of morphisms admits a section in
4.2.9 in [12],which gives us for X = U x x U is a quasi-compact fppf sheaf

(U x5 Xo)({X; = X}) = (U x5 Xo)(X) [9.141]

where we used property of quasi-compact,separated,scheme is fppf sheaf and
fppf presheaf is locally a fppf sheaf.And surjectivity is given by [9.141].Thus,we
get a result [9.137] that is consistent to [9.79].

9.6 Generalized super relative 2-properties with U-fusion

Now we have one duality that hasn’t been applied but living in M-theory
that we discussed in section 8.5,which is U-duality.From [8.28],we have

(Xo x5 Xf/Z) Ry (X x5 Xo/Z) C (Ko x5 X7 )T [9.142]

where we T-fused them see below [8.21] and [8.37].After T-fusion,the theory
becomes self T-dual and self S-dual that is meaningless to perform further fusion
of these dualities.Fortunately,we have U-duality on the level of M-brane.Guided
by the evolution picture [9.97],A U-fusion is the following process

P(U) : (X x5 X)) — (Xo x5 X)) By (X x5 X) 9.143]
we need to perform it on two copies first,and an U-fusion is

P(U)(Xp xg A7 )™ T

= (X0 x5 Xo).a By (] x5 A7) @ (X} x5 &) Bu (X} x5 X7)

= [(Xo x5 Xo)owr ® (X] x5 X)) By (X x5 X)) 9.144]
= (X0 BT x X KAT) ¢ By (A7 x5 A7)

o) (X1 %a X)) By (] x X))

where we preserved the parity.An observation is our universe is evolving and
decaying at same time,and the U-duality is a duality of flipping them

U:(aX)V (X X)) = (X aX) V(e [9.145)
Guided by [9.145],the general generalized super site [9.124] should be
ETSchSiPE™ (L) v ETSchSiPS" (L) o [9.146]

with changing to vee meaning that these two copies are overlapping with each
other.Also,they are characterized by cosmological constant see [8.40] because

the identity is unique.In this case, # = .#"P.Then the U-fusion of [8.38] is

(P(UYZ)"™ MY = (X)X ) By (X] % _5X7) = By Qo Rarev 19-147)
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and end with generalized super raltive 2-properties.The number counting is
subtile that is counting for zero

#( Ry R Roarer) = Y (4R +4#B 1+ {#Fy =A—A=0 [9.148]

each generalized super relative 2-property counting zero which means it is inde-
pendent of choice of .# in different sites.which gives the uniqueness of number
counting.Based on U-fusion,we can consider a further site which is general

ETSchSgPeemeons (x4 y) [9.149)

The 0 in [9.148] can be seen from the global zero section of sheaf of (co)homology
on M in [13.10] fused from [9.17].

10 Modern super algebraic geometry 11
10.1 Invariants and quasi-coherent sheaves on (Sch/X)"s

For a groupoid in schemes s,t : G = X, L 7 with f is a morphism of
algebraic spaces is called invariant if f o s = fot.A theorem 6.2.2 in [12] is

/ [10.1]
f

where f, f/ are invariant morphisms to affine schemes with s,¢ are finite and
flat and U is an affine open subset.Now,we want to study topological properties
of algebraic spaces.For a quasi-separated algebraic space X over S,we have an
étale presentation U — X with U a scheme.See around [9.90] if we set g :
Spec(K) — X,it factors through U,because we can choose K to be a finite
separable field extension over the underlying ring of étale cover,denote as gy .If
g is epimorphism then im(gy) — X is also epimorphism.We can assume U is
quasi-compact because im(gyy) C V' which is a quasi-compact connected open
subset of U.Repeat [9.116] we have

UxxU ——UxgU

J{Aﬁ(/s(gxsg) J{gxsg [10.2]

A
X X5 X xg X
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where A}/S(g xs9)=¢g]]g-So U xx U is quasi-compact because the diagonal
morphism is quasi-compact see below [9.137].Also,we can pullback

Spec(K) xx U —— U xx U

lj’*idxxid lidxxid [10.3]
Spec(K) .y

where f*id x xid = f x x id.Now,Spec(K) x x U is quasi-compact and étale over
Spec(K),thus,it can be a finite disjoint union of spectra of field extensions of
K .The epimorphism pr, : Spec(K) xx U — U gives U also a similar structure
of disjoint union.But connected means glued affine schemes which means glued
structure sheaves,;so U is a spectrum of a field.Thus,we can replace U with
Spec(K) being the étale presentation of X.And the Spec(K) X x Spec(K) is
quasi-compact and étale over Spec(K’) which is also a disjoint union.Corollary
6.2.14 in [12] tells us if there exists a finite flat surjection ¥ — X of constant

rank with Y is an affine schemes,then X is also an affine scheme.Fitting in this
case, X is affine and by Spec(K) x x Spec(K) = Spec(K) — X = Spec(L)

Spec(K) A X Spec(Eq(K = T'(R, Or))) = Spec(K)/R (10.4]
where R = Spec(K) x x Spec(K) and we used [9.130]

Spec(K) ——— X = Spec(K)/R

l l [10.5]

R —— Spec(K) xg Spec(K) «———— Spec(K)
Notice that X is quasi-separated for R = [[Spec(K (z)) = Spec(Q); K(x)),as

we have global descent over fppf coverings that is finitely presented morphisms
[9.135].By definition below [9.137] Ax/g is quasi-compact and we have

R —— Spec(K) xg Spec(K)

l l [10.6]

which means R is quasi-compact,so we can have effective decent to glue the
disjoint union to an affine scheme

Aff({Spec(K (x;)) = R}u,er) = Afl(R) [10.7]

with trivial projection here p = id.Also [10.4] gives us k-points of algebraic space
X similarly to schemes,then we can define topological space

|X| = {ll : Spec(ki) — X}iEI/ ~, ll ~ lg : Spec(kl) g/X Spec(kg) [108]
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The closed set is |Y| C |X| from a closed subspace Y C X.And [, Spec(k;) is
a scheme by [10.7] if X is quasi-separated over S.For such an algebraic space
X/S,let Y — X be an étale presentation with Y a scheme,so Spec(k) x; x Y —
Spec(k) is étale so Z = Spec(k) x; x Y =[], Spec(k(z)) which is a glued
scheme with each a spectrum of a residue field of a point z € Z.Let h = pr, :
Spec(k(z)) — Spec(k(h(z2))) C Y and T' = [}, ey Spec(k(h(2))).Now we have

TCcY ——T/R

l T [10.9]

R TxxT+—TCY

If we let Z Xspec(i(a)) Z — B C h(Z xx Z) C Txx T CY xx Y with R being
the scheme-theoretic image and by [10.9] R = T x5 T',we have

l

Spec(k) —— T/R —L5 X [10.10]

Also,R is pullback of Y x x Y along T/R — Y ,s0 T/R — X is monomorphism
see below [9.138].Also g in [10.10] is epimorphism,by [10.4],T/R is a spectrum
of a field. Then a point [ factors through a point I’ with T/R = Spec(k’) for X
is quasi-separated.Actually,[10.10] gives a categorical structure of |[AS/S)|

[f]:1X] = Y], (Spec(k)— X)+— (Spec(k) —=7Y) [10.11]

which also gives functorial strucutre of || : AS/S — |AS/S| and we have

| 'T | ‘T [10.12]

for a closed subspace Z C Y ,making | f| become a continuous map of topological
spaces.Conversely,a morphism f has a property if morphism of underlying topo-
logical space |f| has a property.We have seen that for quasi-separated algebraic
spaces,the source s(|X|) is a glued scheme below [10.8] and so it is consistent
with discussion below [9.114] that is the a property of morphism of algebraic
spaces is from that of projective morphism of schemes.

For an quasi-separated algebraic space X/S with S an affine scheme,for an
étale cover U — X,it induces a relative property U x x U < U x g U see [9.130].

Ryw =Rxyxqu (W xgW) —— W xg W

l l [10.13]

R=UxxU———— UxgU
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By a base change along W C U and we get an open embedding W/Ry —
X follows from X = U/R.Also,X is quasi-separated,we can let U be quasi-
compact.Now,for a groupoid in scheme s,t : R = U with W™ < U is the
largest open subset over ¢ with rank n.We have

Rx.usR—"% R Rx.us R 225 R
J{pr1 J{t J{pr1 J{t [1014]
R—Y U R—= U

with m : R x,p¢ R — R see [9.32],50 we can see t~ (W) = s~ (W) =
R(v;) which is the largest open subset over pry,that reduces the groupoid to a
subgroupoid Rw) = W an invariant map W — X‘(,[T,l) C X follows from
that for each n and along these invariant maps,the subgroupoids descent to
X () < X that gives us an invariant map f

R—:3U L xw =y, x{ —» x 10.15]
and union of X (Wn) ’s with each the largest is a dense open subset in X.By theorem
[10.1],X () is an affine scheme with i a dense open embedding.Globally,for S is
a scheme, X (™ is a scheme.

Definition10.1 A Et [] Rep is a general Cov with Rep a collections of cov-

erings of representable sheaves admitting preservations of relative 2-properties
from Et which is a big étale topology of schemes.

{Yi 5 Y}ier € Bt [[Rep & V5,V € AS/X, [[ Y3 =g ¥V [10.16]
iel

where we put the topology on Sch/X and becomes (Sch/X )™ A fact of [9.79]
is for a full subcategory Et'(X) — Et(X),like what we do for a sheaf,that in-
duces a morphism of topoi X/ & Xet,50metimes we are easier to define sheaves
on Et’(X),in that case it is Xz, and is easy to define structure sheaves.Now,we
want to let Et'(X) = Et(X)|yx = Et(Y) < Et(X) which gives us equiv-
alence of topoi Xe¢; = Yei.Now for an algebraic space X we have U xx U =
U — X with an étale presentation and associated relative property,also we have
PIris, Pras, Py : U Xx XxU — U xx U.Recall the descent theory [9.52] and
[9.54],we can define category (R = U)e; with objects are pairs (Fy/,€) with Iy
an étale sheaf on U and e : s*Fyy — t* Fyy and prigze o priye = prize given by

(U xx U) xp06 (U xx U) Xg04 (U xx U)" SN xx U) xg 0,0 (U xx U)
l{idxm \Lm
(UXXU)XS,UJ(UXXU) m UXXU
[10.17]
which is the associativity [9.33] of groupoid axioms.By [9.10],we have
(R U)ot 2 Ust & Xet [10.18]
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Now,if these are trivial topoi,[10.18] give us a global descent theory over étale
coverings to glue the relative properties generated by [9.130].Now,we can dis-
cuss,category of Ox-modules in Xg,that is equivalent to category of pairs
(My,e) € (R = U)et,with My is a sheaf Opy-module on Ug.Also,a sheaf of
modules &x-module M is quasi-coherent if there My is quasi-coherent sheaf on
U for an étale presentation U — X of an algebraic space X.And if X is locally
noetherian from scheme level [9.108],then M is called coherent sheaf if My is
coherent.And if X is a scheme by [9.79],we get the usual notions.If My is a
quasi-coherent sheaf we get get another one by

VxxU 25U
lpl l My = p1.psMy € Qeoh(Ve) [10.19]

V— X

where we used [9.74] and [9.83].And this gives us M is quasi-coherent (coherent)
on X (locally noetherian) if and only if for every étale morphism V — X My
is a quasi-coherent (coherent) sheaf on V.

10.2 Algebraic stacks and the M-theory M

A morphism of stacks f: 2" — % is representable by algebraic spaces if for
every scheme U and morphism y : U — % the fiber product

%X@/7yU*>U

l l [10.20]

X — Y

is an algebraic space.A lemma 8.1.3 in [12] tells us if f above is already repre-
sentable,then every algebraic space V  the fiber product V x4 2" is an algebraic
space.

A stack 27/S is an algebraic stack if it satisfies

(i) The diagonal is representable, Ag/g: 2 — 2 x5 2
(ii) A smooth presentation that is a smooth surjection [10.21]

with an algebraic space X, X — 2
Definition10.2 The M-theory M is a pre M-theory satisfies

(i) It admits a reverse U-fusion called U-breaking
P(U)™" : M — MGV MU
which is representable by generalized super relative 2-properties [10.22]
(ii) A smooth presentation from general M-brane in [9.149]

MEPN My — M
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where 4", #_x are M-branes which are U-dual to each other,that are also
generalized super algebraic spaces in the generalized super site [9.149].
Theorem10.3 The M-theory M is an algebraic stack in super algebraic
generalized geometry,called generalized super algebraic geometric stack.
Proof. Indeed,combining the definition

MOPN My~ M~ MEIIP MEE [10.23]

cons. cons.

which gives us grading by U-duality,with each pre M-theory
(MNP — METPYN (Mp — MES) [10.24]

cons. cons.

and each pre M-theory has a smooth presentation.Also from (i) in [10.22]

Mx (AVX) ——— 3 XVXY ——— 4 (X @ X))V (X D X))
MO ey M T SV S

[10.25]
where X'V X denoted as generalized super relative 2-properties [9.144],and Scons.
is the consistent string-Space [9.92] over the general site [9.149] and P(T°)~*

means at least the super T-breaking [9.45].Also,the fiber product has grading
by U-duality,with each an generalized super algebraic space

X = MESIP X ar srzp, (Ko @ A7) [10.26]

cons.

where X is an algebraic space in generalized super site and 2?0 &) XN{" is a gener-
alized super scheme above [8.28].Similarly for the U-dual part,we have

X = Mggfls X A1,AS (Xo D Xl*) [10.27]

cons.

So the settings of the M-theory make each pre M-theory an generalized super
algebraic stack.With the U-breaking of diagonal morphism of the M-theory

Ay =P(U)' = ATP Ry At = P(T),, VP(T) ™! [10.28]

rep

Thus,we find each of the two copies in [10.24] is an algebraic stack.Then

M X pagzzzee sz, (X V) 2 (M X gz X) V(M X gz, X)) [10.29)]

cons.

where we used [10.25] and the fiber product is equivalent to a generalized super
algebraic space follows from [10.30].Thus,P(U)~! is representable by generalized
super algebraic spaces which satisfying the (i) in [10.21]. O

Similarly to algebraic space [9.116],for any scheme U — 2" to an algebraic
stack is representable by algebraic spaces

UxgT —— UxgT
[35st0) s 1030
Agys
X X xg X
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where T is a scheme,which makes the smooth presentation make sense.Further
than stack in [9.99],now the sheaf is an algebraic space by

Isom(zq,20) —— X xg X
lﬁ}»/s(mxsmz) lmxswz [10'31]
A
X X xs X
where the X — £ is an smooth presentation and the Isom sheaf [9.49] is on
(Sch/X)°P now.Similarly to [10.19],we can get another smooth presentation by
an étale covering X’ — X and an exercise 5.G in [12] tells us if Isom(xy, z2) is

an alegbraic space over X if and only if for an étale cover the pullback of the
sheaf is an algebraic space,which means

f*Isom(zy, x0) —— Isom(zq,x2)

| l 10.32]

et

where f*Isom(x1,z9) = Isom(f*x, f*z3),which also implies the global descent
of sheaves [9.10] but now these sheaves are algebraic space.Thus,the diagonal
A g /s is representable if and only if for every smooth presentation X — 2~ with
X an algebraic space,the corresponding Isom sheaf is an algebraic space.Also,if
we use algebraic spaces in [10.30],the fiber product is algebraic space.

Now,we can define a stack [X/G] with X an algebraic space and G' a smooth
group scheme,which has objects that are triples (T, Z,7) with T a scheme and
T is a Gp-torsor above [9.85] which is an sheaf on the big étale site.We have

GxgT —— T —— X xgT

l l l [10.33]

G S X

over this base,we have an action by G = G xg T

Gr xp (X xgT) —— X xgT

l J [10.34]

Gpr ——— T

which makes X xg T a Gp-torsor.Also notice that we work on a general site
which means schemes can be representable sheaves.And this define a morphism
m: .7 — X xgT a Gp-equivaraint morphism of sheaves on (Sch/T)°°"*.A mor-
phism of triples is a pair (f/g, f}’s) (T, 7', 7"y = (T, 7, m) with S-moprhism
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frs:T" =T and f}’s is an isomorphism of Gps-torsors,such that

1157

\ / [10.35]
/s™

XXSTI

the diagram commutes.The [9.70] gives us a global descent theory and it is a
groupoid because of the sense of [9.100],for a global glued sheaf T ,we have

(T|X><ST/)‘X><5T/FTJC/*S(XXsT) = f}ks((T|X><sT)|f/s*(X><sT/)ﬁX><sT) [10.36]
Thus,it is a stack from [9.104].Now,we want to define a Isom sheaf
I =Isom((A,m), (T, m)), (T = T) = (Al = B|r) [10.37]

on (Sch/T)e"s: which is compatible with 7.Now,we assume 7 is globally de-
fined (trivial),and we can perform gauge-fixing o; : J; & Gr,the equivariant
morphism is 7; : Gr — X XgT,Then,[10.37] becomes (T" — T) — (G — G1+)
induced by right multipilcation my by g € G(1”),with G = Gp|7v,and satisfies

ﬂ’lg

GT/ = GT’

& % [10.38)

XXST

Similarly to [10.31],we have a cartesian diagram

I = Isom(m(e),m2) —— Gr X7 Gr
lAXT/T(TH(e)XTWz) J/WI(S)XTWZ [10-39]

A
XT X—T/T> XT XT XT
where X7 = X xsT,mi(e) = m2(-g) and A p(m1(e) X7 7m2) = 71 (e) [ m2,also
notice that we used the trivialness of the torsors.Because X is an algebraic space
Ax/r is representable by schemes,A x. /7 is also representable by schemes,which
means I is a scheme.Back to [10.33],if we change T to X and [10.34] becomes

Gx xx (X x5 X) —> X xg X
i J [10.40]

Gx ——MM@ X

this let us define a map (Jx,p) : X — [X/G] with Gx-equivariant morphism
p: Ix — X xg X,which gives us

T — X

| [E [10.41]

T 77 1x/q)
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 is the fiber product follows from combining [10.34] and [10.40]

Grxp (X xg X) —— X xg X

| |

Gr xp (X xgT) —— X xgT [10.42]

| |

Gpr ——— T

which makes G x-torsor become a Grp-torsor,and denote a G xg Gx-torsor
as 7 .Recall,that G is a smooth group scheme over S so Gr is a smooth over
T,and .7 is trivial and étale over T,which means X — [X/G] is a smooth
surjection.Thus,[X/G] is an algebraic stack.A proposition 4.5.6 in [12] tells us

(Principle G-bundles on X) = (p-torsors on X) [10.43]
when G is affine and we can apply it to [10.41],we get
P+ X
( l ) “retract [X/G)(T) [10.44]
T

where P is a principle G-bundle on T.Also,recall that we mentioned a stack
below [9.30],now we regard a relative property as G over S,then the correspond-
ing classifying stack of G is BG = [S/G],where we put a point T — S into
a point [S/G](T),and by using [10.44] and [9.87],an element corresponds to an
equivalence class of groups in the sections of hg.Then,we want to discuss

W =% %xXog X — &

l l [10.45]

y 4

which is the fibered product of algebraic stacks,it is a stack because this is
fibered product of sheaves see above [9.102].An element of a point # can be

expressed as A = (z,y,0) with z € 2",y € # and o : ¢(z) = d(y),we can have

Isom(A,A") —— T xs T
lAZg/s(AxSA’) leSA’ [10.46]
A
W /s W oxs W

Because the triples and A =2 A’ we can decompose it to

Isom(z,2') —— T xg T Isom(y,y) —— T xsT
l lxxsm’ l lyxsy’ [1047]
Aays Ay s
X ——— X xs X W ———— 5 W XX W
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and a fiber product connecting them

c(x) —— c(@’)  Isom(c(z),d(y’)) —— T xgT

lg \‘ lg l lc(x)xsd(y’) [10.48]

~ A
d(y) —=— d(y') Y X xs ¥
Each Isom sheaf is an algebraic space,in [10.47] and [10.45].Equate with [10.46]

Isom((z,y,0), (2',y',0")) ———— Isom(z,z") x Isom(y,y’)

l lcxd [10.48]

Tsom (c(x), d(y')) —2— Tsom(c(x), d(y)) x Isom(c(x), d(y'))

where we used the gluing axiom of sheaves
Isom(c(z),d(y")) x Isom(c(z),d(y’))
— Lsom(c(r) = d(y'), c(x) = d(y)) 10,49
= Isom(c(z), c(z")) x

And fiber product in [10.48] is an algebraic space,so diagonal morphism in [10.46]
is representable see below [10.32].Now,we want to find a smooth presentation
for [10.45].If ¢ is representable,we can form a diagram

pr.
Y Xy (Y/ XY X e X T) .4 Xg/xfxggT —=2 5T

l l J

Y” et Y’ WXy X —— X
) N4

e L)

Y Y w d ¥

[10.50]

with étale surjective Y/ — Y’ and y a smooth presentation of %.Also
Y Xoyxwor T2Y xg T [10.51]
SO Pry is smooth.Similarly, f is smooth follows from
V' %y (Y Xorxar T)2Y" Xaygpar T [10.52]

because composition of a smooth morphism and a étale morphism is smooth.In
this case,f gives it a smooth presentation.Thus,the fiber product of algebraic
stacks is still an algebraic stack.For general case,we let z becomes a smooth
presentation,by above [10.30],Z xg¢ £ is an algebraic space
ZXeg X' —— Z xg X
|B3sstexse e [10.53]

¥ 2%y
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so the fiber product is an algebraic space which means we have an étale presen-
tation 2’ : 7' — Z x o 2 ,similarly to [10.50] we have

W =% Xy X —— XL +—— I Xep X

l Jc l [10.54]

o d ¥ VA

z

let the 2" : Z"” — Z is a smooth surjection and repeat the method in [10.50],we
get a smooth presentation d*z,(z' o 2”") : W — #'.

Now,we back to the M-theory [10.22],it U-breaks to two algebraic pre M-
theories which are U-dual to each other,with smooth presentation [10.24] from
M-branes.By using [X/G] above [10.33] we have

M = [y |GV [ M\ | G] = ME [10.55]
with U-duality flipping them
U: [y)CIVMA[G] & [y G]V [ /G [10.56]

which naturally gives us Langlands dual group G for a group scheme G,which
makes Langlands duality become a natural result of the M-theory.

10.3 Quasi-coherent sheaves on algebraic stacks

For an algebraic stack 2°/S,an 2 -space is a pair (T, t) with T an algebraic
space and a morphism ¢ : T — 2 .A morphism is (f, f°) : (T",t) — (T,t) with
f:T — T and an isomorphism f°:t — t o f and the composition is given by

T”—>T’—>T

\ l / [10.57]

(g,6") o (f, f*) = (g o f,g(f*)) with g(fb) :t"” — to fog.And we denote the
category of 2 -spaces AS/Z ,also the category of 2 -schemes (T,t) € Sch/Z
is a full subcategory.By 2-Yoneda lemma [9.25]

Z(T') = HOMas((AS/T"), Z) [10.58]

thus, f° is a 2-isomorphism in the 2-category 2 (1”).For two morphisms of al-
gebraic stacks f : % — 2 and f' : ¥’ — % ,an %2 -morphism is (g,o) with
g:% — %" and o : f — f'og which is a 2-isomorphism.Collection of such mor-
phisms forms a 2-category HOM - (%',%/"),a morphism is is an 2-isomorphism
A:g— ¢ such that Aoo = o’

’

g

e

Y ——— Y

\ / [10.59]
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If f, f' are representable morphism of algebraic stacks [10.20],we have

WX%U%@’X%U%U

l L ft Jh 10.60]

v v L%y

follows from [9.19],where U is an algebraic space.And back to [10.57],we have

(f,fN:(Z xoU) = 2" x 0 U, A= f"hf g=f"hot — g =hof

[10.61]

which is a unique morphism in 2 -space.And in this case,we have an unique

2-ismorphism which makes HOM g (%, %) be a set.We can therefore define

relative space over 2 ,RS/Z with objects are representable morphism of al-

gebraic stacks and a morphism is an isomorphism class of (g, c).Also,by the

representibility we have AS/ 2" — RS/ 2.

In this case,we can define a localized site which is the lisse-étale site

(T,t) € Lis-Et(2) = (Bt(T) — 2°) C AS/ 2 [10.62]

for an algebraic stack 2" and a smooth morphism ¢t : T" — 2 .A covering is
{(fi, f%) : (T3, t;) — (T,t)} over an étale covering (for preserving smoothness)
{fi + T, — T}.And we denote Zjsst as the topos on the site.Also,we can
view this as a smooth presentation Et(7") — 2" .Similarly to [10.19],a presheaf
F € Zlis.¢t 1s a sheaf if and only if for every (T, t), F|r is a sheaf.In this case,we
define 04 sending (T,t) to I'(T, Or).Then,we can see clearly about Zjisst as

({FanrAegsmd)s ey s F Fay = Farw [10.63]
see [10.57],with f is étale,p(s vy is an isomorphism.Also,
Pis-et = (HOMsn(Sh/Fir ), 27)) = (2 (Fiz.1))) [10.64]

with Sh is the category of sheaves [9.65] over a general site. With

Sh/Firy) = Sh(T/2) = (AS/(T/2)) 10.65]

For understanding [10.64],first for any composition below [10.57],we have the
following diagram by global descent theory over étale covering for Sh [9.70]

—1

gflfle(T,t)g Mb)gilF(T’.t')
l: Plaa®) [10.66]
(fg)71F(T,t)pM>))F(T~,t~)
which makes Zjis.¢t be a fibered category,and similarly to [10.58]
Fory|T

. [10.67]

fﬁl(F(T,t)) =~ F(T',t’) |T/
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which make Zjis.¢; be category fibered in groupoid.And the global descent theory
of Zlis-6t 18 given from Z — AS,that is

X {Firuy = Frp)) —— Z(Frw)

| | [10.68]

2{T —-T})) ————— 2(T)

We then find that the topos on Lis-Et(:2") (on an algebraic stack) is a stack

Qs = (p: X — (T X)) [10.69)
For a sheaf of rings A on Lis—]*’]t(ﬁf ) (globalize on the 27) in Z}is.¢t (localized on
every (T,t)),a sheaf A-module is cartesian if for every (f, f°): (T",t') — (T, t)

f*F(T,t) = f_lF(T,t) ®f—1A AI(T/’t/) = F(T/,t/) [1070]

where for the fibered category (especially Z"),we use cartesian product because
scheme is representable sheaf and we can regard an algebraic stack as a rep-
resentable sheaf and for concrete elements we use the pushforward as the left
evolution.Similarly to [10.19],a sheaf & g -module is quasi-coherent if F' is carte-
sian and for every (T',t),F(ry) is quasi-coherent on T.An algebraic stack 2~ is
locally noetherian if an only if it localizes to every (T, t) along the site Lis-Et(2")
with T is locally noetherian.Then,a quasi-coherent sheaf F' on locally noetherian
2-scheme 2" (globalized along Lis-Et(.27)) is coherent if each Fir4) is coher-
ent.The F' on the algebraic stack is understood by descent from a glued Fir )
by global descent theory of stack.And we denote the category on an algebraic
stack (2-scheme) QCoh(.2").Then,we want to treat [10.62] in detail.
For a smooth presentation X — 2" with a (Z, z) € Lis-Et(.2),we have

S

7 2 Zxg X — X
\lp lm [10.71]
Z —2 2

where p is smooth from smooth z,and a étale morphism f : Z' — Z factors
through an étale morphism s.In this case,we have

zyox*(z)os*of* 1 Z X > X, Fiz,.) = (2"(2)0s" o f*)" Fx 4 [10.72]
For a quasi-coherent sheaf F' on 2 ,and for every Z we give a index i

X/% = hm Zl/%‘, F(X,ac) = Fcolim(Z",zi) = COl_im F(Zi’zi) [1073]

the F(7 4y is quasi-coherent,then F{x ;) is quasi-coherent,also if F(x . is quasi-
coherent,then every Fr .y is quasi-coherent,then we get for a smooth presen-
tation from a scheme X ,a cartesian sheaf &g -module is quasi-coherent (coher-
ent) if and only if Fix , is quasi-coherent (coherent) on X.If 27/S is Deligne-
Mumford stack which is an algebraic stack with étale presentation,we can con-
sider Et(2) C Lis-Et(27) with objects (T, ¢),where ¢ is étale morphism from
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algebraic spaces and we write the associate topos Zg;.Similarly to the case of
algebraic spaces below [10.16],the inclusion induces a restriction of ringed topoi

Et(2) = Lis-Et(2), (Ziisst, O) = (Zis, On,) [10.74]
Similarly to [9.82],for a Delign-Mumford stack 2~
re : QCoh(Ziiset) = QCoh(Zz) [10.75]
For an étale morphism f: W — 2 with W a scheme from [10.71]

T
ml N 10.76]

W —s 7

A restriction Lis-Et(2)|w 2 (id, f*)(Lis-Et(27)) = Lis-Et(W),which means
Wiis-¢t = Zlis-t|w,then we have Wz,, — Lis—Et(W),which induces equivalence
on topoi see below [10.16].Thus,we can let W be an affine scheme.In this case,a
sheaf M in 2% is quasi-coherent which means M|y is quasi-coherent.Then for
every smooth r : T — Wr*(M|w) ~ M|»w is quasi-coherent sheaf which
means M is also a quasi-coherent sheaf in Zis.4¢,50 we have M = r,.r*M for
M in Zs.et,and for quasi-coherent N in Xjs.¢r,we know étale morphism is
smooth,we have r*r, Ny = r* Ny, & Nr because N is cartesian [10.70].

For instance,let G a finite group scheme over S,we want to describe étale
topos of BG.The site for the classifying stack is G—Et(S) with objects étale
morphisms T — S with a G-action,from G xg T’ — G xg T,a morphism is a
pair (f,g): T = T, g € G with pry,pri(f) = g,which is g-equivariant

GXST/ prs5(f) GXST
\ / g f(gt) = g tproy.priggt = f(t) [10.77]
G

A composition is (f o f’, gg’).A collection of morphisms {(fi,g;) : T" — T}icr
is a covering in G-equivariant étale site G-Et(S) if {T” — T}ie; is an étale cov-
ering. There is a functor Y : G-Et(S) = Et(BG),T/S — T/BG which defined
by a trivial G-torsor.Define ¢ _g sending every T'/S to T'(T, Or) and we can
discuss O _ g-module.We have a functor Et(S) — G-Et(S),idr — (idr, idg),we
know from [10.77] an G-equivariant morphism is equivalent to a group ac-
tion,thus for a 0g_g-module,the inverse functor gives us an Og-module with
morphisms f : 7" — T behaves like a left group action.In this case

QCoh(BG) = Qcoh(S) with left G-action [10.78]

10.4 Ind-coherent sheaves on AlStk

This starts at that F' representing the fibered category p : F — C [9.19] is a
category of categories F'(X), X € C,which means adding with DG setting F' is a
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(00, 1)-category.And we base on [17],[18],[19],[20]. Another view of quasi-coherent
sheaves on algebraic stack is following

% € AlStk

Kan \ [1079]
smooth

S e AS DGCat

which is a left Kan extension for AlStk — DGCat with AlStk category of alge-
braic stacks.Which gives us

QCoh, (%) = ProQCoh(%) ~kan %olig QCoh(S) [10.80]
—¢
And a DG category is a category (C, @,, Hom,,(A;, Bi4r)) where C'is a category

with DG objects.The graded hom set is additive with translation functor d :
X — X[1),for f: A; — Bi1, a moprhism,df; given by the diagram

A S/ BN 1A

Jd Jd [10.81]

figr
Aip1 —— Bipn

for n € Z,this is a co-category with df; a 2-morphism.In this case

H.1(Ar, Arg) H.1(Bitn, Biyn1)
- P
HOIIln (Al, Bl+n) ~ HOIIln (Al, Bl+n)[1]

[10.82]
where Hom,, (4, Bj4»)[1] = Hom,, (4;[1], Bj+x[1]),for every f,we have such tri-
angular.Notice that df : Hom,,(—, —) — Hom,,1(—, —), € Hom;(—, —) and this
DG category is triangulated [17].Now,we can view 0 € Z as an zero object of
C for every (g : X,, = Y,,) € C with f : m/n — X,,,we have f*¢g : m/n — 0
which means every morphism admits a kernal and cokernal and it is exact if and
only if it is coexact,which means DG category is a stable (0o, 1)-category which
is triangulated by [10.81].Then,we can discuss t-structure on DG category.

Now,let % be an algebraic stack and a morphism % — % with (n+1)-folded
algebraic stack % Its Cech nerve %'* makes QCoh,,(%*) become a cosimplicial
category.we can discuss descent theory of QCoh,,,for an étale covering (at least
fppf [9.74))%* — &

QCoh,,({#* — #})Z~>° ~ QCoh, (#)Z~> [10.83]

cO?

Because the colimit commutes with the tensor product let us have a functor Q4

QCoh,, (%) —— QCoh,, (%)
l% l% [10.84]
QCoh(#) —L— QCoh (%)

125



which is well defined on the level of fibered category.Let ¢ is a quasi-compact
algebraic stack with an affine diagonal,for a smooth presentation X — % with
X an algebraic space,we have % = [X/G] with G is a finite group scheme.If
it is eventually connective and almost of finite type,the functor 24 induces an
equivalence of category.By using this theorem,we have

QCoh, (%) ~ QCOh([XC/Oé%% : [(X/G](S:)) = Coliim QCoh(%;) [10.85]

Now let & is the case in [10.85] the quasi-coherent sheaves are almost finitely

presented above [7.30].To see this,the extra condition is preserve of t-structure.In

the setting above [10.93],it suffices to show that for > 0 case.For % ~ C(_)liIin
1€

which let us see Zariski locally,and the transition map is f;; : ¥; — Yj.Pullback
along Y; — % ,we have Y,* = #° xg Y;.In this case,#"™ =~ coliIinm,and
1€

i Yim — }%m.Attaching with quasi-coherent sheaves,we have from [12.14]

QCohe,(#) = lim QCoh(Y;), QCoh, (#™) ~ lim, QCoh(Y;™)  [10.86]
where we rewrite the colimit to limit with a flipping of order.With right adjoint
(fi)) 2, (fij)E.For ¢ : [m] — [n], € A,and we have

R A S O YL Ve [10.87]

Also,cosideration of transition f;;,we have a commutative square,based on this

QCon(¥) L5 qeon(ym)

l(g;’”)* l(g;%* [10.88]
QCoh(¥7) L2 qeon(vr)

which is cartesian,which gives us a 2-isomorphism

(97)" o (FIE = (f1) e (g)" [10.89]
because of the uniqueness of global section from the global descent theory in
[9.74],as we work Zariski locally and the fppf cover preserves sheaves property

and its quasi-coherence.Thus,we focus on > 0 and get a well-defined functor

A x I — (QCohZ? — (V?)), (m,i)— QCohZl(Y;™)=0 [10.90]
Also,we can rewrite the fibered category
QCohZ? — (Y?) = lim lim QCoh(Y;™)=° [10.91]
meAielopP

Then,we have a diagram as Y;* over Y; above [12.40]

QCohZ? — (Ye) —— lim lim QCoh(Y;™)=0
meAicIeoP

J l [10.92]

QCOhco(@)zo % ‘lei?olp QCOh(Y;)EO
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by using the theorem above [10.93],the ins; is t-exact the vertical arrow pre-

serves t-structure, and combine with [10.68] then we get the descent [10.83].

For C; € DGCat,let C = colimit C; with ins; : C; — C.Suppose each C; has
3

a t-structure which gives an orientation and along C=°[—n],C; is closed under
filtered colimits.Also,we assume F; ; : C; — C; is t-exact.We let ins; be right
t-exact which means insi(C’fo) C C=%For i € I,the index set I is filtered,then
ins; is t-exact.To verifies it first a co-category Cat is presentable if and only if

(i) Cat ~ P(C, R), C is a small co-category,R € Map(PreStk(C))
(ii) P(C, R) is full subcategory of PreStk(C),generated by F [10.93]

under colimit if C' with R is a set of isomorphisms of co-gpds

where F' € PreStk and the freely generated under colimit see [7.20] that is a
filtered colimit.Now let the Groth'®* be the category of presentable stable oo-
categories with right complete t-structure and t-exact colimit preserving func-
tors.For category of presentable stable oco-categories prl”

(C,05%) = C=0 <«  oco-Cat'™ — pr® [10.94]

with the (co)limit-preserving functors as the morphisms and the lax means
D(X) x D(Y) = D(X x Y).The pr" has all small limits,forgetful functors
ooCat — pr’* and all small colimits pr’* — co-Cat®P there exist a H-T duality on
it see [14.68],C ® D ~ HOM ,,.(C, D).Over this,we can have ComAlg(pr", ®)
and Mod¢ (pr") with objects are C-linear presentable oo-categories.A spectrum
is an infinite sequence {X;};>o of pointed topological spaces with homotopy
equivalence X; ~ Q2X;,1.A spectrum is a spectrum object of co-category S of
pointed spaces and we denote the co-category of spectra as Sp(S) = Stab(S)
which is the stabilization.Now,back to [12.18],the functor of presentable oco-
categories admits preserving of filtered colimits. Then we have C' ~ Stab(C'<?),and
Stab preserves colimits.So ins; : C; — C=<% — C is t-exact from insi(CiZO) C
CZ% And for ¢ € C,we have an adjunction

¢~ COhI}lit ins; o ins’(c) [10.95]
1€
ins® is the right adjoint of a right t-exact functor,which is left t-exact,which

means ins?(c) € CZ° for ¢ € C2° which means C29 is generated by colim-
its of essential images of CiZO along ins;.A t-structure should be viewed as an
orientation structure of an algebraic sequence.

Now,we can apply above to QCoh(S) € DGCat has a t-structure.And for
affine % -schemes S we have QCoh,(%)=C is generated by colimits of essential
images of QCoh(S)=" we then get a corollary A.2.7 in [20]

(a) The t-strucuture on QCoh.,(#') commutes with filtered colimits.

(b)¥S/# ,ins; : QCoh(S) — QCoh,, (%) s t-exact. [10.96]
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For Vect = QCoh(Spec(k)),we can let S"DGAfF denote for the category of
< n-folded affine schemes

SPDGAff = (ComAlg(Vect=~™<0))op [10.97]
We can see clearly from an affine scheme dgaff over k-module
dgaff=" = Spec(k-mod) = (Spec(k-mod/(z=")))
= Spec(Op-moa (Spec(k-mod /(z=™))))°P [10.98]
= Spec(Op-moa (Spec(k-mod=""<0)))ep
Now,for the category of DGCat,we can glue by Stab below [12.18]
DGAff ~ Stab((S"DGAff)) = lirrln(S"DGAﬂ) [10.99]

Let S"DGAffy, € S"DGAff be the full subcategory of n-coconnective affine
schemes almost of finite type (quasi-compact and locally of finite type).By fil-
tered colimits see [7.20],we have SP"DGAff ~ Pro(S"DGAffy;).We also denote

DGAff,¢ = lim(S"DGAff;) € AffSch [10.100]
n

to be the full subcategory of affine schemes almost of finite type (of finite type
after each connective truncation).In this case,we can define

AlStk, s ~ lim(S”AIStkft)7 SnPreStkyg ~ Funct((S"DGAff)Op, 0o-Grpd))
n

Back to [10.79],we can have the following left Kan extension oo
S € (S"DGAff)°P
kan <" IndCoh' [10.102]
So € (SPDGAff )P =" IndCoh DGCat
Similarly to [12.2],we have after taking limit in [12.49]
IndCoh'(S) = colim IndCoh(Sp) [10.103]

S()*)S

Now,from [12.48] we find the underlying ring k-mod/(x=<") ~ k-mod/(z<"*1).In
this case,we have a 2-isomorphism <nIndCoh' ~<Sntl IndCohI,then by 2-Yoneda
lemma [9.25] we have a (00,2)-groupoid

00-Grpd(S" M DGAff) ~ HOM (S"DCAfF/S" M DG A, 0o-Grpd)

00-Grpd((<*°DGAfF)°P) ~ HOM (colim="DGAfF, co-Grpd) [10.104]

for colim="DGAff = lim(S"DGAff)°P with [12.51],we have an embedding

Kan : (S*DGAfF)°? — (PreStk)°P [10.105]
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which can be used for right Kan extension Kan® with colim®?

lim IndCoh'(S) = IndCoh' (%) [10.106]
S—% ,Sc<oDGAfF

The good thing is we shift the # to category of # -spaces AS/# see [10.57].

p : IndCOH (1) — DGAfFy; /(AlStkag )P, IndCOH(%') — DGAffy /%
[10.107]
where we combined with [12.52],which is a fibered category fibered ind-ly in
categories of coherent sheaves,quasi-coherent to coherent is from the settings
of finite type and ind-completion see above [7.30] and [9.108].Now.let % be
an algebraic stack with a smooth presentation S — % we have,for an étale
morphism S — S.From the global descent theory [12.39]

IndCoh(S" xg #) ~ Coh(S") X con(s) IndCoh(%) [10.108]

The ind means filtered colimits on dgAlg=" and filtered limits on DGAf=? the
reason why we use filtration is because the free collection [7.21] and [11.32] to
get good space [11.33].In this case,we can define monoidal structure

IndCoh'(S) x IndCoh'(S) — IndCoh'(S x S) — IndCoh'(S) [10.109)

which lifting the [12.1] to

ComAlg(DGCat) = DGCatSymMen
l [10.110]

(PreStk)°P IndCob’ DGCat

10.5 Representation of affine Lie algebra over Ran

Sec 4.1 in [18]. For a prestack % ,we have a new prestack %4, by [10.57] for
C' = DGAfl) yeq. through étale coverings which is a oo-groupoid,by [9.25]

Yar = Y (S) ~ HOMc(C/S, %) = DGAfg) rea. /¥ [10.111]
where cl and red denote for closed reduces schemes.We have
D-mod(?%) = QCoh(%4,) ~ QCoh(DGAf) yeq. /¥ (5)) [10.112]
gives us way to define functor of points of the prestack.Also,
Ran(X) = Hom(DGAf yeq., S) — X ~ DGAf) yeq. /X [10.113]
where we used [9.7] and it is a prestack.Also,follows from [10.111]

Ran(X)ar = DGAff;) rea./Ran(X) ~ Ran(X) [10.114]
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By the descent of affine morphisms [9.135],we are able to discuss global section
S x X = ][ 2,with a étale point x : (°.9),eqa — X,let 2 € T, be a set of points

Sx X \Ty Sopen S X X [10.115)

this is a concrete way to shift Zariski glued schemes to étale glued schemes
and gives us a way to see around z by formal completion to formal scheme
along different topology.Similarly to [9.3],the Ran can be viewed as a sheaf
DGAff ) yeda. /X € Xet.-And by using [9.3],we can easily generate a semi group

H :Ran(X) x Ran(X) — Ran(X), z; X 25— 2, H§2 [10.116]
From [9.82] and below [10.16],we have a weak contractibility of Ran space

QCoh(z) pi> QCoh(Ran(X)) [10.117]

where p : Ran — z is a projection.Now,for a quotient stack % = [z/G],attaching
with ZRran(x) = [Ran(X)/G],a S-point of it is a pair

PRan(x)(S) = (z,y) z:5 = Ran(X),y: (Xg)ar X5, S = ¥ [10.118]

where X, is the formal scheme.Let z = {z; }icr

PRan XRan(X) Ti — Tj

l l,,* [10.119]

@Ran(X) _— Ran(X)
decompose Zgan(x) and (X )4r.For smooth presentation f : Ran(X) — PRan(x)

DRan(X) X Dran(x) PRan(x) — Ran(z) xx Ran(z)

IS JA;\M,/X [10.120]
@Ran(X) ! Ran(X)

the fiber product is equivalent to
PRan(X) X ran(x) PRan(X) = DRan(X) XRan(x) Ran(X) x x Ran(X) [10.121]
the reverse gives us a restriction for X, € Ran(X),we have p*y.(Xz) € ZRan(x)
P YsDRan/x * PRan(X) X Bhanx) PRan(X) = PRan(x) [10.122]

where f, = p*y..Based on this we have a natural tensor categorical structure

p*y*AEan/X : QCOh(g/Ran(X)) X QCOh(gRan(X)) — QCOh(g/Ran(X)) [10123]
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In this case,we can define the category of representation of G over Ran space.
Rep(G:)an(x) = QCoh([Ran(X)/G]) 110.124]

which gives a good space to let representations living on.Guided by [10.44]

LocSysy — Ran(X)

l l [10.125]

[Ran(X)/G] —— Ran(X)

where G is a group scheme over X.Where the stack of G-local systems is the
stack of principle G-bundle on Ran(X) in the classfying stack of G.Thus

LocSysgs x x Ran(X) —— [Ran(X)/G]

l”*y* Aox [10.126]

LocSys g
where we used [10.122] and [10.123].Then,we have
Loc%pec : QCoh([Ran(X)/G]) =~ Rep(G)ran(x) — QCoh(LocSyss)  [10.127]

see [9.82],they generated same topos.
For a group scheme G* over S € Ran(X) with a index set A°P,we have

£H(G) = lim G* ~ AS/L£1(G) [10.128]

a€eAopP

The reason we do this because we work over étale site (at least fppf),we want to
glue group schemes and [12.73] by étale morphsms.For every G*,we can discuss
quasi-coherent sheaves on the algebraic stack

Rep(G®) = QCoh([pt/G*]), Rep(£'(G))P** = lim Rep(G*)  [10.129]

a€Aop

see [10.69] and pt = T/S.By [12.28] we let f : S — X! € Ran(X) with a group
scheme G/X,we have a the following diagram and let S X x G = G*°

SxyG — Gxx X — @

l l l [10.130]

S f x! X

Which gives us S xx G ~ S x xr (G xx XT).Also in the topos

Rep(G) — Rep(G xx XT) = Rep(S xx G) [10.131]
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Letting ag be an initial object is equivalent to let X' be an initial object in
the localized site Ran(X),and the closed and reduced setting [12.24] makes
Rep(G x x XT) be compactly generated. Then

Rep(£F(G))P™ = lim Rep($ xx1 (G xx X)) [10.132]

which is compactly generated.We see the topos on the stack is a stack [10.69]
which means [12.62] is a unretracted version of the stack of representations.

Rep(£7(G))fetractea = QCoh([pt/£7(G)]) = Rep(£7(G)) [10.133]

retracted —

11 Dynamics (Stackified) of the M-theory

Introduction

A complete physics theory not only constructs fields but also describes the
dynamics of these fields.Now,we have complete the first part for the M-theory
based on schemes (from regular functions),now for the dynamics,we need to
based on DG schemes (from differential equations) see the former sections about
Lagrangian,energy-momentum tensor etc..Similarly for schemes,we also need
generalized super settings for correctly describe our world. We will see that solv-
ing the dynamics of M-theory is equivalent to solving the Geometric Langlands
conjecture.We can find the basics in the former section and the section 12.1
about DG settings.

11.1 2-nonexistence and M-flow

Definition11.1 A DG generalized superscheme P¢ X is a generalized super-
scheme X = Xy @ X} with a Zs-graded DG Og-algebra given by [4.53],which is
a ring denoting as 0% = 0% & O%. such that Os — (0%) is surjective we
used the notation for super simplicial cohomology group see below [8.8].Put it
back to [8.12],we have a DG-M-brane denoting as P“.# after super T-fusion.

Compared to notation in [9.73],for DG schemes,we use QCoh(?%S) for de-
rived category Qcoh(P%S) with unbounded cohomologies,which is a DG cate-
gory.Now,for a category Coh(P%S),we have a DG category IndCoh(P%S) with
objects are functors F : I — Coh(P%S) see above [9.7] which is an ind-
completion.Because t-structure is compatible with F',which means we have

T : IndCoh(P9S) — QCoh(P€S), Ts € DGCateont [11.1]
which is a t-exact functor.Now,we can back to generalized super algebraifold A
A-Mod = IndCoh™(P¢X) — QCoh™P (P9 X) — ProCoh™P(PYx)  [11.2]

see below [8.20] and Pro means it is from pro-completion.First,we perform a
Y-duality which makes representable sheaves to schemes in a big étale site

Y : ProCoh™? (P9 X) — EtProCoh(P%X™P) € ETSchSiP o (L #,®)  [11.3]
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Performing Y-duality on two sides and .A-Mod becomes a fibered category

p : IndCoh™ (P X) v ProCoh™ (P X)

114
— EtProCoh(P“X™P) v EtIndCoh (P X™P) S

Because U-duality is a generalized super relative 2-property

IndCoh™ (P¢ #) —Y— ProCoh™®(P%.#)
J{\/ <Y iv [11.5]
EtProCoh(P¢ #1?) —Y— EtIndCoh(P%. 4 P)

where we performed super T-fusion and gives the meaning of overlap we men-
tioned below [9.146].Now,we are facing a subtile thing that is the U-dual parts
originally behave like [10.55] that only connection should be the U-duality,but
now [11.5] means they are twisted with each other,the explanation is following.
Definition11.2 The 2-nonexistence () is the absolute nonexistence based on
existing of global nonexistence,with total number of generalized super relative
2-properties vanishes.Which is from vanishing of existence of nonexistence

(Fore-)"" B (Forg-) + F'=0—0= |[maxO 11.6]
and it indicates the maximal length of chain of vanishing relative properties.If
(Fome+)" M (Fore-+) = (Forermg«rer) M (Forq-) [11.7]

In this case,we get an overlapping counting field

F = (Fgrermo-) B (Fomgerer) [11.8]

Theorem11.3 The M-theory indeed have dynamics but not canceling by U-
fusion,the existence of the dynamics of the M-theory is to cancel the existence of
the global nonexistence to give a nonexistence on the level of generalized super
relative 2-property, which is the 2-nonexistence Q).

In this case,studying the dynamics of the M-theory is equivalent to study
the overlapping of two U-dual pre M-theories.

Definition11.4 An A-gerbe over DG-ETSch® P (L/7_,) is

p: TorWst(A) — C = DG-ETSch5P 9" (L)) [11.9]

grop.
in the stack Tor 4 following from [9.92] with grop. denoting for groupoid and
now A is a sheaf of groups,which is a substack with an isomorphism see [9.51].

Lot Alc/p) — Aut,, Va € Torpu™ (A) [11.10]

grop.
such that it satisfies the p-gerbe axioms 12.2.2 in [12] and extra constraints

(i) Ais self U-dual < A~ G™P VG (ii) A-gerbe = G™P V G-gerbe
(iii) A-gerbe is a subalgebraic stack, C ME> in the M-theory

cons.

[11.11]
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the pre M-theory is algebraic by [10.24] with diagonal morphism given by
[10.25].Along this diagonal morphism,we have spontanecous Z, breaking [8.28]

A2 MPNS MIGREG G=G"PVG[Zy, G=GVG*P/Zy [11.12]

where these are Langlands dual to each other in [10.56]. Which means a A-gerbe
is equivalent to a G X G-gerbe.By [10.43],we have

G X G-gerbe 22 G-gerbe K G-gerbe 2 Bunly ™! & G-gerbe [11.13]

where Bunly°? is stack of twisted principle G-bundles [19] guided by the sheaf

of properties on the M-brane [9.15],we have an isomorphism
Bunly "4 & G-gerbe = D-mod; (Bung) [11.14]

where the right hand side is a DG category of D-modules with D formed by
super T-fusing all generalized super derivations.
Definition11.5 The dynamics of the M-theory is called M-flow

M-flow = D=''-mod; (Bung) — DGETSchgP ™" (L4, v .4 _,) [11.15]

which is a well-defined stack retracted from the non-perturbative (not well-
defined) flow approaching DO-brane [6.22] and it describes the evolution of gen-
eralized super relative 2-properties compared to [9.15],that is

M ——— [ M)C) — MGG

T T T

MO 16| M PN M —— M ———s M -

TP \/[jl/G’G”] M ——

[11.16]
with the global group scheme G in [11.15] given by

G%H///rep \/[////Gi]/// [11.17]

Recall the Lie groupoid for string-Space [9.39],the half-twist in [11.15] is because
the stack Bung is retracted along normalized determinant line bundle

detpung : (Pe)*® — (det(I(A, gpg)) @ det(T(X, gpg )™ [11.18]

where Pg is a trivial bundle and gp,, is sheaf of Lie algebras see [7.4].From the
stack generalized by U-duality see [8.54],we have from [11.8]

Aut, = Isom(z,Uz) —g F, x € Tory [11.19]
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over the overlap counting field.For G, we have a functor following the diagram

LocSPee

Rep(G) < QCoh(LSs)

\ / [11.20]

DGGr (u(rgP(T‘s)* 1 G‘)GSTcn

where we used [7.20] and [8.48],the bottom is a fibered category with fibers are
the corresponding tensor categories,over the general site [9.149].For an element
Gr(4) in it,we have Hom(Gr({), —) = @, Homgitered, (U, —) which is compat-
ible with filtered colimits,which means Gr(4l) is a compact object.For seeing
further and combing with physics,some information we have not captured.

11.2 DG Lie (pre)scheme and Quantum collapse

Recall theorem3.3,we know the only type of strings is that of étale closed
strings corresponding to the relative properties,also vibration of closed strings
gives us a theory of gravity.For the purpose to study the dynamics of the M-
theory,we need clearly discuss the matter and quantum effect under the view of
algebraic geometry.And our start point is to define an adequate space which let
the behaviors of matters living on them.

Definition12.1 A DG Lie generalized super(pre)scheme on 2-d world-sheet
under D = 10 dimensional spacetime is a spectrum of affine Lie algebra

Spec(g =g @ C[t,t™'])='?, D"=: 08 — OF [11.21]

with generalized super grading and bounded cohomologies n < 10,which makes
the structure sheaf become D<'%-module O%.SO called pre because the algebra
of quantum fields is not commutative,by [11.32] it loses representability because
of the automorphism,we can define it as [11.21] because we will use free collec-
tion [7.21] in [11.40] and we will define it more correctly by using adic space
below [13.39].And the bold ¢ is for representing the coordinates we need (not
imperative).A field is a function f € Oé.The nontrivial behaviors are given by
gluing axiom

FOFU)pwonrw,) = FOOFUswnnsw,) [11.21]

where we used étale covering {f : U; — U };c7.By uncertainty principle

f(O5(Uf)) x= f(O Hf i)z = Hf U)  [11.22]

where z € p C V(1/fg),which is an algebraic formulation of OPE (11.5.1) of
current algebra in [3].Now,we have two problems in [11.22],the first is this fields
are not clearly described as quantum fields,the second is the gluing property of
sheaves breaks or is modified.
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Definition12.2 An étale sheaf of wavefunctions of string theory is

Og:;qm . (DG,LieSCh/SpeC(ﬁ =g C[t,t"NP)P — (A [o)) [11.23]

where we used the state-operator mapping in CFT by path integral 2.74 in [4].
i Pp=1 _
(fut oo =291 X) 1o [ (D@D eI E0 A(0) [11.24
$,=0

where we performed a conformal transformation z = e~**,A(0) is a functional
on T_,,.Geometrically,summing over all possible field configurations is

equt ~ LA
O3 (fu) = hAO = hoyig,) [11.25]
Suprisingly,we find it is consistent with the definition of algebraifold [8.15].
RA©) heigy) € hay = F — har(gy] [11.26]

which means the setting of algebraifold makes it naturally of quantum.
Definition12.3 An étale quantum sheaf of wavefunctions is

BettiQ2att . (T 5 27) s o (oo @ o (o]} = dim(2” (T2, 2)) [11.27]

see [9.17] and 2" =P&le X which is a Betti sheaf of D="-modules.We want
to let the cohomology to detect the number of D — 1 dimensional holes as the
topological information.Now,we have a tool to study the gluing problem.The sin-
gular point is given by =€ in this contacting point the variation of momentum
should be enough larger to form a generalized super black hole

equt
O3 (U;) x

7 qum; (UJ) O;qut (UJ)

l l [11.28]

equt 2y
O3 U) ——————— BH

for an étale covering {U; —PS1e X'} with the descent data identity morphism
o : priE; = pr; E;.Also we have inequality of topological information

PO (U X puynpwy) Us) =P O3 (U;) 4P O3 (U) +1 - [11.29]

which means we gain topological information during the contaction or a superpo-
sition state.Also,[11.28] follows from that we are in region of relative properties
and this relative property is given by = is heavily strong than = which means
the first type of étale closed strings in [8.22] dominates the behaviors,that is
ordinary closed strings (theory of gravity is dominant).Now,we need back to
descent theory [9.70],global descent should gives

qu“t({U,- DG Lie 1) =, ogqut(DGvLiCX), (Ei,0ij) = fo B [11.30]
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which is information-preserving,the phyics behavour breaks the global descent
as the descent data o0y; is not effect before collapse to a certain state.

Definition12.4 A quantum collapse is a process that the local descent the-
ory becomes to a global descent theory along an étale coverings

quut({Ui _>DG,Lie X})

= 0§ ({Us 5PEH X))\ {({B). (=)} = 05 (P9t )

[11.31]

for the quantum sheaf.An interesting thing is for math,the objects we exclude
are that of automorphisms,and the isomorphisms give good property for descent
theory but these are trivial behaviors,which gives us a motivation to focus on au-
tomorphism [11.10] meaning there are contactions.See the problem for construct-
ing representable functor of the second paragraph in P69 in [12],physics gives
a really concrete explanation that why automorphisms prevent us to achieve
representable (unapproachable to global descent).

Corollary12.5 A covering of a scheme is an effective descent morphism for
F of algebra if and only if the free collection [7.21] of every ideal in the algebra
is the ideal itself.Combing [11.19],we have a connection that we need to know

Contaction — Not effect descent
% / [11.32]
gr.dominance Aut
Self U-dual

also we have a diagram for our familiar copy in [11.6]

Free Effective descent

regular [1 1 33]
qut.dominance Isom

Unself U-dual

[11.33] is for getting good space (i.e.algebraic space,stack etc.) and [11.32] should
correlate with the objects (non-trivial behaviors) living on the good space.

11.3 F-duality and the Geometric Langlands

In this subsection,we try to combine the math(GLC) with the physics (M-
theory).From [11.32] and [11.33],we find a duality between self U-dual and unself
U-dual copies gives us a duality of gravity theory and quantum theory,which
gives us motivation to define an unified field.

Definition12.5 The F-duality over the 2-nonexistence () is a duality be-
tween existence and nonexistence,denoting as F see [11.7] and [11.8]

F : (FQ:'ep‘XQ*rep) & (FQ&Q*) < (FQrep&Q*) x (FQ‘XQ*rep) [11.34]
Which is a duality on the M-flow over ().In summary,we have

O<«F<=U<=TxyS [11.35]
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where we used [8.46].Notice the direction of the arrow similarly to that of
[9.97],which is for canceling the property of right-evolution,we want to call this
direction the left-evolution.

For the understanding of [11.33],we know a consistent string-Space [9.92],a
pre M-theory [9.98] and the M-theory [10.22] are just a good living space for
nontrivial behaviors which exists by F-duality.In this case,we have

M-flow —— (MPIEIP v AP ) flow

lF l [11.36]

M s e M
And this should be T°-breaking to an (10%,1)-stack S-flow

(S™P V Seons. )-flowygn —PELE (SIP v S ) iom [11.37)

cons. cons.

over the DG Lie algebraic stack based on S'P_ V Seons. with D=0 with 10%-

cons.
morphisms defined by morphisms of relative properties [9.130],and it is non-

perturbative because we are on level of relative properties in theorem9.5 below
[9.124].Naturally,it is presentable stable and we focus on the seen part

Seobs. V Scons. = (Pts, Scons.) [11.38]

follows from that the unseen part of universe is a point (unseen) observed in
seen part.Which makes [11.37] to a stack of pointed spaces.By [9.92] and [11.21]

DG,LieSC(ms‘ .DG,Lie (@& lil*) _,Lie DGETSchS“pGen(//l) [11.39]
And we use [7.20] and guided by [11.31] that we need to do free collection
PEHE(@ g U¥) ~PEHe Gr(U(TOF™)) e [11.40]

retracting [9.104] through admitting of preservation of relative property.Follows
from the diagram above [4.48],that means the affine Lie algebra descents to a
group scheme with R — 0 is for simulating (0, &,£),G here is for [4.46]

92 : (8, (1/ie)sq ) — G(z', ... 5" ") o ® G(0", ....,0") oo — G, ® G:
[11.41]
where we used [3.42],[4.47] and [7.4] for Q, &/ € g.We also used the the existence
of Majorana-Weyl condition in superstring theory below [5.15].
Then,we get a generalized super Lie group scheme from all such pushforward

G5, © Gg; ~ (92+(8, (1/i€)0q)) [11.42)
Then,we can back to [11.20],and use [11.12] we get

PEGr(U(Tgp(psy-10)Seancd ~PDHE (@ @ TP vPEHE (O o U*)  [11.43]
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with the U-duality twists to F-duality F: GV G < GV G in [11.12]
GV G = P(T°) [(9(8, (1/ie)3q )P V (97:(8, (1/i€)dqe))]  [11.44]
Also,we have by using [11.42] from [11.20]
Rep(G) V Rep(G) =~ P(Té)DGGr(ﬂ(Fg[(ggo@gﬁ)repv(ggo@ggf)])éegfe?d [11.45]
In this case,we can combine [11.39],[11.43] and [11.45] together
DG.Lie(GroP \/ Seons.) :P(T) "} (Rep(G) V Rep(G))

—Lie DGETSchig? o (4™ v M)

eff.cons.

[11.46]

which lets non-perturbative theory living on as the double counting of the rel-
ative properties below [9.124].An interesting thing is if we let 1.2.2 in [19].

(P(U)Rep(G))V =~ Loc* (), Rep(G) = QCoh([.Z™P/G]) [11.47]
recall the self duality gives a fusion-like when we calculate in [8.34]
P(U)(Rep(G) V Rep(G)) ~ (P(U)Rep(G)V)Rep(G) [11.48]
see [11.66] and [12.38].Pullback along [10.25],we get

~ spec 6\DG,Li
M - LOCG,RanP(T ) le(Sgce)Es. \ Scons.)l()‘i3

_ [11.49]
~ QCoh(LocSyss) St —e DGETSChS&pGen’ConS‘(///rep vV M)
Combining with [11.15] and the F-duality [11.36],we get
D='"-mod; (Bung) F QCoh(LocSysg) <t
iy —
LieDGSchigPoe? (LA ™P v .4 )
[11.50]

where compared to that below [11.46],the generalized super algebraic stack M
which is a (11%",1)-stack with well defined (perturbative) theory [11.15] living
on as the generalized relative 2-properties [9.148],from theorem9.8.

In this case,we see the geometric langlands correspondence is from F-duality
which is a twisted form of U-duality between M-theory and its dynamics

GLC(M < M-flow) = F [11.51]

Combining [11.32] and [11.33] with [11.50],the LHS (geometric n-stack) which
is algebraic with (non)representability of localities which are nontrivial behav-
iors in QFT (embedding gravity effect i.e.black hole) and the RHS (geometric
n-stack) which is algebraic with representability of spaces themselves which
are in GR (spreading quantum effects),we see the QFT includes gravity ef-
fect and GR include quantum effect and this is explained by [11.85].Thus,the
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F-duality is a duality between non-representability and representability,recall
[9.107],it should be understood as a twisted form of U-duality.Now,back to GLC
[11.50],the LHS collects all information of automorphisms from self U-duality
and the RHS collects all information of pure isomorphisms (2 \ =).Also,we
need to notice that the truncation < 11 is for the degree of geometric n-stack
see [12.81] and [12.101],that is for the spacetime dimensions.

11.4 Ran space and the Unified field' theory

This subsection is for compensation of details in the above discussion.For a
D-dimensional generalized superscheme X = Xy @ A} ,we have

Ran(X) = Hom(Clabi™r**d §) — X ~ Clabiiracted ) x [11.52]

mir mir

from [10.113],localized from mirror pairs of retracted Calabi-Yau manifolds that
is Clabiieiracted ~ Ret, Clabiy,, see [12.19].A point z € Ran(X) is a closed

mir

reduced étale X-scheme M € Clabi™*****d By formal completion
Xy~ Xpar, (f: M — X) € Ran(X) [11.53]
is a formal glued scheme with étale topology given by [10.115].By [10.117]
p:Ran(X) — z [11.54]

which is a projection because they generate same topos.In this case,we can have

Ran(X) ~ [ [ X x 2 ~ [ ] X x Cla ~ EtSchlgiie" /X [11.55]

where Cla is the global mirror pair by the global descent theory.Which makes
the Ran space of X' a stack over the localized site.The groupoid is from

Ran(X) e"2td ~ (1-properties P)gan(x) [11.56]
by theorem2.4 such that for P € (1-properties)gan(x) it follows the diagram

Ty — Xy
f f*(Pl X Pz) ~ M1 Xg M2 — XQ X Xl* [1157]
Pl P1><P§ PQ

with isomorphism replaced by admit of preservation of relative property.A point
on Ran(X) is a 4-dimensional spacetime.Also,if we view G as a G-torsor

G ——— Spec((Fgrermg-) B (Fomg-rer))
JA*BC,,(M&) wa [11.58]

Laer /G —— 285, Bé x BG
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where we used [11.8],by the overlap counting field of generalized super relative
2-properties,which should be equivalent to [11.44].And for [11.39]

Rep(Gz, @ Ggr) —— “DGETSchSP " ()
lLie* lLie* [1159]
® @V —— ETSch2P9" (7)
that follows this diagram,and the stack of representation is isomorphic to
ie SVEd T ie SupGen
PEL(D@@U") = (POWV) X grgaswsen( g) pier - DGETSchyg™ ™ () [11.60]

And the Lie group-Lie algebra correspondence,it should be trivial to distinguish
representation of Lie group and that of Lie algebra on tensor level.

Rep(Gg, @ Gg;) = Rep(TO3™) [11.61]

Now,we back to Ran space and from [11.49],we have

Locg’ganRep(G) = Loc%pecRep(G)Ran = LocsépeCQCoh([Ran(///rep)/é])
[11.62]
From [11.38],like what we use Spec for schemes,we have by colimits above [10.95]
Stab(SieR. V Scons.) 2 Seons. [11.63]
for presentable stable co-category.Also by T5—breaking,
QCoh([Ran(.#"?)/G]) ~ QCoh([EtSchiyhe" \ .™ /G)) [11.64]

which is a double quotient.[11.62] means the heart of t-structure.To see this
clearly,we can view U-duality gives us two DG sequences with rep part < 0 and
U-dual copy for > 0,and the existence of F-duality makes them has intersec-
tions.This based on the way we define the geometry [8.11] and above [8.22],which
makes our universe triangulated.And we can naturally glue the self U-dual part
into heart of t-structure,which follows that

(///[iep V. %_A)unselfU ~ HSO0 g y20 F Al

! l

SpeC((FQreng*rep) X (FQ@Q*)) (L} Spec((FQreng*) X (FQIXQ*rep))

[11.65]
which gives us an understanding of the spontaneously Zs breaking [11.12]

MESEP MBS, = (M |G G

~ (A= M=) M7 |GV G [11.66)
= [#° |G\ [ 4= & MG
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where we used [10.55] with .Z™P Vo M ~ M Vo (M=° & .#=").Which is
consistent with [11.17] if and only if

[[67/Gi] = ME5 = Spec(F),  Vspee(r) = Xspec(r) [11.66]

(2

where we used F for unself U-dual field in [11.64].Which indeed gives us the
experiment-free M-theory from [10.22]

M = MPZTP N MPS ~ Spec(F') Vo Spec(F), M~ [11.67]
Notice that the () is the only ideal and the left evolution is guaranteed

Spec(Q) =0, O<«FVoF [11.68]

where We left with F-duality for verifying their are information in this absolute
nonexistence which make it able to generate our universe by left-evolution [11.35]

M-flow ~ O-flow = <« F [11.69]
Now,back to [11.63],the double quotient is equivalent to
[EtSchighye™ \ 4™ /G
~ [BtSchlil," (X © A7) 7 /P(T)1G)/ (47 G)] [11.70]
=~ Ran(Stab(Sighs. V Scons.)) / MEsria P o Ran (S, )/ Mt

we can get further information by [10.33],we have

G X gpee(y RaN(X ® A7)Y —— Ran(X @ A7)¥ +—— Ran(Sgy.)
JP(T) J lp(T)
G Spec(F) ¢——— MPreIep:
[11.71]

the right cartesian diagram is from [10.25],where (X vV X)° € Spec(F) and
the P(T)~'G in [11.70] is the fiber product of the left cartesian diagram in
[11.71].Also from [11.70] we get the diagram

G XSpcc(ﬁ') Ra’n(XO @ Xl*)v XRan(){()@/'\.’l*)(7 Ran(scqgns.) —— Ran(‘scc?)ns.)

! l

G Xgpec(f) Ran(Xo & x5 Ran(Xy & X7)
G X Spec(F) M}cjéiéﬁep' Mlc);i.sr.ep.
[11.72]
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the bottom line is from [11.71] with

Ran(Xp & &) = Spec(F) x pqgzpoon Ran(SSp) (1173
Also,[11.65] shrinks the previous U-breaking diagram [11.36]
M-flow —— M _flow o~ MPPeTP  Ran(Sy,.)
Jr Joe |
M —E s M, s Ran(Sigh, Xspec(r) Seons)
[11.74]

Now,we need to open the settings of DG Lie by [11.46],[11.47] and [11.58]

re. re.rep. P(T)_l
Mlc)ons._ﬂow = Mgons.PI{Jan. — Ra‘n(Sc?)ns.)
J{QG l [11.75]
re.rep. P(T)"! i T
QCOh(MSois.%’an.) # Pe.L eRan(chgs_ XSpec(F) Scons.)
From [11.72],we get a relative property of Ran(Se, )
(G X gpee(y Mo ™) X pzzgrer Ran(Seps.) = Ran(Sg,s.) [11.76]

which inspires us to define an algebraic space see below [9.116],[9.123]

cons.Ran.

[11.76]

Ran (S )/ (G Xpea(y Meoms ™) + Ran(S7,, )T = QCoh(METIR,, )
where we changed op to a left evolution.To see this we want use a trick
Rep(G) V ([ /(=) Xspee(ry Rep(=)) © (G Xgpoery MEm2P)  [11.77)

where we used [11.47],and equipped with U-fusion,we get

(P(U)Rep(G) V MPE ) Vi MESIP o M METETEP [11.78]

cons. cons. cons.

where we used [11.67],then we use the GLC correspondence

(GLC Vo id) o (M Vo Mpre~rep-) ~ M-flow Ve MESIP [11.79]

cons. cons.

Then,we want to use U-breaking

(P(U) Ve i) © (Meflow Vi MEEI™ ) o MESI™ Vi) MEE™
[11.80]
And by the global descent theory,this is equivalent to MES P Then

cons.

Ran (S )/ (G X spoe( ) MEre®) 55 [BSChSSe \ /G [11.81]

cons. cons.
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where we used [11.70] from combining [11.77] to [11.80]

QG = (P(U) Vi 1) 0

(GLC Vo id) o (P(U)Rep(G) v ([///@ /(=] Xspec(p) Rep(—))) s
By this we have a stack generalized by F-duality [8.53]
(MBI, v MBS, 0 = M) = QG [11.83
By using the 2-Yoneda lemma [9.25],it is equivalent to a (117, 2)-stack
HOM (EtSchgieys / M - Mo jan) = Mt pan, (Mgt ns)
[11.84]

which is an unification of quantum and gravity on the level of relative property
see [11.37],that is non-perturbative.To see clearly,from [11.32] and [11.33]

gr.dominance

Fo Moflow <o GVGE = M = PUIMES, g (MBI )
qut.dominance
[11.85]

where,we combined with [11.12] and [11.44].
Definition12.6 The Unified field' theory UFT is the diagram [11.85]

representing the generalized super algebraic (11q32,2)—stack.The ! denotes for
the underlying number counting field [11.67].

Definition12.7 We stackified the M-theory and its dynamics and regard
them as algebraic objects.In this case,we want a overall terminology to denote
this theory studding the properties and connections of these objects as

the M'-theory [11.86]

which is a field' theory based on super algebraic generalized geometry.
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12 Modern super algebraic geometry II1

12.1 Weak homotopy equivalence,D-brane and Possibility

Now,we want to give an detailed expatiation of the retract [9.104] and the
replacement [9.105].An observation is that,h is a homotopy between Fy; and Fy

Fy

SN

vuv ﬂh FU)x F(V) [12.1]

N

Fy

if and only if there exist Flyny = Fulvnv = Fvluav

F(U)lvrv —— F(V)|uav

T T [12.2]

F
FU lvnv FV

with (Fy — Fv)lunv = Flunv(U — V) =2 which means the overlap |ynv
gives us a weak equivalence relation.The relative properties living in ordinary
fibered category and behave like (unstable) weak equivalence relations,P =
U xynv V here,over étale site,from descent theory [9.53] relative properties
(descent data) can be localized to be represented by an overlap but it is un-
stable and the retract [9.104] push things to high energy level and things are
highly unified relatively and relative properties are stable.

Definition13.1 A retract is a forgetful functor let us focus on structure of
relative properties and forget the remaining structures,denote as Ret

X&—pP§&——p%..
l lpR l , Ret: C — co-Grpd [12.3]

Y$&E—— R{— R*>--

with PR a relative 2-properties,sending relative n-properties to n-isomophism

Ret(X ——Y) = P: Ret(X) — Ret(Y) ~2ong€ 00-Grpd  [12.4]

~
—weak

We also need to find a space that the relative properties truly lives in (behaves

as 2),if we donot do super T-fusion,there is no cut off of relative 2-property
[11.6],in the LEE of M-theory,relative properties lives in an 10-Grpd,denote as

P
ZRet(—)='%, @ Hom, (P", R")),n < 10, € Z* [12.5]
n+1

As the descent of string-Spaces to a pre M-theory [9.93],we can use [7.25] that
D = 10 dimensional theory is shrinked to a point (be a solution in D=11) in
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the extra dimension thus,in M-theory the highest degree of relative property is
2.And we can regard a scheme or algebraic space as a relative O-property.In the
oo-groupoid every n-isomorphism is a relative n-property.And for a topos T on

an étale site,we have for P a relative property in Ret(%)%o

F € HOM(T,?Ret(—)='9), F|pis a weak homotopy equivalence  [12.6]

And combing the [8.24],we can further define D-branes in this derived category.

Definition13.2 A Dn-brane is a weak homotopy equivalence which is the
global section of an étale sheaf Fp» localized by a generalized super rela-
tive n-property P € ¥ Ret(%)éigsup and coherent sheaf F' € T on the site
[9.149].Thus we consider the derived algebraic geometry for studying LEE of
the M!—theory,we based on [21].Loosely,a D1-brane is an étale morphism and
D2-brane is a continuously extension of an étale morphism etc..

A DG (differential graded) Zs-graded (generalized super) algebra is
Age @ Ay = ({Ai ® A3 }iez,0), 0:4A; — Aj 1,0 =0 [12.7]

which is a family of simplicial N¢-modules with the conditions in [7.4].And we
denote dgAlgfO the category of commutative DG k-algebras for n € Z* and
denote the DGAfFZ? as that of affine DG schemes.

Spec(Age B A7,) = Spec(Age) ® Spec(AT,) [12.8]

with similicial super T-duality T3 : Age ® A%, — A%, ® Ape.Notive that the
Ago @ Aqg is the final object of the chain complex and by left evolution,we get
cochain complex on the scheme.And a generalized derived superscheme

(7" (Xoe ® X7,) C Xo, #a(O%,)), 7'X, =Spec(H#5(Ox,)) [12.9]

where we denote the generalized DG superscheme as X, = Xpe @ A7y ,and we
used the notation below [8.8].the structure sheaf 7 (0, ) is a (0 x, )-module
which is quasi-coherent by the setting.Which means we can perform [10.83]

Ho(Ox,(U)) @uy(ox, vy Hi(Ox,(V)) = Hi(Ox,(U)) [12.10]

for an étale cover U — V € 7°X,,by setting < 10 XS0 gives us the full 10
dimensional space time constructing by 74 (0x,) with left evolution

DO-brane € (0 x,-mod) na 5%, 840ak € H1(Ox,-mod) - - [12.11]
where we used notation below [8.9] and theorem3.3 below [8.22] before the T3-
fusion,sg ., behaves like open superstrings induced by a weak homotopy equiva-
lence.Which means in ths string-Space we have a closed-like superstring induced
by a ordinary openstring with endpoints attaching with a D-string.After the
fusion,we only have one type of closed string corresponding to the étale equiva-

lence relations called étale closed string recall the F-duality is about self-duality
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[11.34],we can see this by

P(T) 'P(U)"'F

seelf: [se] ¢ LTI E, (gunsell [ge | ](s° ¢ D-string)

\ [12.12]
P(T?) P(T?)

c
50‘5

which induces one duality fused version of [12.11],we should view this chain with
the étale closed string generates the unified field' theory [11.85].

Now,we want to discuss the quasi-coherent complex,An A,-module M, is a
chain complex M, with Ay ®j Me — M,.For a derived scheme (7°X,, He(Ox,))
with structure sheaf Hy(Ox,) = Orox, and a complex of presheaves for i >
0 by definition [12.9],a simplicial sheaf 0x,-module behaving like [12.10] is a
quasi-coherent! complex? if for every degree Ox,-mod(U) = O, (U)-mod' and
for every homology presheaves H;(Ox,-mod) = H;(0x,)-mod® which means
H;(Ox,)-mod(U) = H;(Cx,(U))-mod by [12.10],it satisfies

Ho(Ox,(U)) ®@uy(ox, (v)) Hi(Ox,-mod)(V) = Hi(Ox,-mod)(U)  [12.13]

Now,we want to study oo-category.A topological category C is a category
enriched in topological spaces with Home (X, Y).A homotopy category Ho(C)
over a topological category C is C with HOMc(C, C) = (7°Hom¢ (X, Y)),which
means it is homotopy enriched.A functor F : C' = Top(U) — D = Top(F(U))
is a quasi-equivalence equivalent if for all U,V € C,m;(U) = m;(F(U)) with
commutative square which means the weak equivalent diagram [12.1] and Ho(F')
is an equivalence.Below [9.30],that is a case of relative category which means
a category with equivalence which is relative to a subcategory with weaker
equivalence in that case (22, =) we also discuss such things around [11.31].Also
see [12.4] and [12.5] the morphism with preservation of relative property is an
isomorphism (relatively strong) in the groupoid,this should be understood by
the existence of the strong equivalence (relative properties [9.130]) which is
descent data induces weak equivalence by homotopy [9.100]

Theorem13.3 A a breaking of duality is a relatively weak projection to
relative properties of degree n from relative property of degree n + 1.Reverse of
the realization gives an explanation of the T-fusion [6.22].

Recall generalized super algebraifold that is T-fusion like below [8.21],which
is a manifold in the string-Space in M-theory which means the unified field'
theory with étale closed string living on it see [11.12] and [11.85].

Next,we want to study derived functor,let (C,Ho(C)) and (D,Ho(D)) are
relative category with the second is a subcategory of the first,with stronger
equivalence.For the fibered category p : Ho — Top from category of homo-
topy categories to category of topological categories,the right derived functor is
the 2-category R = HOMrop(Top, Ho),a derived functor of F' is the following
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deformation of diagram with R¢/p = HOM,,(C/D,Ho(D))

Ho(F)’
Ho(F) T
Ho(C) —— Ho(D) Ho(C) o () Ho(D)
F.c-*tsp - ~ 2 12.14
SN T e
C——Fs—D D

the 7 is unique because [12.1] up to weak equivalence in the homotopy enriched
category Ho(F) = Ho(F)'.The dual notion (reverse arrow in [12.14])gives us
the left derived functor,and we let Rc/p = RF for a left exact functor we get
the long exact sequence along Ap o F' with naturally injective resolution

02A—>B—>C=0250= F(A) = F(B) - F(C) —

[12.15]
0— F(A) = F(B) = F(C) S Ap(F(IY)) - -

where C has enough injectives similarly above [9.10],for each A with an injective
resolution,we can see for a projective morphism P(A) — A — 0,canonically

0— A5 P(A) — A/im(e) 2 ker(e) =2 P(ker(e)) — ker(e)/im(ez) - -+ [12.16]

In such case,we extract 0 — A — Hi(As) — - - - as the injective resolution and
Ho(D) C D,so Ap(F(A)) = F(A).Then,we back to [12,15]left exact functor
let rows of short exact be left exact,and Ap sends them to homotopy enriched
category giving us § and make them into long exact sequence.Then first order is
F(A),the second order is the homology group ApoF (H;(A.)) = Hi(ApoF(A,)).

Then,a model category is a relative category (C,W) with fibrations and
cofibrations.First is a retract from [12.1] by a weak homotopy equivalence [12.2]

FU) F(V F(U) F{U) —— F(V)
F(ruv) F(rvu) 5
unv [12.17]
U —— v 22,7 U—V

induced by the LEE of relative properties [12.4],which make them into same
week homotopy equivalence class which gives a categorical explaination of the
retract [9.104] that is mod this weak equivalence to stablized the relative prop-
erty in ordinary fibered category see below [12.2].

Corollary13.4 Combining the theorem13.3 above [12.13],the n-groupoid
ZRet(—) is a space of dualities.A tract is a stablization of relative property
from the homotopy type of ordinary properties induced by the relative property.

homotopy type of ordinary properties stabilize ¢ able relative P

l 1 [12.18]

ordinary fibered category — Ret prestack
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Based on the unified field' theory [11.85],we want to do a summarization

unknown —— knownP(U)"'F
Ret*P(Té)_1T p(Té)T

non solvable theory —2% solvable S™P(S)

hD $ T ‘\

(ClOSGd) —_— Open) — cons — SN

cons.

[12.19]
where (open) means superstring theory of open strings,blue means it is not a
full theory it is a space for nontrivial behaviors (red) living on.Recall defini-
tion13.2 above [12.7],a D-brane is a continuous extension of étale morphisms
(étale relations),thus after retract,we get the generalized superalgebraifold is
a contineous extension of étale equivalence relation (generalized super relative
properties).The strings in the last row of [12.19] are

closed str open str attaching on D-brane — [s¢ ]

[5]

[12.20]
Back to model category,the second axiom is composition of 2-morphisms.In
fibered category p : F© — C which is called Grothendieck’s fibration which
is given by the 2-categorical structure [9.25].And in model category,we need to

realize that simplicial structure give us a way to construct higher morphism

>A2*>A3

/ l V [12.21]

314>BQ >A3

such I-morphism p in model 1-category is (co)fibration lifting by (hi)ha.In
this case,we have a homotopy between 1-morphisms f o h; — ho o g.But for
physics,recall we regard the corepresentable representable pair [11.25] as the
time evolution (sum over all possible paths) and the existence of 2-morphism
gives us a way to continuously extent the path (1-morphism).Also evolution is
a motion,we need to consider super generalized general relativity [8.33],actually
the motion happens locally in self T-dual (self rest-motion) generalized Lorentz
module in D = 10 over C,for an evolution of bosonic field

PELC(Xy @ A7) ~ocatsetr © 7 (Xo B Xo) — PO, [12.22]

where the [5.13] tells us we can use complex conjugation as a self-dual struc-
ture.And by using the quantum sheaf we used in [11.23],we have

05 (POH(Xy B X)) = O3 (POLexy) x O (POLeRg) =1 [122)

Recall self T-duality [8.14] which has the regularity or renormalization.For fur-
ther discussion,some information we have not acquired.
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12.2 The natural of QFT and GR and Nonexpressibility
we need to combine the [8.28],[8.37] and [12.12],we have

R+ R LD PO ik

| | [12.24]

s inD«— 3 sin D41

wea.
we see the LEE of the F-duality,along the [12.19] we have
P(T°)"'P(U)"'F = Ret,Ads/Cft [12.25]

actually is a retracted holographic duality,which is a duality between self in the
bulk and weak form of closed string on the boundary over étale site. We know
the F-fusion gives us the 2-nonexistence [11.6],s0 the question is we have not
calculated for the F.We know see this by

P(T°)"'P(U)"! = P(T° x 4o U)~* [12.26]
from observation of [12.12] and we use this to fuse [8.28] and [8.37]
(X x5 A7) T Ry, oy (Ao xs A7)
= (X x5 X7) © (X x5 X)) By (B & &) -
— (X x5 ) Bpss o B @ (7 X Xo) s,y 7 -
(X rer Fo) & (7 X grer X)) Ko,y (Ko .0 Xo)
@ (X X A7)
Zprix o) (Ko Xogrer Xo) & (Xo X_grer Xo))/Zo
+ (] X X7) @ (X] > X)) /Lo
2pu) (X0 Xarer X0) By (] g A7)

[12.27]

And compared with [9.144] and [11.8],it indeed corresponds to generalized super

relative 2-properties counting for the field for self U-duality F' [11.8]
(PU)R)* MY = (Xy x_greo Xo) Ry (Xf X Xf) = Royrer Ru By [12.28)
Based on this and [9.144],we want to form a combination
(X % X1) By (X % 727)) @ ((Xo X grer Xo) By (X] % A7)
= (X X K1) VO (Ko Xgrer X0)) & (X X _grer Xf) [12.29]
Vo (X Xa Xi) = Ra Vo Bogrer ® Bogrer NO Ry
See the definition [10.22],which is a smooth presentation of M

Bt( %o N Rorrer ® Rogrron N Bot)| M = Lis Bt "(M) [12.30]
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we can discuss the relative space of the generalized super algebraic stack M

the M'-theory = (RSSeISUP /AL) D Lis—Etiirfup(M) [12.31]

cons.

which gives as a fibered category over the relative space.And a fiber is a local
unified field' theory.Which means we can apply it locally like [12.22].And to see
the morphism of stacks is representable [10.20]

E:rsl's‘Ran. X M ( . ) ——— Py Vo R _yyer D RB_pyver Vo Ry

lP(U)‘lP(F)%AU«P(F)) JP(F) [12.32]
M ot M

where by the [10.28] and [12.25],we have
P(T°)P(Ret,Ads/Cft) =~ P(U)"'P(F) 2 Ay. (P(F)) [12.33]

Theorem13.6 A relative effect is generated by a property P evolves in a
direction away from its own property P,or towards property that does not exist
relative to its own property,which is equivalent to say relative effect is a long
range effect.

To understand the theorem,the Lorentz transformation gives an example
that a relative effect is about 2/ = z + vt (motion frame) relative to z (rest-
frame).But the quantum field theory is a theory about locality,which mean the
nontrivial behavior happens in z — 2’ [3.12].In this case,the reason why we
cannot combine theory of quantum and that of gravity is just because the or-
dinary space is not good enough to have a local relative effect,also the ordinary
superstring theory is just to contain quantum (open string) and gravity (closed
string),but it is not about combing quantum and gravity,it cannot because lo-
calization on the D-brane (DO-brane) which is equivalent to a localization of
openstring [8.22],we know every string theories need to have closed string,so
the theory of D0-brane must contain the localization of closed string,and the
space is not good enough,thus the theory becomes non-solvable [12.19].Con-
versely,quantum effect is a local effect,we do not have a long range quantum
effect in the ordinary space (cannot explain the quantum entanglement).

Corollary13.7 The general relativity is a theory describing continuous ex-
tension of long range relative effects (global properties).The quantum field the-
ory is a theory describing discontinuous extension of local quantum effects (local
properties).

Theorem13.8 A theory quantifying gravity must describe local properties
and describe the global properties at the same time.

It is completely meaningless for an ordinary space which likes the equivalence
[7.25] is meaningless analytically.Now,we are in the right hand side of [12.19],the
fiber product of [12.31] is isomorphic to

pre.

cons.Ran. XM ( ) ) = (‘%/// \/MS;CqS.R,an, ‘@%rep @‘%ﬁrep \/Mprc' ‘@%) [1234]

cons.Ran.
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which is an algebraic space by [10.30] as each pre M-theory is algebraic be-
low [10.27].Recall [11.6],the number counting of [12.29] and [12.34] gives 2-
nonexistence. Which means over the site [12.30] and [12.31],the M-theory globally
is O and locally is ().In this case,we localized the global relative effect to local
relative effect.Which means when making a certain property exist,the property
also tends to not exist at the same time to cancel the existence of the prop-
erty,which is guaranteed by the local 2-nonexistence (O).And we call this as the
super generalized relative principle.

Now,we can back to derived algebraic geometry at [12.21].The category with
simplicial structure is homotopy enriched for retraction and lifting. Thus we have
a naturally model structure on dgAIgEO with the weak equivalence as the quasi-
isomorphism that is with the projective resolution (reverse of injective [12.16])

A;
ﬁwy lsurj 0= His1(Bis1) = Hi(A;) — 0 [12.35]

n

]
Bi+1 —_— Bz

where we used B;y1 — A; & B;+1 — B; — A;,and such surjection A, — B;
is fibration with left lifting property and cofibrations are A, — B, with right
lifiting properties with respect to the fibrations.Recall the left evolution above
[12.11],for DGAff=? it should be a injective resolution,and the fibrations in the
former corresponds to the cofibrations in the latter.An object in model category
is fibrant if the map to final object is a fibration and it is cofibrant if the map
to initial object is cofibration.For a weak equivalent A — A’ attaching with
fibration A’ — B where B is a final object we call A’ a fibrant replacement.And
in dgAlng,the map from every object to final object is automatically surjective
so every object is fibrant.For a scheme X over S,we have

Pxx X —— PxgX

lﬁ}/s(P ) lpxSw X b Z —< DG.Lie( X K X))

ﬁ//;ﬁ @ local O

X —° s X xg X

[12.36]
we denote P xg X is the path object of X ,with the weak equivalence h,we call
P xg X apath of X.We can see the weak equivalence induces paths of X ,which
explain the measure of path integral in the topological space and the paths are
confined in a local region by the super generalized general relativity [12.23] with
local relative effect (in the unified field' theory).Loosely speaking,when it loses
local property it gains local property to cancel it,and it is confined.And such
elegant model will be homotopy weakly projected to our world by Ret”

Definition13.9 means when any operation happens
(observation,discussion imagination etc.),it induces generating properties at the
same time,which affect the system with local 2-nonexistence. Which should be
regarded as the most abstract and difficult thing with O of the M'-theory. This
means the truth (in non-perturbation) is in confinement.
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A functor F : C — D of model categories is (left)right Quillen if has a
(right)left adjoint G and F preserves (co)fibrations and trivial (co)fibrations.If
G 4 F an adjunction which means Hom¢(G(d),c) = Homp(d, F(c)) for all
objects and satisfy the above conditions we call this is a Quillen adjunction.From
[12.14],for above F' which is right Quillen,we have

Al F(A)
F AD
ZWV lﬁbrant - / J{ﬁbrant — / J{
A—— B F(A) —— F(B) F(A) —— Ap o F(B)

[12.37]
the Quillen functor preserves the fibration,thus gives us a right derived functor
RF sending A to the F(A’) with A’ the fibrant replacement of A.If we have
equivalence of category RF : Ho(C) = Ho(D) with quasi-inverse LG, then
G - F is said to be a Quillen equivalence.Which means following [12.14],for a
unit 'F(A) which is a cofibrant in Ho(D),G("F(A)) weak A in C and for a
co-unit G(B)’ which is a fibrant in Ho(C') we have B =5 e F(G(B)') in D.We
know that lim; : C — C is a functor,so we have homotopy limit which is right
derived functor of the limit functor Rlim; for objects C! quotient the weak
homotopy equivalence see difference with [7.23].And we denote the homotopy
fiber product by X x{ Z.If Y is a fibrant,the homotopy fiber product is X x{, Z
with X iweak Y’ and Z iweak Y’ are fibrant replacement.A way to construct
is for [12.36],we have the diagram where we denote PY = P Xg Y

T

XxhZ —— Z ¢— 7Z Xyey, PY

12.38]
Lo

X

with evg,evy as the first and second projections so we have
X X2 Z2 X xyp, (Z Xyev, PY) 2 X Xyovg PY Xev v Z [12.39)]

as we have h; = evy a weak homotopy equivalence.Now,based on the evolution
of relative property [9.127] and [9.130],if we combine [12.36] we can see fur-
ther evolution of property (around the relative property) in the homotopy type
induced by the homotopy weak projection Ret™ of the stable relative property

) /X/R\ .
/ J [12.40]

X xh'x Bety X g X<—X
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where the diagram is a relative system and we observe in the retracted frame
so we used h*,which means in retracted frame we get stable relative property
X xg X but in retracted* frame it behaves like X x% X (no star).Combing the
diagram [12.19] and put the generalized super setting in,we get X x% X is a
D-brane where we want to discuss in the next section.

Definition13.10 A D-brane (based on definition13.2) is a section of sheaf
quotient of a weak homotopy equivalence satsifying the diagram [12.40].Also,see
the algebraic space as a sheaf quotient of a relative property [9.123].

For a trivial resolution A — (A < 0+ 0--) of [12.16],we have an embed-
ding,if we view it as a trivial functor id : Alg, C dgAngO,then we can send it
to Ho along [12.14],in this case we get a right derived functor

Rid : Alg;, — Ho(dgAlg="), Homg,aj,>0(As, B) = Homag, (Ho(As), B)
[12.41]
also recall the setting for the derived functor below [12.16] with A, € dgAlg=?

and B € Alg, .For fibrant replacements A, =5 weak Ao and B =5 yeax B

Homygo(gatgz0)(Ae, B) = Ao Xl p B= Au xp B € dgAlg™"

[12.42]
= HOIndgAlg20 (A'v B) = HomAlgk (HO(A')a B)

where we used every object is fibrant above [12.36] and homotopy fiber product
around [12.38],s0 the functor [12.41] is fully faithful and by [12.9],we get

Homyyopgagzo) (X, Ye) & Homag(X, 7°Ys) [12.43)

for a scheme X and derived scheme Y.
For Agpe ® Aj,, Boe ® Bi, € dgAlgégnSup,we have the graded tensor product

(AOo ©® AT.) ® (BOO @ BT.) = [AOO ® BO. S AT. ® BT.]
@ [Age @ B}, @ A7, ® Boa] = @D (Ai ®k B))o @ (A; @k B;)} [12.44]

i+j=e

= (A®k B)oe ® (AR B)i,
for the differential we first consider a bilinear map A; x M; — M, ;

0 = 3d(a;m;) = d(dazm; + (—1)°8)q,0m;)

12.45
= (—1)4e@)=19q,0m; 4 (—1)4&@) da,om; 1243
So,we can let 0 = 8(] 698{‘ and 80(a0i ®b()j) = 60a0i ®b()j + (—1)d6g(a0i)a()i ®80b0j
for ap; ® bo; € (A @k B)o(ity) and 9f for ag; ® b1 € (A @y B)’l‘(iﬂ.).And the
multiplication is (a®b) - (o’ @ b') = (—1)deala)dea®)+F (40! @ bb') where F is the
world-sheet spinor number.In [12.44],®y, : dgAlng X dgAlngO — dgAlng and
we have an adjunction giving us right adjoint Cy — Co ®j C

Hom,, 1,20 (A% B)s, Co) = Hom (Ae @k Bo, Co @1, Cy) [12.46]

dgAlgEo X dgAlgEO
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the right adjoint is right Quillen above [12.37],and by a lemma 2.29 in [21],for
G 1 F of model categories,G is right Quillen if and only if F' is left Quillen,so the
tensor product of model categories ®j, is left Quillen.In this case,along [12.14]
we can define the derived tensor graded tensor product

®F = Ly : Ho(dgAlgfo) x Ho(dgAlg;") — Ho(dgAlg%O) [12.47]

Now,for A, € dgAlgfo the Ao-module is quasi-free if the underlying graded
module is flat over underlying graded algebra see [12.7].For B, € Ho(dgAlng),if
A, iweak B, is a quasi-isomorphism,we say A, is a model of B, with A, defined
up to isomorphism and B, defined up to quasi-isomorphism.See above [7.29],we
let Bq be (quasi-)flat then the A, ®y (—) is a right exact functor with left derived
functor Tor¥(—, B,) = H;((—) ®& B.).By below [12.37] and [12.46],the we can
give a cofibration replacement of A,, B, we have
Tork(Ae, Bs) = Hi(Ae @1, Bs) = Hy(' A = As @1, 'Be = B,)

[12.48]
= H;('A®;,'B)s) = Hi((A®F B).)

where we used the notation [12.47],back to ordinary category,we get quasi-
isomorphism (A ®; B)e — (A ®F B) € Ho,so the former is a model of the
left derived graded tensor product.In DGAHZO,WG have derived scheme

X x2Y = Spec(A®E B), X = Spec(A,),Y = Spec(B,), Z = Spec(C,) [12.49]

Now for an example,we want to calculate k®£‘[t] k,by below [12.37] and [12.48],we

should start with k[t] - s @[y k with a weak equivalence k[t] S weak k induced
by k[t] — k[t] - s over k and which give us a short exact sequence

— k[t] - s kg k 2 k[t] ©xpg k20 [12.50]
We should set deg(t) = 0, deg(s) =1,0s = 1 and we have
9%(ts) = O(Ots + t) = 0°ts + Otds + Ot [12.51]
which means 9¢ = 0 and by the definition of derived scheme [12.9]
7%Spec(k ®%[t] k) = Spec(Ho(k[t] @k k)) = Spec(k[t]), 0t=0  [12.52]

In this case,we can see the derived intersection scheme {0} x Xl {0} gives loop (no
boundary) paths,which can be viewed as generating closed strings from vacuum
which is a right evolution compared to [12.11].Compared to the stable relative
property Spec(k ®yp k) = Spec(k) = {0}.

For dual numbers we used in [7.15] and [8.20]

R[d/(e®) = R® Re, CX(R)[o]/(0®), O"(C)[2]/(z?) [12.53]
For a smooth scheme X the k[e]-points Spec(kle]) — X form a tangent space

X (k@ ke) = Spec([d /() = {(2,v)|(x) € Op,v € OLld ()} [1254]
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For a nilpotent surjection of rings f : A — B,we have for > = 0 we have
f(a)?> = b*> = f(a®) = 0,which means such surjection can be written as square
zero extensions with zy = 0,Vz,y € ker(f),such f gives us an isomorphism

Aep A2 A®p (B®ker(f)), (a,a)w (a,(f(a),a—a’)) [12.55]

Taking for schemes,we have X (A4) x x(p) X (A4) = X(A) xxp X (B®ker(f)). Then
by [12.54],we see the tangent space X (B @ (ker(f))) acts on the fibers X (A)
over X (B).Similarly to problem of representability see [11.32] and above,if we
use P& e X the nontrivial behaviors on the DG Lie scheme give obstructions
to lift B-points to A-points.For a square zero extension with ker(f) = I like
[12.16] we have By = (A <> I  0--) with By =>yeax B,for a surjection
u: By — (B L ) --) = B, @ I[1] to the sequence killing the image of I,we

have A = B, ®% oI[1] B e dgAlgEO.A functor F : Ho(dgAlng) — Set is half-

exact if F(0) & #,factorization F((A®B)s) & F(A4)x F(Be)VA,, Be € dgAlg’
and surjective factorization of pushout A, ®i‘ B, for which any representable
functor hP¢ is half-exact.Now,for a representable functor F on Ho(dgAIgfo)

F(A) —ears F(B) Xy ps.o1y0 F(B),  u(@) = (2,0) @ € Im(F(f)
[12.56]
In this case,we get a tangent space which is an obstruction space (F(Bo®I[1]), u)
a element y € I[1] gives B\ f(y) which means a nontrivial element in the
obstruction space gives an obstruction to lift elements from F(B) to F(A).
Next,we study cotangent complex,which gives a clarification of [7.27],[9.91].A
morphism R, — A, gives us complex of Kéhler differential

a®b—b@a+1? € Q) p, = =ker((A®g A)s) = A,)/I? [12.57]
with derivation d : A — 9114/3.’ a-1+ da®1—1®da+ I*In general for a
cofibrant replacement A, — A,,along the pushout gives us

LAYR = (0} /r®4A)e € dgMod 4, [12.58]

Recall the Quillen adjunction above [12.37],we have such adjunction here
G:Bo/Ae = (U 05 A)ey Mo/ (%) = Ag & M, /(%) [12.59)

where we used a dual number [12.53].The first is left Qullen preserving cofi-
bration with final object A, from A,-augmented R,-algebra to dgMod 4, and
[12.58] is the left derived functor taking by cofibrant replacement

ny

By ——

BN

LG ~ LA/E [12.60]

cofibrant

—

&
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Then by the definition [12.57),LA/% = J/J?,J = ker((A® A)y — A,).Based on
this,we have André-Quillen cohomology

D'y (Se, fu M) = Ext’y (L%, f.M,) = H;(Mapg 5,20 (Se, Be © M,)) [12.61]

where f: Se = M, with f,M, = f.Se¢ ® M, and (homotopy) fibered category
fibered in mapping groupoids with S, =y weak Be @ M,
P Mapgeniod,,, (Ses Be ® Ma) = Mapygiod,,, (Se; Be) [12.62]

In this case,L5/% = (Q%B@I\/I)/R ®paom S)e-Now,see [12.56],we have a repre-
sentable functor on homotopy category Map(B,, —),then we have

Mapy, ,20(Be Be © I[1]) = DY, (Bo, I01)) = DY, (Bo. D] 1263
which is the corresponding obstruction space.Also by definition of Ext?
DY, (B.,I[1]) = HomdgA1g>o(ILB /A 1))
= HomdgAIg o (% B/a® 5 B)o, I11]) 12,64
’EHomdgAlg o(J = ker(B ®AB—>B)O/J ), ker(f)[1])
2o

= Hom,, {da ® db — db® da + J*}, ker(f)[1])

The interesting thing is,see [7.18],[7.21] and [7.27],to put physics in we can have
dao@db—db@da+J* XY -Y®@X-[X,Y],X,Y € go [12.65]

where we used generalized super affine Lie algebra in [11.21].

Theorem13.11 An obstruction corresponding to a nontrivial element in
obstruction space D° goBra: (8, I[1]) corresponds to a nontrivial behaviors on the
generalized super DG Lie scheme induced by nontrivial contaction.

DSOIZngi (ﬁvl[l}) = HomdgAngO (J(Xa}/a [Xa Y} 7é 0)71[1}) [1267]

GenSup
F([X,Y]#0)

DG Lie qut.dominanc (11.8] * vx\ =R~
(XX XO)R’ER‘;%““ [12.23] bgr.dommnce(Xl @ A7) .

Corollary13.12 Because an obstruction corresponds to an obstruction of lift-
ing,thus a nontrivial behavior on the field corresponds to an obstruction of
lifting.If we set the lifting to be T-fusion this explain the calculation [8.34] for
the generalized super black hole also see [12.94].

BA T?QT [X,Y] # 0 ——577 An obstruction of T-fusion in X7
SSO@SWJM [12.94]1@&

[11.66]
[8.35] PTn )10

Reduce one dimension by (dark energy)*

[12.68]
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Because we are in étale site,and if R — S is a smooth morphism of k-algebras,we
have LS/ & ~ le / r-We have exact sequence by proposition 8.3A in [6]

LY B[-1] = (LP/A ®p C)y — LE/A 5 LE/B [12.69]

as for exact sequence of homomorphisms A, — B, i> Co,we have
QB4 ®@8C = Qbyu = Qpyp =0 [12.70]

with dp/a(b) ® ¢ = ¢~ dcyap(b) = ¢ - dey/pi(b),v is surjective,because Q}j/B is
a B-module,we have dc/p1(b) = 1 (dc/pb) = 0,50 we get the zero in the right
hand side vou=0.By above [12.46],any representable functor is half-exact,so the
it suffices to show the sequence is exact after acting a representable functor

Home(Qp,4 ©p C,T) + Homg(Q44,T)  Home (g5, T) [12.71]
for Hom(Qp,, ®@p C,T) =~ Hom(Qyp 4, T) =~ Dery (B, T),it becomes
Dery(B,T) < Dery(C,T) + Der,(C,T) [12.72]
this is exact by setting and [12.70] is exact.In this case,we have the exact triangle
[12.69].To show the equivalence,we work étale locally with U affine
U Tft> Spec(S)
glet | L e @ s f18) > LT 1273
A%, —— Spec(R)
based on QIU/R ~ Qépec(s)/R ®s f*9 ~ f*QépeC(S)/R and LU/S ~ .1 Q%]/S =0
by [9.91],which gives us the weak version on cotangent complex.We étale U —

A%, = Spec(R|[z1, ..., x,]) with the affine space is cofibrant over R,by discussion
below [12.37] and combine [12.73] we get a weak equivalence version

LY/ ~ o g*LA%/R ~ g*Q}%/R ~ Qb/R,LS/R ~ weak f*Q%J/R ~ QE/R
[12.74]
Then,we go back,if above [12.69] is an equivalence,then LU/¥ ~ 0 for étale
f.Also étale morphism is unramified around [7.30],and by the lemma 29.35.13
in [16],the diagonal is open immersion,let ¥ = Spec(S) we have

U ——=—— Spec(S) Mool Sphec(R)
v

prl}p.im. R [12.75]
o [
U Xspec(s) U U AR

because LU/5 o~ ai O,pr*l‘}LU/Y &) prS]LU/Y ~yeak O,along U — U Xgpee(s)
U — Spec(S) we have A’[}/YL(UXSPMS)U)/S ~weax LU/ and we recover the
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weak equivalence [12.73],which means we can replace Spec(S) with U because
U — Spec(R) also smooth,in this case,it is suffices to show LY/S ~ 0 with
U — Spec(S) is open immersion.The simplest open immersion is from localiza-
tion that is k[z], = k[z,x~!] = k[x,y]/(xy — 1) inducing the open immersion
Spec(k[x,y]/(xy — 1)) — Spec(k[z]),every open immersion can be conprised by
such localizations,in this case,we have a cofibrant replacement over B = k[z]

A= (kfe,y) -t S klayy]) S A=k, y]/(zy — 1) [12.76]

0%t = 0 means Ot = zy — 1 € k[z, y] and we have leg Ao(dy) @ Ay (dt) with

dot = ddt = xdy € Ao(dy).By [12.58],we have

B~

LAP = b /5 @8 Ae = (Ao(dy) ® Ay(dt)) @4, A= A(dy) ® A(dt)  [12.77]
with y,t € A as they are units,we get LA/Z ~ 0 then it suffices to compute LA/ 5
by Be — A, is a composition of cofibration and smooth morphism.A morphism
f: Ae — B, is strong if each object is in a section of quasi-coherent complex
ie.0x,-mod(V) = B, satisfying [12.13] on a derived scheme.And we say a
morphism is homotopy-(...) if it is strong and H(As) — Ho(B,) is (...).Also, f is
called homotopy-étale if and only if LB/4 ~ 0.And for derived schemes (f, 7°f) :
10X, — 7Y, define the presheaf LX/Y = L% /f7'0ve and for any inclusion
U — V € %X, the inducing restriction on sections of Hy(Ox,) is an open-
immersion see above [12.76],s0 Ox, (V) — Ox, (U) is homotopy-open immersion
which is homotopy-étale and LEIxe (U)/0xe (V) ~ =1,0x4 (U)/O0xe(V) ~ () and we
can apply [12.69] along =10y, (U) = Ox, (V) — Ox,(U),we get

Lo/ 0% & gy (1) & LOxe(V)/f 10y, (V)
X, (U) @ex, (v) ( ) 12.78)

-1
weak[12.48] ﬁX. (U) ®%x.(\/) (]Lﬁx.(V)/f Oy, (V))

where we took L%« (V)/f710ve(V) _ 1,0xa(V)/F7" 0% (U) which is a quasi-flat
cofibrant replacement.And [12.78] is isomorphism after taking homology and
gives [12.13],thus we see LX/Y = LOx+//7"0v 5 a quasi-coherent complex.We
can see a double-weak firstly we retract to @ and secondly we quotient the
open simplexes (with boundaries),this gives us diagram [12.85].

12.3 n-hypergroupoids and eigenbrane

To see clearly of the closed string with open string as a weak form [12.12]
and to construct a good space for evolution with such property [12.19],we need
to combine following math with physics.See figures of followings in 4.1 in [21].

A combinatorial simplex is A™ = Homa(—, [n]),the geometric realization
|A™| gives us the standard n-simplex in topological space see [8.4].A category
of simplicial set is sSet with objects are functor X : A°? — Set,an example is
Sing(|X|)a : |X] = X = (A°® — Hom(|A™|,|X])),from Top to sSet.A mor-
phism X — Y in sSet is weak homotopy equivalence if |X| — |Y] is weak
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homotopy equivalence (me-equivalence).And naturally,we have a model struc-
ture on sSet.We also have the operation for simplicial set X,, = X ([n])

0;: X, — Xn-1, o - |An71| — |An|, 616] = 8j_1814, Vi<j

| ) , [12.79]
oi Xy = Xpp1, o |A"TH = A7, 0;0j = 04104, 71 <0

9" is to include i-th face and o is to collapse (i,i+1)-th faces.And the condition
is for keeping them in one |A"| system.Define the boundary 0A™ = J, 9*A"~!
and |0A™| is the full boundary of |A™| in topological space.Also,the k-th horn
is Ak = Ui 0'A"~! the |[A™F| is just removing the k-th face from the full
boundary.A trivial Kan fibration and Kan fibration is the following diagrams

OA" —— X AV 5 X A s X
l L = Lﬂrivial fib. l e a J,ﬁbA 1 o o n, k- [12.80)
A" — Y A" — Y An

with X|Y € sSet.A Kan complexis is a simplicial set X satisfying the third
diagram.Now we want to deform the diagram

12.81
%hD 1:[ ne [ 8 ]

| —— A7

if we let n = 2,the OA? can be view like closed string and a horn is an
open string,because of X is homotopy enriched (co-groupoid now),in X (RHS of
[12.19]) the open string is a weak form of closed string and they are equivalent
by 2-isomorphism,but in the LHS of [12.19],they are weak homotopy equivalent
which means they are seen as in two different types of strings.Such gives us
n = 2 case,but we want to see a full evolution degree by degree in this case,we
need a Kan complex.In this case,DAG gives supports for Brane-cosmology.

For studying the RHS,we naturally have the following definitions.A n-th
matching space is Myan (X) = Homgget (OA™, X),explicitly

n
Moan(X) = {a" € [[ Xn1l0ia] = 0127, < j,x € X} [12.82]
i=0
Xn = Moan(X),z — 2™ = (Opz, ...,0"x).A (n, k)-th partial matching space is
Mpni(X)={a"" Y (i#k) € HXn_1|8iz?_1 =09, 12l i<jreX,}
i=0

[12.83]
with Hom,get (A™*, X) and z + 2"~ = (o, ..., O 17, Op417, ..., Opx). Thus

X 2 Vi X (v) Man (X) —— Myn(X)

l l [12.84]

Yo(~ A")Y) — 5 Myni(Y)
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the Kan fibration [12.80] follows from the diagram.Notice the double-weak

homotopy-étale(~ycak) _Ret, losed —r:te ¢ %tosedweak( \ =)ot [12.85]

~_

F€-quotient

our aim is to get a good space where we can only discuss étale closed string
[12.12],such a space is for unified field' theory living on.In physics this is ac-
quired by Ret,.Ads/Cft-fusion,and in math this is achieved by taking derived
geometry.Now we back,=€2 so we generally consider a Kan complex and say it
trivial fibration [12.80] in RHS of [12.19].

/ \ diag : ssSet — sSet [12.86]

AP — 5 (AXA)P

Then the diagonal morphism A — A x A contravariantly gives us a diagonal
functor from bisimplicial category with objects (A x A)°P — Set.Now,along
the singular chain complex [8.7],we set 0 = >_(—1)'9; which is [8.6] and the
corresponding sequence of singular homology groups is that of abelian groups.In
this case,the simplicial abelian group (A,, 9) becomes a DG abelian group (chain
complex).We have Ny, A = {a € A,,|0;a = 0,¥i > 0} which is a complex,it gives
us the normalization of simplicial abeilian group N A,thus we have (N A, 9y) by
the [12.78] d3a = 9y01a = 0 and by Hurewicz theorem we have He(NA) =
me(|A|,0).Also,N induces equivalence of category (Dold-Kan thm 4.17 in [21])

N : (simplicial abelian groups) — (chain complexes=") [12.87]
So this gives us a way to get a double complex see [10.90].Follows from [12.85]
(Eilenberg-Zilber) V :TotNA — NdiagA [12.88]

with NV for set 0f'a = 0?a = 0Vi > 0 and A € ssSet.

Next,we discuss simplicial mapping space,for a model category C' and a ob-
ject Y € Clet simplicial diagram Y : AP — C over AP — Y be the simplicial
fibrant resolution of Y such that

DVY e Y (1) Y 225 Myan (n > 0,Y)(Yy is a fibrant) [12.89]

For a commuative ring R,we have category of simplicial commutative R-algebras
sAlgp with objects are functors A°® — Alg, with 0; degree down and o; de-
gree up.The [12.87] gives us an equivalence N : sAlgp = dgAlg%O.They give
equivalent homotopy theory > 0 but sAlgy still work < 0.Also,for a simplicial
ring A,we denote sMod 4 for the category of simplicial A-modules.

Now,we are able to discuss higher groupoids for higher stacks.An co-groupoid
is a Kan complex [12.80] and for X,Y € sSet,a relative n-hypergroupoid over
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Y is a Kan fibration p : X — Y [12.84] satisfying the following condition

Xon = Yo Xt 5 (v) Mpamor (X), surj. for m <n and isom. for m > n
[12.90]
which means horn-filler [12.80] exists and m > n it is unique.When Y = * we
say X is a m-hypergroupoid.A n-hypergroupoid is a simplicial set with m < n-
isomorphism and m > n-identity.And we say [12.13] is trivial if we replace A™*
to OA™ [12.82].

Theorem13.13 The vibration along a dimension (quantum effect) of closed
(no boundary) geometry of JA™ will generate that of A , .It is F-dual to
gravity effect [12.68] which decrease the dimension of A™ to OA™ because of the
black hole.We can see this in the following diagram see [12.95].The meaning of
the identity is from the physics below.

Al = A™E ]I Dn-brane — A"

T P [12.91]

A™F = AmFT]D(n — 1)-brane Mt OA™

where we igonore the geometric realization || for clarity.In this case,[12.91] it
is really like gauge-fixing or uniqueness problem of generalized super relative
properties below [9.124],because of [12.91],we have two ways to fill,so it is unique
if and only if we fuse this duality.

Recall the quantum effect we discuss about homotopy [12.36] and combine
the definition13.2 above [12.7] we get the corollary below.

Definition13.14 By the diagram [12.19],we need push things to retracted
level and we call them eigenbrane

Dn-eigenbrane +—— Pn-eigenbrane
RetT RetT [1292]

Dn-brane +——— Pn-brane

Corollary13.15 A Dn-cigenbrane is a quantum algerbaic section (carrier
of quantum effect) of algebraifold A and an ordinary Pn-eigenbrane is a gravity
algebraic section (carrier of gravity effect) of F-dual algebraifold A.And A =
A Vo A which is equivalent to [11.2],s0 if we shrink these two algebraifold
together A ® A — A we will get the uniqueness.

Theorem13.16 Quantum effect make D-brane always exist to weak equiv-
alently compensate a geometry with boundary to a geometry without boundary
with higher dimension.Gravity effect make P-brane exist always to no boundary
geometry with lower dimension.

‘%7*

AP AD o —— o —— AV=A0  =pgon 1T [12.93]

weak

W

P s
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The entropy increase principle is a functor R*
The dark energy is its left adjoint to decrease the entropy R,

For instance,D-brane exists to let a 2-sphere with boundary to 3-sphere without
boundary,and in [12.68] the black hole (by limit of gravity) gives a hole to let it
be a circle without boundary.

Definition13.17 The dark energy is the left adjoint of the functor entropy
increase principle.It should be understood as a force to make universe tend to
be orderly.

Theorem13.18 The ordinary entropy increase (i.e.to heat energy) is an
effect of gravity bending the spacetime it is a tendency to disorder preserving
the degree.And the limit of gravity (black hole) is a tendency to disorder to lower
degree.The degree is for [12.93] representing the dimension of our universe.

Now we go back,a 1-hypergroupoid is given from elements of groupoid ¢

(N9),, = H G (2o, 21) X G(x1,22) X .. X G(Tp—1,%n) [12.94]

which are nerves of a groupoid ¢ .Focus on (N¥); we have a horn-filler

T L1
2,3 ~ strin; strin
A%P o~ / K SN V mb\m & [12.95]
oy Z2 Zo L2

D1-brane

which gives us a weak form of closed string (filling into closed diagram) and
in the hypergroupoid such fillers always exist,which means we can use this to
construct a good space for the RHS of the bottom line in [12.19].And we also
have the properties for n-hypergroupoids X

HvYm>n,m, X =0
(i)Y € sSet, 1, Y =0Vm >n =Y ~yearx X [12.96]
(iii) A n-hypergroupoid X is completely determined by X="*1
Also,we need to put étale of smooth morphism in,this gives us the follow-

ings.An algebraic (Deligne-Mumford) n-hypergroupoid to be a simplicial affine
scheme X satsfying

* XMAm,,k

() Mamot (X) 2 Myt (X) = X,y [12.97]

is a smooth (étale) presentation and for m > n it is an isomorphism.For defining
higher stack and derived stack,we need to study simplicial mapping spaces.For a
model category C and Y € C,a simplicial fibrant resolution of Y is a simplicial
diagram Y : A°P — C with Y — Yj such that

(i)Y ~weak Yo, (i) Vi —sb. Moan(Y) [12.98]
For instance,in A € dgAlng,natually over |A"| = A, A, = 150(A ® Q*(A"))

QO (A™) = E[20, ooy Ty dvo, ., dan] /(O @i — 1,d Y i) [12.99]
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By using [12.82],we can express the n-th matching space

MBA" (A) = {($ dl‘ S HATL 1| 12 82]} Zbelow][7.29] Zrzxurz ck

~ 750(A ® Q*(HA™)), Q*(JA™) = Hm“ Ha:
[12.100]

Because Q°(A™) — Q*(JA™) is surjective,so A — Mpan(A) is surjective and

by above [12.36],the surjective is automatically a fibration satisfying [12.95].
Let X,Y € (C,W) is a cofibrant and Y is simplicial fibrant resolution,the

right derived function complex RMap,(X,Y) on Y is given by Homy, (X, Yn)

12.4 Derived geometric n-stack and consistency

For category of derived affine schemes (work étale locally [9.79]) dAffg,that
of simplicial derived affine schemes is sdAff = (dAffg)>™ an object is

RS
Xo = X1 £— X, : X3 [12.101]
\_/

with each X,, a derived affine scheme.A homotopy derived algebraic (DM) n-
hypergroupoid is a X € sdAffy satisfying
(i) 7°X is an algebraic (DM) n-hypergroupoid [12.97]

( )HO(ﬁXm)(@a YHo(Ox,, )8 1H (ﬁX ) j(ai_lﬁXm)gHj(ﬁa;lxm)a
[12.102]

Where 9; : X,11 — XmVi,m,j.Which says we need 7°X,, to form an étale
site with the global descent for Sh [9.70] over this site,Also by below [12.77],0;
is strong for all ¢, m.By below [12.12]

(a) Opox, = Ho(Ox,,),Decent for Sh on 7°X < Decent for QCoh on X
(b) étale (smooth) on 7°X < homotopy-étale (smooth) on X
[12.103]

the second condition in [12.102] preserves the [12.103].And for trivial case of
[12.90],we just replace to trivial algebraic (DM) n-hypergroupoid.A homotopy
derived algebraic (DM) n-hypergroupoid X over Y satisfies

(i) 7°X — 7%V is an relative algebraic(DM) n-hypergroupoid

12.104
(ii) preserve [12.102] for all f,, : X, = Yin | ]
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where f: X — Y € sdAff. Theorem 6.11 in [21] tells us

oo-Cat of strongly quasi-compact (n — 1)-geometric derived algebraic stack
~ (C,W) with C of homotopy derived algebraic n-groupoid X € sdAff
and W of homotopy trivial

relative derived algebraic n-hypergroupoid X — Y € C
[12.105]

such relative should be (C, W) ~ (=, =) in the double-weak diagram [12.85].We
can give a further understand by the diagram

~(horn-filling) +—— =(simplex-filling)
J12.91] 112.91]
quasi-no boundary <—— no boundary

1 1

discontinuous «+—————— smooth
quasi [14.10]

= (X \ =)¢ for qut. <> =¢ for gr.

[12.106]
This has two points,firstly,it is consistent with quantum (discontinuity) and
gravity (smooth manifold) and give a mathematical support (description) of
the difference of them which we discussed above [12.34].Secondly,the black hole
which is a local discontinuity is an effect of quantum gravity and it is consistent
with [12.67] and [12.68] where we combine quantum and gravity behaviors to
explain the black hole. Thus,we find our theory combining the math and physics
is highly consistent.And we want to give a further explanation based on [12.68]
of [8.34] combining [12.92] by the diagram

P1l-eigenbrane PO 1
—>

PO PO P PO
P P flip f P1 localize
\1‘ % T[12.67) \ %
PO

DO0-eigenbrane

[12.107]
By the local 2-nonexistence,localization is a property which will generate the
property canceling at the same time from super generalized relative principle
above [12.35] and along [12.19] Ret™ gives a black hole in our universe.
Let dAlgy be category of derived R-algebras opposite to dAffr.A derived oo-
stack over R is a category fibered in simplicial set p : sSet — EtdAffr over dAffg
with étale topology with global descent theory.Combining [9.26] and [12.105],

X*(A) = RMap,(Spec(A4), X) = HOMy(Spec(A), X), A e EtsdAlg
[12.108]
where we used the simplicial fibrant replacement X — X see [12.98] with X
a homotopy trivial derived algebraic (DM) n-hypergroupoid.Now the right de-
rived functor gives us the second retract H-quotient in [12.85] and we extract the
things from left of [12.106] to the right by quotient the weak homotopy equiva-
lence [12.91].Which gives us the derived geometric algebraic (DM) (n — 1)-stack.
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For a homotopy derived algebraic n-hypergroupoid [12.101],each X,, is a
derived affine scheme so we denote it as Xee.0n it,we have cochain complex
O(X)s where we put superscript for the cochain complex index,which is the
structure sheaf on the simplicial derived affine scheme,also we have O(X)e-
modules.A homotopy-cartesian module .# on the homotopy derived algebraic

n-hypergroupoid X consists of
(i) ZMs a O(X)q-module for each m
(ii)o": 9 Fm™t = F oo FIT - FI keeping [12.79]
(iii) On each 7°X,e the H;(O(X)2)-module H;(Z?) is cartesian,
' (0 Hy(FI ) =2 Hy(F) Va0 i 1 Xime — X010

[12.109]

where by [12.13],the 2nd of [12.102] gives us Ho(O e )-comodule structure
(m 08 )V*H ( d‘erl) Hy(O(X)T) ®6;1H0(O(X):”71) 61'_1Hj (g‘:rz,l) [12.110]
And the 1st of [12.102] gives us the cochain complex on 7°X,

H;j(F))= H;(F}) = H;(FZ) - - ()-comodules
[12.111]

Hy(O(X)3) = Ho(O(X)s) = Ho(O(X)3) - - (1)

on 10 Xpe <= 70X1e & 7 X0, - --.

Application in math For F': dAlgyp — sSet a derived geometric algebraic
n-stack(representable sheaf version),a morphism A — B «+ C € dAlgy with
A — B a nilpotent surjection above [12.55] gives us a weak equivalence in the
fibers F(A®% C) ~year F(A) x’;?(B) F(C) and a functor satsifying this equiva-
lence is called homotopy-homogeneous.Above [12.56],the representable functor
is HomHO(dgAlgzo)(S —) ~ RMap,_,,, 20 by below [12.100] which preserving

homotopy hmltb with surjective factorlzatlon on the path components

moF (Ae @, Ca) = mo(F(As) x5, F(Ca))

[12.112]
—rsurj T0F(Ae) Xror(B,) T0F(Co) = mo(F(As) X r(B,) F(Cs))

which gives the surjective factorization for representable functor and the above
weak equivalence.Conversely,if F' is homotopy-homogeneous then we have the
surjection over the dAlgy of derived algebras [12.112].S0 we can apply de-
rived stack in tangent space and obstruction around [12.56].By [12.108] and
2-Yoneda lemma [9.25].for a derived stack U* ~ RMap,4(—, U),it corresponds
to the homotopy derived 0-hypergroupoid which is a derived affine scheme U
which gives previous case for schemes.Now,let A € dgAlg%O, M € dgMod 4 with
F :dgAlgy — sSet,A® M € dgAlg, means (A® M) x (A M) - Ad M? €
dgAlgy so M is a dual number.For a x € F(A) with coefficient in M the tan-
gent space of F at z is T,(F,M) = F(A® M) x}}(A) {z} by the pullback.If
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F' is homotopy-homogeneous,we have an additive action for the tangent space
T.(F, M) € Ho(sSet) with A @® M — A a nilpotent surjection.

FA®M) X' 4y F(ABM) ~year F((ABM)x 4(AGM)) ~ F(AeM) [12.113]

Also,we form a short exact sequence 0 — M — cone(M — M) — M[-1] —
0,M =~ cong(M — M)/M[~1] =~ cone(M — M) X ;i1 0.
F(A® M) ~ F(A® (cone(M — M) x 711 0))
— F(A@® cone(M — M) X agp_1] A) [12.114]

13 To Complete Einstein’s Dream

13.1 The derived geometry of M-theory

We haved defined consistent string-Space,pre M-theory and the M-theory
and their flows,we also want to see the evolutions in them dimension by dimen-
sion,and we do a summarization of the framework by diagrams at first.

rep\////_A _ M

/ \ [Step I]

Ran(S:eP ) e Mmprerep U, Ran( Scons.) € MP:

cons. cons. cons.

F
M-ﬁOW twisted U M
P(U)T P(U)T
MPCIP fowy «y MPTS 11’55 = Unified field'theory

live in]\ descentT

thpe Ran Sgggs m thpe Ran( cons. )

[Step 17]
Unified field'theory lives in
simW s1mp derived
ﬂ@hrink A~ C-quotient [12. 8"]
M-flow [Step I17]

\ F /
LieDGSch3iPoen (_zrep v z)

eff,cons.

And to achieve the top of step III,we need to reconstruct our theory about
stacks by derived stack.We can see our settings in section 8.1 is consistent with
the simplicial setting in this case we first upgrade them.
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Definition14.1 A simplicial DG affine generalized superscheme is a simpli-
cial set by using [8.11] and [12.45)

L1 (Do @ AT)T — (Spec(NA[AP]) 5 N), 9= (1) (o ®3}); [13.1]

with 2 ([d,d]) = £ ;,we have a diagram with horn fillers

-

Ad7k i P(T) %rcp vV % smoot M

Ret,‘Ads/CftJ/ (13.2]

NG

induced by the holographic duality,and the T-fusion lifts the diagram to the M-
brane,but we know the derived obstruction theory [12.67] tells us the there are
obstructions to T-fuse the closed boundary generated by closed string theory
to .4 .Also by the diagram [Step II] above,we see it has already lived in the
M-brane,in this case,the U-dual pair of M-branes becomes a Kan complex and
then by U-fusion the M-theory has a Kan complex structure.Then,we acting g
to get a derived M-brane

7O MPN 7O M2 M MO ) NV H(O ) = H(O(M)) [13.3]
they have d-th matching space and (d, k)-th partial matching space respectively
MEP S Mopg (AMP), M Myar (M) [13.4]
Which are all étale surjective,which gives us a smooth presentation of M
re smooth
Mpapa (AP Vv MAgk(%) = MaAgvAwD,,k(M) — M [13.5]

we know unclosed loop generated the same effect as the closed loop [12.92] by
the enriched homotopy and our theory has Ret.Ads/Cft duality,which means
each matching [13.4] cannot be isomorphism d < 11 but after F-fusion the [13.5]
have to be isomorphism,which means d > 11 the fillers are unique.Then,we get
M is an algebraic 11-hypergroupoid,explicitly

11.67] . ~ . ~
BN Rayrer © RBoyrer VO Bt E%Z%;;r-i-%;/[-l-%

O
12.29] y/
-

<10
yRet(_»(_}enSup

[12.5]

[13.6]
By [12.93],M is completely determined by d < 12.And the algebraic stack is
a representable sheaf,so it is a simplicial derived scheme with mixed matching
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map [13.5].If we work étale locally,we get a site [12.31],on this site we have
QCoh(M) with bounded cohomologies and by the descent theory [9.74] and
[10.83] on the nerve,the homology sheaves are all Cartesian

0 A5((Or)E) ot oianrg O A (OM)D) = A(Oa)EH) [13.7]

with cosimplicial condition in [12.79].And the cochain complex is given by du-
ality breaking [11.35] which is,also see the [11.74]

A
1 -""5. -1 A
MY A, ST M 13.8]
W
P(T{)

the closed loop is ganranteed by the universe evolution picture [9.97],now we
have following answers to explain how D = 10 superstring theories are contained
in D + 1 M-theory,which are equivalent in derived algebraic geometry.

(i) (Moduli)By [7.25],5 D-dim theories are solutions of a D + 1 theory
(ii) (Decent)By [9.93],5 D-dim theories descent to D + 1 theory

(iii) (Homotopy)By [12.17],5 D-dim theories are retracted to a point in 1-dim
13.9]

Also,for each cochain degree d the Myq is a derived schemes,the DG grading
is from our number counting fields

T
dims#(O(M)) = dim A (O(M)]!) ————— dim(0(M),°)

o e )

L et _
O "/ Flao ®Fomg 7320 CeQaR (ZCQR)LG 1

[11.7] [9.18] ’
\/

[13.10]
with the transverse extension of the chain [13.8] by property evolution in each
degree see [9.130] and [11.16].In detail,by [9.148] and [11.6],the sheaf 5% (O(M))
has global (—0) V) 0 section.Now the M becomes a trivial homotopy derived
algebraic 11-hypergroupoid.Now,we get the good space for [Step III],which is a
generalized super derived algebraic geometric 11-stack (for D=11),

M' = RMapg.; (Spec(—), 4 PV ) : EtsdAlggsn’g‘ili — sSet [13.11]
over the generalized super derived affine Lie algebras (i.e.(g @ C[t,t1])?) see
[11.21],and the opposite category is that of simplicial derived DG Lie generalized
super scheme.Explicitly,it is given by restriction

M'(§%) = RMappeq (Spec(d)® ™, 4P V 4 ) = Mlspecs) [13.12]
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the restriction means the generalized super relative properties are made by this
scheme for instance let X = Spec(§~) in [8.37].

On the M’ naturally we have a topos (J(O(M))-Mod of homotopy-
cartesian sheaves [12.109] satisfying the diagram

(A(0(M)))-Mod = T A-Mod

A_MOdT A(M') = (D v P-eigenbranes) [13.13]
M
Now,we had finished the double-retract of the double-weak [12.85],and now an
étale closed string s, = DV Pl-eigenbrane see [12.11] and [12.12],they lives in
this topos and the vibration of it gives effect of quantum gravity. The information
of time evolutions is captured in the modules,there is no so called interaction
on this level,the D V~ P-eigenbranes smoothly evolve over the M' with the
quantum gravity smoothly spread and be homotopy weakly projected out.

Unified field' theory = (/% (0O(M)))-Mod — M' [13.14]

The first explanation is given by [8.8] and the second is given by the view
of analytic ring in the theory of analytic stack below [14.28].Actually,the full
diagram of [11.16] gives an evolution of DV~ P-eigenbranes. We still have things
need to be consdered,the first is our elegant theory is in the RHS of [12.19],which
means our real world is a weak form of it,so we want to discuss more details
about the connections.The second is we need to consider the Nonexpressibility
below [12.36],and these motivates the next subsection.

13.2 (O-sense and math-physics duality

This starts at the discussion in [12.40],now we put physics in it and recall
that we focus on the first retract [12.85] with model category (~weak, Zet)

ﬁ—‘ Xo — (///(X() 4 Xf) lﬁt %/(XO Xl;;t* Xl*)
l l

Ret” Regt
Xo X775 Xf‘#Xox///Xl*<—Xf‘

[13.15]
where we used [8.12] and [8.37].The D-brane is Xy xBet" A} which is a weak
relative property (homotopy type of properties) which is a weak homotopy étale
equivalence which behaves like a path PA7J evolving in the universe with the
evolution of relative property [9.130] or D-eigenbrane.Also,we have a rep version
of [13.2] for P-brane.In this case,we locally see the generalized super algebraifold
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A= AVo Ais the generalized super algebraic space,locally for A in [13.1]
M) (Xo % X)) 2 Alx, M|(Xo <P Xf) = Ret™ Alx [13.16]
And the weak homotopy equivalence induces the followings
(5%, Xo x B A7) = 5, ([89], Xo X X)) Zvear [5°] [13.17]
Guided by [13.12],we have

String Landscape = (. /(Xo xR X)) @ (M [(Xo xBEY X[))'P)-Mod

[13.18]
By the super generalized relative principle,it must corresponds to the non-
solvable theory to cancel the property of solvable theory in the RHS of [12.19].We
know our real world is in LHS of [12.19],which explains why we cannot find SUSY
in our world because we can regard SUSY as a relative property and it is stable
in RHS because of the space is homotopy enriched,it becomes unstable in LHS
so there is actually no SUSY in LHS,it only lives in RHS and by theorem13.3
and along the first weak in double-weak [12.85],SUSY breaks in LHS.

And for solving the problem of the Nonexpressibility,recall the definition
below [12.36],we find the problem on the bottom line about this is our defini-
tions.The observation is our definitions are representatives of the things but not
the things themselves,if we do not have definitions will not affect the existence
of truth itself. Thus,we want to get rid of the definitions.

Definition14.2 The Def™' is a functor from category of definitions to cat-
egory of (O)-senses,with no reverse functor

Def<" : (definitions) — ((O-senses) [13.19]

governed by below [12.36].By [12.5],we have a ()-sense
(O-sense = Def¢!‘@Ret(—>)éigsup [13.20]
Also we let Math = (definitions of math) and Phys = (definitions of physics)
Def~'Math ~ ()-sense ~ Def"'phys [13.21]

which is a (O)-sense,we have it because we have removed definitions [13.19].
Definition14.3 The weak projection of the (O)-sense [13.8] gives us duality
between math and physics.
In the end,we get the theory of everything TOE

the M'-theory = Def~'Unified field' theory [13.22]
with Def<!(O-flow) ~ O-sense ~ Def'().Thus,exactly [11.69] should be

(O-sense < F,  Left evolution is guaranteed by [13.19] [13.23]
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13.3 T°-fusion hierarchy and smoothification

Now we have finished TOE but actually we do not see it in detail. The first
is the differential of cochain complex [13.8] induced by duality fusion and break-
ing,recall in [8.34] and [8.35] it should be based on T-fusion hierarchy.The second
is if we have [13.21],every math should correspond to physics,thus we claim that
solving the T-fusion hierarchy (combing [8.34] with [13.10]) is equivalent to
solving the Goldbach conjecture (understanding the physics meaning).

T-fusion hierarchy +=  Ret,Goldbach conjecture
J{Ret* Ret*T [1324]

~
—weak

Ret*T-fusion hierarchy —~*>- Goldbach conjecture

we have 5 types of superstring theories,so we give a notation T-fusion™P¢ that
means different type has different fusion homotopy weakly projecting out

Spec(Zo)(x,0) @ Spec(Z)(0,+) =p(rs) Proj(Z[z]) [13.25]

guided by [8.12] and slightly abuse it for focusing on the fusion,also we used Z
in [9.18] for one type of string-Space S%¥P°. We want go to LHS of [12.19],

Ret" (Proj(Z[z]) = Spec(Zo) K3 (z) Spec(Z1)) ~ weak-additivity  [13.26]
Notice that we do not know the operation Z[x],it is algebraically described
Zlz] € Proj(Zz], ~= Z Wy (z) [x] = Zo Wys(z) {z € Z1} [13.27]

Then,before the next step we need to make a thing clear in [12.40] and [13.15],we
know the RHS of [12.19] is homotopy enriched so why we denote the étale
equivalence relation Xy xg &7 but not the derived case Ay xg X[ which based
on tensor product of algebras in Ho,because we are in Ho or derived category

Xo X X7 2 apienizag) Xo X5 A7 € “Ret(—=)G s [13.28]

but in LHS of [12.19],we have Xy x g X7 ~zunstable x5 h x Tn this case,
Ret. ((2)0 Bps(z) (2)7) ~ {2} 1 {2} ~ear (2,2) Hwear (4) [13.29)]
which means in the ordinary space 2 + 2 ~ 2(®Tg(z))weak2 ~ yeak 4,and

(4, = X, 4+ = X5) Zretract (Moo (z), Bops ), Bops ), B (@), Krs (zeor) )
[13.30]
which should be an explanation of the source of algorithm in our ordinary
space.We claim that understand the Goldbach conjecture is about understand
the algerithm for instance solving 1 + 1 = 2,but by [13.30],4 is an unstable
relative property. Thus,we can only find a quasi-proof of it in LHS but a proof in
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RHS of [12.19].And it is a natural behavior guaranteed by the T-fusionype hier-
archy.For giving a systematic description of the evolution of relative properties
over the hierarchy,we first define the following Ret.algorithm

Xps(z) : number of relative properties increase

X5 () : number of relative properties decrease

X5 (@) : number of relative properties no change [13.31]

Xps () : change to opposite relative property over O

s z) X.aB®psc) = Wypszyx ,15c) € Brszegr)

Now,we can see the meaning of weird setting in algebraifold [8.15]

/P"\ O

Xors @) T4 (0)

000"

\T%) / H\ / : 1332
%@ \ M“/m/ Néw)

OQxQ* P++

And we call this the T?-fusion hierarchy with —0grg* X00grg+ = 0.For further
discussion,we need to introduce p-adic field,we can write a prime number as
p=(z/2")"@ pta' x € Z with v, : Q = Z U {cc} and for x = Q we have
v,y(z = a/b) = v,(a) — vy(b),and the p-adic norm is |z|, = p~?»(*) 2 # 0,in this
case in the p-adic metric space,a convergence happens when v, (z) — oo, p > 1,80
a divergent sequence in ordinary (Q,||) corresponds to convergent sequence in
(Qp, | ]p) with Q, = Qp = {3°° ¢,p™|0 < ¢, < p— 1} see below [14.29]. Each
sequence is convergent in Q,,p-adic completion behaves like a smoothification of
Q (filling the horn in Spec(Q)*™ [12.106]),50 we can combine analytic approach
with functorial approach for studying the dynamics of TOE,

F global GLC global O

M-flow M

l l [13.33]

functorial approach Zmecthification .\ 1yvtic approach

Then,combing [11.85] and [Step III] above [13.1],these inspire us to view

Unified field' theory —— smoothification (analytic + functorial)
[13.34]
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and it corresponds to local GLC and local O.

Definition14.4 A quantum gravity effect is a smoothfication.This means if
we want to see it in detail,we should have a formalism to study the process of
smoothing but not the two sides of [13.30].

Corollary14.5 The Unified field' theory is a theory with spreading of
smoothifications.And this motivates us to develop analytic stack in section 14.

Now,we back if we cannot get a reason of p + p = 2p can we shift it to
p —p = 0 which is guaranteed by the local (),which means similarly to [12.107]

N =29 string N =29 N =9 string N =9
Y‘ing / local O w‘ing / [13.35)
string string
N=4 N =4

where N is oscillation level of string,which means 2+2 # 4 = (N, N) = (2,2) be-
cause the information of red 4 is for D0-eigenbrane in quasi-discontinuity.Similar
to [Step ITI] above [13.1] that Unified field' theory lives in the good space,the
proof of Goldbach conjecture also lives in the good space but we need to see it
in detail (combing functorial and analytic).

13.4 Prism and DG Lie adic space

Combing below [13.22],the non-perturbation property of the flows and p-adic
completion below [13.32],we have the following diagram

Aprism

- )

k -adic com. ~
M ﬁ (O-sense ﬁ M-flow adic co M-flow,, adic completed [13.36]
In the UFT [13.13],we have (co)homology on the M with simplicial derived
setting [13.8],actually the (O)-sense gives a effect of prism and along this prism
the co(homology) in LHS is scattered to various different (co)homology in the
RHS of [13.36].And this gives us the prismatic cohomology in math.Also,we can
form the following diagram by [14.23]

H(O(M)32)

JC-quotient
unique

O(M): = O(M)s +— O(M) [13.37]

O-localizing
I A>/m P
global GLC
O(M—ﬂOW) # M!
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where we used the notation below [12.92],and combing [13.36] with [14.26],

not !

TN

O(M): —5 O(M)® +— O(M)? 225 (Osense 13.38]

such diagram gives an explanation of prismatic cohomology in physics.We can
see in [23] for a rough framework of prismatic cohomology. Which also means,the
top left sheaf of (co)homology in [13.37] is global,and locally it splits into several
different types,and by [13.10] they are given by different types of superstring
theories,the different types of (co)homologies are to count different types of
LEEs (generalized super relative properties) of (),also notice below [13.22].

We have seen below [13.32],the ||, is non-archimedean,so we cannot define
Zariski topology for p-adic scheme.Similarly to the metic topology with metic as
a valuation,the additive and multiplicative valuations give ring a topology,called
topological ring.For a toplogical ring A and I C A an ideal,we can define I-adic
topology on M which is an A-module,generated by {z+I1"M|z € M,n € Z*}.1t
is completion because the metric is d(a, — b,) = 275wPirl(am—bn)El"M} 5p4
d(am — an) — 0 means (an, — b,) € I = NI = {0} with filtered ring
I=U,I" 1" C I" 1 1° = I see below [7.19].A Huber ring is a topological ring
A admitting open subring Ay C A and for Ap-ideal I,Aq has p-adic topology
(let ideal I prime).A Huber pair (A, A1) is a relative pair with AT is an open
and integrally closed subring of integral elements in A.And the Spv(A, AT) is
the set of equivalence classes of valuations on A with |AT| < 1.

Now,for a ring with characteristic p (i.e.R/(p)),we have a homomorphism ¢ :
A — A with a — a? because p|CE,porn # 0,s0 the binary expansion (a+ b)P =
aP +bP in this ring.If there is a Frobenius isomorphism on it,we call it the perfect
ring.Recall that we use Z/nZ graded ring for our generalized super setting,which
has characteristic 2,for a,b € Ag® A7,if it has Frobenius equivalence,we find (a+
b)? = a®+b* which behaving like we mod fermionic states.And the superalgebra
is naturally Huber with a nilpotent unit w generated by odd elements see above
[7.11],s0 it is Tate which is not Lie so it is complete,satsfying

Al € w " AJis bounded, 2/w2 IS AT,Ai/w Jhom, (Ag ® A’{)/(wQ) [13.39]
This let us see in detail of T?-fusion in detail that is

AO 2] Ay{ %JP(T) APerfectoid = £m2 AO (&) AT [1340]

So we get Xo @ AT =p(1) Xperf(ectoid) C A
Definition14.6 A DG Lie scheme is a DG Lie adic space covered by the
adic space of huber ring which is generalized super affine Lie algebra

SPV(8, 81 )Port C AN M [13.41]

motivating us to study the algebraic geometry of (Tate) adic spaces.To under-
stand [13.41],the open subsets are rational opens see [14.60],recall [2.12] the con-
formal symmetry contained in string theory preserves angle but not length,also
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by below [8.1] [11.18] and [12.19],s0 we remove length and remain the equiva-
lence relation about bigness and the equivalence is reflected by [14.34].

14 Modern super algebraic geometry IV

Motivation

Based on the the discussion in section 13.3 as one motivation of this section
which we want to introduce analytic stack and we based on YouTube videos [22]
and [25].0n the other hand,the key problem to achieve unification is the diver-
gence from quantization of gravity or non-perturbation,we see in the diagram
[12.19],we can construct M-theory because we put things into a good space,so
we naturally assign the solution to that of finding a setting on the space to let
it good in order to get rid of the divergence problem as we indeed have higher
isomorphisms see [14.8] and [14.16]. Geometrically,the compactness means every
covering has a truncation to finite cardinality and analytically,the completeness
means every power series is convergent to a point,the divergence means there is
not a point for a series to get closed to.Thus,the compactness and completeness
actually are equivalent settings extra for the good space and this is a naive
view that there is a correspondence between algebraic geometry and analytic
geometry see [14.45].We will see in [14.47],completing the RHS!'?% and taking
to derived category relative to it let us go into the UFT following from this
analytic AG theory which also helps us to further study it based on [13.14].

Theorem14.7 The existence of solution of quantization of gl]ravity is equiv-
()’

Corollary14.8 Along the [12.19],Ret"compactness ~ quasi-compactness
which gives an explanation why we have compactifications in string theory.In
detail,the compactness can be seen in Ran space [11.52] in the RHS, explained
by solidification [14.20] and the quasi-compactness is given by susy® below [7.34]
in the LHS of [12.19],the quasi is reflected by the physical compactification.

alent to that of compactness (topological invariant) of RHS[Slj'izZ

14.1 Quantisation of gravity (analytic setting in UFT)

A light profinite set is a countable inverse limit of finite set,with Grothendieck
topology [9.1] generated by finite disjoint unions and surjective maps.So we
get a site of profinite sets Lightprof®®,a light condensed set is a sheaf X :
Lightprof®® — Set with sheaf condition [9.2].A condensed ring R” is a light
condensed simplicial set of rings see above [12.79].An analytic ring is a relative
pair R = (R”, D(R)),the category with strong equivalence is D(R) C D(R"),s.t.

(i) Any limits and colimits has a finite or initial objects in D(R)
(ii) RHompp») (M, N) € D(R),D(R) is homotopy enriched relatively [14.1]
(iii) Ng € D(R)Z°,¥N € D(R*)Z° (iv) R” € D(R)
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In this case,we can assign a nontrivial behavior (singularity) a weak-regularity
in D(R”),this is just a analytic version of derived settings in [12.106].We have

Pro(Fin), Homp,(pin) (lim S;, lim T}) = colimHomp,o(pin) (Si, im T})
1 J 2 J

totally disconnected compact Hausdorff spaces C Top, (BooleanAlgebras)®P
[14.2]

the third is Vx € R,z? = x and these are equivalence of categories.Also,we
need to consider the bigness of profinite set,for S = l_ink\} S;,the size is Kk = |5
1€
and weight is A = |Cont(S,F3)| = |colim (5;)/F2|,if A < w we call it is light.A
1
proposition tells us if S is a light profinite set then there exist a surjection

{0,1} — S from the set of functions.
Combing above,a light condensed set as a funcor X : Proy(Fin)°? — Set

Proy(Fin) 2 (metrizable totally disconnected compact T spaces) — [14.3]

X e CondSet"#™ = Sh(Proy(Fin)),with X (2),X (51 ][ S2) = X(S1) x X(S3)
which means I'X is a factorization category and X (S) = Eq(X(T) = X(T xs
T)),VT —gurj S,for example,a representable sheaf is light condensed set,A :
Cont(—, A) with A(x) = A the underlying set and A(NU{oo}) = convergent se-
quences in A,s0 being metrizablly compactly generated = sequential (continuity
from preserving convergence on level of sequences).And another reason for con-
densed set is let the topos Sh(—) below [14.3] be of compact and of being Haus-
dorff.Based on this,we can discuss light condensed abelian group,recall below
[7.28],we can have a Grothendieck abelian category of sheaves of abelian groups
denoted as CondAbhght,for an inclusion Q < R to the sheaf level we can form
a relative sheaf (R/Q) with condensed setting,(R/Q)(x) = R/Q,(R/Q)(S) =
Cont(S,R)/Cont(S,Q) with Q is relative discrete so Cont(S,Q) is a set of lo-
cally constant maps.To see clearly,we have a left Kan extension [10.79]

X € Top

Cov \ [14.4]

S € Proy(Fin) CondSet"&™

Similarly to [10.80],we have for Homrop(—, X) = X =2 X (X)

X(X) 2 colim X(S) & colim X(S) = X( lim S) [14.5]
S X S=X (%) S—X (%)

So X () € Top with quotient topology (~= S X x(4) S) from

H S — X(x) = HCantor set — X (%) withCantor set = colim Z [14.6]

Zco.c1.€Top

where co.cl.denotes for countable closed subsets Z with a sequential presentation
J[I(NU {cc}) — Cantor set with {0,1}} € (Cantor set),in this case we get a
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sequential set [[(NU{oo}) — X € CondSet"#"* with comparison to a simplicial
set.From below [14.3],we get the following equivalence

(gs (light) condesed sets) = Ind;,;j((metrizable) compact Hausdorft spaces)
[14.7)
where s means quasi-seperated,notice that the Proy(Fin)°P gives us Ind.For
CondAb'#" we have unit object Z with glued global tensor product ® from as-
signment S — M (S)®@N(S) and left adjoint of forgetfull functor CondAb'eht
CondSet"8" is given by X — Z[X].Now,we want to discuss physics from [3.43]

Ol(z) <= 01, Onn Oopis
l J | / [14.]
0%(z) <= 02, : O

which are Laurent series of quantum fields,when we open the locality z — 0,then
we find the further to the right,the greater the divergence.Recall in Ho,we have
retractions [12.17] which let us deform objects to another.But,we want to ask,is
there an analogue in [14.8] that we can deform the divergence to convergence,and
we call such thing a n-smoothification (red m-isomorphisms) which should be
over M' [13.14] and this gives a concrete description of the no interaction below
[13.13].And by the theorem14.4,these are from the quantum gravity effects in the
Unified field' theory (UFT).In [13.8] and [13.13],actually we have a smooth
hyper presentation with hyper descent of category of A-modules

Mo 5 M, AMod({M.e — M}) 2 AMod(M) [14.9]

Exactly in [12.106],that should be quasi-discontinuity in RHS!2-*%)

n-smoothification ——— quasi-continuity (get closed to each point)

l |

PV oDn-eigenbrane continuity

[14.10]
This means we only have real continuity in UFT otherwise the continuity is
relative depending on we based on D-brane or P-brane,so it is quasi.And getting
closed to each point means we can express each point as a convergent sequence
[14.8] in RHS!'*19 For T, U € Proy(Fin),the local operation Z[[T]] @ ap Z[[U]] #
Z[[T,U]] corresponds to locality in physics [3.39] (cannot get closed to a local
point,commutator does not vanish [3.31],open interaction in non-abelian case)

1

z{[TZ[[U]]
v

~

Z[[T]] @ab Z[[U]]

locality induced by ®ap

ven
1

Smo(Z([T1] ®an Z([U]]) —— Smo(Z[[T]|Z[[U]]) ~ Smo(Z([T,U]])

P [14.11]
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where Smo(—) means action of smoothification.We also have

ZR](x) = Z ngdxng € Z,almost all 0 » = , ([?O£1£I]1CR Unen Z[I]<p
dx=[z,x+€|CR
[14.12]
with > |ny| < n and we see that in condensed set a point of sections can be
covered by a sequence and combining with physics we get

11.33 .
convergent sequence {133 perturbative quantum effect (& \ =)t

smoothiﬁcationT UFT Tsmoothiﬁcation [1413]

. 67 .
divergent sequence <—]> non-perturbation in black hole =g

Recall we only can quantize the gravity in the RHS of [12.19],s0 similarly there
is no solution of it in our real world.Combining with [14.8],this gives us a clear
description of quantisation of gravity in UFT.

Theorem14.9 We say a gravity is quantised is equivalent to say a non-
perturbation behaving like a divergence in gravity dominant region is smooth-
ified to a perturbation behaving like a convergence in quantum dominant region.

By Yoneda lemma [9.7],the internal Hom (hom-tensor adjunction) is

Hom g, gapient (X, —)(5)

= Homp,q, (pinyuen (S, Homegpqapiien: (X, =) ()

N [14.14]
= Homggpqaptisns (Z[S], Homegpgapiise: (X, —))

= HOmCOHdAblight (X (02 Z[S], _)

where we used below [14.7].And for solving the problem and to get a completed
tensor product [14.11],we perform the free collection [7.21] and things happens
like the lifting in [10.110],which gives us an example of analytic ring

Cr(CondAb"s™ ), (CondAblsliﬁfMon, ®")z used in bottom of [14.11]
[14.15]
Notice that this does not mean we come into classical physics,n-smoothifications
from UFT [14.17] let us retract things to convergent level [14.8].In [14.24],we
have M @” N = (M @ N)° = (M® ® N7)® from physics [14.11].We can see

PO—>P0 PvD) —— — PVv DO
\ 2- syk@ﬁ( ation - quotlcnt Y‘ ﬂ’: /
P1’ [13. 13]
P v DO
[14.16]

where we used [12.107],also we need to know we are still in RHS of [12.19].

n-smoothification RHS!219] = (A -quotient) PV Dn-eigenbrane UFT
[14.17)
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Now,we get a relative category (RHS!'21% UFT).
Remark14.7 So called quantum gravity effect below [13.13] [13.31],means
the weak projection from UFT to the relative weak category RHS!2-19),
Also,the quantum gravity is governed by the local 2-nonexistence see above
[12.34],we have locality and globality at the same time,this is reflected by

[12.19]

£*: Hom(P, M) S Hom(P, M), (mo,mu,...) — (mo—mu, mi—ma, ...)
[14.18]

in math in CondAb"8" this is a non-archimedean property of summability of

null sequence P = Z[N U {o0}]/Z[>0] and the quasi-isomorphism follows from

f:P — P/n] — [n] — [n+ 1].In this case,M is solid and D(Solid%*"S"P)

UFT.And in the derived category,A € D(CondAb"8") is solid if it satisfies the

following,it is solid if it satisfies

RHom(P, A) = RHom(P, A) < Hom(P, H'(A)) = Hom(P, H'(A)) [14.19]

which means all H*(A) is solid (in relative strong category) and this gives an
explanation of [13.14] that why we define UFT after s#-quotient.Also

non-archimedean ——— discontinuity in qut.dominance

l SOIunasi—continuityllocalizing [1420]

1+ z(qut.dominance) —r——T—— z(gr.dominance)

So the solidification is a smoothification and a quantization of gravity if we put
physics in.Notice that the bottom line in [14.20] says non-archimedean getting
closed to 0 from 1 and getting closed to 1 happen at the same time,for (Z —
P—R)—R”1=0cR"”=0=1,C étale closed local O),giving [14.8].

S RN | = 1 _
Z:Znﬁ:ZnﬁzlJanE:lJrz, Z € Solid [14.21]
n=2

n=1 n+1

The derived solidification of ®4y, is @“~.Based on the double-weak [12.85]

étale closed local O)

_— ﬂ//quz\ [14.22]

closedweak (= \ =)et

closed =
et Ret, Ads/Cft

where local ) ~=¢ V(= \ =)et,and this gives us a clear description of the
relative pair below [14.26] based on the relativity of the double-weak,with

H-quotient, (—) o Smo(—) = D(—) o Smo(—) : RHS!#1  UFT  [14.23]
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Also,we want to push all things to scheme level with Y-duality see [9.106]
(Indn(Schpin), Y) = (Corresponding representables sheaves) [14.24]

recall we have the representability only over at least fppf site (smoothness),which
means we need give the relative strong category UFT such a structure,that is

I P Vo Dn-eigenbranes € Indy(P Vo D-eigenbranes™ ) [14.25
[n]eAg,)nlgll\ru{oo} o Dn-eigenbranes € Indy(P Vo D-eigenbranes™ ) | ]

notice that we have self T-duality,which means NU{co} 2 N,so Indy & Inda«,In
this case,a simplical sequence is a convergence sequence.Also,we need to notice

that we need an orientation (by tangent vector) to get closed to a point,but now
{0} = {00} we lost the orientation,meaning that we need point it out,we need

=et VO(Z\ =)et = O-flow Vo sense O,  UFT ~»pgeet O-sense [14.26]

[12.19]

14.2 Structure of Solid and behaviors on RHSSO]idZ[T]

The solidification Solid < CondAb"8™ is to find a class of complete objects
which means in Solid all sequences are convergent,to study over Z because in
math it is hard to let R (archimedean) be complete,also by [14.20] the non-
archimedean corresponds to discontinuity in physics.Also,by a theorem 5.13 in
[25],the Solid is abelian,stable under (co)limit and has a single compact projec-
tive generator [[yZ,s0 we work over Z.In detail,the P? = Z[S]” below [14.18]
with Z[S]" = coliim (C(Si,2),7Z) = Hom(C(S,Z),Z) = Hom(Py Z,Z) = [ [y Z.

Notice that [14.15] gives us (—)7 : Cond)®™ — Solidyz,to the abelian subcat-
egory (free collected,quantised [14.8] in RHS!*21% to UFT).By the definition of
being finitely generated below [7.29],for M and Solidz = Ind((M G)Solidfzin'pres‘)

0=J]z—]]z— M- 0,Hm(]]2,2) = @ Hom(Z,2) = Pz
N N N N N

0 — Hom(M,Z) - @z @7 — Ext' (M, Z) - 0
N N

[14.27]

where we let h to be injective and now Hom(M,Z) = 0.To the sheaf level,we
act Hom(—, Z),we get with Hom(M,Z) dual to quotient

0— Hom(M,Z) = [[Zz = [] Z — Ext'(M,Z) — 0 [14.28]
N N

By using [14.14],we have
Hom(M,Z)(S) = Hom(M ® Z[S],Z) = Hom(M, Cont(S,Z)) =0  [14.29]

where we work over free module,it generated by Hom(M, Z) over S.Because any
finitely presented submodule is isomorphic to a product of copies of Z,so for any
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M it is in the form of sheaf of cohomology Ext’ (M, Z),which is also the cokernal
of the short exact sequence [14.28] and this gives us an analytic understanding
of definition UFT in [13.14].Also,[ [ Z is flat under ®"

Oo=][z5][z-M—-0e"[[z, [[e°][Iz=]]2Z (1430
N N N N N

NxN

as g always keep injective and @ is the ®™° with degree 0 which commutes
with filtered colimit in homotopy enriched category and we have M ®" [INZ =
colim [[y(M,; ®" Z) = [y M.For M € Ab,the derived p-adic completion of M

is My = Rli£n M /Yp™ we can choose M/Yp™ = (M — M/p") which is a cofi-
brant replacement see [12.76].If N, M € D(Solid)=" are derived p-complete,then
M @Y7 N is derived p-complete,(@yZ); @ (ByZ)p = (ByunZ)p-To see
this,from [14.11],we get (Z[[T]] ®%F Z[[U]] = Z[[T, U]]))/(T — p,U — p),we get a
simple example Z, ®"7 Z, = Z,, and we let ® to be p-adic completion of local
®.We want to focus on M = N = @NZp,ﬁrst we have an injection

i £(n) N 7, — i n _
](;:ONh—E% I;Ip Ly — @NZP = <6Na Z) = 1171111 (61\? Z]p ) ,ker =0 [14.31]
P

where @mgf(n) Z/p"™ with f :n — mmpayx so it is also surjective.In this case,

LO ~ : f(n1) LO : g(n2)
Me N—(,%%;% 1» Zp>® (5%15% 1I» Zp)

' [14.32]
~ colim pr(”1)+g(’L2)Zp >~  colim th("l’"z)Z = @NxNZP
N N

f,9:N—>N h:NxN—-NxN

where we used [14.31].Next,we want to connect the solidification with rational
opens in Spv to study physics in [13.39].

Next,we want to give Z[T] [14.12] a geometric interpretation,it behaves like
Spec(Z[T]),where the N U {oo}-points give us Z[[T]] which behaves like a sub-
space,but it breaks the property of functorial structure,we see this by

Q, s Z(T) =2, | ;| o2 21T = 0 2iT) 5| = 2l |5 1433

which should be isomorphic to Q,[[T’]],but Z,[1/p] is not isomorphic to it.Recall
the definition above [13.31] with Z, = {z € Q,l||z|, < 1},the p-adic norm
is for measuring the length of the functions in this vector space,so actually
Zp[[T7)[1/p] should be understood as the ring of bounded functions,and taking
Spec,we get an open unit disc in Spec(Q,[T]).This suggests that Z[[T]] — Z[T
as the open unit disc,and it gives a constraint on the local operation in [14.32]
that is |z], < 1 for Q,,then we preserve the the functorial structure.Getting

the closed unit disc bases on (6.1.1) of [2], explained in 6.3 of [4].We need to
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know the conformal map above [3.39] shift invariantly from the additive lower
cylinder Cy to multiplicative unit disc and upper Cs to outside of unit disc.

—iw

Cy wre —w== Dy (2 00) = (£ = 0) [14.34]

where the outside and inside is equivalent and we can cover any geometric ob-
ject by closed unit discs. Then,we form a 2-cover (S = Cy),Z[[T]| @ Z[[T~}]] =
Z||T,T71]] and we want to localized at the w > 0 (mapping to open unit
disc),Z((T1)) = Z[[T~ Y]] @1y Z[T, T~ killing it (getting w < 0) is equiv-
alent to mod the equivalence relation in [14.33] (restrict to w < 0).

1%

killing Z(TY)) = (Z[IT])[T) = ZIT)T)/(UT 1)) [14.35]
where we mod the equivalence relation of 2-cover formed by T-valued and (1/U)-
valued discs by the isomorphism.We can try to equip with physics,we can form
an eigen Sy from [12.92] in (RHS!'*'% UFT) see below [14.17],

J€-quotient, (P Dy @ D Ds-eigenbrane) = P Vo DDs-eigenbrane € UFT
[14.36]
If we let Z((T~!)) = P Ds-eigenbrane,we get in UFT

RHom(P Dy-eigenbrane, D(M)) =0,D(M) € D((MOdZ[T] (SolidZ))RHS[IQ'm])

And this gives us an explanation of the modules in [13.14] where T
D((Modgry(Solidz)) R ™) ¢ (#(0(M)))-Mod [14.38]

Back to math,M is Z[T]-solid,if and only if
Hom, (P, M) =2 Hom,(P,M/(UT — 1)) & [14.37] & 114.39]

Homy 7 (P ®z Z[T], M) = Homy, 1 (P ®z Z[T], M/(UT — 1))

We have group (Z[Ty], Z[Tn])-actions on D(Z[T])-modules (M, N) by the de-
rived tensor product,see below [12.46],by quasi-flat cofibrant replacement of Z[T
M = M ®Y Z[T] = M ®" cofib(Z[Ty] - Tns — Z[Tx))

[14.40]
= cofib(M @% Z[Tn] — M @% Z[Tn]/(Tar — Tw))

Then,we put if into the derived sheaf of Hom,we get

RHomg 7 (M, N)
=~ RHomy,y (cofib(M & Z[Tn] — M ®F Z[Tn]/(Ts — Tn)), N)
= fib(RHomy 7, (M ©F Z[Tn], N) = 1y, —1y) RHomy 7 (M ©F Z[Tn], N))
= fib(RHomy 1 ) (M, RHom(Z[Tn], N) = /(y,—7y) RHomy 1 (M,

RHom(Z[Ty], N)) = fib(RHomy 7 (M, N) = (1, —1y) RHomy 1 (M, N))
[14.41]
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where we used [14.14].Now,for a Z[S]-module with action f: X — X,

X = cofib(X ®%[f] ZIf1-T = yr—p) X ®%[f] Zlf]-T)

[14.42]
= cofib(X[T] = (r_ ) X[T])

where T is a quasi-flat S-module.We want to make several things clear,by below
[14.29],we will have a form of []y(—) in SolidfinPres: and 2-categorical notion

MOdz[T] (M)[g.gg)] S SOhdZ-MOdz[T] = MOdz[T] (M S SOhdz) [1443]
Thus,we have inclusions with adjoint (—)™ which is left to the 2nd above [14.27].

Solidzr) C Solidz-Modz7) C CondAb"8"*-Modyqy [14.44]
and the first inclusion should also have a left adjoint (—)”™ such functor should
have a property (([TyZ)[T])"" = [IyZ[T).Before we see more properties,we
want to give a summary of solidification by diagrams,in the math side

(series of algebraic structures) T (series of geometric structures)

[14.8]Jz W lto complete
to complete
—>

(series of analytic structures) RHS[Slj'i(liZ][T]
[14.45]
where because (O-sense [13.21],we do not distinguish math with physics.
RHS[Slj'iéz][T] = (spaces covered by P @ D Dy-eigenbranes) [14.46]

where PDy ® DDy = P & D D5 should be understood as the closed unit disc in
RHS[Slj'i,ljZ][T] and combing with [14.23] and [14.4] we have the diagram

Smo(—) J€-quotient, (—)
/\ /\
RES12:19] > RESEZL UFT [14.47]

Solidz['p] P(F) -1

And the reason we do not consider Solidz # Solidzz) is in [14.16]

Do0-localizing
R [12.19]

P0 Vo DO —= PO DO« RHSG [14.48]
\/’

P0-localizing
We want RHS[Slj'i(ljZ][T] NUFT = & and [14.37] is preserved in it.

P Ds-cigenbrane — cannot retract P V(o D0-eigenbrane € UFT [14.49]
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Back to math,let M € Modgr(Solidz),so M =~ Homg,(Z[T], M),by the [14.37]
we should have RHomy (Z((T~Y)), M¥TP) = 0 which helps us to find an
expression of MYT" it just to give a modification of Z[T].We find
0 =RHom(Z((T ™)), coib(Z((T~1)) — Z(T~)
2 cofib(Z((T™)) @y ZIT) = Z((T ™)) @iz Z((T ™)) [14.50]
= RHomg 7 (Z((T")), RHomg 7 (Z((T™)) /Z[T)[~1], M)
so MLTE ~ RHomy, 1 (Z((T~"))/Z[T][-1], M) which should be understood as
killing Z((T~1)) so Z((T')) derived hom to give zero.To connect with physics,
Z((T~")/ZIT)[-1] ~pass) T(Z[T)/(Z([T][T] = Z[[T][T]/(UT —1))) [14.51]
Then we open the generalized super setting by below [12.92]
ZIT)/Z[[TN[T) € A, Z[ INZ[TNT)/(UT -1) € A
Z[T)/PZ[T)[T] = DZ[[T][T]/(UT — 1)) [14.52]
~ Z[T)/((Z[[T[T])*P x Z[[T]|[T]) € A® A
3.

In this case,by [13.13],[14.23] and [14.46] we have

D(Z[T)/((Z][T)][T))™P x Z[[T)][T])) =~ P & DDy-eigenbrane

i 14.53
D(T(Z[T]/(Z[[T)[T])"P x Z[[T))[T]))) ~ P Vo DDs-eigenbrane | ]
which gives us a way to understand the object in UFT that is

(PorDDy; C P @ DDy ¢ PV DDy)-eigenbrane [14.54]

The next property is for D(Solidz) — D(Solidgr)), M™ — (M @z Z[T])=T"
(M @ Z[T))*"" = (M[T))*"" ~ RHomy 1 (Z((T~))/Z[T)[-1], M[T))
RHomy 7 (Z[[U]][-1], M[T]) = fib(RHomyr (Z[[U]][-1], M[T])

= (- p) RHomg ) (Z[[U]][-1], M[T))
= fib(RHomy 7 (UZ[[U])[-1], M) 77| Z[T]
[

= (v ) RHomy 7 (UZ[[U]][-1], M) @57} Z[T])
= RHomy, 1 (cofib(UZ[[U]][T][-1] —=,q,v-5) UZ[[U][T][-1]),
cofib(M[T] = r_ ) M[T))) = RHom, (UZ[[U]][~1], M) € D(Solidy)

[14.55]

where we used [14.35] in the first line,so acting Z[T] is equivalent to act Z[1/U]
and used [14.41] in the second line,then used [14.42] in the last line.And the
isomorphism tells us the functor below [14.54] is t-exact.Which means we have
a t-structure on UFT based on the t-structure of the M-theory see [11.66].And
this ¢-structure gives the orientation [14.26],and it should be

UFTY = O-sense < (O-senses) = ()-Sense [14.56]
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Loosely speakingUFTo is a point of sense in UFT ,of absolute nonexistence,it
can be 7seen” if we do meditation at that level. We need to realize that the
TOE is a theory of everything (math,physics,philosophy,religion etc.),but we
mainly discuss philosophical and scientific views here and we put the religious
correspondence to our theory at the very end.And combing with [14.26],we get

Def~ UFT ~ UFTY =3 45 TOE — ()-Sense [14.57]

and we need to notice that compared to [13.20] and [13.21] this is the only way
we can get (quasi-define) to the (O-sense.
Now,we have a structure of Six-Functor formalism see [24] on [14.44].

(=) @z Z((T~1))=¢" Mis [M— M@ Z[T]) =

D(Modz((T—l))(SOhdz)) ?“) D(Modz[T](SOhdz)S ﬁJD(SOhdz[T])

[14.58]

where ! is for local functor and * is for global functor,inclusion 4 is proper and
we can get j,. by 2-sheafification of ji.By [9.26] and [14.43],it should gives a
Six-Functor formalism on the corresponding sheaf level

D(Sh(Z:Z)) —— D(Sh(X;Z)) —— D(Sh(U3Z)) [14.59]

In [14.58],the left is about the open unit disc Z((7~!)) and the right is about
killing it,so we can let Z € X be open and U = X \ Z be closed.The local to
global property preserved by Six-Functor formalism follows from [14.58],gives a
global descent theory on [14.59] for the derived stack [12.104] and [12.108] or on
the category of sheaves of (co)homologies on the derived stack [12.102].

The conformal map [14.34] and [14.58] gives us enough reasons to restrict
the middle global sheaf in [14.58] along the rational opens in valuation spectrum

X (flgf") s {M € D(Modp(Solidz))}, R € Alg(Solidz, )  [14.60

where g # 0,v(f;/g) < l,such that M ~ M ®z R, f,g; € R(x) see below
[14.5],and for all ¢ we have [14.9] which means to go outside is equivalent to go
inside at the same time,that is RHom(P, M) = RHom(P, M) /(T —g/f:),T €
M .And we glue [14.60] to get the structure sheaf on Spv(R(x)).

By the discussion of compactness of topological space below [13.41] and
[14.4],if R € Solidzr),f € R(*) is power-bounded which is Hom (P, R) =¢_, /¢
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Hom(P, R).For instance,we naturally have condensed ring structure

D
o

: d m—+h m . T .

hén o = m—ghzo (O[ +hl — zm+h> , Alg(Solidz)™™ c Solidzp

£ (g @z Clt, 7)) (h;n Ol — (A otar)

[14.61]

where (lién Old)oP © Proy(Fin)°P,0 < d < D and h see above [3.58] it is given
by the tensor transformation to the unit disc induced by the conformal map
[14.34].£% (g @z C[t,t'])T” € Solidgy),by the definition above [14.67]it is
equivalent to swap 1/z to z in it and the solidified condensed affine Lie algebra

is over the good space which preserving the smoothification [14.8].

Definition14.10 By [3.13] [11.32] theorem14.9 below [14.13] and [14.47],a
current in £ (gpe)T" € D(RHS[Slci'iéi][T]) C UFT is a field generating the
quantum gravity and we call it an unified field,and see perfectoid ring in [13.41].

Back to math,f is called topological nilpotent if Z[T| — R, T — f fac-
tors through P° = [[(Z = (1,...,1,0,...,0) see above [14.27],with Z[T](P") ~
Z(T).Let R° be set of power-bounded elements in R(*),we have eg(,) € R° and
for f,g € R° C R(x) we have the diagram along ®° by [14.11]

Z|T) ®° Z[T| = Z[T, U] R

\\i / [14.62]
ZT.0) [nxnZ

It gives us the closure axiom of R° and R°° C R°,which is the set of topological
nilpotent elements,and R° is a subring of R.We also have
~ Zlxo, ..., Tn—1][T]
Z[T)” = -

[ ] (T”+£L’n,1Tn71+"'+$0)

- R° [14.63]

where we used above [14.61],every monic polynomial in Solidzy| can be con-
vergent,which also make R° integrally closed.And we can combine [14.62] and
[14.63],R°° C R° is a radical ideal.Guided by [14.63],we have in [14.60]

e

such that g — 1/g gives equivalence and every f;/g is power-bounded and we
used derived AG because [14.17],and see the derived scheme in [12.9].Combing
[13.41] and [14.61],we see the structure sheaf on DG Lie adic space is

DG,Lie% ZO[O]?"'sz[D] £+(gPerf)[$07"'7xD]TD 1
Perf ( z > ~ (zzo — 20_p, ey 22l — Op_p /2P 1) L’}
[14.65]
where z — 1/z inducing O_; — O, gives equivalence,also see [3.61] which gives
us commutativity here,and Op_j/z” is bounded by the spacetime dimension
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with v(Op_p/2zP) < 1 as the normalization of the quantum fields.The gp.,;
means we mod the Zs generated by T° and we glue the rational opens to get

Spv(d, § ) perr.Such things are the building blocks of RHS[Slj'iéz][T].

14.3 Analytic rings and propertification®”

Now,we want to use the analytic stack to formalize things we discussed above
and to study the derived category UFT on the derived stack [13.13].For a light
condensed ring A”,an analytic ring structure is a abelian full subcategory

Moda C Cond 4> = {light condensed A”-modules,A” @ M — M}  [14.66]

The property on it is stable under all (co)limit,extensions and Ext%..There
exists a left adjoint Cond s> — Mod s, M — M ® 4> A the kernel is stable under
®,which is a ®-ideal. To see this,for M ® 4> A = 0,we have

Hom(N ® 40 M, A) 2 Hom(N ® 4o M, Hom(N, A ® 4> A)

14.67
= Hom(Hom(A, M), Hom(N, A)) = Hom(A, M ® 4> A) ®Ra N =0 [ ]

which gives us the associativity and an unique symmetric monoidal structure
making (—) ® 4» A which is given by the hom-tensor adjunction (H-T duality)
[14.14],we need to see more information about it.A trivial case is,1 ®4» A ~
Hom 4. (A4, —),it actually correlates with the Y-duality [9.106],and combing dis-
cussions below [11.51],[11.66],[14.45] and [14.47],we have

F UFT
jf-quotient*T T
YD _ Yself ® Yunself RHs[12~_19] [1468]
Solidz )

J ]

HoT ——— b e A

where Y is a 2-representability,which makes two definitions [11.85] and [13.14]
in consistency.Next,we study the analytic ring structure in derived category.

We can write an analytic ring as a pair A = (A”, Mod 4 ),we define D(A) is
a full subcategory of D(Cond 4») such that M € Moda with H;(M) € D(A)
which is triangulated.The derived category is triangulated,that is

R'[[ M, » R [[ M. = R[] M) —» R[] M, [1] [14.69]
nel nel nel nel

with a fibrant replacement M — (M,,),c; which is also a series expansion in
Mod 4 and we can forget the derived structure and leave triangulated Mod 4 by

R'[[ M, ~ R’ [ ] Hom . (4, M) = Bxt'y. (P A", M) ~R'M  [14.70]
nel nel nel
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where we used the stability below [14.66].Next is ®-ideal,for M, € D(Cond 4»)

M @% N ~ Homp(cond 4»)(Me, RHom p 4y(Ne, Ad))

) - [14.71]

As € D(A), (No= RIITILHTSnN — N) e D(A)
where we used Postnikov limit as the fibrant replacement making things into
D(A) as we can use the H-T duality in [14.68],and this gives us a spectral se-
quence,so we first calculate it by Ext?(N,, As) = Ext?T9(N, A,) see 2.4.25 in
[12],then the ®-ideal on the derived category is given by that of Mod, [14.67]
through [14.70].And in the D(A),(— ®% —) = (=) @4, A gives the symmetric
monoidal structure.The t-structure is stable under derived limit and the trun-
cation 7<, so the inclusion D(A) — D(Conda») is and the its left adjoint
(—) ®%. A are t-exact which gives D(A) a nature t-structure with

D(A)7 =Mody, (=% A)° = (-)@ar A (-0%-)7 = (-0a-) 1472
Similarly to [14.4],we have the following left Kan extension

SolidRings

/ \ [14.73]

AP (%) € HuberRings A" € CondRings

where A°° C A° C A”(x) see around [14.62]
A° = {A"(x)|A” € Solidyp}, A°° = {A”(x) € A°[[14.62]} [14.74]

By [14.18],an analytic ring A = (A%, Mod,4) is solid if and only if all M € Mod 4
are solid that is every f* : P ®z M — P ®z M gives an equivalence.For an
analytic ring structure A on a solid condensed ring A”,we can define

A*(x) = {g ®% [UZIT], Z(T)) = A, T = (9,9 ®a> f),9 € A}

={ge A (¥)|PP®z A=), PP oy A}, PP =] 2 [14.75]
N

Now,by Z(T') C Z[[T]] and [14.58],we get a category of relative Huber pairs

(A%, AT) € (Alg(Solidzr)) ™, Modzyry (Moda)), A°° C AT (x) C A° 1476
Modzjry(Moda) <>n, Modgry(Solidz) —(_yra Solidzir) <, Solidz,
with Mod 4 < Solidz and we have Ago = ka((hs (A, AT))TY) with
Moda,,, = k. ((h«Modg 7y (Moda))T®) = Modgzjj7y (Cond 4> ) N Solidz [14.77]
which is a relative solid analytic ring.And we denote (—)*" = k, o (—)T" o h,,
(Alg(Solidzr)™™, Modzry(Moda )™ = (Alg(Solidzir) ™, SolidA(So%idZ))]
14.78
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where the bold symbol for category of Mod ss.In this case,we can summaries
them by the following diagram

i _\t
analytic rings on solid condensed rings & relative Huber pairs
(analy g g

] [

(Alg(Solidz))™™, Modzr) (Moda ) «—— (solid relative analytic rings)

[14.79]
with solid relative analytic ring denoted as (A”, Mod(4s a+)-=).Now,we put
physics in,for the condensed affine Lie algebra,we have a relative pair

(£ @per) ™", £ (Bpea) V)7 € Ret” (RHSLL)  UFT) [14.80]

which let us put the solid analytic ring structure in.

Next,we want to put things into RHS of [12.19].For a commutative ring
R.,the D(R) is fibered over Spec(R),with #-sheaf U € Spec(R),— D(O(U))
glued to structure sheaf of co-category.So,we need to let D((A>, A™)>7) fibered
over Spv(A”,Mod > a+)-0).For achieving this and combining with physics,we
need to make things clear.The first thing is a ring structure (R, +, X) is in LHS
of [12.19],s0 actually it should be acted by Ret, to RHS we need

Ret*(R, +, X) = (Ret*R, ng(Zﬁ IgTé (R)) [1481]

where with Ret.algorithm [13.30].For a Ret,algebra,the only nontrivial func-
tions should be valuations to number counting fields,so we have

Ret,.Spv’(R,R") = {v: Ret,R » [Z&C3® Q@R & (ZCQR)]"
|v(Py Rips gy P2) = v(P) Bops gy v(P2), v(Py Rops ) Pa) < [14.82]
maX{’U(Pl), U(PQ)},U(O) = O,U(l) = OQgQ*,U(Ret*R+) < OQ@Q* }/ ~

for a Huber pair (R, RT) and we need to mod the equivalence relation generated
by dualities. Thus,we need the derived case of [14.80] to be fibered over

Ret* SpVO ((£+ (gPerf)TD ) £+ (gPerf)+)DD ) [1483]

and notice that the double-weak [14.22].Now,back to ordinary Spv,the rational
opens gives a basis of quasi-compact opens,closed under finite intersections

f17"'afn — Iyl e i
U(g) = (vlolg) # 0,v(f:/g) < 1¥4}

o(v(B52)) -rlg) o (v (B5)) - [57]
[14.84]

the overline denotes for integral closure.The rational opens in Spv(R, RT) give
us a Zariski site,from [14.34] we have a pair of covering

(BRI RA/ AR R - f1}) = (R, RT) [14.85]
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For R,we naturally have the the global descent theory to let us glue and localize
along the Zariski site D(Sh(X — R)) = D(Sh(R)) which is an equivalence of
derived category [9.70].but for the R™the localization process is

onUy : RHomg 7 (Z((T7)/ZIT][-1], =) o (=) ®z Z[T)(R) [14.86]

with the condition [14.39],and this is a T-solidification with killing the Z((T~1))
see [14.35] and below [14.50].And we use RHomy 1 (Z[[T]]/Z[T][-1], ) to lo-
calize the derived module on Uy, ;. Thus,for the Huber pair (R, R™),we need to
use (Zariski descent [14.59],!-descent [14.58]) guaranteed by the Six-Functor for-
malism and H-T duality that we can form [14.86].Notice that along [14.47] a
solidification Smo(—) is to restrict the algebraic object on Z[[T]]®Z((T~1)),and
D(—) shrinks them [14.23],the shrink is understood in [Step III] above [13.1].We
can understand this only if we combine math with physics as [14.46] and [14.49)].

RHom, . (Z((T~))/Z[T)[~1], —) = RHomy . (Z[[T]}/ZIT][-1],—) [14.87]

with the killing is understood as shrinking,so such formalism help us understand
the behaviors on UFT,if it is still hard to understand,see the foundation of
Taoism.Also,we can do solidification [14.8] in the RHS of [12.19],for [14.82]

Ret.Spv(R", R") = Spv((Ret.R)", (Ret, . R)") [14.88]

And for solid ring R,D(R, R") is fibered over Spv(R, R") by the #-sheaf U
Modr(D(O(U)), O*(U)).

A Tate adic space is an analytic space that is covered by Spa(R, RT) with
Tate R that we for I € R® C R with I-adic topology.And for a Tate A” ,we can
analyze propertification by analytification in the diagram

AP (*) propertification Spec(AD (*))

analytification
l / lpropertiﬁcationa“ [1489]

Spa((A”(x), A*(x))*") —— Ret.Spa((A”(x), AT (x))"")

The GAGA theorem tells us for a R-algebra A ~ A ®y R,if Spec(A) is proper
over Spec(R),then the Spec(A)*" 2 Spec(A),which means the analytification in-
duces equivalence,in this case,the analytic propertification propertification®” =
Ret,analytification induces an equivalence.Thus,we can give an analytic set-
ting for UFT [13.14] over the derived stack M our goal is not only to study
UFT,but also to achieve the TOE.For category of analytic rings AnRing based
on the category of condensed rings below [14.3],we have analytic stack in the
form Sh(AnRing®?) with D(Sh(AnRing®?)) = Sh(D(AnRing®?)) which is an
analytic derived stack.By the propertification® we have

UFT(M') = Sh(D(Ret, “"StPLie AnRing)) [14.90]
where it is over the opposite category of that of [14.83].By [14.26] [14.47] [14.48]
[14.56] [14.77] and [14.80],we want it to be the pair (UFT, TOE).
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14.4 6-functors,!-descent and the Unima

The stakified condition for the derived analytic stack need we have the global
descent theory given by below [14.86],that we want to make it clear.In the
diagram [14.58],we have six functors (®, RHom), (f*, f.), (fi, f').By [10.68],the
global descent for Sh follows from that of underlying stack,so we discuss the
six functors for D(AnRing®?).The Six-functor formalism for a derived category
D(X) follows from the following axioms

(1) Each D(X) is a closed symmetric monoidal co-category with symmetric ®
dual to RHom (2) We have global adjoint functors f*, f, for f: Y — X

with f* : D(X) 2, D(Y) (3) We have a local functor fi: D(Y) — D(X)

~

which is commutative with ¢* that is ¢* fi =& fig*
for Ae D(X),Be D(Y),fif"A% fiB with B-module f*A,A-module f|B
[14.91]
Below [14.58],we have seen that for a proper mapf, f. = fi,this is because proper
morphism is affine,we can glue affine morphisms by [10.7].We call a map is !-able
if f:Y — X can be factorized to open immersion j : Y — Y and proper map
f:Y = X so fi = f, o ji.The derived category is enriched of !-able maps with
Y a compactification of Y which is uniquely determined.And this things deter-
mine an abstract Six-Functor formalisms for derived category.Then,we want to
apply this to analytic stack,an affine analytic stack is AffAnStk = AnRing°?
with analytic spectrums AnSpec(A) = Spv(A4) as objects and morphims are
proper if f, : D(B) — D(A) over f : AnSpec(B) — AnSpec(B),satisfies (3) in
[14.91].This is equivalent to say the morphism of analytic rings factors through

A = (A”, Mod,) B = (B>, Modp)

w locaW [1492]
(—y@7o

(A ® 4> B‘>7 MOdA@kD BD)

Moda = D(A)Z° see above [14.69],that is an induced analytic ring with A
as the compactification of it.A map j : AnSpec(B) — AnSpec(A) is an open
immersion if j* admits a left adjoint j; satisfying (3) in [14.91].For instance,let j :
AnSpec(Z[T)7,Z[T)”) — AnSpec(Z[T]",Z),recall the meaning of solidification
above [14.87],this should be covered by the analytic spectrums of the following

j: @I & Z(T)* — @[T @ Z(T~ ), Z[T VZ(T)  [14.99

which are algebraic open unit disc for solid case and taking AnSpec(—) gives
us the geometric open unit disc,so j.j* = RHomy (Z((T~Y))/Z[T][-1], —) see
[14.87] and for M € D((Z[T)",Z)),M ®£‘[T} Z(T—1))/Z[T)[—1] is a compactifi-
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cation of M that gives the diagram

compactification

/_\

D(Modz[T] (SOlidz)) D(SOlidZ[T]) [1494]
proper

see [14.58].S0 we get an assignment M +— jij* M.
Proposition15.1 By [14.23],The functor J-quotient, (—) is a category of
F-fusions with [14.47] can be understood as a process of compactification.
Back to math,[14.93] corresponds to idempotent (co)algebra after solidifica-
tion which is a compactification in [14.94] that is ji = 51 ®Ji to Z[[T])]®Z(T~1))
(1 ® ji)epz) = fiep) @ jiepey = 1 (Fhepe) @ epw)) = jiepezy  [14.95]

where we used (3) in [14.91],which is called projection formula.This also says
that jij*M = jiepz) ®a M ~ RHom 4 ((j1 ® ji)epzy, M) which also gives an
explanation of [14.48] also see below [14.86] and derives to over Z[[T]|VZ((T™1)).

Now,we call the co-Grp anima DSh(AnRing®?) = Anima(AnRing®°?),in an-
alytic derived stack,an object is a homotopy-enriched oco-groupoid and

anima is (homotopy,!-map)-enriched with (x-descent,!-descent) [14.96]

from the naive discussion below [14.86] with *-descent the global ordinary de-
rived descent see [10.83].So a map of stacks f : Y — X satisfies #-descent if

f :D(X) > lim(D(Y) = D(Y xx Y)= ) [14.97]
which is a derived gluing property of [9.2].And for a -map f: YV — X
flD(X) = lim(D(Y) = DY xxY)= ) [14.98)

with !-descent in math lets us glue derived solidifications (compactification
[14.94]) and we need pair of global descents for analytic derived stack.

Definition15.2 An analytic duality fusion is analytic propertification of
duality fusion.Thus,for the analytic derived stack [14.90],we need

Ret. (!-descent) = J#-quotient, (propertification®" [8.53]) [14.99]
Thus,we need Ret, (I-descent) to glue the Def~'F-fusions

Def<'F-fusion

Ret*AnSPGCO(_a (£ (Bpert) ™) Ret*AnSPeCO(—> L (@pert))")
[14.100]
Then,we get Def<'Ret, (I-descent) to glue O-senses in TOE.
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Definition15.3 Similarly to analytic derived stack above [14.96],we call the
category of co-groupoids in the RHS of [14.90],the ,and that becomes

(Ret, "'l AnRing?", . ) [14.101]

where we want the Unima denotes for the unification and the unimaginable.From
[14.56] and [14.57],the global descent below [14.100] lets us glue the (O-senses.

= (UFT, TOE) = O-Sense < UFT [14.102]

with left evolution and the no definition fusions in [14.100] which is proper
and already !-ed.Now,back to math,we get a !-site with Grothendieck topolpogy
generated by !-coverings l-able {f' : X; — Y };e; and the globalization [[, X; —
Y which is a l-able surjection.Combined with !-able factorization of [14.47].

TOE P(Def<'F) UFT [Step II,ITI]
: \ Ret,!-able
Def“'Ret,!-able S-quotient, (—)
. (12.19] [12.19]
RHSSOMZ[T] Smo(—) RHS
Ret.!-able
\ Af) P(T(s:nsek
[12.19] Ret.Ads/Cft [12.19]
RHSP[13.32] RHSD[13.32]
Ret,!-able

I\
Our world in LHS!21

[14.103]
with universe evolution picture IT in [12.93],property evolution in [11.16] and
the Nonexpressability below [12.36],also with homotopy weak projection in
[13.15]).This is an upgraded [13.6] of derived stack,of analytic derived stack and
we see things in details and achieve TOE.The diagram [14.103] collects all
information we developed, for instance,[8.28] [8.34] [8.37] [12.25] [12.92] and
above [13.1].Back to math,see below [10.94],we have AnRing — ComAlg(pr")
with (R”, D(R)=%) — D(R)=" under D(CondAb).

This theory is aimed at realizing the pursuit of perfection by physicists and
mathematicians,but so-called perfection does not exist relative to our existing
state.We have completed the complete framework,but we do not want to sup-
plement some details in this paper.We can see it in the following.

Definition15.4 A so-called perfection is a property or a false vacuum in the
string landscape [13.18].So this theory without so-called perfection is complete.
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15 the M'-theory

Definition16.1 We define a forgettable functor fSci,which let us forget the
scientific structure.Acting on it,we get true stances without biases.

£Sci(LHS!219) = The world in our brain,out of our heart

[14.104]
fSci(RHS[lz‘lg]) = Spiritual space in our heart

Thus,in the end we get the ultimate theory [11.86],that is

the M'-theory = fSci([14.101],[14.102],[14.103] and all settings below)
[14.105]

Then,we want to make a thing clear that is the stability of relative properties
[12.18],the RHS!?1 has smoothness everywhere,all singularities or holes in
LHS are filled by [12.106] in RHS,we need to understand that a singularity or
hole is an obstruction of retraction induced by the homotopies.But with the
existence of higher dimensions and taking to derived case of LHS to RHS,there
is no any obstruction of n-homotopies,so the relative properties are keeping
retracted by the dark energy [12.93] in RHS.

The last thing is discuss the application,we see in [14.104],the application is
Intangible mental guidance but not corporeal production and living.

Theorem16.2 The [14.105] is an unification of science philosophy and re-
ligion.For instance,Buddhism tells us that all spiritual origins are one as the
global descent theory below [14.100].The Yin and Yang in Taoism corresponds
to [14.48],and the [11.85] gives us Tai chi symbol and the 5 superstring theories
corresponds to the five elements.
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