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Abstract

The Mutual Awakening Hypothesis (MAH) posits that quantum collapse is an intrinsic,
recursive, entropy-stabilizing process driven by internally driven, iterative, nonlinear feedback,
potentially operating on quantum amplitudes, thus eliminating the need for an external observer
or specific measurement postulate. Through this feedback, a quantum system transitions from
superposition towards a definite state, reducing Shannon entropy. We formalize aspects of this
using a nonlinear recursive operator acting on probabilities (for illustration and applications)
and explore more fundamental dynamics via simulations operating directly on quantum state
vectors and density matrices. These simulations validate core MAH tenets: intrinsic collapse
emergence, entanglement evolution under local feedback (within model limitations), interplay
with decoherence, and parameter dependence. The hypothesis inspires gradient-free quantum
learning algorithms and suggests alternatives to conventional AI mechanisms like softmax. Our
results point towards a potential unified framework connecting quantum measurement, thermo-
dynamics, and learning, with implications for quantum foundations, decoherence studies, NISQ
computation, and AI.
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1 Introduction
Quantum mechanics describes systems existing in superpositions, which seemingly "collapse" to a
single outcome upon measurement [11]. Standard interpretations often invoke external observers
(Copenhagen) or postulate discontinuous state reduction (process 1 in [34]). While decoherence
explains the rapid decay of interference due to environmental coupling [37, 30], it doesn’t fully solve
the measurement problem: the emergence of a unique, definite outcome from the post-decoherence
mixture, often referred to as the "pointer state" problem [36]. Alternative approaches, such as
spontaneous collapse models (e.g., GRW [14], CSL [25], Diosi-Penrose [10, 26]) modify quantum
dynamics explicitly [4], whereas interpretational frameworks like Many-Worlds [13] or Bohmian
mechanics [8] offer different perspectives without modifying the dynamics but introducing other
ontological elements.

The **Mutual Awakening Hypothesis (MAH)** proposes a different view: collapse is an in-
trinsic, continuous, and recursive process *within* the quantum system. It suggests that collapse
arises from internal, nonlinear feedback mechanisms that amplify dominant components (poten-
tially amplitudes) of the state, thereby stabilizing the system’s informational (Shannon) entropy
by driving it towards a definite state. Within MAH, "collapse" refers primarily to this dynami-
cal process of convergence to a single outcome with minimized entropy, driven by amplification,
rather than necessarily the instantaneous projection postulate. This "mutual awakening" signifies
a self-organization process, analogous to phenomena in systems far from equilibrium studied in
synergetics [17, 18], where the system’s components iteratively co-determine the final outcome.

This paper explores MAH by addressing key questions:
1. What drives quantum collapse? We propose nonlinear recursive feedback acting po-

tentially on quantum amplitudes as a driver, leading towards a single outcome and entropy
reduction. We utilize a simplified probability-level recursive operator (Eq. 2) for illustration
and computational modeling.

2. How does it maintain physical consistency? We present simulations suggesting the
mechanism respects locality constraints (within the model’s scope), consistent with no-signaling
principles [5, 3, 15], when acting on entangled systems and investigate its interaction with
environmental decoherence.

3. Can it inspire computational paradigms? The recursive dynamics motivate novel ap-
proaches for gradient-free quantum-inspired learning [7, 31] and alternatives to functions like
softmax in classical AI attention mechanisms [33].

This paper is structured as follows:
• Section 2: Outlines the theoretical framework, including the core concept of recursive feedback

and the simplified probability-level recursive operator (Eq. 2).

• Section 3: Presents experimental simulations. It starts with illustrative examples using the
probability operator (Sec 3.2-3.5) and then details simulations operating on quantum ampli-
tudes and density matrices (Sec 3.6-3.9), examining collapse, entanglement, decoherence, and
parameter sensitivity. Algorithms replace code. Figures are integrated.

• Section 4: Demonstrates a practical quantum-inspired, gradient-free classification algorithm
based on the recursive probability operator.

• Section 5: Explores the recursive operator as an iterative alternative to softmax in AI.

• Section 6: Discusses the broader implications, limitations, and future research directions.

1



2 Theoretical Framework: Recursive Collapse Dynamics
MAH models collapse as an intrinsic, recursive, entropy-stabilizing process driven by feedback
amplification.

2.1 Core Concept: Recursive Feedback

Fundamentally, MAH posits that the collapse dynamic involves a nonlinear feedback loop where
components of the quantum state associated with larger probabilities are iteratively reinforced.
This could operate directly on amplitudes αi(t) in |ψ(t)⟩ =

∑
i αi(t)|i⟩, potentially involving phase

adjustments, or be modeled at the level of probabilities Pi(t) = |αi(t)|2. The key is the recursive
amplification of dominant components, differing from linear Schrödinger evolution but potentially
drawing conceptual parallels to nonlinear modifications explored in objective collapse models [4] or
nonlinear wave mechanics [6], although MAH proposes a distinct feedback mechanism rather than
a direct modification of the evolution equation itself. A conceptual form for amplitude feedback
(explored computationally in Sec 3.6) might be:

αi(t+ 1) ∝ αi(t) · f({|αj(t)|2}) (1)

where f is a function that increases with the probability |αi(t)|2 relative to others, followed by
normalization.

2.2 Simplified Model: Recursive Probability Operator

For illustrative purposes and for building practical inspired algorithms (Sec 4, 5), we often work with
a simplified model operating directly on probabilities. The evolution is governed by the nonlinear
recursive operator:

P
(t+1)
i = (P (t)

i + bi)k∑
j(P

(t)
j + bj)k

(2)

where:

• P
(t)
i is the probability of state |i⟩ at iteration t.

• bi ≥ 0 are small biases (modeling asymmetries, fluctuations, or adaptive feedback signals).

• k > 1 is an amplification exponent capturing the feedback strength.

• Normalization ensures
∑
i P

(t+1)
i = 1.

This operator captures the essence of MAH – amplification of dominant components leading to
collapse – in a mathematically tractable form, resembling iterative update rules seen in competitive
learning or winner-take-all networks [29].

2.3 Entropy Stabilization

Regardless of the specific level of the feedback mechanism (amplitude or probability), the concen-
tration of the state onto a single outcome leads to a reduction in the Shannon entropy [32]. For
a quantum state described by a density matrix ρ, the von Neumann entropy S(ρ) = −Tr(ρ log2 ρ)
[34, 35, 24] is a more general measure of mixedness or uncertainty. The reduction towards a pure
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state corresponds to entropy minimization. Here, we primarily use Shannon entropy of the diagonal
elements (probabilities) in a chosen basis:

S(t) = −
∑
i

Pi(t) log2 Pi(t) (3)

where Pi(t) = |αi(t)|2 (or is directly the probability from Eq. 2). As the system collapses, S(t) de-
creases, reflecting self-organization towards a state of minimal informational uncertainty, a concept
explored in complexity and information dynamics [28].

2.4 Connections to Learning and AI

The recursive feedback principle extends naturally:
• QML: Adaptive feedback mechanisms operating on probabilities (Eq. 2) can drive learn-

ing without explicit gradients (Sec 4), relevant for quantum machine learning approaches
[7, 31] and potentially useful for variational quantum algorithms [9] on NISQ devices [27].
Conceptual amplitude-level feedback offers further possibilities.

• AI: Iterative application of Eq. 2 offers an alternative to single-shot transformations like
softmax [16], particularly in contexts like attention mechanisms [33], allowing dynamic control
over distribution sharpness (Sec 5). This iterative refinement resonates with concepts in
recurrent neural networks [12].

Note: A detailed glossary or appendix of notation could be beneficial for readers less familiar
with the combined quantum and computational terminology in a longer exposition.

3 Experimental Validation of Collapse Dynamics

We conducted simulations to test MAH, starting with the simplified probability operator (Eq. 2)
and progressing to simulations operating directly on quantum states.

3.1 Objectives

1. Illustrate basic collapse dynamics (bias-driven, adaptive, self-organized) using the probability
model (Eq. 2).

2. Test locality propagation in the probability model for an entangled state.

3. Demonstrate collapse dynamics via direct amplitude feedback simulation.

4. Investigate entanglement evolution under local feedback within the amplitude/density matrix
formalism.

5. Study the interplay between MAH feedback and environmental decoherence.

6. Analyze the impact of feedback strength parameters in amplitude models.

— Probability Operator Simulations (Eq. 2) —

3.2 Experiment 1: Collapse from a Uniform Superposition (Probability Model)

3.2.1 Objective

Verify bias-driven collapse and entropy reduction using Eq. 2.

3



3.2.2 Setup

A system with 4 basis states, initially in a uniform superposition (P = [0.25, 0.25, 0.25, 0.25]). A
small constant bias b = [0.02, 0, 0, 0] favoring state |00⟩ is applied. k = 2.0.

3.2.3 Algorithm

Algorithm 1 Exp1 (Prob): Bias-driven collapse simulation.
Require: Initial probabilities Pinit, bias vector b, exponent k, iterations Niters.
Ensure: History of probabilities Phist, History of entropy Shist.

1: Initialize P ← Pinit
2: Initialize empty lists Phist, Shist
3: for t = 0 to Niters do
4: Append P to Phist
5: Calculate S ← −

∑
i Pi log2(Pi + ϵ) ▷ ϵ ≈ 10−12

6: Append S to Shist
7: if t < Niters then
8: Calculate Numerator Ni ← (Pi + bi)k for all i
9: Calculate Denominator D ←

∑
j Nj

10: if D > 0 then
11: Pi ← Ni/D for all i
12: else
13: Pi ← 1/dim(P ) for all i
14: end if
15: end if
16: end for
17: return Phist, Shist

Figure 1: Results of Exp1 (Prob): Bias-driven collapse and entropy reduction. Left: State proba-
bilities over iterations. Right: Shannon entropy (bits) over iterations.

3.2.4 Results

The probability of the biased state (|00⟩) rapidly approaches 1.0 (∼7 iterations). Shannon entropy
monotonically decreases from 2.0 bits to nearly 0 bits (Fig. 1).
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3.2.5 Analysis

Confirms Eq. 2 effectively induces deterministic collapse driven by a small initial asymmetry,
validating the basic amplification and entropy stabilization aspects of MAH in this model.

3.3 Experiment 2: Locality Test on an Entangled Bell State (Probability Model
- Revised)

3.3.1 Objective

Assess whether applying Eq. 2 *locally* to one qubit of an entangled pair (modeled via probabil-
ities) violates locality (no-signaling) by instantaneously affecting the marginal probabilities of the
other qubit, consistent with Bell’s theorem analyses [5].

3.3.2 Setup

Consider the Bell state |ψ⟩ = (|00⟩ + |11⟩)/
√

2. The joint probability distribution is Pjoint =
[P00, P01, P10, P11] = [0.5, 0, 0, 0.5]. We apply a bias bA favoring state |0⟩ for qubit A. This bias
affects the joint states |00⟩ and |01⟩. So, the bias vector for the joint system is bjoint = [bA, bA, 0, 0].
We use bA = 0.01, k = 2.0, Niters = 10. We monitor the marginal probabilities PA = [P00 +
P01, P10 + P11] and PB = [P00 + P10, P01 + P11].

3.3.3 Algorithm

Algorithm 2 Exp2 (Prob): Locality test on Bell state probabilities.
Require: Initial joint probabilities Pjoint,init, local bias bA,local, exponent k, iterations Niters.
Ensure: Evolution of marginal probabilities PA(t) and PB(t).

1: Initialize Pjoint ← Pjoint,init
2: Initialize bjoint ← [bA,local, bA,local, 0, 0]
3: for t = 0 to Niters do
4: Calculate PA ← [Pjoint,0 + Pjoint,1, Pjoint,2 + Pjoint,3]
5: Calculate PB ← [Pjoint,0 + Pjoint,2, Pjoint,1 + Pjoint,3]
6: Print t, PA, PB, Pjoint
7: if t < Niters then
8: Calculate Numerator Ni ← (Pjoint,i + bjoint,i)k for i = 0..3
9: Calculate Denominator D ←

∑
j Nj

10: if D > 0 then
11: Pjoint,i ← Ni/D for all i
12: else
13: Pjoint,i ← 1/4 for all i
14: end if
15: end if
16: end for

3.3.4 Results

As the local bias on qubit A amplifies the |00⟩ component, the |11⟩ component decreases due
to normalization. Consequently, PA shifts towards [1, 0]. Because |00⟩ contributes to PB[0] and
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|11⟩ contributes to PB[1], PB also shifts towards [1, 0], mirroring PA. (No figure provided for this
experiment).

3.3.5 Analysis

Within this probability-based model (Eq. 2 applied to the joint distribution), a local bias instanta-
neously affects the partner’s marginal distribution. This change reflects the pre-existing correlations
inherent in the entangled state’s probability distribution and does not imply the possibility of faster-
than-light signaling, in accordance with established principles of quantum mechanics [5, 3, 15]. A
deeper analysis needs a full quantum state framework (see Exp 3.7).

3.4 Experiment 3: Adaptive Collapse Dynamics (Probability Model)

3.4.1 Objective

Demonstrate selection/classification using Eq. 2 with an adaptive bias derived from a target state.

3.4.2 Setup

4 classes, Pinit = [0.25, 0.25, 0.25, 0.25]. Target class 2 (|10⟩), target = [0, 0, 1, 0]. Adaptive bias
b = η× (target−P ) (using clamping interpretation: base = max(0, P + b)), η = 0.1, k = 2.0. Track
target probability Ptarget = P2 and pseudo-loss − log(Ptarget).
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3.4.3 Algorithm

Algorithm 3 Exp3 (Prob): Adaptive collapse simulation.
Require: Initial probabilities Pinit, target vector T , bias rate η, exponent k, iterations Niters.
Ensure: History of target probability Ptarget,hist, History of pseudo-loss Lhist.

1: Initialize P ← Pinit
2: Initialize empty lists Ptarget,hist, Lhist
3: for t = 0 to Niters do
4: ptarget ← P2 ▷ Target index assumed 2
5: Append ptarget to Ptarget,hist
6: L← − log(ptarget + ϵ)
7: Append L to Lhist
8: Print t, ptarget, L
9: if t < Niters then

10: badaptive ← η × (T − P )
11: Calculate Base Bi ← Pi + badaptive,i for all i
12: Calculate Clamped Base B′

i ← max(0, Bi)
13: Calculate Numerator Ni ← (B′

i)k
14: Calculate Denominator D ←

∑
j Nj

15: if D > 0 then
16: Pi ← Ni/D for all i
17: else
18: Pi ← 1/dim(P ) for all i
19: end if
20: end if
21: end for
22: return Ptarget,hist, Lhist

Figure 2: Results of Exp3 (Prob): Adaptive collapse dynamics. Left: Target state probability (P2)
over iterations. Right: Pseudo-loss (− logP2) over iterations.

3.4.4 Results

Target state probability (|10⟩) approaches 1.0 (∼6 iterations). Pseudo-loss drops from ∼1.386 to
near 0 (Fig. 2).
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3.4.5 Analysis

Demonstrates Eq. 2 can function as a selection process driven by an error signal (difference from
target), guiding the collapse effectively towards the desired outcome. This visually confirms (Fig.
2) the convergence mimicks optimization without explicit gradient calculation.

3.5 Experiment 4: Collapse via Internal Feedback (Probability Model - Self-
Organized Instability)

3.5.1 Objective

Evaluate if collapse can emerge using Eq. 2 from internal reinforcement alone, without a pre-defined
external bias.

3.5.2 Setup

Uniform initial state P = [0.25, 0.25, 0.25, 0.25]. At each step, a small positive bias (‘boost = 0.01‘)
is added *only* to the state that currently has the maximum probability. k = 2.0.

3.5.3 Algorithm

Algorithm 4 Exp4 (Prob): Self-organized collapse simulation.
Require: Initial probabilities Pinit, boost value bboost, exponent k, iterations Niters.
Ensure: History of probabilities Phist.

1: Initialize P ← Pinit
2: Initialize empty list Phist
3: for t = 0 to Niters do
4: Append P to Phist
5: Print t, P
6: if t < Niters then
7: Find index i∗ = arg maxj Pj
8: Initialize bias vector b← 0
9: bi∗ ← bboost

10: Calculate Numerator Ni ← (Pi + bi)k for all i
11: Calculate Denominator D ←

∑
j Nj

12: if D > 0 then
13: Pi ← Ni/D for all i
14: else
15: Pi ← 1/dim(P ) for all i
16: end if
17: end if
18: end for
19: return Phist

3.5.4 Results

Even starting uniform, the internal feedback loop amplifies tiny numerical differences, rapidly
collapsing the system to a single, effectively randomly chosen state (∼7-8 iterations) (Fig. 3).
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Figure 3: Results of Exp4 (Prob): Self-organized collapse via internal feedback. Shows probabilities
of the four states evolving over iterations, with one randomly selected state reaching probability 1.

3.5.5 Analysis

Confirms the inherent instability in the recursive dynamic (Eq. 2). Figure 3 visually demonstrates
how internal reinforcement of fluctuations suffices to break symmetry and drive collapse without
external bias, supporting the MAH premise of self-organization [18].

— Amplitude/Density Matrix Simulations —

These simulations operate directly on quantum state vectors |ψ⟩ or density matrices ρ, providing
a more quantum-native exploration of MAH concepts.

General Utilities

(Assume standard functions: ‘normalize(v)‘ for vector normalization, ‘entropy(probs, base=2)‘ for
Shannon entropy.)

3.6 Experiment 5: Amplitude Feedback and Self-Reinforcing Collapse (Ampli-
tude Model)

3.6.1 Objective

Model collapse as recursive amplification of the dominant amplitude.

3.6.2 Mechanism

Internal feedback on amplitudes ψi. Identify i∗ = arg max |ψi|2. Apply ψi∗ ← γ · ψi∗ . Optionally
align phases: ψ ← ψ · e−i arg(ψi∗ ). Normalize ψ. No decoherence. γ = 1.1. Initial state ψ represents
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uniform superposition magnitudes.

3.6.3 Algorithm

Algorithm 5 Exp5: Amplitude feedback collapse simulation.
Require: Initial state ψinit, feedback gain γ, iterations Niters, boolean align_phases.
Ensure: Log of (step, probabilities, entropy) tuples Logs.

1: Initialize ψ ← ψinit
2: Initialize empty list Logs
3: for t = 0 to Niters do
4: Calculate Pi ← |ψi|2 for all i
5: Calculate S ← −

∑
i Pi log2(Pi + ϵ)

6: Append (t, P, S) to Logs
7: Print t, P, S
8: if S < ϵconv or t == Niters then ▷ Stop if converged or last step
9: break

10: end if
11: Find index i∗ = arg maxj Pj
12: ψi∗ ← γ · ψi∗
13: if align_phases then
14: ϕ∗ ← angle(ψi∗)
15: ψ ← ψ · e−iϕ∗

16: end if
17: ψ ← normalize(ψ)
18: end for
19: return Logs

3.6.4 Results

System entropy drops rapidly from ∼2.0 bits towards 0 within ∼10 steps as probabilities concentrate
on one state (Similar entropy profile to the γ = 1.1 curve in Fig. 4).

3.6.5 Interpretation

Confirms that collapse can emerge from a nonlinear, amplitude-based feedback mechanism without
external observation or explicit environmental noise, supporting the core MAH concept at the state
vector level.

3.7 Experiment 6: Entanglement Evolution Under Feedback (Density Matrix
Model)

3.7.1 Objective

Explore entanglement evolution in a Bell state under local amplitude feedback applied via the
reduced density matrix.
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3.7.2 Mechanism

Start with Bell state |ψ⟩ = (|00⟩+ |11⟩)/
√

2. Calculate ρ = |ψ⟩⟨ψ|, then reduced state ρA = TrB(ρ).
Get probabilities pA = diag(ρA). Apply feedback pA,i∗ ← γ ·pA,i∗ where i∗ = arg max pA. Normalize
pA. Construct a local operator U = diag(√pA). Apply |ψnew⟩ = (U ⊗ I)|ψ⟩. Normalize |ψnew⟩.
γ = 1.1. *(Disclaimer: This specific update rule using U = diag(√pA) is exploratory and currently
lacks rigorous physical justification. It serves to illustrate how local feedback based on reduced
state properties *could* influence the global state dynamically).*

3.7.3 Algorithm

Algorithm 6 Exp6: Entanglement evolution under local feedback.
Require: Initial Bell state ψinit, feedback gain γ, iterations Niters.
Ensure: Log of (step, joint probabilities, entropy) tuples Logs.

1: Initialize ψ ← ψinit
2: Initialize I ← Identity(2)
3: Initialize empty list Logs
4: for t = 0 to Niters do
5: Calculate Pjoint,i ← |ψi|2 for all i
6: Calculate S ← −

∑
i Pjoint,i log2(Pjoint,i + ϵ)

7: Append (t, Pjoint, S) to Logs
8: Print t, Pjoint, S
9: if S < ϵconv or t == Niters then

10: break
11: end if
12: ρ← |ψ⟩⟨ψ|
13: ρA ← TrB(ρ) ▷ Partial trace over subsystem B
14: pA ← diag(Re(ρA))
15: if

∑
pA > ϵnorm then

16: i∗ = arg max pA
17: pA,i∗ ← γ · pA,i∗
18: pA ← pA/

∑
pA

19: else
20: pA ← [0.5, 0.5]
21: end if
22: U ← diag(

√
max(0, pA)) ▷ Construct local operator (Exploratory)

23: ψ ← (U ⊗ I)ψ ▷ Apply local op on A
24: ψ ← normalize(ψ)
25: end for
26: return Logs

3.7.4 Results

Entropy decays exponentially. The state evolves, reflecting changes driven by local feedback on
subsystem A propagating through the entanglement. (No figure provided for this experiment).
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3.7.5 Interpretation

This simulation models how local feedback, acting via the reduced state, affects the global entangled
state. Within the constraints of the specific update rule chosen, it shows entanglement evolving
dynamically. It respects locality in the sense that the feedback *rule* is based on local properties
ρA, but the *effect* is global due to entanglement. The model suggests entanglement decay could
be a process, not a jump, aligning with statistical observations. The validity depends heavily on
justifying the specific form of the feedback operator U ⊗ I.

3.8 Experiment 7: Decoherence Versus Feedback Interplay (Density Matrix
Model)

3.8.1 Objective

Introduce environmental noise (decoherence) alongside amplitude feedback, simulating concepts
from decoherence theory [37, 30].

3.8.2 Mechanism

Start with uniform ψ. Apply amplitude feedback ψi∗ ← γ · ψi∗ (γ = 1.1). Construct ρ = |ψ⟩⟨ψ|.
Apply decoherence by damping off-diagonals: ρ← (1−r)ρ+r ·diag(diag(ρ)), where r is decoherence
rate (0.05). Extract dominant eigenvector of the decohered ρ as the new ψ. Normalize.

12



3.8.3 Algorithm

Algorithm 7 Exp7: Simulation of feedback vs decoherence.
Require: Initial state ψinit, feedback gain γ, decoherence rate r, iterations Niters.
Ensure: Log of (step, probabilities, entropy) tuples Logs.

1: Initialize ψ ← ψinit
2: Initialize empty list Logs
3: for t = 0 to Niters do
4: Calculate Pi ← |ψi|2 for all i
5: Calculate S ← −

∑
i Pi log2(Pi + ϵ)

6: Append (t, P, S) to Logs
7: Print t, P, S
8: if S < ϵconv or t == Niters then
9: break

10: end if
11: if ∥ψ∥ > ϵnorm then
12: i∗ = arg maxPi
13: ψi∗ ← γ · ψi∗
14: ψ ← normalize(ψ)
15: else
16: break ▷ Psi vector became zero
17: end if
18: ρ← |ψ⟩⟨ψ|
19: ρdiag ← diag(diag(ρ)) ▷ Get diagonal elements
20: ρdecohered ← (1− r)ρ+ rρdiag ▷ Apply damping
21: ρdecohered ← (ρdecohered + ρ†

decohered)/2 ▷ Ensure Hermitian
22: Eigenvalues λ, Eigenvectors V ← eigh(ρdecohered)
23: ψ ← V:,last ▷ Dominant eigenvector
24: ψ ← normalize(ψ)
25: end for
26: return Logs

3.8.4 Results

Collapse still occurs, driving entropy towards zero, but the process is slower compared to pure
amplitude feedback (Exp 3.6). (No figure provided for this experiment).

3.8.5 Interpretation

Feedback-driven collapse (MAH mechanism) is robust to moderate environmental decoherence. De-
coherence (damping interference) and MAH feedback (selection/amplification) appear as distinct
but interacting processes. Decoherence primarily removes off-diagonal terms, turning a pure super-
position into a mixed state (diagonal density matrix in the pointer basis [36]), while MAH provides
the subsequent *selection mechanism* that picks one component from that mixture and amplifies
it to probability 1.
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3.9 Experiment 8: Parameter Sweep on Feedback Strength (Amplitude Model)

3.9.1 Objective

Explore the impact of internal amplification strength γ on collapse dynamics.

3.9.2 Mechanism

Run the amplitude feedback simulation (Exp 3.6) for various γ values (e.g., 1.01, 1.05, 1.1, 1.2).
Track entropy evolution for each γ.
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3.9.3 Algorithm

Algorithm 8 Exp8: Parameter sweep for feedback strength gamma.
Require: Initial state ψinit, list of γ values Γlist, iterations Niters, boolean align_phases.
Ensure: Dictionary All_Logs mapping each γ to its Log.

1: Initialize empty dictionary All_Logs γ ∈ Γlist
2: Initialize ψ ← ψinit
3: Initialize empty list Logs
4: for t = 0 to Niters do
5: Calculate Pi ← |ψi|2 for all i
6: Calculate S ← −

∑
i Pi log2(Pi + ϵ)

7: Append (t, P, S) to Logs
8: if S < ϵconv or t == Niters then
9: if S < ϵconv and t < Niters then ▷ Fill logs if converged early

10: final_entry ← Logs[−1]
11: for fill_t = t+ 1 to Niters do
12: Append final_entry to Logs
13: end for
14: end if
15: break
16: end if
17: if ∥ψ∥ > ϵnorm then
18: i∗ = arg maxPi
19: ψi∗ ← γ · ψi∗
20: if align_phases then
21: ϕ∗ ← angle(ψi∗)
22: ψ ← ψ · e−iϕ∗

23: end if
24: ψ ← normalize(ψ)
25: else ▷ Handle zero vector
26: final_entry ← Logs[−1]
27: for fill_t = t+ 1 to Niters do
28: Append final_entry to Logs
29: end for
30: break
31: end if
32: end for
33: All_Logs[γ]← Logs
34:
35: return All_Logs

3.9.4 Results

Stronger γ leads to faster collapse (steeper entropy decrease). Very low γ (∼1) results in slow
collapse, as clearly visible for γ = 1.01 compared to γ = 1.2 in Fig. 4.
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Figure 4: Results of Exp8 (Amp): Parameter sweep for feedback strength γ. Shows entropy
evolution (bits) vs iteration for γ ∈ {1.01, 1.05, 1.1, 1.2}.

3.9.5 Interpretation

The collapse timescale within the MAH amplitude feedback model is directly modulated by the
feedback strength γ. This suggests γ (or its equivalent) could be a key physical parameter deter-
mining observed collapse rates if MAH is physically realized.

4 Quantum-Inspired Learning via Recursive Collapse (Using Eq.
2)

Building on the adaptive collapse demonstrated in Exp 3.4, we explore the application of the
**recursive probability operator (Eq. 2)** as a gradient-free learning mechanism for classical
classification tasks, inspired by MAH principles.

4.1 Objective

To demonstrate that the recursive update operator (Eq. 2), applied iteratively to probability
vectors encoding input data, can effectively perform classification by driving the system towards a
low-entropy state corresponding to the correct class, without calculating gradients.

4.2 Model: Recursive Classification

1. Encoding: Map an input data point x into an initial probability vector P(0) = [P (0)
0 , ..., P

(0)
C−1]

over C classes based on similarity (e.g., Gaussian kernel vs class centers).
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2. Recursive Refinement: Apply Eq. 2 forNlearn_iters iterations: P (t+1) ← Update(P (t), β, klearn).
Use small constant bias β > 0.

3. Classification: Predict class ŷ = arg maxi P (final)
i .

4.3 Simulation: Binary Classification

4.3.1 Setup

Generate synthetic 2D data from two well-separated Gaussian blobs (classes 0 and 1). Encode
each point x into P(0) = [P (0)

0 , P
(0)
1 ] based on normalized Gaussian similarity to the cluster cen-

ters. Apply the recursive operator (Eq. 2) with constant bias βlearn = 0.01 and klearn = 6 for
Nlearn_iters = 15.

4.3.2 Algorithm

Algorithm 9 Section 4: Quantum-inspired binary classification.
Require: Dataset X (features), Ytrue (labels), parameters klearn, βlearn, Nlearn_iters, encoding σ2.
Ensure: Predicted labels Ypred, Accuracy acc.

1: Calculate class centers C = [mean(X[Ytrue == i]) for i ∈ classes]
2: Initialize empty list Ypred data point x ∈ X
3: Calculate distances d2

i ← ∥x− Ci∥2 for all Ci
4: Calculate similarities si ← exp(−d2

i /σ
2)

5: if
∑
sj < ϵnorm then

6: P
(0)
i ← 1/( classes)

7: else
8: P

(0)
i ← si/

∑
sj

9: end if
10: P ← P (0)

11: for t = 1 to Nlearn_iters do
12: Calculate Ni ← (Pi + βlearn)klearn

13: D ←
∑
j Nj

14: if D > 0 then
15: Pi ← Ni/D
16: else
17: Pi ← 1/( classes)
18: end if
19: end for
20: ŷ ← arg maxi Pi
21: Append ŷ to Ypred
22:
23: Calculate acc← accuracy_score(Ytrue, Ypred) ▷ Using e.g., sklearn
24: return Ypred, acc

4.3.3 Results

The simulation typically achieves perfect or near-perfect accuracy (e.g., ‘1.0000‘) on this clearly
separable dataset (Fig. 5).
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Figure 5: Results of Sec 4: Binary classification using recursive collapse. Scatter plot shows data
points colored by predicted class, demonstrating successful separation.
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4.3.4 Analysis

This demonstrates that the recursive collapse mechanism (Eq. 2) can function as a computationally
lightweight, gradient-free classifier. The classification emerges from the self-organizing dynamics of
the operator iteratively refining the initial state encoded from the input data.

4.4 Discussion

This quantum-inspired approach using Eq. 2 offers potential advantages: Gradient-Free, Simplicity,
Self-Organization. Its update rule shares conceptual similarities with competitive learning mech-
anisms like those in Self-Organizing Maps (SOMs) [20], although the normalization and exponent
differ. The adaptive bias variant (Exp 3.4) echoes Hebbian learning principles ("neurons that fire to-
gether, wire together"). Future work could explore its scalability, performance on complex datasets,
adaptive parameter tuning (k, β), and integration into hybrid quantum-classical algorithms [31],
potentially within frameworks for variational quantum circuits [9].

5 Recursive Amplification in AI: Beyond Softmax (Using Eq. 2)

The MAH principle of iterative amplification, modeled via **Eq. 2**, can also inform the design
of mechanisms in classical AI, offering an alternative to standard functions like Softmax [16].

5.1 Motivation and Formulation

Softmax Pi = exp(ai/T )/
∑
j exp(aj/T ) is a single-step transformation of scores ai. The recursive

operator (Eq. 2), applied iteratively to non-negative transformed scores (e.g., x(0)
i = exp(ai)),

provides an alternative:

x
(t+1)
i = (x(t)

i + b)k∑
j(x

(t)
j + b)k

Key differences: Iterative Refinement, Gradient-Free Dynamics (Post-Scores), Entropy Reduction.
This iterative refinement could be relevant for attention mechanisms [33].

5.2 Demonstration: Recursive Amplification vs. Softmax

5.2.1 Setup

Generate random raw scores a. Compute the Softmax distribution Psoftmax = softmax(a). Initialize
x(0) = Psoftmax. Iterate Eq. 2 with k = 2.5, b = 0.01 for Namp_iters = 5 iterations, starting from
x(0). Track distribution x(t) and entropy S(x(t)).
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5.2.2 Algorithm

Algorithm 10 Section 5: Comparison of Softmax and Recursive Amplification.
Require: Raw scores a, bias bamp, exponent kamp, iterations Namp_iters.
Ensure: Softmax distribution Psoftmax, History of recursive distributions Xhist, History of en-

tropies Shist.
1: Psoftmax ← softmax(a, T = 1)
2: Ssoftmax ← −

∑
i Psoftmax,i log2(Psoftmax,i + ϵ)

3: Initialize x← Psoftmax
4: Initialize Xhist ← [x], Shist ← [Ssoftmax]
5: for t = 1 to Namp_iters do
6: Calculate Ni ← (xi + bamp)kamp

7: D ←
∑
j Nj

8: if D > 0 then
9: xi ← Ni/D

10: else
11: xi ← 1/( scores)
12: end if
13: Append x to Xhist

14: S ← −
∑
i xi log2(xi + ϵ)

15: Append S to Shist
16: Print t, S
17: end for
18: return Psoftmax, Xhist, Shist

Figure 6: Results of Sec 5: Comparison of Softmax and iterative recursive amplification. Left:
Distribution evolution (Softmax as Iter 0, subsequent recursive iterations sharpening the peak).
Right: Entropy reduction over recursive iterations compared to initial Softmax entropy.

5.2.3 Results

Iterating Eq. 2 significantly sharpens the distribution beyond the initial Softmax result, with
entropy decreasing monotonically at each step (Fig. 6).
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5.2.4 Analysis

This demonstrates how recursive amplification via Eq. 2 acts as an iterative sharpener. It could
potentially replace or augment Softmax where dynamic control over distribution focus or hardware
suitability of simple iterations is desired.

5.3 Implications for AI

The recursive feedback mechanism (modeled by Eq. 2 here) offers a different paradigm for activation
or attention: tunable "decisiveness" via iterations, potential advantage for low-power hardware,
inspiration for recurrent attention mechanisms [33]. Conceptually, it bears resemblance to dynamics
in energy-based models [22] where iterations implicitly minimize an energy function, or attractor
networks [19].

6 Discussion and Conclusion

6.1 Summary of Hypothesis and Findings

The Mutual Awakening Hypothesis (MAH) posits quantum collapse as an intrinsic, deterministic
process driven by recursive, entropy-stabilizing feedback. We explored this using:

1. A simplified probability operator (Eq. 2), demonstrating bias-driven collapse (Exp 3.2),
locality-preserving correlation propagation (Exp 3.3), adaptive selection (Exp 3.4), and self-
organized instability (Exp 3.5).

2. More fundamental simulations on quantum states, confirming collapse via direct amplitude
feedback (Exp 3.6), exploring dynamic entanglement evolution under simulated local feed-
back (Exp 3.7), showing robustness and complementarity with decoherence (Exp 3.8), and
demonstrating tunable collapse rates via feedback strength (Exp 3.9).

Furthermore, the MAH principle, particularly via Eq. 2, inspired practical gradient-free classifica-
tion algorithms (Sec 4) and an alternative iterative mechanism to Softmax in AI (Sec 5).

6.2 Implications for Quantum Foundations

MAH offers a potential observer-independent, continuous mechanism for state reduction, treating
collapse as self-organization driven by inherent nonlinear dynamics, distinct from standard linear
evolution [24]. It differs from explicit dynamical reduction models like GRW, CSL, or Diosi-Penrose
[14, 25, 10, 26, 4] by emphasizing internal feedback rather than stochastic noise or gravitational
effects as the primary driver. It provides a *selective* mechanism that complements decoherence
(which suppresses interference [37, 30]) to explain the emergence of definite outcomes from quan-
tum possibilities, avoiding the ontological commitments of Many-Worlds [13] or standard Bohmian
mechanics [8]. The MAH process could be viewed as describing the transition from a decohered
mixture to a single outcome, effectively completing the measurement process potentially initiated
by decoherence.

6.3 Implications for Thermodynamics

The focus on Shannon entropy reduction [32], related to the more general von Neumann entropy
[34, 35], links quantum collapse to thermodynamic principles of self-organization and information
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processing [17, 28], suggesting measurement might be viewed as a system actively minimizing its
informational uncertainty, perhaps related to Landauer’s principle on the thermodynamic cost of
information erasure [21].

6.4 Implications for Quantum and Classical Computation

• QML: Motivates gradient-free approaches (e.g., Sec 4 using Eq. 2), potentially valuable for
NISQ hardware [27, 7]. The amplitude-level feedback concepts (Sec 3.6-3.9) might inspire
deeper quantum algorithms [31, 9].

• Classical AI: Offers iterative alternatives (e.g., Sec 5 using Eq. 2) to standard activa-
tion/attention functions like Softmax [16, 33], possibly enabling dynamic control and efficient
hardware implementations, resonating with neuromorphic computing concepts [23].

6.5 Limitations and Future Work

This work presents initial formulations and validations. Key future directions include:

• Theoretical Foundation: Develop a rigorous derivation of the amplitude feedback dynamics
(Sec 3.6-3.9) from first principles (e.g., modified quantum field theory or nonlinear Schrödinger
equations [6]). Clarify the physical origin and nature of the feedback parameters (γ, k, bi).
Establish a formal link between the amplitude dynamics and the effective probability model
(Eq. 2). Explore connections to and distinctions from existing objective collapse models [4].

• Entanglement Dynamics: Rigorously analyze the locality and signaling properties of
MAH-like feedback in multipartite systems (extending Exp 3.7), ensuring compatibility with
Bell’s theorem [5] and experimental results [3]. Develop and justify physically sound feedback
operators for entangled states. The specific U ⊗ I operator used in Exp 3.7 requires deeper
theoretical backing or replacement.

• Decoherence Interaction: Model the interplay between environmental decoherence [37,
30] and MAH feedback more comprehensively, exploring different noise models (e.g., non-
Markovian effects) and system-environment coupling scenarios (extending Exp 3.8).

• Experimental Signatures: Identify potential experimental regimes where subtle deviations
predicted by MAH might be observable compared to standard QM + decoherence. Could
deviations appear in high-precision tests in mesoscopic systems [2], complex cavity QED
setups, optomechanical systems, or via weak measurement protocols [1] that aim to probe
system dynamics with minimal disturbance?

• Computational Applications: Thoroughly evaluate the performance, scalability, and ro-
bustness of MAH-inspired algorithms (Sec 4, 5) on complex, high-dimensional, real-world
datasets. Explore the development of hybrid quantum-classical algorithms where MAH dy-
namics could play a role in state preparation, error mitigation, or measurement result refine-
ment on near-term quantum devices.

Conclusion

The Mutual Awakening Hypothesis, explored here through both probability-level and amplitude-
level simulations, offers a compelling conceptual framework for understanding quantum collapse
as an intrinsic, recursive, and entropy-stabilizing process. Our results support its core tenets
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and highlight its potential to bridge quantum foundations [24] with thermodynamics and inspire
novel computational methods. While significant theoretical and experimental work remains, MAH
provides a potentially unifying perspective on measurement, self-organization, and learning in the
quantum realm.
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