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Abstract

In this paper, we assume that the explicit abc conjecture of Alan Baker and the
conjecture c < R1.63 are true, we give a proof of the abc conjecture and we
propose the constant K(ϵ). Some numerical examples are given.
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1 Introduction and notations

Let a be a positive integer, a =
∏

i a
αi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏

i ai noted by rad(a). Then a is written as:

a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i (1)

We denote:
µa =

∏
i

aαi−1
i =⇒ a = µa.rad(a) (2)
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The abc conjecture was proposed independently in 1985 by David Masser of the Uni-
versity of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6) [1].
It describes the distribution of the prime factors of two integers with those of its sum.
The definition of the abc conjecture is given below:
Conjecture 1. (abc Conjecture): For each ϵ > 0, there exists K(ϵ) such that if
a, b, c positive integers relatively prime with c = a+ b, then :

c < K(ϵ).rad1+ϵ(abc) (3)

where K is a constant depending only of ϵ.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [2]. It concerned the best

example given by E. Reyssat [2]:

2 + 310.109 = 235 =⇒ c < rad1.629912(abc) (4)

A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4] proposed the
following conjecture:
Conjecture 2. Let a, b, c be positive integers relatively prime with c = a+ b, then:

c < rad1.63(abc) (5)

abc < rad4.42(abc) (6)

In the following, we assume that the conjecture c < rad1.63(abc) is true. In 2004, Alan
Baker [1], [5] proposed the explicit version of the abc conjecture namely:
Conjecture 3. Let a, b, c be positive integers relatively prime with c = a+ b, then:

c <
6

5
R
(LogR)ω

ω!
(7)

with R = rad(abc) and ω denote the number of distinct prime factors of abc.
A proof of the conjecture by the author is under review [6]. In the following, we
assume also that the above conjecture is true, I will give an elementary proof of the
abc conjecture by verifying the below inequality:

c <
6

5
R
(LogR)ω

ω!
< ... < K(ϵ)R1+ϵ (8)

with a adequate choice of the constant K(ϵ). Let we denote α =
6

5
R
(LogR)ω

ω!
, we have

remarked from some numerical examples (see below) that c ≪ α− c when ω = 10 and
R not very large. With our choice, c will be very very small comparing to K(ϵ)R1+ϵ.
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2 The Proof of the abc conjecture

Proof. : Let A =
(Log(Rϵ))ω

ω!
, and ϵ ∈]0, 0.63[, we obtain:

Rϵ = eLogRϵ

= 1 + Log(Rϵ) +
(Log(Rϵ))2

2!
+ · · ·+A+

+∞∑
k=ω+1

(Log(Rϵ))k

k!
=⇒

A = Rϵ − 1−
+∞∑

k=1,̸=ω

(Log(Rϵ))k

k!
=⇒

A = Rϵ

1− 1

Rϵ

1 + +∞∑
k=1,̸=ω

(Log(Rϵ))k

k!

 = Rϵ(1−B) > 0, 0 < B < 1 =⇒

A =
(Log(Rϵ))ω

ω!
= Rϵ(1−B) > 0 (9)

We begin from the Baker’s formula below :

c <
6

5
R
(LogR)ω

ω!
=

6

5
R.

1

ϵω
(ϵLogR)ω

ω!
=

6

5

R

ϵω
(Log(Rϵ))ω

ω!

Using the term
(Log(Rϵ))ω

ω!
from (9), the equation above becomes :

c <
6

5

R

ϵω
Rϵ(1−B) < 1.2ee

(
1

ϵ4

)
R1+ϵ =⇒ our choice of the constant K(ϵ) = 1.2ee

(
1

ϵ4

)

(10)
Now, is the following inequality true? :

6

5

1

ϵω
(1−B)

?︷︸︸︷
< 1.2ee

(
1

ϵ4

)
(11)

Supposing that :

6

5

1

ϵω
(1−B) >

6

5
ee

(
1

ϵ4

)
. =⇒ 1 > (1−B) > ϵω.ee

(
1

ϵ4

)

As ω ≥ 4 =⇒ ω = 4ω′ + r, 0 ≤ r < 3, ω′ ≥ 1, we write ϵω.ee
(1/ϵ)4

as:

ϵω.ee
(1/ϵ)4

=
ee

(1/ϵ)4

(1/(ϵ4))ω′ .ϵ
r =

ee
X

Xω′ .ϵ
r
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where X = 1
ϵ4 and 1 ≪ X. Or we know that Xω′ ≪ eX =⇒ Xω′ ≪ ee

X

.
- If ϵ ∈ [0.1, 0.63[, we obtain ϵr ≥ 0.001 and eX > 8.8e + 4342, it follows that

ϵω.ee
( 1

ϵ4
)
> 1 and we obtain a contradiction and the inequality (11) is true.

- Now we consider 0 < ϵ < 0.1, when ϵ −→ 0+,K(ϵ) −→ +∞ and the inequality
(11) becomes +∞ ≤ +∞ and the abc conjecture is true.

- For ϵ very small ∈]0, 0.10[, eeX becomes very large, then 8.8e+ 4342 ≪ ee
X

and

1 ≪ ee
X

Xω′ .ϵr, it follows a contradiction, then the equation (11) is true.

Finally, the choice of the constant K(ϵ) = 1.2ee
( 1

ϵ )
4

is acceptable for ϵ ∈]0, 0.63[. As
we assume that the conjecture c < R1+0.63 is true, we adopt K(ϵ) = 1.2 for ϵ ≥ 0.63,
and the abc conjecture is true for all ϵ > 0.

The proof of the abc conjecture is finished.

Q.E.D

We give below some numerical examples.

3 Examples

3.1 Example 1. of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

310 × 109 + 2 = 235 = 6436343 (12)

a = 310.109 ⇒ µa = 39 = 19683 and rad(a) = 3× 109,
b = 2 ⇒ µb = 1 and rad(b) = 2,
c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042.

ω = 4 =⇒ 6

5
R
(LogR)ω

ω!
= 6 437 590.238 > 6 436 343, B = 0.86 < w = 4.

ϵ = 0.5 =⇒ ϵω.ee
( 1

ϵ )
4

= 9.446e+ 109 > 1 =⇒ (1−B) < 1.

ϵ = 0.01 =⇒ ϵω = ϵ4 = 10−8 ≪ e(
1
ϵ )

4

then (1−B) < 1.

3.2 Example 2. of Nitaj

See [4]:

a = 1116.132.79 = 613 474 843 408 551 921 511 ⇒ rad(a) = 11.13.79

b = 72.412.3113 = 2477 678 547 239 ⇒ rad(b) = 7.41.311

c = 2.33.523.953 = 613 474 845 886 230 468 750 ⇒ rad(c) = 2.3.5.953

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110
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ω = 10 =⇒ 6

5
R
(LogR)ω

ω!
= 7 794 478 289 809 729 132 015, 590 >

613 474 845 886 230 468 750, B = 0.9927 ≪ (w = 10).

ϵ = 0.5 =⇒ ϵω = ϵ10 = 0.009765625 ≪ e1/(ϵ
4) =⇒ (1−B) < 1.

ϵ = 0.001 =⇒ ϵω = ϵ10 = 10−30, 1/(ϵ4) = 1012 =⇒ ϵ10.e10
12

> 1 =⇒ (1−B) < 1.

4 Conclusion

Assuming c < R1.63 is true, and the explicit abc conjecture of Alan Baker true, we can
announce the important theorem:
Theorem 4. Assuming c < R1.63 is true and the explicit abc conjecture of Alan Baker
true then the abc conjecture is true:
For each ϵ > 0, there exists K(ϵ) such that if a, b, c positive integers relatively prime
with c = a+ b, then :

c < K(ϵ).rad1+ϵ(abc) (13)

where K is a constant depending only of ϵ. For ϵ ∈]0, 0.63[, K(ϵ) = 1.2ee
( 1

ϵ )
4

and
K(ϵ) = 1.2 if ϵ ≥ 0.63.
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