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It seems possible to obtain massive three particle amplitudes with a massless boson including gravity from one formula 

for only massive particles similar to the case of massless three particle amplitudes. To achieve this one has to assume 

tree unitarity and non chiral interactions. The x-factor needed for amplitudes with two equal mass particles and one 

massless boson can be derived in this way. We give an interpretation of massive spinor brackets with negative 

exponents appearing in amplitudes with gravity and show that they lead to appropriate little group transformations. 

 

 

 

 

 

1. Introduction 
 

Amplitudes in particle physics are most easily calculated in the spinor helicity formalism, see for example the reviews 

in [1-4]. Three particle amplitudes are the building blocks from which higher point amplitudes can be calculated with 

gluing or by recursion. For amplitudes with only massless particles one uses the helicity spinors ,α αλ λ
ɺ
ɶ  with negative 

and positive helicity. For massive amplitudes one uses massive helicity spinors or spin spinors introduced in [5],[6],[7]. 

For massless particles the little group is U(1) and for massive particles the little group is SU(2). Massive particles are 

described by spinors I I,α αλ λ
ɺ
ɶ   where ,α αɺ  denote the SL(2, )ℂ  indices and I, J the SU(2) spin indices. Amplitudes in 

this formalism have been investigated in [8-14]. 

 

It is well known [1-4] that there exists a formula comprising all massless three point amplitudes, which are determined 

by three point kinematics and momentum conservation. Massive three point amplitudes and their high energy limit were 

thoroughly investigated in [10],[11],[12] and classified in [13],[14]. One wonders immediately if a formula exists as 

well, comprising all massive three particle amplitudes. A suggestion was made in [14], which however had some 

limitations and excluded several amplitudes as discussed there.  Here we propose that it seems possible to bypass some 

of these limitations and show how one can obtain many amplitudes from one formula for only massive amplitudes. 

 

We confine the discussion to observed particles of spin 0, 1/2, 1, 2. In section 2 we discuss the notation and the general 

formulas for massless and massive amplitudes. In section 3 we investigate several massive amplitudes and how 

amplitudes with one massless boson can be derived from them under the assumptions of tree unitarity and vector-like 

interactions.  Interestingly also amplitudes with gravitons can be obtained by this formula and the x-factor emerges. In 

section 4 we show that brackets with massive spinors and negative exponents can give the required little group 

transformations. 

 

 

2. General Massless and Massive Three Particle Amplitudes 
 

We investigate massive spinors introduced in [7] and take over the notation of [12-16]. Later in [17],[18] a slightly 

refined notation was introduced, replacing ] ]n n→ −  and [ [n n→ − . This has the advantage of avoiding several 

minus signs and σ  (=helicity category) in spinors and amplitudes, where only upper SU(2) indices appear. In order to 

make the paper self contained, we display this representation in appendix A. 

We denote massive spinors 
I I

iαλ =  and I Iiα λ = 
ɺɶ  together as )Ii

σ
[15],[16]: 
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The sign σ denotes the helicity category [13] of the massive spinor and corresponds to the helicity sign of the massless 

spinor remaining in the high energy limit. Contractions are only possible between spinors with the same sign σ 

 

( )
I J

I J

i j

i j
σ

   σ = +  
=  

σ = −  

i j  (2) 

 

Massless spinors are denoted in the same way, where σ is the helicity sign, the formulas are obtained from above by 

unbolding and omitting the index I. The momentum of a massive particle with momentum pi is given as  
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The relations between massive spinors given in [12],[14],[17],[18] can be now written in a compact form where 

( )a, b , or ,= α β β αɺ ɺ . 

 

( )J K JK

i
i i m
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=σ ε ,  ( ) KJ JK i

i i m
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We now introduce the following compact notation, mirror spinors are obtained by ) (→ : 

 

) ) )( )I

i
i i n

σ σσ
= ,   ) ) )( )I

i
i n i

−σ −σ−σ
=    (5) 

) ) )( )I i
i n i

σ σ σ
= σ − , ) ) )( )I i

i i n
−σ −σ −σ

= σ −  

 

The two-vectors in (5) must be understood in the following way: for σ = +  the two entries of the vector are in the right 

order, while for σ = −  the two entries must be swapped. Therefore we have for example 

) ) )( ) ] ]( ) ( )I

i i i
i i n i n , n iσ=+ σ=−σ σσ

= =  and similarly for the mirror spinors. Massive spinors with 

index −σ  in (5), which are needed in amplitudes, are also obtained by swapping the two entries. For the helicity sign 

defined as ˆhσ = ⋅σp
�

 one obtains that (conjugate) square i spinors have positive helicity sign and (conjugate) angle 

spinors negative helicity sign, which is reversed for ni spinors. This suggests that the SU(2) indices I,J should run over 

,+ −  [12]. One can check that all spin-spinors in appendix A (see also [17],[18]), are correctly described by (5). From 

the explicit representation one gets: ( )i iσ
i n = m . Spinor contractions with only with upper indices appearing in 

amplitudes avoid any σ  or minus signs and can now be written as: 

 

( ) ( )
( ) ( )

( ) ( )
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[ ] [
j j i j iI J

i i j i i j j

i j i n i j i n n n n j
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i j  (6) 

 

In the high energy (HE) limit we have )
σ

i E∼  and )i iσ
n m / E∼ .   

From momentum conservation for the general three point amplitude is given by 
j k

0+ + =
i

p p p  or more explicitly 

) ( ) ( ) ( ) ( ) ( ) (i i j j k k
i i n n j j n n k k n n 0

σ σ σ σ σ−σ −σ −σ −σ −σ−σ σ
− + − + − =  one obtains in the HE limit: 

 

( ) ( )j i i k 0
−σ σ

≈ , ( ) ( ) ( )j jn i i k m j k
−σ σ σ

≈ , ( ) ( ) ( )k k
n i i j m k j

−σ σ σ
≈  (7) 

 

In three point amplitudes with two equal mass particles 
i j

m m m= =  and one massless boson 
k

m 0=  one needs the so 

called x-factor [7] to write for example amplitudes of the form ( )3
x

σ

−σ
= i jA  ( σ  is the helicity sign of the massless 

boson k, note that we write 1σ = ±  in terms). The x-factor and its HE limit are given by: 
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( )
( )

( ) ( )
( )

( )
( ) ( )

j k k i m j ik1
x

m k m j i j k k ix

−σ σσ σ σ −σ
−σ
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= = ≈ =

ς
i
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It is well known that any massless three point amplitude with total helicity 
1 2 3

h h h h= + +  can be written as [1-4]  

 

( ) ( ) ( ) ( )3 1 2(h 2h ) (h 2h ) (h 2h )

3 1 2 3
h ,h ,h g 1 2 2 3 3 1

σ − σ − σ −

σ σ σ
= ɶA , [ ]g 1 h= − σɶ  (9) 

 

Note that all spinor products must have the same helicity sign. This can be easily derived from momentum conservation 

in the form ) ( ) ( ) (i i j j k k 0
σ −σ σ −σ σ −σ

+ + = . Multiplying from left with ( i
σ

 and from right with )k
−σ

 one 

obtains ( ) ( )i j j k 0
σ −σ

= . If we take for example ( )j k 0
−σ

=  then the massless three point amplitude must be 

given by products of the form ( )i j
σ

 with the same helicity sign. Furthermore we note that the mass dimension of the 

coupling can be obtained from [ ] [ ] ( ) [ ]
!

3 3 1 2
g h 2h h 2h h 2h g h 1= + σ − + − + − = + σ =ɶ ɶA  as [ ]g 1 h= − σɶ  since every 

spinor product has mass dimension one. One can easily check that all massless three particle amplitudes are correctly 

described by (9), see for example [10]. 

 

Now we proceed to the massive three point amplitude by simply bolding the spinors and using that 
j j

s h, s h= σ = σ , 

where 
1 2 3

s s s s= + +  is the total spin and 
j

s  the spin of particle j [14].  

 

( ) ( ) ( ) ( )3 1 2(s 2s ) (s 2s ) (s 2s )

3 1 2 3
s ,s ,s g

− − −
= 1 2 2 3 3 1ɶA , [ ]g 1 s= −ɶ  (10) 

 

The derivation of the mass dimension of gɶ  goes as above. Note that we have omitted the subscript σ  (denoting here 

the helicity category) in the spinor products from (9). The reason is that for massive particles one cannot conclude from 

momentum conservation that all σ  are equal. Multiplying ) ( ) ( ) ( 0
σ −σ σ −σ σ −σ

+ + =i i j j k k  from left with (
σ

i  

and from right with )
−σ

k one sees that ( ) ( ) 0
σ −σ

≠i j j k  since ( ) 0
σ

≠i i  and ( ) 0
−σ

≠k k  from (4). On the 

other hand tree unitarity requires that not all brackets in (10) can have the same sign σ . 

 

According [14] the round brackets are ( ) [ ]{ },=i j i j i j  and ( ) [ ][ ] [ ]{ }2
, ,=i j i j i j i j i j i j i j  and 

a tree of possible three point amplitudes was shown there. Furthermore it was imposed in [14] that the expression in 

(10) is only sensible when the exponents are not negative, meaning that the condition 
j

s 2 max(s ) 0− ≥  should be 

satisfied. This however has the consequence that several amplitudes involving gravity like ( )1 1
3 2 2

, , 2A  or others like 

( )3
0,0,2A  cannot be obtained from (10). In the following we try to show that this condition may be too restrictive and 

therefore like (9) containing all massless amplitudes, (10) could describe many more massive three particle amplitudes 

under certain assumptions. This of course requires a valid interpretation of the term ( ) 1−
i j  in amplitudes. 

 

 

3. Amplitudes with a Massless Boson 
 

We consider the following massive particles: scalar ( 0)sϕ = , fermion f (s 1/ 2)= , vector V (s 1)= , tensor T (s 2)= . 

With the convention 
1 2 3

s s s≤ ≤  the particle 3 with highest spin is in many cases a boson with spin one or two. Now we 

investigate the limit 
3

m 0≈  which is nontrivial as discussed in [13] section 3.1. Another possibility to achieve the limit 

3
m 0≈  would be to consider a very small mass 

3
m . To obtain the high energy limit in contact with photon, gluon and 

graviton amplitudes we have to impose the following assumptions:  

 

A) tree unitarity (only renormalisable interactions) 

 

B) non chiral, vector-like interactions 

 

Renormalisable interactions occur for ( ) ( ) ( ) ( ) ( ) ( ( ) )
HE

2 3 3 1 2 3 1 2 1 2 1 0−σ σ −σ σ−σ σ −σ σ
→ = = − + =2 3 3 1  without 

energy growth and non renormalisable ones with quadratic energy growth for ( ) ( ) ( ) ( ) 2
2 3 3 1 E

σ σ σ σ
≈2 3 3 1 ∼ . 
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A non chiral interaction is given by [ ] [ ]+2 3 3 1 2 3 3 1  while [ ] [ ]L R
g g+2 3 3 1 2 3 3 1  is chiral one. 

 

We begin with the amplitude with 
1 2 3

s s 1/ 2,s 1,s 2= = = =  and [ ]g 1= −ɶ  satisfying the condition 
j

s 2 max(s ) 0− ≥ .  

Inserting the spin values from above in (10) gives ( ) ( ) ( )1 1
3 2 2

A , ,1 = g 2 3 3 1ɶ .  

From ( ) ( ) [ ]{ } [ ]{ } [ ][ ] [ ] [ ]{ }, , , , ,= ⋅ =2 3 3 1 2 3 2 3 3 1 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1  

one retains under assumption A) only the second and third term and under assumption B) only the combination 

[ ] [ ]+2 3 3 1 2 3 3 1 , which is symmetric under the exchange [ ]↔ .  Under these assumptions one can 

derive the following equation (see appendix B), which will be used several times here: 

 

( ) ( ) [ ] [ ] ( ) σ

3
m x

−σ
≈ + ≈2 3 3 1 2 3 3 1 2 3 3 1 1 2   (11) 

 

Inserting this in the amplitude one gets: 

 

( ) ( ) ( ) ( ) σ1 1
3 2 2

, ,1 = g g x
−σ

≈2 3 3 1 1 2ɶA  (12) 

 

Here gɶ  is the coupling of a non renormalisable interaction 
3

g = g / mɶ  and g is a dimensionless coupling constant. The 

amplitude in (12) describes the interaction of two equal mass fermions with a massless spin one boson (photon, gluon). 

 

The amplitude with 
1 2 3

s s 1/ 2,s 2,s 3= = = =  and [ ]g 2= −ɶ  is excluded by the condition 
j

s 2 max(s ) 0− ≥ . From (10): 

( ) ( ) ( ) ( )1 2 21 1
3 2 2

A , ,2 = g
−

1 2 2 3 3 1ɶ . Now we interpret ( ) 1−
1 2  as an term inverse to ( ) ( )I J

1 2=1 2 . The main 

problem arising here is of course, how should one interpret this amplitude and what are the correct little group 

transformations. We discuss this more thoroughly in section 4. For the last two terms in the amplitude we have  

( ) [ ]{ } [ ]{ } [ ] [ ]{ }2 22
, , , ,= ⋅ =2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3  

( ) [ ]{ } [ ]{ } [ ] [ ]{ }2 22
, , , ,= ⋅ =3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1  

Multiplying them would in general give nine terms, but from condition A) only the following three terms survive   

[ ] [ ] [ ] [ ]{ }2 22 2
, ,2 3 3 1 2 3 2 3 3 1 3 1 2 3 3 1 . The only combination valid for a non chiral interaction 

symmetric under exchange of [ ]↔  is [ ] [ ]( )2

+2 3 3 1 2 3 3 1 . Therefore we obtain together with (11) 

( ) ( ) [ ] [ ]( ) ( ) ( )
21 1 22 2σ1 1

3 32 2
, , 2 g g m x

− −

−σ
≈ + ≈1 2 2 3 3 1 2 3 3 1 1 2 1 2ɶ ɶA . 

Now we make the bold assumption that ( ) 1−
1 2  somehow cancels ( )−σ

1 2 . This seems justified by the final result, 

but is discussed more thoroughly in section 4. Then we obtain by putting 2

3 P
g = m / m mɶ , where 

1 2
m m m= =  and 

P
m  

is the Planck mass, the following result for the amplitude: 

 

( ) ( ) ( ) ( ) ( )1 2 2 2σ1 1
3 2 2

P

m
, ,2 = g x

m

−

−σ
≈1 2 2 3 3 1 1 2ɶA  (13) 

 

which agrees with the amplitude for the interaction of two massive fermions with a massless graviton [10] . 

 

The amplitude 
1 2 3

s s 0,s 1,s 1= = = = , [ ]g 0=ɶ  violates 
j

s 2max(s ) 0− ≥ . With 
3

g m / mϕ=ɶ  one gets from (10),(11) 

 

( ) ( ) ( ) ( )1 σ σ

3 3
0,0,1 = g g m x m x

−

ϕ≈ =1 2 2 3 3 1ɶ ɶA   (14) 

 

The high energy limit for different scalars [20] is obtained by unbolding the spinors in (14) or with σx  from (8). 

 

The amplitude 
1 2 3

s s 0,s 2,s 2= = = = , [ ]g 1= −ɶ  violates the condition 
j

s 2max(s ) 0− ≥ . With 
2 2

3 P
g m / m mϕ=ɶ  one gets  

 

( ) ( ) ( ) ( )
2

2 2 2 2 2σ 2σ

3 3

P

m
0,0, 2 = g g m x x

m

− ϕ≈ =1 2 2 3 3 1ɶ ɶA  (15) 

 

Again the high energy limit is obtained by unbolding the spinors or with σx  from (8). 
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The amplitude 
1 2 3

s s 1,s 2,s 4= = = = , [ ]g 3= −ɶ  satisfies the condition 
j

s 2max(s ) 0− ≥ . With 2

3 P
g 1/ m m=ɶ  and (11) 

 

( ) ( ) ( ) ( ) ( )2 2 2 22 2σ 2σ

3 3

P

1
1,1,2 = g g m x x

m−σ −σ
≈ =2 3 3 1 1 2 1 2ɶ ɶA  (16) 

 

The last results agree with the corresponding amplitudes in [10]. 

 

For the amplitude 
1 2 3

s s s 1,s 3= = = =  with [ ]g 2= −ɶ  it was argued in [14], that the ansatz (10) also fails if 

j
s 2max(s ) 0− > . The reason is that there exists a relation between the possible spinor structures. Nevertheless we 

obtain from (10) and (11) in agreement with [10] the following amplitude, describing the interaction of two massive 

bosons and a massless one with 
1 2

m m m= =  and 
3

g g / m m=ɶ  

 

( ) ( )( )( ) ( ) ( )2 2

3 3

g
1,1,1 g g m x x

m

σ σ

−σ −σ
= ≈ =1 2 2 3 3 1 1 2 1 2ɶ ɶA  (17) 

 

Next we investigate the amplitude 
1 2 3

s s s 2,s 6= = = =  with [ ]g 5= −ɶ  and consider at first 
3

m 0≈  which gives 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 22 2

3 3
2, 2,2 g g m x σ

−σ −σ
= ≈1 2 2 3 3 1 1 2 1 2ɶ ɶA . Now we can also take 

1,2
m 0≈  by simply 

unbolding the brackets ( )1 2  and using the high energy expression for x from (8) in the form 

( ) ( ) ( )x 1/ x m 2 1 / 2 3 3 1
σ −σ

−σ −σ −σ
= ≈  where 

1 2
m m m= = . We then finally find for all massless particles and by 

putting 2 2

3 P
g 1/ m m m=ɶ  in agreement with the three graviton amplitude [10] 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 6 2 2 6 2 22 2

3 3

P

1
2, 2,2 g g m m 1 2 / 2 3 3 1 1 2 / 2 3 3 1

m−σ −σ −σ −σ −σ −σ
= ≈ =1 2 2 3 3 1ɶ ɶA  (18) 

 

A couple of other amplitudes also come out directly from the formula (10) without additional assumptions. The term 

( ) [ ]{ },=i j i j i j  can give rise to several structures. Examples are the following amplitudes describing the 

coupling of a scalar to fermions, spin 1 bosons and a spin 2 boson.  

 

( ) ( )1 1
3 2 2

0, , = g 2 3ɶA , ( ) ( )2

3
0,1,1 = g 2 3ɶA , ( ) ( )4

3
0,2,2 = g 2 3ɶA . 

 

 

4. Interpretation of ( ) 1−
i j  in Amplitudes 

 

First we investigate what is meant by the term ( ) ( ) 11 I J
i j

−−
=i j . Of course the term ( )I J

i j  could be written as a 

matrix, but it is not a matrix. In the amplitude ( ) ( ) ( )a b c
1 2 2 3 3 1  one must symmetrise over the implicit upper 

indices for spin s 1≥ , since a massive particle with spin s has 2s +1  independent components and thereby can be 

described by a totally symmetric tensor 1 2sI ..I
T , where the 

k
I  run over 1,2 or ,+ − . The term ( ) 1

I J
1 2

−
 should cancel the 

term ( )I J
1 2 . By inspecting the relations in (4) ) ( ) (J J b

J J i a
i i i i m

σ σσ σ
= − = σ δ , ( )J J

K i Ki i m
σ

= −σ δ  and their 

pendants for σ → −σ   one sees that ( ) ( ) ( )II J I I

J K j K j i K i j K
i j j i m i i m m m m

σ σσ
= σ = σ ⋅−σ δ = − δ  and therefore 

 

( ) ( )
1

I J

J K i j
i j j i / m m

−

σσ
= −  (19) 

 

Now we consider the amplitude ( ) ( ) ( ) ( )1 2 21 1
3 2 2

A , ,2 = g
−

1 2 2 3 3 1ɶ  describing two massive fermions interacting 

with a massive graviton. This amplitude should have the following little group transformations, where the 

symmetrisation over {K,L,M, N}  is indicated by the curly brackets: 

 

( ) ( )I J {K L M N}1 1 1 1
3 1I 2 J 3K 3L 3M 3N 32 2 2 2

A , ,2 W W W W W W A , , 2′ ′ ′ ′ ′ ′→  (20) 
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As discussed in section 3 the amplitude can be written as ( ) ( ) ( ) ( ) ( )( )21−

−σ −σ σ σ −σ
+1 2 1 3 3 2 1 3 3 2 . Clearly the 

term ( ) 1−

−σ
1 2  must cancel two of the implicit upper little group indices for the fermions ,1 2  in order to satisfy (20). 

Using from (4) the relations ) ( ) (I I

I I i
i i i i p

−σ σ −σσ
= − = −σ , ) ( ) (J J b

J J i a
i i i i m

−σ −σ−σ −σ
= − = −σ δ  one obtains 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

J I J I J I

1 2 2 1 1 2 2 1

2 1 2 1 2 1

m p m p m p m p

−σ −σ σ σ −σ σ −σ −σ −σ −σ σ

σ −σ −σ σ σ −σ −σ σ

+ = + =

−σ ⋅σ + −σ ⋅ −σ = − +

1 3 3 2 1 3 3 2 3 2 1 3 3 2 1 3

3 3 3 3 3 3 3 3
 

For 
1 2

m = m m=  and with  ( ) ( )2 2
p pσ −σ −σ σ=3 3 3 3  (the implicit upper SU(2) indices are symmetrised) one gets for 

the amplitude (from (19) comes the minus sign) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 21 1
3 1 22 2

g
A , ,2 = g p p

m

−

−σ σ −σ σ σ −σ
= − − +1 2 2 3 3 1 3 3 1 3 3 2 1 3 3 2
ɶ

ɶ  (21) 

 

Due to the symmetry under σ → −σ  one can without restrictions assume σ = + . Furthermore in order to achieve the 

correct mass dimension of the amplitude we put again 2

P 3
g = m / m mɶ  as before (13) and write this as 

 

( ) ] [ ] [ ]( )1 1
3 1 22 2 2

P 3

1
A , ,2 p p

m m
= − − +3 3 1 3 3 2 1 3 3 2  (22) 

 

This amplitude in (21),(22) has the little group transformations required in (20) and is anti-symmetric under exchange 

1 2↔ . We now investigate the high energy limit of (22) and at first the term ]1 2p p−3 3  with [ip i i= .  

From (5) and (A3) we see that ]
] ]

] ]
3 1 2 3 1 2 3

1 2

1 2 1 2 3

n p p 3 n p p n
p p

3 p p 3 3 p p n

 − −
 − =
 − − 

3 3 .  

The off-diagonal elements vanish in the HE limit and with (7) [ ] [ ] [ ]3 3 3 3
n 1 1 2 m 3 2 , n 1 1 2 m 3 2= =   

as well as for ( )1 2↔  one obtains from 

] [ ] [ ][ ] [ ] [ ][ ] [ ]3 1 3 3 3n p 3 n 1 1 3 n 1 1 2 1 3 / 1 2 m 3 2 1 3 / 1 2≈ = ≈   

] [ ] [ ][ ] [ ] [ ][ ] [ ]3 2 3 3 3n p 3 n 2 2 3 n 2 2 1 2 3 / 2 1 m 3 1 2 3 / 1 2≈ = ≈ −  

and similarly from ]1(2) 3 33 p n ( )m 2 3 3 1 / 1 2= −  together with (8) 

] [ ][ ] [ ] ( ) ( )
( )

K L K L

1 2 3 3 3

2 3 3 12 3 3 1 / 1 2 0
p p 2m 2m 2m m x

0 2 3 3 1 / 1 2 2 1

σσ σ

σ

 
− − = − = δ = δ 

 
3 3 . 

The second term in (22) has as high energy limit see [10],[16] 

[ ] [ ] ( )
( ) ( )

( ) ( )

2

σ

3 3 2

0 3 1 / 2 1
m x m

2 3 / 2 1 0

σ σ
−σ

σ σ

 −
 + ≈ ≈
 
 

1 3 3 2 1 3 3 2 1 2  

Thereby the amplitude in (21) has as high energy limit 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

2

K L1 1
3 3 32 2 2

0 3 1 / 2 1g
A , ,2 2m 2 3 3 1 / 2 1 m

m 2 3 / 2 1 0

σ σ
σ σ σ

σ σ

 −
 ≈ ⋅ δ ⋅
 
 

ɶ
 

With 2

P 3
g = m / m mɶ  one obtains finally as high energy limit in agreement with [10],[16], where we have absorbed the 

factor 2 in the coupling (sign differences compared to [10] are due to another convention for ( )i σ
i n ): 

 

( )
( ) ( ) ( )

( ) ( ) ( )

3 2

1 1
3 2 2 3 2

P

0 3 1 2 3 / 2 11
A , ,2

m 2 3 3 1 / 2 1 0

σ σ σ

σ σ σ

 −
 ≈
 
 

 (23) 

 

The high energy limit together with the little group transformation given in (20) supports the view that (22) is the 

amplitude describing the interaction of fermions with a massive graviton. Directly from above we can obtain a formula 

for the x-factor expressed by massive spinors 

 

( )K L

1 2

3

1
x p p

2m m

σ
−σ σ

−
δ = −3 3  (24) 
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5. Summary 

 
We tried here to show that the application range of formula (10) first suggested in [14] might be greater than assumed 

there. With the assumptions of tree unitarity, vector-like interactions and a viable limit 
3

m 0≈  it seems possible to 

apply this formula for example to amplitudes with spins like ( )0,0,1 , ( )1 1

2 2
, ,1 , ( )1,1,1 , ( )0,0,2 , ( )1 1

2 2
, , 2 , ( )1,1,2  which 

were partially excluded in [14]. We interpret ( ) 1−
1 2  as the inverse term of ( )−σ

1 2 , which yields the correct final 

results for several amplitudes as shown in section 3. An advantage of the present ansatz is that one gains an additional 

explanation for three point amplitudes with one massless boson employing the x-factor and especially for amplitudes 

with gravitons. The x-factor according [7],[10] reproduces the high energy limits in the case of only massless particles. 

We also discuss the interpretation of ( ) ( ) ( )
11 I J

J K i j
i j j i / m m

−−

σ σσ
= = −i j  and show that this leads to the required 

little group transformations of the amplitude describing the interaction between fermions and a massive graviton. 

 

 

 

Appendix A:  Massive Spinor Representation 

 

The explicit representation for massive spinors in [12-18] is based on the metric ( )+ − − −  and momentum 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )* * *p E Psin cos Psin sin P cos E P c s s P i c s s P cc ssµ = θ φ θ φ θ = + − −  (A1) 

 

With the Pauli matrices we can write the momentum in bispinor form p p
µ

µ= σ  or p p
µ

µ= σ  using the equations 

( )c cos / 2= θ , ( ) ( )s sin / 2 exp i= θ φ , ( ) ( )*
s sin / 2 exp i= θ − φ  with *cc ss 1+ =  which results in ( )σ = ± :  

 
* *

*

E P (cc ss ) 2Pcs
p

2Pcs E P (cc ss )

 − σ − −σ
=  

−σ + σ − 
  (A2) 

 

We write massive spinors in the 2-vector notation used in [19] see also [15],[16], which is better readable than 

enumerating all eight 2x2 matrices. We choose here the representation of [17],[18] which is identical to [16] with the 

exception that ] ]n n→ −  and [ [n n→ − . This avoids minus signs and σ  in spinors with upper indices appearing 

in amplitudes as can be seen in (16). Lowercase index spinors are obtained by 
J

I I Ji i= ε  and mirror spinors by 

→  and ] [→ . One can obtain the expressions for ] ]i ii , i , n , n and its mirrors from the following 

equations. 

 

]( ] )
*

iI i

i i i i i

i i

c s
i i n E P E P

s c

  − 
 = = + −         

 ( )
*

iI i

i i i i i

i i

c s
i n i E P E P

s c

  − 
= = − +        

 (A3) 

[( [ ) iiI

i i i i i *
i i

cs
i i n E P E P

c s

 −   
 = = + − −         

 ( ) iiI

i i i i i *
i i

cs
i n i E P E P

c s

 −   
= = − − +        

  

] ] ]( )
*

ii

I i i i i i

ii

cs
i n i E P E P

sc

  −  
= − = − − +        

 ( )
*

ii

I i i i i i

ii

cs
i i n E P E P

sc

  −  
= − = − + −        

 

[ [ [( ) i i

I i i i i i*
ii

c s
i n i E P E P

cs

 −   
= − = − +        

 ( ) i i

I i i i i i*
ii

c s
i i n E P E P

cs

 −   
= − = − + − −        

 

 

With ) )ii , n
σ σ

 defined in (6), the momentum (leading to (A2) for σ = ± ) is given by  

 

) ( ) ( ) (I

I i i
i i i i n n

σ σ σ−σ −σ−σ
= σ = −

i
p  (A4) 

 

One can check, that the relations in (4) are satisfied together with  

 

( )i i
i n m

σ
=  (A5) 
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Appendix B: Massive Amplitudes and the x-Factor 

 

First we note that ( ) ( )2 3 3 1  can be one of the following structures: 

( ) ( ) [ ]{ } [ ]{ } [ ][ ] [ ] [ ]{ }, , , , ,= ⋅ =2 3 3 1 2 3 2 3 3 1 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1  

However assumption A) excludes the first and last possibility because their high energy behaviour is 2E∼ . For a chiral 

interaction we would obtain [ ] [ ]L R
g g+2 3 3 1 2 3 3 1  [13]. From assumption B) we conclude that the only 

allowed term for a vector-like, non chiral interaction must be [ ] [ ]+2 3 3 1 2 3 3 1 . With a massive polarisation 

defined by [3

3

2

m
= 3 3ε  in [12],[13],[14] we can write this as  

 

[ ] [ ] [ ] [ ] ] ]( )3

3 3

m

2
+ = + = +2 3 3 1 2 3 3 1 1 3 3 2 2 3 3 1 1 2 2 1ε ε  (B1) 

 

With (A3) one derives for KL

3 3ε = ε with symmetrised indices K,L  

( ) [( [ ){ } [ [ [( ) [KL K L

3 3 3 3 3 3 3

3 3 3

2 2 2 1
n 3 3 n n 3 , 3 3 n n , 3 n

m m m 2σ σ

 = = = +   
3 3 �ε . 

From 
3 3

m 3 n=  in the first term and [ ]3 3
m 3 n=  in the third term one obtains (B2) in the limit 

3
m 0≈ , 

3
n → ζ  

by omitting the longitudinal component { }KL

3 3 3,
+ −≈ ε εε  with [3 2 3 / 3

+ε = ζ ζ  and [ [ ]3 2 3 / 3
−ε = ζ ζ  

since the longitudinal component proportional to 
3 3

p / m  becomes a pure gauge. Furthermore according [13] vector-like 

fermions do not interact with the longitudinal component and thereby { }KL K L

3 3 3 3

3

2
,

m

+ − σ= ≈ ε ε = ε3 3ε .  

 

[ ] [ ] ] ]( )3

3 3

m

2

σ σ+ ≈ ε + ε2 3 3 1 2 3 3 1 1 2 2 1  (B2) 

 

Now with ,

3

+ −ε  the right side of (B2) give 

] ]( ) [ ] [ ]
3 3

3 31

32

+ + ζ + ζ
ε + ε =

ζ

1 2 2 1
1 2 2 1 , ] ]( ) [ ] [ ]

[ ]3 3

3 31

32

− − ζ + ζ
ε + ε =

ζ

1 2 2 1
1 2 2 1  

From the Schouten identity ζ = − ζ − ζ1 2 1 2 2 1  multiplied from left with [ 13 p  one derives  

[ [ [1 1 13 3 3ζ = − ζ − ζp 1 2 p 1 2 p 2 1 . With ]1 = mp 1 1 ,  [ [ [ ]1 23 3 = m 3= − −p 2 p 2 2  

we have [ [ ] [ ] [ ] [ ]( )13 m 3 m 3 m 3 3ζ = − ζ + ζ = − ζ + ζp 1 2 1 2 2 1 1 2 2 1  and thereby 

[ ] [ ] [ 133 3

3 m 3
x

ζζ + ζ
= =

ζ ζ

p 1 21 2 2 1
1 2 .  By a similar derivation (

1 2
m m m= = ) 

[ ] [ ]
[ ]

[ [ ]
[ ]

[ ]1 1
33 3

x
3 m 3

−
ζζ + ζ

= =
ζ ζ

p 1 21 2 2 1
1 2 . Now we arrive finally at equation (11): 

 

( ) ( ) [ ] [ ] ( )3
m x

σ

−σ
≈ + ≈2 3 3 1 2 3 3 1 2 3 3 1 1 2  (B3) 

 

Multiplying with 
3

g = g / mɶ  gives then as in (12) 

 

( ) ( ) ( )g g x
σ

−σ
≈2 3 3 1 1 2ɶ  (B4) 

 

The symmetrised SU(2) indices K,L of the massive boson 3 collapsed to the two indices ,σ = + −  of a massless boson. 
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