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Abstract001

Large Language Models (LLMs) have shown002
remarkable capabilities in complex reasoning003
tasks. However, as the number of generated004
tokens increases, they tend to accumulate small005
errors that compound over time, often leading006
the model further down incorrect reasoning007
paths. In this work, we introduce Dynamic008
Sampling and Multi-Validation on Scratch Pol-009
icy Optimization (ASPO), a novel framework010
designed to enhance the reasoning robustness011
of LLMs. ASPO leverages scratchpads and spe-012
cialized attention masks to dynamically mask013
previous context during inference, allowing014
the model to remain resilient to earlier mis-015
takes, explore alternative reasoning paths, and016
identify potential inconsistencies. Extensive017
experiments on four benchmark datasets and018
across two model architectures demonstrate019
that ASPO significantly improves reasoning020
accuracy. Our findings highlight a promising021
direction for improving LLM performance on022
complex reasoning tasks.023

1 Introduction024

Large Language Models (LLMs) have achieved025

strong performance on a wide range of natural lan-026

guage processing tasks, including complex multi-027

step reasoning. Despite their success, LLMs of-028

ten suffer from error accumulation: early-stage029

mistakes in long-form reasoning can mislead sub-030

sequent steps, causing the final output to deviate031

significantly from the correct answer. Due to the032

autoregressive nature of LLMs, once an incorrect033

token is generated, it becomes part of the context034

for future predictions, making it difficult for the035

model to recover.036

To address this limitation, we propose dynamic037

Ampling and multi-validation on Scratch Policy038

Optimization (ASPO), a novel method designed039

to improve the robustness and accuracy of LLMs040

in multi-step reasoning tasks. The key idea behind041

ASPO is to allow the model to revise its reasoning042

path dynamically—without being rigidly tied to 043

potentially flawed earlier outputs. 044

Concretely, ASPO proceeds in three stages. First, 045

the model generates an initial draft reasoning tra- 046

jectory (scratchpad 1). Then, using a specialized 047

attention mask, the model masks out the draft and 048

re-generates a second reasoning path (scratchpad 049

2) without being directly influenced by the first. 050

By comparing the two drafts, the model identifies 051

discrepancies and locates potential errors. A cor- 052

rection phase follows, in which the model refines 053

its answer by resolving inconsistencies. Finally, 054

we apply a rule-based reward signal to reinforce 055

successful correction behaviors via reinforcement 056

learning, gradually improving the model’s reason- 057

ing strategies over time. 058

Our contributions are threefold: 059

• We propose ASPO, a novel framework that 060

enables LLMs to dynamically mask and revise 061

reasoning steps during inference. 062

• We introduce a multi-validation mechanism 063

that identifies and corrects inconsistencies be- 064

tween independent reasoning paths. 065

• We demonstrate through extensive experi- 066

ments that ASPO significantly improves rea- 067

soning accuracy across multiple datasets and 068

model scales, while also enabling effective 069

policy refinement via rule-based rewards. 070

2 Method 071

In this section, we describe our proposed method, 072

Dynamic Sampling and Multi-Validation on 073

Scratch Policy Optimization (ASPO), which 074

aims to improve reasoning accuracy in Large Lan- 075

guage Models (LLMs) by allowing the model to 076

dynamically revise its reasoning paths during in- 077

ference. The core idea of ASPO is to enable the 078
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Figure 1: Overview of the ASPO framework. The model
generates an initial reasoning path, masks it, regenerates
a second path, compares the two, performs correction,
and learns through rule-based rewards.

model to compare multiple reasoning drafts, iden-079

tify errors in earlier steps, and refine its answer080

accordingly, ultimately improving its performance081

through reinforcement learning.082

2.1 Overview of ASPO083

The ASPO framework proceeds in three main084

phases: (1) Draft Generation, (2) Error Detection085

and Correction, and (3) Reinforcement Learning086

for Refinement. Each phase is designed to dynami-087

cally adjust the model’s reasoning process, allow-088

ing it to recover from errors and strengthen its rea-089

soning abilities over time. Below, we detail each090

phase.091

2.2 Draft Generation092

The process begins with the model generating an093

initial reasoning trajectory, denoted as scratchpad 1.094

This first draft represents the model’s initial reason-095

ing process, which may contain errors due to ear-096

lier missteps in the inference process. The model097

then generates a second reasoning path, scratchpad098

2, by masking out the attention to scratchpad 1,099

which prevents the model from being influenced by100

potentially erroneous information.101

Mathematically, the model generates the first 102

and second drafts as follows: 103

Draft 1: s1 = Generate(x) 104

105
Draft 2: s2 = Generate(x,mask(s1)) 106

Here, x represents the input to the model, and the 107

function Generate produces a sequence of tokens. 108

The attention masking ensures that the second draft 109

is not affected by the errors in the first draft. 110

2.3 Error Detection and Correction 111

After generating two drafts, the next phase involves 112

comparing them to detect inconsistencies and iden- 113

tify errors. The model compares the tokens in 114

scratchpad 1 and scratchpad 2, and if any discrep- 115

ancies are found, the model locates the source of 116

the error. 117

The comparison can be formalized as: 118

Compare(s1, s2) if Discrepancy(s1, s2) > δ 119

where δ is a threshold that determines the level of 120

discrepancy considered as an error. Upon detecting 121

an inconsistency, the model corrects its reasoning 122

by resolving the identified discrepancies, producing 123

a refined output ŷ that improves the initial reason- 124

ing. 125

2.4 Reinforcement Learning for Refinement 126

Once the reasoning path has been corrected, the 127

model employs a rule-based reinforcement learn- 128

ing (RL) strategy to further refine the correction 129

process. A reward signal is applied based on the 130

accuracy of the corrections made in the reason- 131

ing. This reward signal is designed to reinforce the 132

model’s ability to avoid similar mistakes in future 133

reasoning tasks. 134

The reward is computed as: 135

R = Reward(ŷ, ytrue) 136

where ŷ is the corrected output, and ytrue is the 137

ground truth. The model then updates its policy 138

based on this reward, improving its reasoning capa- 139

bilities over time. 140

2.5 ASPO Workflow 141

The complete ASPO workflow can be summarized 142

in the following steps: 143

1. The model generates an initial reasoning draft 144

(scratchpad 1). 145
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2. The model generates a second draft (scratch-146

pad 2) by masking out the first draft’s influ-147

ence.148

3. The model compares the two drafts to detect149

errors and inconsistencies.150

4. The model corrects the reasoning by resolving151

discrepancies.152

5. The model receives a rule-based reward for153

the corrected reasoning path, which is used to154

refine its reasoning ability through reinforce-155

ment learning.156

By following these steps, ASPO ensures that the157

model’s reasoning is both accurate and adaptable,158

while progressively enhancing its ability to handle159

complex multi-step tasks.160

3 Experiments161

Tasks and Datasets. We evaluate our approach on162

a suite of math reasoning benchmarks that span el-163

ementary arithmetic to advanced competition-level164

problems. The selected tasks are designed to assess165

the model’s capacity for symbolic manipulation,166

multi-step reasoning, and domain-specific mathe-167

matical understanding.168

• MATH(Hendrycks et al., 2021): Following169

the data setup inLightman et al. (2023), we170

construct the training set by augmenting the171

original MATH dataset with 4,500 problems172

drawn from the test set. Evaluation is con-173

ducted on the remaining 500 held-out prob-174

lems (referred to as MATH500).175

• GSM8K (Cobbe et al., 2021): We evaluate176

performance on the 1,000 official test prob-177

lems. This dataset focuses on grade school178

math word problems, emphasizing arithmetic179

reasoning and step-by-step solution genera-180

tion.181

• Minerva Math (Lewkowycz et al., 2022):182

This benchmark includes a diverse collection183

of quantitative reasoning problems, primarily184

drawn from scientific and mathematical do-185

mains. Problems typically require multi-step186

derivations and symbolic manipulation.187

• OlympiadBench (He et al., 2024): This188

benchmark comprises 8,476 high-difficulty189

Table 1: Results of experiments with Qwen2.5-Math-
7B-base. We set the temperature to 0.7.

Benchmark Method Acc

ASPO 92.2
MATH GRPO 80.3

MGRPO 90.1

ASPO 97.3
GSM8K GRPO 83.4

MGRPO 95.3

ASPO 42.1
Minerva Math GRPO 34.8

MGRPO 39.0

ASPO 51.8
OlympiadBench GRPO 39.6

MGRPO 50.2

problems curated from international and na- 190

tional mathematics and physics competi- 191

tions, including the International Mathemati- 192

cal Olympiad (IMO), Chinese Mathematical 193

Olympiad (CMO), and the Gaokao. Each 194

problem is paired with an expert-written, step- 195

by-step solution that supports detailed evalua- 196

tion of the model’s reasoning process. 197

For all experiments, we configure the model with 198

a maximum context length of 8192 tokens. Infer- 199

ence is conducted using the VLLM engine (version 200

0.8.4) (Kwon et al., 2023), enabling efficient gener- 201

ation with minimal latency. 202

Models. Qwen2.5-Math-7B-base. 203

Experiment setup of reinforcement learning. 204

For training with GRPO, we adopt the following 205

hyperparameter settings: an initial learning rate of 206

5× 10−7; a cosine annealing scheduler with a min- 207

imum learning rate ratio of 0.1; a linear warmup 208

phase covering 3% of total training steps; an en- 209

tropy regularization coefficient β = 0; a maximum 210

generation length of 8,196 tokens; eight sampled 211

rollouts per input; and a mini-batch size of 32. 212

4 Experiment Results Analysis 213

Table 1 shows the performance comparison among 214

ASPO, GRPO, and MGRPO across four mathe- 215
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matical reasoning benchmarks using the Qwen2.5-216

Math-7B-base model with a temperature of 0.7.217

Overall, our proposed method ASPO consis-218

tently achieves the highest accuracy across all219

datasets, demonstrating its effectiveness in enhanc-220

ing model reasoning ability through multi-draft221

generation and correction.222

On the MATH dataset, ASPO outperforms223

GRPO by a large margin (92.2% vs. 80.3%),224

and also surpasses the more advanced MGRPO225

(90.1%), showing that dynamic masking and error226

correction play a critical role in solving complex227

symbolic problems.228

For the GSM8K dataset, which emphasizes229

step-by-step arithmetic reasoning, ASPO achieves230

97.3% accuracy, significantly higher than both231

GRPO (83.4%) and MGRPO (95.3%). This high-232

lights ASPO’s robustness in handling chain-of-233

thought style tasks and correcting early-stage rea-234

soning errors.235

In the more challenging Minerva Math dataset,236

where problems require advanced mathematical237

intuition, ASPO again achieves the best perfor-238

mance (42.1%), indicating its advantage in cor-239

recting deep, multi-step logical flaws.240

On the OlympiadBench benchmark, which con-241

tains competition-level problems, ASPO achieves242

51.8%, outperforming GRPO (39.6%) and slightly243

surpassing MGRPO (50.2%). This suggests that244

ASPO can also generalize to high-difficulty do-245

mains requiring non-trivial deductive reasoning.246

These results confirm that ASPO’s multi-247

validation and correction mechanism not only im-248

proves overall accuracy, but also enhances robust-249

ness in various levels of problem difficulty. The250

consistent performance gains across datasets vali-251

date our hypothesis that preventing error propaga-252

tion and enabling error recovery is key to improv-253

ing LLM reasoning.254

4.1 Ablation Study255

To assess the contributions of each component in256

ASPO, we perform ablation studies on the GSM8K257

and MATH datasets using the Qwen2.5-Math-7B-258

base model. Table 2 summarizes the results.259

No Masking. When dynamic attention masking260

is removed, the model tends to overfit or rely too261

heavily on earlier incorrect steps, leading to de-262

graded performance. This confirms that the ability263

to "forget" earlier flawed reasoning is crucial.264

Table 2: Ablation results on GSM8K and MATH. Each
variant removes one key component from the full ASPO
framework.

Model Variant GSM8K Accuracy (%) MATH Accuracy (%)

Full ASPO 97.3 92.2
No Masking 84.2 81.2
No Draft Comparison 88.4 83.5
No RL Fine-tuning 92.7 87.2

No Draft Comparison. Without comparing two 265

independently generated drafts, the model loses 266

its mechanism for self-verification and correction, 267

resulting in significant accuracy drops. This demon- 268

strates the importance of draft disagreement detec- 269

tion in identifying errors. 270

No RL Fine-tuning. Removing the reinforce- 271

ment learning stage, the model still benefits from 272

structural corrections but lacks long-term improve- 273

ment via reward-guided optimization. This shows 274

that while ASPO’s core idea works in a zero-shot 275

setting, RL fine-tuning further enhances perfor- 276

mance. 277

These results clearly indicate that each compo- 278

nent in ASPO—dynamic masking, draft compari- 279

son, and RL-based policy refinement—contributes 280

meaningfully to its overall effectiveness. 281

5 Conclusion 282

In this paper, we introduce ASPO (Dynamic Sam- 283

pling and Multi-Validation on Scratch Policy Opti- 284

mization), a novel framework designed to improve 285

the reasoning accuracy of large language models 286

(LLMs) by actively detecting and correcting inter- 287

mediate errors during inference. 288

ASPO leverages a multi-draft generation mech- 289

anism with dynamic attention masking to isolate 290

and compare different reasoning paths, enabling the 291

model to identify inconsistencies and correct them 292

before producing final answers. Furthermore, we 293

reinforce this self-correction behavior through rule- 294

based reward signals via reinforcement learning, 295

encouraging the model to generalize its correction 296

capabilities. 297

Extensive experiments on four mathematical rea- 298

soning benchmarks demonstrate that ASPO consis- 299

tently outperforms strong baselines, achieving new 300

state-of-the-art results on datasets such as GSM8K 301

and MATH. Ablation studies further confirm the 302

necessity of each component in the framework. 303

Our work highlights the importance of dynamic 304
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self-evaluation and correction in LLM reasoning,305

offering a promising direction toward more accu-306

rate and robust language models capable of com-307

plex multi-step problem solving.308

In future work, we plan to extend ASPO to open-309

domain reasoning tasks, explore scaling laws for310

correction strategies, and integrate uncertainty esti-311

mation into the draft comparison process.312

6 Limitations313

While ASPO demonstrates strong improvements in314

reasoning accuracy, our approach also has several315

limitations.316

First, the reliance on generating multiple drafts317

increases inference cost during decoding, espe-318

cially for long-context or resource-constrained de-319

ployments. Although correction improves robust-320

ness, the extra compute may not be feasible for all321

real-time applications.322

Second, ASPO assumes that divergence between323

drafts indicates potential error, which may not al-324

ways hold. In certain ambiguous or multi-solution325

problems, disagreement may reflect diversity rather326

than mistake, potentially leading to overcorrection.327

Third, the current correction mechanism is rule-328

driven and relies on handcrafted signals to guide329

reinforcement learning. This may limit general-330

izability to other domains where explicit rules or331

symbolic comparisons are hard to define.332

Finally, our experiments focus on mathematical333

reasoning tasks. While the framework is general,334

its effectiveness on open-domain commonsense or335

scientific reasoning tasks remains to be fully vali-336

dated.337

Addressing these limitations—through more ef-338

ficient draft sampling, adaptive error detection, and339

broader evaluation—will be an important direction340

for future work.341

Ethical Considerations342

This work focuses on improving the reasoning ac-343

curacy of large language models (LLMs) in math-344

ematical tasks through draft-based correction and345

reinforcement learning. While the approach is pri-346

marily evaluated on academic benchmarks, we ac-347

knowledge several ethical considerations.348

First, increased reasoning accuracy may lead to349

unintended reliance on LLMs for high-stakes tasks350

such as education, scientific problem-solving, or351

decision support. Caution should be taken when352

deploying such systems without appropriate human 353

oversight, especially when correctness is critical. 354

Second, reinforcement learning with rule-based 355

rewards may encode biases present in the design of 356

those rules or in the datasets used for fine-tuning. 357

Care must be taken to ensure that the reward signals 358

do not amplify undesirable behaviors or narrow 359

forms of reasoning. 360

Third, although our method improves trans- 361

parency through draft comparison, the model’s in- 362

ternal decision-making remains largely opaque. We 363

encourage further research into interpretable self- 364

correction and responsible debugging of LLMs. 365

Lastly, our method involves increased computa- 366

tion for draft generation and validation, which may 367

have environmental implications if scaled widely. 368

We recommend using lightweight models or batch 369

inference when feasible to mitigate carbon foot- 370

print. 371

We believe these concerns can be addressed with 372

careful system design, human-in-the-loop valida- 373

tion, and open release of evaluation tools for com- 374

munity auditing. 375

Reproducibility Statement 376

To ensure the reproducibility of our results, we 377

provide detailed information regarding the code, 378

datasets, and models used in all experiments. All 379

relevant implementations will be shared through 380

publicly available repositories and datasets to allow 381

other researchers to replicate our experiments and 382

validate our findings. 383

• Code and Implementation: Our code will 384

be made publicly available on GitHub, along 385

with detailed documentation including instruc- 386

tions for installing dependencies, running ex- 387

periments, and using the model for inference. 388

• Datasets: All datasets used (such as MATH, 389

GSM8K, Minerva Math, and Olympiad- 390

Bench) are publicly accessible through their 391

respective sources. We will provide links for 392

accessing these datasets and specify their us- 393

age licenses. 394

• Model: The Qwen2.5-Math-7B-base model 395

used in our experiments will be made avail- 396

able on an open platform, allowing re- 397

searchers to download and use the model to 398

replicate our experiments. 399
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• Experimental Setup: We will provide a de-400

tailed description of the experimental hyperpa-401

rameters, hardware configurations, and train-402

ing/evaluation procedures. All setups will be403

consistent with those reported in the paper,404

ensuring the verifiability of the experimental405

results.406

We encourage other researchers to build upon407

and extend our work, and we welcome feedback408

from the community to further improve our efforts.409
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ASPO:
Input:<|im_start|>system
<|im_end|>
<|im_start|>user
Alexis is applying for a new job and bought a new set of business clothes to wear
to the interview. She went to a department store with a budget of $200 and spent
$30 on a button-up shirt, $46 on suit pants, $38 on a suit coat, $11 on socks,
and $18 on a belt. She also purchased a pair of shoes, but lost the receipt
for them. She has $16 left from her budget. How much did Alexis pay for the
shoes?<|im_end|> <|im_start|>assistant
<think>
<draft1>
First, I need to determine the total amount Alexis spent on her business clothes
excluding the shoes. She spent $30 on a button-up shirt, $46 on suit pants, $38
on a suit coat, $11 on socks, and $18 on a belt. Adding these amounts together
gives a subtotal of $145.

Alexis’s total budget is $200, and she has $16 left after purchasing the
shoes. This means the total amount she spent on all items, including the shoes,
is $200 minus $16, which equals $184.

To find out how much she spent on the shoes, I subtract the subtotal of
the other clothes from the total amount spent: $184 minus $145 equals $39.

Therefore, Alexis paid $39 for the shoes.
</draft1> <draft2> First, I need to determine how much Alexis spent in total on
her business clothes excluding the shoes.
She spent $30 on a button-up shirt, $46 on suit pants, $38 on a suit coat, $11
on socks, and $18 on a belt. Adding these amounts together:

30 + 46 = 76

76 + 38 = 114

114 + 11 = 125

125 + 18 = 143

So, Alexis spent a total of $143 on items other than the shoes.

Alexis had a total budget of $200 and has $16 left after her purchases.
Therefore, the total amount she spent on all items, including the shoes, is:

200 - 16 = 184

To find out how much she spent on the shoes, I subtract the amount she
spent on other items from the total amount she spent:

184 - 143 = 41

Therefore, Alexis paid $41 for the shoes.
</draft2>
Wait, the answers from the two thinking processes are inconsistent. Let me
carefully analyze which draft is incorrect, identify the error, and then generate
a new draft:

Table 3: A prompt used to evaluate the quality of a response.
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